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Magnetization of ferrofluids with dipolar interactions: A Born-Mayer expansion

B. Huke and M. Lu¨cke
Institut für Theoretische Physik, Universita¨t des Saarlandes, D-66041 Saarbru¨cken, Germany

~Received 11 May 2000!

For ferrofluids that are described by a system of hard spheres interacting via dipolar forces we evaluate the
magnetization as a function of the internal magnetic field with a Born-Mayer technique and an expansion in the
dipolar coupling strength. Two different approximations are presented for the magnetization, considering
different contributions to a series expansion in terms of the volume fraction of the particles and the dipolar
coupling strength.

PACS number~s!: 75.50.Mm, 05.70.Ce, 05.20.Jj
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I. INTRODUCTION

Ferrofluids@1# are suspensions of ferromagnetic partic
of about 10 nm diameter in a carrier fluid. The particles
stabilized against aggregation by coating with polymers
by electrostatic repulsion of charges on their surfaces.
macroscopic scales, ferrofluids can be described as liq
with intrinsic superparamagnetic properties.

In this paper, we are concerned with the equilibrium ma
netizationM as a function of the internal magnetic fieldH for
given temperature and particle concentration. Ferrofluids
sufficiently low concentration behave like a paramagne
gas. There the interaction between the particles can be
glected and the equilibrium magnetization can be descri
properly by the Langevin function. The magnetic propert
are then necessarily weak. To produce ferrofluids with str
magnetic properties either one has to have a higher par
concentration or one has to use ferromagnetic material wi
large bulk magnetization, e.g., cobalt instead of magnetite
both cases the magnetization is strongly influenced
dipole-dipole and other interactions between the particle

Several models of dipolar interacting systems have b
studied in the literature. Numerical investigations have b
based on density functional approaches@2–6# and Monte
Carlo simulations@7–14#. The models differ in the treatmen
of the short range interactions, which have been describe
hard sphere@4,8,9,13–15#, other hard core@4,12#, soft sphere
@7,10#, or Lennard-Jones potentials@2,3,6,7,11#. These inves-
tigations were mainly undertaken to reveal the phase tra
tion properties. These properties are substantially differ
for different short range interactions. Thus, for example,
question whether a system of particles interacting via lo
range dipolar forces shows a ‘‘liquid-vapor’’ phase coexi
ence of a dense and a less dense phase without any di
sive energy, e.g., from the attractive van der Waals energ
currently being discussed@7,12,14–18#.

Analytical models focus mainly on the equilibrium ma
netization in the gas phase~where the term ‘‘gas’’ refers, as
far as ferrofluids are concerned, to the magnetic particle s
system within the liquid carrier!. Such models are the On
sager model@19#, the Weiss model@20#, the mean spherica
approximation @21#, and an approach by Buyevich an
Ivanov @22# ~called the high temperature approximation
@23#!. These models were tested experimentally for ferro
ids @23–26#. The mean spherical model and the high te
PRE 621063-651X/2000/62~5!/6875~16!/$15.00
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perature approximation showed good results@23#.
Our approach assumes the magnetic particles in the

rofluid to be hard spheres with a common diameterD and
dipolar momentm. We use the technique of the Born-May
expansion@27# together with an expansion in the strength
the dipolar coupling to get analytical approximations. Th
are obtained via series expansions of the free energy in te
of two parameters:~i! the volume fraction of the hard cor
particlesf and~ii ! a dimensionless dipolar coupling consta
e, given by the ratio between a typical dipolar energy f
particles in hard core contact and the thermal energykT. Our
result for the magnetization goes beyond the high temp
ture approximation@22# and reduces to it in linear order inf
ande.

Dipolar forces fall off asr 23 and are thus of long rang
nature. This long range character requires great care w
invoking the thermodynamic limit@28–30#. To circumvent
the problem we model the dipolar fields that are generated
distant particles by a magnetic continuum field~similar to the
treatment in the Weiss model! while incorporating the nea
field contributions explicitly in a statistical mechanical d
scription. The magnetizationM is then derived as a function
of the internal magnetic fieldH. The relationM (H) so ob-
tained is independent of the probe geometry. OnceM (H) is
known, the magnetization for a given geometry can in pr
ciple be derived by solving the macroscopic Maxwell equ
tions. This may still be a difficult task in practice, at least
long as the external field is small or absent. In this case
known that the magnetization will show a nontrivial spat
variation at high enough densities for general shaped pro
@5,6#.

