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General view of a liquid-liquid phase transition

Hajime Tanaka
Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan

~Received 20 June 2000!

We present a general view of a liquid-liquid phase transition, based on a simple physical picture that there
is ‘‘cooperative medium-range bond ordering’’ for any liquids. Contrary to the common belief, we argue that
liquid is not homogeneous and in any liquid there exist locally favored structures, which are frustrated with
normal-liquid structures. The cooperative excitation of locally favored structures leads to a gas-liquid-like
critical point of bond ordering. This picture naturally leads to the conclusion that liquid-liquid transition is not
specific to special materials, but can in principle exist in any liquids. Our model suggests a new possibility that
~i! even an ordinary molecular liquid can have a hidden liquid-liquid phase transition and~ii ! it may be the
origin of a second amorphous phase~e.g., ‘‘glacial phase’’! and critical-like, large-scale fluctuations~‘‘Fischer
clusters’’! observed in supercooled molecular liquids.

PACS number~s!: 64.70.Ja, 64.10.1h, 64.60.My, 64.70.Pf
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I. INTRODUCTION

A single-component liquid may have more than two kin
of isotropic liquid states and the transition between th
different states is called ‘‘liquid-liquid phase transition
@1–3#. It is one of the most interesting challenging problem
in the field of liquid science. There is much experimen
evidence suggestive of its existence for a variety of liqu
covering atomic to molecular liquids@3#. For example, liquid
carbon~C! is one of the most well-studied materials and t
existence of a high-pressure liquid-liquid phase transition
experimentally suggested and theoretically predicted@4–8#.
Recently, Katayamaet al. @9# studied the first-order liquid-
liquid phase transition in phosphorus~P! by in situ x-ray
diffraction observation. The coexistence of two forms of li
uids during the transformation was directly observed. Th
the existence of a first-order liquid-liquid phase transition
strongly suggested for phosphorus. The behavior of Si
Ge @10# is similar to that of C and P. Se, Te, Rb, Cs, a
other atomic liquids are also suggested to be candidate
liquids with liquid-liquid phase transition@3,11#. Network-
forming liquids such as SiO2 , GeO2, and H2O are also ex-
pected to have a liquid-liquid phase transition@12–14#. For
example, liquid water, which is one of the most famili
network-forming liquids, has solid-state amorphou
amorphous transitions@15# and is suggested to have a liqui
liquid phase transition below its melting point@16–19#. Fur-
thermore, Aasland and McMillan@20# recently reported a
striking experimental finding: In a supercooled state
Al2O3-Y2O3, they directly observed with optical microscop
the coexistence of two glassy liquids, which have complet
the same composition but different density. This surpris
finding indicates that even a~quasi-! single-component liquid
can phase separate into two liquid phases@2#. Similar phe-
nomena have also been reported by a number of resear
in various liquids~see Refs.@2,20#!. However, such a transi
tion seems not to have been widely accepted as a convin
fact and its existence itself remains as an interesting rese
subject. This situation partly comes from~i! the counterin-
tuitive nature of the phenomena and~ii ! the experimental
difficulties; namely, in most cases the transition is located
PRE 621063-651X/2000/62~5!/6968~9!/$15.00
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high temperatures and high pressures~e.g., for C, P, Si, Ge,
Te, . . . ) orhidden by solidification~e.g., for water!.

In addition to these counterintuitive phenomena of liqu
liquid transitions, there are other mysterious phenomena
supercooled liquids. One is the phenomenon, which
widely known as ‘‘Fischer clusters’’@22# in the molecular
glass community. According to the standard theory of sim
single-component liquids@1,23#, the structure factor at a
wave numberq50, S(0), is determined by the isotherma
compressibilityKT asS(0)5rkBTKT (r is the density;kB is
Boltzmann’s constant;T is temperature!. Contrary to this
common sense, however, Debye and Bueche found ex
light scattering far beyond this prediction and the existen
of long-range density fluctuations with a correlation leng
jcl of 200 nm in a glassy polymer@21#. Furthermore, it was
recently demonstrated by Fischer and his coworkers@22,24#
that strong excess light scattering due to large-scale fluc
tions is commonly observed near the glass-transition te
peratureTg in both molecular liquids@e.g., ortho terphenyl,
bis-methyl-phenyl-cyclohexane, and bis-methyl-methox
phenyl-cyclohexane# and polymeric liquids@e.g., poly~m-
ethyl methacrylate! and polysiloxane#. These surprising re-
sults strongly suggest that large-scale fluctuations, which
called ‘‘Fischer clusters,’’quite commonlyexist in various
ordinary liquids under deeply supercooled conditions. A
other example is the existence of a second amorphous p
~‘‘glacial phase’’! in triphenyl phosphite~TPP! @25#. Kivel-
sonet al. @25# recently found a first-order phase change fro
deeply supercooled liquid~TPP! at 1 atm to a rigid amor-
phous phase called the ‘‘glacial phase,’’ which is clea
distinguished from an ordinary glassy phase. It should
noted that supercooled TPP also exhibits excess light sca
ing peculiar to Fischer clusters. Although there has been
firm consensus@26,27#, the possible existence of the liquid
liquid transition was suggested@25,28#. The physical origin
of these phenomena is still quite far from being even qu
tatively understood.

Although there have been a number of examples sug
tive of the existence of liquid-liquid phase transition, it h
not been clarified how universal such a transition is, or w
is the necessary condition for it. A liquid-liquid transitio
6968 ©2000 The American Physical Society
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PRE 62 6969GENERAL VIEW OF A LIQUID-LIQUID PHASE TRANSITION
has so far been discussed in a rather specific way abo
particular substance. The possible general nature was s
times suggested@2,3#, but restricted to a rather special fami
of liquids ~network-forming liquids!.