Since our method yields an expression for the free ene
of the model system, we can in principle calculate other th
modynamic quantities also and in particular address
question of phase transitions, e.g., between gas and liqui
between ferromagnetic and nonferromagnetic phases.
have not addressed the question of a gas-liquid transitio
the magnetic particles suspended in the ferrofluid since
believed that short range van der Waals–like attracti
would have to be incorporated to model real ferrofluids a
propriately in this regard@10#. However, the question
whether a strong dipolar coupling induces a spontane
magnetization in zero external field, which is currently d
bated in the literature@2,3,8,9,31,32# is briefly touched upon
in Sec. VI A of this paper.

The paper is organized as follows. In Sec. II we discu
6875 ©2000 The American Physical Society
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6876 PRE 62B. HUKE AND M. LÜCKE
the connections between the various fields that are of
evance in a ferrofluid. We present the model to treat the l
range dipolar forces. In Sec. III we present the expans
method to get analytical solutions in terms of the two sm
parameterse and f. In Sec. IV we calculate an expressio
for the magnetization that contains only linear terms inf
but, at least in principle, arbitrarily high orders ine. In Sec.
V a different expression is derived containing quadra
terms inf also but also only up to second order terms ine.
In Sec. VI we discuss our findings and investigate the ap
cability of the results in thef-e plane. Section VII contains
a short conclusion.

II. MAGNETIC FIELDS AND MAGNETIZATION

We are interested in the effect of dipolar interactions
the magnetic particles in a ferrofluid on the equilibrium ma
netization of the ferrofluid. To that end we consider the f
rofluid as an ensemble of identical spherical particles of
ameterD, each carrying a magnetic moment of magnitudem.
These particles interact with each other via magnetic dip
dipole interactions and a hard core repulsion with hard c
diameterD. We assumeD>Dmag whereDmag is the diam-
eter of the magnetic core of the particles, thus allowing fo
surfactant surface layer that provides a steric repulsion.

The particles can lower their potential energy by orient
their magnetic moments parallel to a local magnetic fie
However, any interaction of the particles with the fluid m
dium in which they are suspended is ignored. The latte
taken to be magnetically inert.

A. Different magnetic fields

Before we outline in Sec. II B how we determine in pri
ciple the magnetization of the ferrofluid, we would like
review briefly the different magnetic fields that one has
distinguish and that are of importance in a system with
polar interactions. The first field is the external magne
field He that is applied outside the probe. If dipolar intera
tions can be neglected,He is also the field at the position o
the particles—at least as long as the carrier fluid can
treated as a magnetic vacuum, which we will assu
throughout the paper. In the presence of dipolar interacti
additional fields have to be considered. One of them is
internal field H, which is the macroscopic field inside th
probe. By assuming that the equation of stateM (H) is
known,H can be calculated by the common methods of c
tinuum magnetostatics. But the macroscopic fieldH differs
in general from the fieldH local that the magnetic particle
experience.

So far two models have been employed in the ferrofl
literature to calculateH local from H, which are similar in
spirit, namely, the Weiss model@20# and the Onsager mode
@19#. Both introduce a virtual hollow sphere inside a ma
netic continuum such that the sphere contains a single m
netic particle in its center. The Weiss model assumes
magnetizationM and the internal fieldH to be constant ev-
erywhere in the magnetic continuum surrounding the sph
Then the field inside the sphere is given by

Hs5H1
M

3
. ~2.1!
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This is the field that a single magnetic particle experien
within the Weiss model, i.e.,H local5Hs .

The Onsager model, on the other hand, is restricted
linearly responding fluids and calculates the field inside
sphere on the assumption that it is really hollow and t
thereforeH and M differ near the sphere from their bul
values. In that case the field within the sphere is

H local5
3x13

2x13
H. ~2.2!

x is the susceptibility. In both models the magnetization
calculated as the magnetization of a system ofnoninteracting
dipoles in the magnetic fieldH local , i.e.,

M5MsatLS m

kT
HlocalD . ~2.3!

Here

Msat5
N

V

m

m0
~2.4!

is the saturation magnetization of the fluid,L the Langevin
function, m the magnetic moment of the particles, andN/V
their number density. In the Onsager model the Lange
function is consistently used only in linear order. Lettin
M5xH on the left hand side of Eq.~2.3! and using Eq.~2.2!
allows calculation ofx.

In the Weiss model the self-consistent solutionM (H) is
determined using Eqs.~2.3! and ~2.1!. The Onsager and
Weiss models differ in the treatment of the back reaction
the particle inside the sphere on the magnetic continuum n
the sphere’s boundary.

B. Decomposition of fields

Since the magnetic continuum is a macroscopic conc
one should be careful when using it on the mesosco
length scales of interparticle distances and particle diame
A first-principles statistical mechanical calculation of th
magnetization would start by expressing the energy of
system in terms of the statistical variables of the constitue
In this context the local magnetic fieldH local that a magnetic
moment, say, at positionxi experiences is of importance. It i
composed of two different magnetic fields, the external fi
He and the dipolar contributionHdipole from the otherN
21 particles at positionsxj , possessing a magnetic mome
mj . Thus within the first-principles approach one h
H local5He1Hdipole , where

Hdipole~xi !5(
j

3r̂ i j ~mj• r̂ i j !2mj

4pm0r i j
3

. ~2.5!

Here r i j 5xi2xj , r i j 5ur i j u, and r̂ i j 5r i j /r i j .
The long range character of the dipolar forces requi

special care when invoking the thermodynamic limitV→`
andN→` (N/V5const) ~for a critical discussion see, e.g
Refs. @29,28#!. The reason is that the dipolar contributio
~2.5! will in general depend on the geometry of the ferroflu
probe and the location ofxi within it. Thus the equilibrium
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magnetization of a probe in an external field will in gene
depend on the geometry of the latter, and furthermore it w
be spatially varying. We therefore use here an approach s
lar to the one that has been used successfully in solid s
theory @33# to determine, e.g., the crystal field splittin
caused by local fields. It properly accounts for the contrib
tions from microscopic and macroscopic scales.

Consider some magnetic particlei in a ferrofluid probe in
thermodynamic equilibrium. The particles beyond some d
tanceRs from xi can be considered as independent of part
i if Rs is larger than the correlation length induced by t
dipolar interactions. Furthermore, ifRs is large enough, their
contribution to the local field atxi can be approximated by
contribution from a magnetic continuum with equilibriu
magnetizationM and macroscopic fieldH. We assume tha
the distanceRs is still small compared to the length scale o
which the macroscopic fieldsM andH vary. Thus we intro-
duce a virtual sphere of radiusRs around particlei ~dark
particle in the center of Fig. 1! to separate the dipolar fiel
into a ‘‘far’’ and a ‘‘near’’ contribution,

Hdipole, f ar~xi !5 (
r i j .Rs

3r̂ i j ~mj• r̂ i j !2mj

4pm0r i j
3

, ~2.6!

Hdipole,near~xi !5 (
r i j ,Rs

3r̂ i j ~mj• r̂ i j !2mj

4pm0r i j
3

. ~2.7!

Then

H local5He1Hdipole, f ar1Hdipole,near . ~2.8!

If the sphere were empty,He1Hdipole, f ar5Hs would be the
local field inside the sphere.

A key point of our treatment is to express the far fie
Hdipole, f ar within the continuum approximation. Using th
approach the field in the empty sphere is given byHs5H
1M /3 @Eq. ~2.1!#. Note that this approximation is not vali
near the sphere’s boundary. But at the center of the sp

FIG. 1. Geometry of our model. Every particle~black! experi-
ences the magnetic near field generated by the dipoles of the n
bors ~dark gray! within the radiusRs and a contribution from the
continuum~light gray! that models the fields of the faraway pa
ticles and the external field.
l
ll
i-
te

-

-
e

re

H local consists of the continuum contributionHs from the far
region and the contribution for the dipoles within the sphe

H local5Hs1Hdipole,near5H1
M

3
1Hdipole,near .

~2.9!

This result agrees with Eq.~27.26! of Ref. @33#, where it was
derived with slightly different arguments for electric dipole
Due to the long range character of the dipolar forcesHdipole
will be in general geometry dependent and spatially varyi
Hs (H) and M will then also show these features as me
tioned above.

If the dipolar coupling between the particles is so we
that even the dipolar fields of the nearest neighbors of p
ticle i can be described by a continuum field, i.e., ifRs can be
chosen as being smaller than the mean distance betwee
particles, we can drop the contributionHdipole,near altogether
and arrive at the Weiss model, where a single particle
located inside the hollow sphere in the continuum.