In this paper, we reconsider this problem from a fund
mental viewpoint, focusing on how we should describe l
uid physically. We argue that packing effects and spec
symmetry-selective interactions generally lead tocoopera-
tive medium-range orderingin any liquid @29–33# and it is
this bond ordering that is the origin of liquid-liquid phas
transition. Our model, thus, suggests that liquid-liquid ph
transition can, in principle, exist in any liquid in its stabl
metastable, or unstable state. On the basis of this model
above-described phenomena such as ‘‘glacial phase’’
‘‘Fischer clusters’’ can reasonably be explained by the ex
tence of hidden spinodal of a liquid-liquid phase transiti
and its pretransitional effects, although this scenario has
to be proven. We believe that such a simple physical view
quite useful for the understanding of these counterintuiti
mysterious phenomena.

In Sec. II, we explain our physical picture of liquid. I
Sec. III, we describe a two-state model with cooperativity.
Sec. IV, we propose a few possible types of liquid-liqu
phase transitions. In Sec. V, we discuss critical phenom
near a gas-liquid-like critical point of bond ordering. In Se
VI, we show that our model can also provide a simple phy
cal explanation for the phenomena of a liquid-glass tran
tion. In Sec. VII, we summarize our paper.

II. A SIMPLE PHYSICAL PICTURE OF LIQUID

To understand the phase behavior of any material ph
cally, we must clarify what are the relevant order parame
to describe it. It is widely believed that liquid can be d
scribed by just one order parameter densityr, which beauti-
fully describes a gas-liquid phase transition. However,
have recently proposed that this is not the case for any liq
near its crystallization point, or the lower stability limit o
liquid @29–33# and thus at least two order parameters, wh
we call density and bond order parameters, are necessar
the physical description of liquid. A density order parame
tries to maximize the density~or packing! to lower the at-
tractive interaction energy and leads to the long-range or
ing ~crystallization!. At the same time, however, any mo
ecules locally favor a certain packing symmetry that
different from the symmetry favored by a density order p
rameter. The formation of these locally favored structu
can be viewed as a consequence of specific many-body
teractions. Thus, we proposed the following physical pict
of liquid: ~i! there exist rather well-defined, unique local
favored structures~medium-range order! in any liquids and
~ii ! such local structures are ‘‘cooperatively’’ excited in a s
of another disordered background structure~normal-liquid
structures!, and their number density increases upon cool
since they~in a ground state! are energetically more favor
able than normal-liquid structures~in an excited state!. This
cooperativity is a natural consequence of frustration betw
density and bond ordering. The relevance of this two-ord
parameter model of liquid is supported by the succes
description of water’s anomalies@31–33#.

Here we demonstrate some examples of such medi
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range order~locally favored structure! to gain a deeper in-
sight into the hidden ordering in liquid. For spherical mo
ecules, for example, it is widely recognized that they loca
favor an icosahedral arrangement@1#, whose symmetry is
inconsistent with the crystallographic symmetry. Molecu
such as water, on the other hand, have a strong ability
form hydrogen bonding that favors a local symmetry of t
rahedral arrangements. The most probable candidates o
locally favored structure are an ‘‘octameric unit’’ or a ‘‘six
member ring’’@32,33#, which are elementary structural uni
of ice Ih. A similar idea can be applied to atomic liquids su
as carbon@4–8#. Carbon is known to favor the sp, sp2 , sp3
type of bonding sequentially with an increase in pressu
We introduce three bond order parametersSi ( i 5123) in
addition to the density order parameter, to express the loc
favored structure selected by spi bonding in our language
The specific volume increases with a decrease ini. An im-
portant point is that with an increase in pressureP the denser
configuration is sequentially selected in the order ofS1, S2,
S3, andr.

Hereafter we consider only a case of two order parame
r and S, for simplicity, although we can straightforwardl
generalize our model to a case ofm order parameters. Her
we note that a system ofm order parameters can in principl
havem critical points corresponding to the ordering asso
ated with each order parameter. A critical point of dens
(r) ordering is, of course, a usual gas-liquid critical point

Next we consider how to define our bond order parame
in a more rigorous manner. A locally favored structure c
be viewed as a minimum structural unit~a ‘‘symmetry ele-
ment’’!, which has an excluded volume effect. Thus, o
‘‘bond order parameter’’S(r) can be defined as the ‘‘loca
fraction of locally favored structures’’ in a small volum
around a pointr. Formally, for example,S(r) can be defined
by using the so-called bond-orientational order parame
Qlm @34#:

Qlm~R!5Ylm„u~R!,f~R!…, ~1!

where theYlm(u,f) are the spherical harmonics, andu(R)
and f(R) are the polar angles of the bond measured w
respect to some reference coordinate system, andR is the
midpoint of a bond. The local average of their rotationa
invariant combination can be used as the definition of
local bond order parameterS(r). Thus we take the average o
Qlm over a small volume located atr. We redefine the locally
averaged, or coarse-grained, quantitiesQ̄lm as Q̄lm(r)
5^Qlm(R)& r . Then, the rotationally invariant combinatio
Ql(r) can be defined as

Ql~r!5F 4p

2l 11
Sm52 l

l uQ̄lm~r!u2G1/2

. ~2!

For icosahedrons, for example, we can useQ6(r) as the defi-
nition of the local bond order parameterS(r). We can apply
such representation of the symmetry using spherical h
monic expansions~or higher-rank tensors! for the definition
of S, to express the symmetry of any types of locally favor
structures.
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6970 PRE 62HAJIME TANAKA
III. A TWO-STATE MODEL WITH COOPERATIVITY

First we estimate theT,P dependence of the bond ord
parameterSon the basis of a simple two-state~or multistate!
model. A two-state model with cooperativity was first dev
oped by Stra¨ssler and Kittel@35# and applied to the problem
of a liquid-liquid transition by Rappoport@36# and then by
many researchers for a variety of materials. We argue
such a multistate model can be applied to any liquid with
any exception, provided thatthe formation of local structures
(medium-range ordering) is a universal feature of liquid.
First we characterize the state of normal-liquid structu
( j 5r) and that of locally favored structures (j 5S). Ej , v j ,
andgj are the energy, specific volume, and degeneracy of
j state, respectively~see Fig. 1!. Note thatES,Er and gS
!gr . The last relation is a direct consequence of the uniq
ness of locally favored structures and the existence of m
possible configurations of normal-liquid structures. Th
means the large loss of entropyDs5kBln(gr /gS).0 upon
the formation of a locally favored structure.

The entropys of a system can be calculated as

s~S!52kBFS ln
S

gS
1~12S!ln

12S

gr
G . ~3!

Without cooperative~interaction! effects, the energy is given
by

U5SES1~12S!Er . ~4!

Here we consider the effect of cooperative excitation. Si
the two types of elementary structures are frustrated w
each other, it is natural to expect that the excitation proba
ity of each structure is higher for a higher local concentrat
of like species. Including this effect up to the second ord
we obtain the following energy:

U5SES1~12S!Er1JS~12S!. ~5!

HereJ.0 because of the frustration, which indicates that
excitation of the same type of structure as its neighbo
energetically more favored than that of the different typ
The free energyf is, thus, given by

FIG. 1. Schematic figure representing the energy levels
normal-liquid and locally favored structures. Note thatES,Er ,
vS.vr , andgS!gr . A possible example of locally favored struc
tures for water is schematically shown. It has a specific pack
symmetry and also has a core volume into which other molec
cannot enter.
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f ~S!5U2Ts1@SvS1~12S!vr#P

5SES1~12S!Er1@SvS1~12S!vr#P

1kBTFS ln
S

gS
1~12S!ln

12S

gr
G1JS~12S!. ~6!

The above type of model is sometimes called a mixt
model. However, both normal-liquid and locally favore
structures are temporally created and annihilated and the
times of these structures are rather short. Thus, we point
that the concept of a mixture of two components is misle
ing; for example, the bond order parameterS should be
treated as a ‘‘nonconserved’’ order parameter@30# ~see Sec.
V!, in contrast to the fact that in a usual mixture model it
treated as a conserved variable.

We now consider a possible liquid-liquid phase transitio
or cooperative medium-range bond ordering, on the basis of
the above free energyf. The equilibrium value ofS is deter-
mined by the condition] f /]S50, or

b@2DE1DvP1J~122S!#1 ln
grS

gS~12S!
50, ~7!

whereDE5Er2ES.0, Dv5vS2vr , andb51/kBT. It is
worth noting that the degeneracy of each state, or the entr
difference between the two states, strongly affects the ph
behavior. A critical point is determined by the condition
f S8(Sc)50, f S9(Sc)50, f S

(3)(Sc)50, and f S
(4)(Sc).0, as

Sc51/2, ~8!

Tc5J/~2kB!, ~9!

Pc5@DE2TcDs#/Dv. ~10!

A first-order phase-transition temperatureTt is obtained as

Tt5~DE2PDv !/Ds. ~11!

Note that a first-order transition occurs only ifTt,Tc . Dv
may be positive in most cases~e.g., for water!, but it can also
be negative in principle. The sign ofDv determines the slope
of Tt(P).

IV. POSSIBLE TYPES OF LIQUID-LIQUID PHASE
TRANSITION

The examples of possible phase diagrams are show
Figs. 2–4. The type of a phase diagram is classified by
values ofJ andDE. The phase diagrams include both liqui
solid and liquid-liquid transitions. As shown in these figure
we propose that liquid-liquid phase transition, in princip
exists in any liquids including even ordinary molecular li
uids. The necessary conditions are~i! the existence of locally
favored structures and~ii ! their cooperative excitation (J
.0). For materials of largeJ and DE, a liquid-liquid tran-
sition exists in a stable liquid state~see Fig. 2!, while it is
hidden by crystallization for materials of intermediateJ and
DE ~see Fig. 3! or it is located in a glassy state for materia
of small J andDE ~see Fig. 4!.
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PRE 62 6971GENERAL VIEW OF A LIQUID-LIQUID PHASE TRANSITION
A. Liquid with large J and DE

First we consider the case of largeJ andDE. Carbon and
phosphorus may be examples of materials having largeJ and
DE ~see Fig. 2!. Carbon is, for example, known to have
few candidates of locally favored structures, reflecting
(S1), sp2 (S2), and sp3 (S3) bonding. Figure 2 demon
strates a possible phase diagram of such a liquid, which s
from a situation that sp2-type bonding is dominant at ambien
pressure. There should existS1 liquid in a negative pressur
region. CPS2 and CPS3 are critical points associated withS2
andS3 ordering, respectively. Above the critical points, t
type of liquid changes in a continuous manner. In this ca
the liquid-liquid transition lines and the associated critic
points exist in an equilibrium liquid state. Note that the r
lation among the density of each phase is as follows:S2
liquid ,S2 crystal,S3 liquid ,S3 crystal,r liquid ,r
crystal. For carbon, theS2 crystal is graphite and theS3
crystal is diamond. The sign of the slope of a melting line
determined by the Clausius-Clapeyron relationdTm/dP
5Dvm/Dsm, whereTm is the melting point, andDsm and
Dvm are the changes in entropy and volume upon melti
respectively. SinceDsm.0, the sign ofdTm /dP is deter-
mined solely byDvm . The melting lines in Fig. 2 are draw
by using this fact and the above relation among the den

FIG. 3. SchematicP2T phase diagram of a liquid with inter
mediateDE andJ such as liquid water. CPS is a critical point ofS
ordering. The gas-liquid critical point (CPr) is not shown in this
figure. ms stands for ‘‘metastable.’’ The dashed and dot-das
lines are spinodal and first-order transition lines, respectively.

FIG. 2. SchematicP2T phase diagram of a liquid with larg
DE andJ such as liquid carbon. The gas-liquid critical point (CPr)
is not shown in this figure.
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of each phase. The phase diagram shown in Fig. 2 is b
cally consistent with that of liquid carbon obtained by e
periments@7# and simulations~see, e.g., Fig. 2 of Ref.@6#! in
a low pressure region. More quantitative comparisons
quire the information on physical quantities such asDE, Dv,
Ds, andJ. Our model predicts the existence of an addition
critical point (CPS3) at a high pressure region of the pha
diagram. Experimental studies in this high pressure reg
are highly desirable.

B. Liquid with intermediate J and DE

Water may be an example of a material having interm
diate J and DE ~see Fig. 3!. In this case, the liquid-liquid
transition line and the associated critical point exist in
metastable state below the melting line@17#. Actually, recent
experimental @18# and molecular dynamics simulation
@16,14# have indicated evidence of a first-order liquid-liqu
transition in a metastable state of water. For water, for
ample, ice Ih is identified asScrystal, while ices III, V, . . .
are identified asr crystal. The liquid density should b
higher thanScrystal, but lower thanr crystal, which is con-
sistent with what is known for the real water.

Liquid water is also known to exhibit unusual thermod
namic behaviors, which are very much different from tho
of other molecular liquids@1,2,19#: volume expansion upon
its freezing at 0 °C, density maximum at 4 °C, and t
anomalous increase of compressibility and heat capa
upon cooling. According to our model, the volume expa
sion upon the freezing into ice Ih can be explained by
fact that water crystallizes intoScrystal, and not intor crys-
tal, at ambient pressure. Water may be the only molec
liquid that can crystallize intoScrystal at positive pressures
This fact makes water a very special liquid. For examp
water is extremely difficult to vitrify. This can be explaine
by the fact thatS ordering~crystallization into ice Ih! is free
from frustration effects, since the energy of theS state is
lower than that of ther state. We emphasize that our two
order-parameter model can also reasonably explain wa
thermodynamic and dynamic anomalies by the increase
the medium-range order~S! upon cooling @31–33#. It is
straightforward to estimate the temperature and pressure
pendence ofS for a case ofS!1 from Eq.~7!:
d

FIG. 4. SchematicP2T phase diagram of a liquid with sma
DE andJ for a case ofDv.0. CPS is a critical point ofSordering
and located at negative pressure. The gas-liquid critical point (Cr)
is not shown in this figure.



he
s

ro
a
m
r

io

ng
ds
-

ve
t

th
le

th
a
a
m

e

as

s
p-
th

x-
i
re

-
s

i-
ed
-

r-
h
o

ct
tu
ey
a

ra-
so

.
our
a
is

ould

The
he
’’
are
rs

is-
er

ity

-

h
r

-

nt

e
as-

s.

.

6972 PRE 62HAJIME TANAKA
S>
gS

gr
exp@b~DE2PDv !#. ~12!

Thus, the excitation probability ofS should be given by the
Boltzmann factor. By using this relation, we can explain t
density anomaly of water. The locally favored structure ha
more specific volume byDv than the normal-liquid structure
does. This is simply because hydrogen bonding has a st
tendency of ‘‘symmetry selection’’ and leads to the form
tion of the locally favored structure, which has a core volu
~or void! in it, while van der Waals interactions simply favo
a denser configuration. This is the origin of the competit
betweenr and S. Without the formation of locally favored
structures,r should monotonically increase with decreasi
T due to van der Waals attractions, as in ordinary liqui
However, the increase inS upon cooling leads to the de
crease inr via their couplings. With decreasingT, a volume
increase due to medium-range bond ordering starts to o
come a volume decrease due to density ordering, since
temperature dependence of the former is much stronger
that of the latter. This competition is primarily responsib
for the unusual decrease inr upon cooling below 4 °C in
water. In our model, the specific volumevsp and the density
r are, respectively, given by

vsp~T,P!5vsp
B ~T,P!1DvS̄, ~13!

r~T,P!;rB~T,P!2rB~T,P!
Dv
vsp

S̄, ~14!

where rB(T,P)5M /vsp
B (T,P) ~M is the molar mass!. The

subscript and superscriptB denote the background~normal!
part. We found that the above relation very well explains
temperature and pressure dependence of the density of w
@31–33#. The anomalies of isothermal compressibility, he
capacity, and viscosity can also be explained in the sa
framework of the model@31–33#. These facts support th
relevance of our physical picture.

C. Liquid with small J and DE

Finally, we argue that even an ordinary liquid, which h
smallJ andDE, may have a liquid-liquid transition~see Fig.
4!. For this case,Pc may be negative. This picture provide
us with a possible scenario of ‘‘Fischer clusters.’’ With a
proaching to the mean-field spinodal, there should be
critical enhancement ofS fluctuations, which causes the e
cess scattering. This can happen at ambient pressure
critical point of S ordering is located at a negative pressu
andDv.0 ~see Fig. 4! or if it is located at a positive pres
sure andDv,0. Thus, ‘‘Fischer clusters’’ can be viewed a
critical-like fluctuations ofS near a hidden mean-field sp
nodal of a gas-liquid-like phase transition of locally favor
structures (S ordering!. This conclusion is a natural conse
quence of our picture thatcooperative medium-range orde
ing exists in any liquid. Dynamic anomaly associated wit
Fischer clusters can also be reasonably explained by
model @30#, as shown in Sec. V. If our scenario is corre
these phenomena should be ideal for the experimental s
of the nature of a liquid-liquid phase transition since th
occur at ambient pressure. Note that such a study usu
a
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suffers from experimental difficulties due to high tempe
tures and high pressures for most of materials that have
far been expected to have a liquid-liquid phase transition

The following predictions can be made on the basis of
model: ~i! Liquids having ‘‘Fischer clusters’’ should have
liquid-liquid phase transition at a lower temperature. Th
transition may be hidden by a liquid-glass transition.~ii ! Ap-
plying a higher pressure at the same temperature sh
weaken the critical-like anomaly forDv.0, while strength-
ening it for Dv,0 @37#. Here it is worth noting that our
discussion is based on the mean-field approximation.
critical-like anomaly near a spinodal line exists only in t
mean-field limit. This may explain why ‘‘Fischer clusters
are characterized by a long bare correlation length and
commonly observed in many polymeric glass forme
@22,24#, on noting that the Ginzburg criterion is safely sat
fied in a system with a long-range interaction as in polym
systems.

V. COUPLING BETWEEN DENSITY AND BOND ORDER
PARAMETERS

A. Relevant Hamiltonian

The Hamiltonian of ideal liquids associated with dens
fluctuations is approximately given by

bHr5E dr
t

2
dr25E dr f ~dr!,

wheret5b( r̄2KT)22 and it is always positive. Herer̄ is the
average density and a decreasing function ofT ~note thatr
5 r̄1dr). In a real liquid, however, the bond order param
eter plays essential roles, as explained above. UsingdS5S

2S̄, we introduce the following minimal Hamiltonian, whic
governsS fluctuations near a gas-liquid-like critical point o
mean-field spinodal lines of bond ordering:

bHS5E drFk2 dS21
b4

4
dS4G5E drg~dS!,

wherek5b2(T2TS* ) (TS* is a critical or spinodal tempera
ture of bond ordering without the coupling tor) andb2 and
b4 are positive constants. By further including the gradie
terms and the lowest-order~bilinear! couplings betweendr
anddS, we obtain the following Hamiltonian that we believ
is relevant to the physical description of liquid near a g
liquid-like transition of locally favored structures@30#:

bHrS5E drFh~dr,dS!1
Kr

2
u¹dru21

KS

2
u¹dSu2G ,

~15!

h~dr,dS!5 f ~dr!1g~dS!2c1rdr~S̄1dS!

2c1S~ r̄1dr!dS. ~16!

Note thatf, g, andh are dimensionless free-energy densitie
For Dv.0, which is a usual case, an increase inS leads to a
decrease inr and an increase int, while an increase inr
leads to a decrease inS and TS* . Hence, all the coupling
constantsci in Eq. ~16! should be negative for most cases



t
id
t t

a

us
bl
ss
y
ne
ds

-
io
e
u

an
qs
rib
s.
se

th
o

ith

-

es

s

-

re
ich

of

s-
in

cts
l

xed
f

e

PRE 62 6973GENERAL VIEW OF A LIQUID-LIQUID PHASE TRANSITION
B. Kinetic equations

Next we consider how the dynamics ofdr anddS should
be described near the critical point of bond ordering. A
liquid instability point, it is known that a supercooled liqu
as a whole becomes intrinsically unstable with respec
density fluctuations of wave numberq0 (q0 is the first scat-
tering peak wave number!. This causes the softening of
nonpropagating soft mode withq;q0 @38#, which leads to
the breakdown of the incompressibility assumption. Th
we should regard a supercooled liquid to be compressi
More generally, a liquid should be treated as ‘‘compre
ible’’ when we considerisothermal spontaneous densit
fluctuations with long wavelengths, although adiabatic o
propagate as a sound mode. For such compressible liqui
is known@23# thatdrq}2dQq (Q is the heat mode!, as long
as we consider slow dynamics at smallq. Since the heat
mode is a conserved mode,dr should be treated as a con
served order parameter obeying a diffusion-type equat
On the other hand,dS should be treated as a nonconserv
order parameter. Thus, we have the following dynamic eq
tions @30#, if we neglect convective terms:

]dr~r,t !

]t
5Lr¹2F2Kr¹2dr1

]h~dr,dS!

]dr~r,t ! G , ~17!

]dS~r,t !

]t
52LSF2KS¹2dS1

]h~dr,dS!

]dS~r,t ! G , ~18!

whereLr andLS are kinetic coefficients. Here the Gaussi
noise terms are not written explicitly. We propose that E
~15!–~18! are the fundamental equations universally desc
ing ultraslow critical-like dynamics of supercooled liquid
These dynamic equations are basically the same as tho
the so-called ‘‘model C’’@39–41#.

C. Critical phenomena under the couplings
between two order parameters

Within the framework of a linearized theory@40,41#, we
study slow dynamics of large-scale fluctuations near
critical point of density ordering. First we introduce a vect
notation

x5Fdr

dSG and x05F ^dr&

^dS&
G .

The average values of the order parametersr̄ and S̄, are
shifted due to their bilinear coupling compared to those w
out the coupling, respectively, by

^dr&;
c1rS̄

t
and ^dS&;

c1Sr̄

k
.

After linearization with respect to small deviations

x* 5Fdr*

dS* G ~19!

from x0, Eqs. ~17! and ~18! reduce to the following eigen
value problem by using
a

o

,
e.
-

s
, it

n.
d
a-

.
-

of

e
r

-

x5x01x* exp~ iq•r1vt !, ~20!

whereq is the wave vector:

Ax* 52vx* , ~21!

whereA5T(H1q2K) with

T5FLrq2 0

0 LS
G , K5FKr 0

0 KS
G , ~22!

and

H5Fhdrdr hdrdS

hdSdr hdSdS
G5F t c1r1c1S

c1r1c1S k G , ~23!

where H is the so-called Hesse matrix and the derivativ
hxy5]2h/]x]y are taken atx0. In the limit of smallq, the
two dispersion branches are straightforwardly obtained a

v1;2LrFdetH

hdSdS
Gq21O~q4!, ~24!

v2;2LSFhdSdS1S KS1
LrhdrdS

2

LShdSdS
Dq2G1O~q4!. ~25!

In the limit of largeq, on the other hand,v1;2Lrq4 and
v2;2LSKSq2.

1. Critical-like phenomena in a stable state

The stable state is characterized byk.0 and detH.0.
Critical-like fluctuations grow with approaching to a tem
perature, which is determined from the condition detH
5tk2(c1r1c1S)250 as

Tc5TS* 1
~c1r1c1S!2

b2t
. ~26!

Hereafter we useTc to represent both the critical temperatu
and the mean-field spinodal temperature. The mode, wh
slows down with approaching toTc , is characterized byv1.
The decay rateGq is given byv152Lr(detH/k)q2. Thus,
the critical mode has diffusional nature and the lifetime
fluctuations increases with approaching toTc in proportion
to (T2Tc)

21 within the mean-field approximation. The po
sible effects of such critical-like fluctuations are discussed
Sec. V D. It should be noted here that polydispersity effe
such as the distribution ofEr andES may weaken the critica
effects.

2. Early-stage phase ordering in an unstable state

The unstable state is characterized by detH,0. This is
classified into two cases by the sign ofk. ~i! For a case of
k.0, we have one unstable branch characterized byv1. In
this case, the eigenvector of the unstable branch is of mi
character for allq @see Eq.~24!# and, thus, fluctuations o
both dr anddS grow simultaneously. Note thatx0 becomes
a saddle point in this case. Atq50, the componentsdr*
and dS* of the eigenvector x* satisfy dr* /dS*
52hdSdS /hdrdS . ~ii ! For a case ofk,0, one branch char-
acterized byv2 ~for small q) becomes unstable. This mod
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at q50 corresponds to the growth of bond order. If there
no coupling to density, this mode is characteristic of t
ordering of the nonconserved order parameter, which is
case of the so-called ‘‘model A’’@39#. For nonzerohdrdS ,
the termLrhdrdS

2 /LShdSdS can be negative. Thus the faste
growth mode with finiteq emerges similarly to the case o
the ordering of the conserved order parameter, but wit
nonzero growth rate atq50. Differently from the above
case, the bond ordering first proceeds nearly on the cons
density line in the (r,S) space and then the order paramet
relax to their equilibrium values.

D. Fischer clusters

1. A possible origin of excess scattering

Here we consider the origin of excess light scattering
supercooled liquids on the basis of the above model.
refractive indexn is a function of not onlyr, but alsoS,
sincen of locally favored structures is smaller than that
normal-liquid structures. It may be reasonable to assume
the local bond ordering directly~not via density! affects the
polarizability, or the refractive indexn, on considering its
unique local symmetry and the electronic nature of bondi
Here it should be noted that if this is not the case, the li
scattering intensityI (q) should be expressed solely by de
sity fluctuations and thus no excess scattering is expec
We stress thatin many liquids the refractive index n cann
be expressed by a function of only density. For example, this
fact is particularly well-established for liquid water@42#. In
our model, thus,I (q) is given by

I ~q!}S ]n

]r D 2

^udrq* u2&12S ]n

]r D S ]n

]SD ^drq* dS2q* &

1S ]n

]SD 2

^udSq* u2&. ~27!

These correlation functions at smallq can be straightfor-
wardly obtained as

^udrq* u2&5~k1KSq2!/A~q!, ~28!

^drq* dS2q* &5~c1r1c1S!/A~q!, ~29!

^udSq* u2&5~t1Krq2!/A~q!, ~30!

where

A~q!5~t1Krq2!~k1KSq2!2~c1r1c1S!2

;detH1@tKS1kKr#q2. ~31!

According to the standard theory of pure liquids, t
structure factor at a wave numberq50, S(0), is determined
by the isothermal compressibilityKT asS(0)5rkBTKT . If
density is the only order parameter, the light scattering int
sity at q50 should be given byI r(0)5(]n/]r)2S(0). This
is actually the case for many pure liquids. Contrary to t
common sense, however, excess scattering far beyond
above prediction was observed for various glass form
@21,22,24#. In our model, this excess scattering can be
plained by the fact thatk!c1r1c1S and/ork!t nearTc ,
s
e
e

t

a

nt
s

n
e

at

.
t

d.

-

s
the
rs
-

wherek→0. These conditions guarantee the dominance
Eqs.~29! and~30! over Eq.~28! near the spinodal lines. Thi
is a direct consequence of the fact that there is instability
bond fluctuations~a gas-liquid-like transition of locally fa-
vored structures! but not for density fluctuations in a liquid
state.

Fischer et al. @22,24# also found the Ornstein-Zernik
form of light scattering functionI (q);1/@11jcl

2 q2#. This is
also consistent with theq dependence of Eqs.~29! and~30!.
In our model,jcl is given byjcl

2 ;(tKS1kKr)/detH, which
diverges asT→Tc . Within the mean-field approximation
jcl;(T2Tc)

21/2. This is also consistent with a divergen
increase injcl near a glass-transition temperatureTg @22#,
which is suggestive of the existence of a hidden critical po
Tc or spinodal temperatureTsp . Fischer clusters are als
characterized by theq2 dependence of the decay rateGq
}q2, and also by the fact thatGq→0 with T→Tc @22#. The
former is suggestive of simple diffusion. These experimen
findings can be explained as follows. In our model, bothdrq*
and dSq* can be expressed by a linear combination of t
eigenmodes characterized byv1 and v2. In particular, the
‘‘slow’’ critical mode decays as exp(v1t), and the decay rate
of this mode,Gq52v1, is proportional toq2, as described
in Sec. V C 1. Further,Gq}detH}(T2Tc)→0 with T
→Tc . Thus, our model can well explain all essential featu
of the anomalous excess light scattering observed in su
cooled liquids ~‘‘Fischer clusters’’! @22,24# at least on a
qualitative level.

2. Apparent violation of the compressibility sum rule

Next we consider why the compressibility sum rule
apparently violated. This can naturally be explained by co
paring Eq.~27! with

KT5
1

kBTr2E dr^r r~r!r r~0!&, ~32!

wheredr r5dr* 1c1r /tdS* is the real fluctuation of den
sity under the coupling to bond ordering. Sinceuc1r /tu is
small, the major contribution toKT comes from the direct
density-density correlation. On the other hand, the scatte
intensity mainly comes from fluctuations of bond order p
rameters@see Eq.~27!#, which may be dominant near th
mean-field spinodal. Thus, we suggest that the apparent
lation of the compressibility sum rule is due to~a! the exis-
tence of an additional hidden order parameter, namely, b
order parameter, which has critical-like fluctuations, and~b!
its direct coupling to the refractive indexn.

E. Phase separation of a single-component liquid
into two phases

1. Phase-separation kinetics

Next we consider phase separation of a single-compon
liquid into two phases belowTc . Because of the existence o
a new order parameterS and the resulting coupling betwee
r and S, phase separation can proceed on the (r,S) plane
even for a one-component liquid. The details of the pha
separation kinetics are described in Sec. V C 2. Our mo
predicts the negative correlation between the two order
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rameters: a high-density region has less bond order, wh
low-density region has more bond order. This is a dir
consequence of negative coupling between the two order
rameters (c1r ,c1S,0). It can, thus, naturally explain wh
the two-phase coexistence is possible in a single-compo
liquid @2#. It should be noted that glass-forming liquids a
tomatically satisfy the necessary condition for the existe
of such a gas-liquid-like transition, since vitrification itself
caused by the existence oflocally favored structuresin our
picture @29# ~see Sec. VI!.

2. Phase coexistence and phase transformation

Aasland and McMillan@20# found the evidence of the
coexistence of two phases in liquid Al2O3-Y2O3 by direct
microscopic observation. For liquid phosphorus, furth
more, Katayamaet al. @9# succeeded in observing the pr
cess of the transformation from a less dense to a dense
uid including the coexistence of the two phases byin situ
x-ray diffraction measurements. These behaviors includ
the density change during the transformation are natur
explained by our model. The kinetics of the transformat
can be described by the coupled Langevin equations~see
Sec. V B!.

Further, Kivelsonet al. @25# found that supercooled TP
slowly transforms into a glacial phase in a temperature ra
between 213 K and 225 K. It was identified as a new am
phous phase, although its amorphous nature is still a ma
of debate@26,27#. The possibility of liquid-liquid phase tran
sition is suggested@25,28#. If this is the case, the phenomen
can be explained as follows. According to our model, t
transformation can be viewed as the transition betweer
liquid andS liquid. It was suggested that the glacial phase
denser than the supercooled liquid, however, no direct d
of the density is available. At this moment, thus, the sign
Dv for this system is not yet known in an unambiguo
manner. This information is crucial for revealing the natu
of the transition, and the precise density measuremen
highly desirable. It should be mentioned that supercoo
TPP exhibits dynamic features characteristic of Fischer c
ters @25#. The coexistence of Fischer clusters and liqu
liquid phase transformation is also consistent with our p
ture ~see Fig. 4!. Before going to the details, however, w
definitely need further careful studies on the more fundam
tal problem of whether the glacial phase is really a n
amorphous phase@25,28# or it has some orientational orde
@26,27#.

VI. CONNECTION OF OUR MODEL TO THE
PHENOMENA OF LIQUID-GLASS TRANSITION

Finally, we mention that our model provides natural e
planations not only for liquid-liquid phase transition, but al
for liquid-glass transition and the thermodynamic and d
namic anomalies of water, in a coherent manner. For
water’s anomalies, we already explain them in Sec. IV
The details on this problem were described in Refs.@31–33#.
So we briefly explain how our two-order-parameter mode
liquid can explain another poorly understood phenomeno
liquids, namely, a liquid-glass transition~see Ref.@29# on the
details!.

Recently, we proposed a simple physical model for
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universal description of glass-transition phenomena cove
from the strong to fragile limit@29#. The model is essentially
the same as that described in this paper. In our model, loc
favored structures with finite, but long lifetimes are ra
domly distributed in a sea of normal-liquid structures. Th
even simple liquids suffer from random disorder effects
thermodynamic origin. We argue that locally favored stru
tures act as impurities and produce the effects of ‘‘fluctuat
interactions’’ and ‘‘symmetry-breaking random fields
against density ordering, in much the same way as magn
impurities for magnetic ordering in spin systems. Simila
to random-spin systems, thus, we predict the existence
two key temperatures relevant to glass transition, the den
ordering~crystallization! point Tm* of the corresponding pure
system without frustration and the Vogel-Fulcher tempe
ture T0. Glass transition is then characterized by these t
transitions:~A! a transition from an ordinary-liquid state to
Griffiths-phase-like state atTm* , which is characterized by
the appearance of high-density metastable islands w
medium-range order, and~B! another transition into a spin
glasslike nonergodic state atT0 and the resulting divergenc
of the lifetime of metastable islands, namely, thea relax-
ation time. BetweenTm* and T0, a system has a comple
free-energy landscape characteristic of the Griffiths-pha
like state, which leads to the non-Arrhenius~cooperative!
behavior ofa relaxation and dynamic heterogeneity belo
Tm* . This simple physical picture provides us with a unive
sal scenario of glass transition covering the strong to fra
limit. For example, our model predicts that stronger rando
disorder effects make a liquid ‘‘stronger,’’ or ‘‘less fragile’
@29#. Namely, liquids with largeS ~or largeDE) should be
‘‘stronger.’’ According to our model, stronger disorder e
fects lead to the larger distance between the onset temp
ture of cooperativityTm* , and the temperature of divergenc
T0. Thus, a stronger liquid should have a weaker~more
Arrhenius! temperature dependence of viscosity, which
consistent with what is widely known.

To summarize, the locally favored structures have th
different roles, depending upon the length scale:~i! In a large
length scale, the cooperativity in their excitation leads
critical-like phenomena and liquid-liquid phase transition
~ii ! In a small length scale, on the other hand, they pla
similar role as magnetic impurities in spin glass and lead t
liquid-glass transition.~iii ! Further, the average fraction o
locally favored structures directly affect the thermodynam
quantities of a liquid, such as density, heat capacity, a
compressibility. Correspondingly, thus, our two-orde
parameter model of liquids may provide reasonable phys
pictures not only for~i! liquid-liquid phase transition, bu
also for ~ii ! liquid-glass transition and~iii ! the thermody-
namic and dynamic anomalies of liquids such as water.

VII. SUMMARY

In summary, we propose that contrary to the comm
belief, liquid is not homogeneous in the intermediate len
scale and any liquid has medium-range bond order, whic
excited cooperatively in the background normal-liquid stru
tures. This feature originates from many-body interactio
Thus, we need at least two order parameters to express
feature of liquids. This picture naturally leads to a conclus
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that a liquid-liquid transition can, in principle, exist in an
liquids, including atomic liquids such as C, P, Si, Ge, Se, R
and Cs, network-forming liquids such as water, SiO2, and
GeO2, and ordinary molecular liquids. In particular, ou
model provides us with reasonable physical explanations
mysterious phenomena found in supercooled molecular
uids such as ‘‘Fischer clusters’’ and ‘‘glacial phase,’’ a
though they have yet to be proven. We need further stu
to confirm the existence of liquid-liquid transition of an o
dinary glass-forming liquid~hidden in the glassy region! and
to establish its relation to the so-called ‘‘Fischer cluster
and ‘‘glacial phase.’’

We stress that our model may explain liquid-liquid pha
transitions, liquid-glass transitions, and the thermodyna
and dynamic anomaly of liquids such as water in a ‘‘u
fied’’ manner and reveal the relationship among these p
n,

.
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nomena, which have so far been considered not to be rel
to each other. Further studies are desirable to check the
lidity of this physical picture. In particular, it is important t
check the existence of a long-lived locally favored structu
and reveal its structure for each liquid. We believe that
locally favored structure should have unique vibration
modes and the detection of such soft vibrational modes m
be the easiest way to prove its existence. In relation to t
we propose that the so-called boson peak comes from s
vibrational modes unique to locally favored structures. T
model quite naturally explains the fact that the boson p
exists even in an equilibrium liquid state above the melt
point for some glass formers, which is difficult to explain b
conventional models of the boson peak. The details on
possible relation between locally favored structures and
boson peak will be discussed elsewhere@43#.
e,

er,

e,

nd

.

E.

. B

ett.

al.
@1# P. G. Debenedetti,Metastable Liquids~Princeton University
Press, Princeton, 1997!.

@2# C. A. Angell, Science267, 1924~1995!.
@3# P. H. Poole, T. Grande, C. A. Angell, and P. F. McMilla

Science275, 322 ~1997!.
@4# F. P. Bundy, J. Chem. Phys.38, 618 ~1963!.
@5# N. S. Fateeva and L. F. Vereshchagin, Pis’ma Zh. E´ksp. Teor.

Fiz. 13, 168 ~1971! @JETP Lett.13, 110 ~1971!#.
@6# M. van Thiel and F. H. Ree, Phys. Rev. B48, 3591~1993!; J.

N. Glosli and F. H. Ree, Phys. Rev. Lett.82, 4659~1999!.
@7# M. Togaya, Phys. Rev. Lett.79, 2474~1997!.
@8# M. P. Grumbach and R. M. Martin, Phys. Rev. B54, 15 730

~1996!.
@9# Y. Katayama, T. Mizutani, W. Utsumi, O. Shimomura, M

Yamanaka, and K. Funakoshi, Nature~London! 403, 170
~2000!.

@10# K. H. Smith, E. Shero, A. Chizmeshya, and G. H. Wolf,
Chem. Phys.102, 6851~1995!.

@11# M. Yao and H. Endo, J. Non-Cryst. Solids205–207, 85
~1996!, and references therein.

@12# C. J. Roberts, A. Z. Panagiotopoulos, and P. G. Debened
Phys. Rev. Lett.77, 4386~1996!.

@13# P. H. Poole, M. Hemmati, and C. A. Angell, Phys. Rev. Le
79, 2281~1997!.

@14# S. Harrington, R. Zhang, P. H. Poole, F. Sciortino, and H.
Stanley, Phys. Rev. Lett.78, 2409~1997!.

@15# O. Mishima, L. D. Calvert, and E. Whalley, Nature~London!
310, 393 ~1984!; 314, 76 ~1985!; O. Mishima, ibid. 384, 546
~1996!.

@16# P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stan
Nature~London! 360, 324 ~1992!.

@17# P. H. Poole, F. Sciortino, T. Grande, H. E. Stanley, and C.
Angell, Phys. Rev. Lett.73, 1632~1994!.

@18# O. Mishima and H. E. Stanley, Nature~London! 392, 164
~1998!.

@19# O. Mishima and H. E. Stanley, Nature~London! 396, 329
~1998!.

@20# S. Aasland and P. F. McMillan, Nature~London! 369, 633
~1994!.

@21# P. Debye and A. M. Bueche, J. Appl. Phys.20, 518 ~1949!.
@22# E. W. Fischer, Physica A210, 183 ~1993!.
ti,

.

,

.

@23# P. M. Chaikin and T. C. Lubensky,Principles of Condensed
Matter Physics ~Cambridge University Press, Cambridg
1995!.

@24# T. Kanaya, A. Patkowski, E. W. Fischer, J. Seils, H. Glas
and K. Kaji, Acta Polym.45, 137 ~1994!.

@25# I. Cohen, A. Ha, X. Zhao, M. Lee, T. Fischer, M. J. Strous
and D. Kivelson, J. Phys. Chem.100, 8518~1996!.

@26# G. P. Johari and C. Ferrari, J. Phys. Chem. B102, 10 191
~1997!.

@27# A. Hedoux, Y. Guinet, and M. Descamps, Phys. Rev. B58, 31
~1998!; A. Hedoux, O. Hernandez, J. Lefebvre, Y. Guinet, a
M. Descamps,ibid. 60, 9390~1999!.

@28# J. Wiedersich, A. Kudlik, J. Gottwald, G. Benini, and E
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