C. Equilibrium magnetization

We want to determine the thermodynamic equilibrium
lation M (H) between the magnetization

M5
1

m0V (
i

^mi&5
N

m0V
^m& ~2.10!

and the macroscopic magnetic fieldH in the thermodynamic
limit. Instead of considering the dipolar interaction of a
particles in an external field in the statistical mechani
problem~2.10! we take into account explicitly only interac
tions between those particles whose separation is sm
than the sphere radiusRs . The other interactions are repre
sented by the far-field continuum approximationHs5H
1M /3. The magnetizationMsphere(Hs) resulting from this
decomposition of fields is then identified with the equili
rium magnetizationM (H) of the ferrofluid,

Msphere~H1M /3!5M ~H !. ~2.11!

Thus after obtaining the approximate expression forMsphere
as a function ofH1M /3 we then obtain by solving Eq
~2.11! for M an approximation for the sought after equilib
rium relationM (H). The functional dependence ofM on H
is independent of the probe geometry.

In the limit of weak dipolar coupling or whenRs becomes
smaller than the mean distance between the particles, we
Msphere5MsatL@(m/kT)(H1M /3)# so that the Weiss
model is recovered as discussed above.

The magnetizationMsphere in Eq. ~2.11! depends on two
dimensionless parameters that characterize the therm
namic state of the ferrofluid. One of these parameters is
volume concentration of the particles,

f5
N

V

pD3

6
. ~2.12!

The ratiofmag of the volume of the magnetic material to th
total volume isfmag5(Dmag/D)3f. The other parameter is

h-
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e5
m2

4pm0kTD3
, ~2.13!

the ratio between a typical energy of dipole-dipole inter
tion of particles in contact~i.e., at the distance of the har
core diameterD) and the thermal energykT.

III. CANONICAL PARTITION FUNCTION

We use the canonical ensemble average to eval
Msphere. Given a system ofN interacting particles with an
interaction potentialVi j (1, i , j ,N) and external potentia
per particleVi , the canonical partition function is given by

Z5E expS 2(
k

vk2(
i , j

v i j DdG. ~3.1!

Here v i5Vi /kT, v i j 5Vi j /kT, and dG means integration
over the configuration space. In our case, a configuratio
characterized by specifying the position vectorxi and two
angles for each magnetic particle. The two angles define
direction of the magnetic momentmi . The modulusm is
assumed to be constant and the same for all particles. N
that we ignore any translational and rotational degrees
freedom of the particles that carry the magnetic mome
since they have no effect on the magnetization. Only
locations of the moments, i.e., of the particles, and the
entations of the moments are considered as statistical
ables.

In the first-principles statistical mechanical problem ide
tified by a superscript 0, the external potential would be
energy of a dipole in the external magnetic field,

Vi
052mi•He . ~3.2!

The interparticle potential is modeled by a dipole-dipo
~DD! interaction plus hard core~HC! repulsion. Thus

Vi j
0 5Vi j

0,DD1Vi j
HC , ~3.3!

Vi j
0,DD52

3~mi• r̂ i j !~mj• r̂ i j !2mi•mj

4pm0r i j
3

, ~3.4!

Vi j
HC5H 0 for r i j .D

` for r i j ,D.
~3.5!

The replacement of the dipolar magnetic fields from f
away particles by a field that has its origin in a magne
continuum results in a new canonical partition function w
the ‘‘external’’ potential of a dipole,

Vi52mi•Hs , ~3.6!

in the fieldHs5H1M /3, and a dipolar interaction term wit
a cutoff, i.e.,

Vi j
DD5H Vi j

0,DD for r i j ,Rs

0 for r i j .Rs .
~3.7!

Note that when using Eqs.~3.6! and ~3.7! in the expression
~3.1! for the partition function we describe every particlei as
-

te

is

he

te
of
s,
e
i-
ri-

-
e

-
c

being at the center of a sphere of radiusRs inside a magnetic
continuum such that each particle experiences the ‘‘ex
nal’’ field Hs and explicit dipolar fieldsHdipole,near(xi) @Eq.
~2.7!# from the particles whose separation is smaller thanRs .

The aforementioned statistical mechanical problem w
the long range nature of the bare dipolar interactions is t
circumvented by the cutoff atRs in Eq. ~3.7! that results
from decomposing dipolar fields into a near and a far con
bution. Dipolar forces appear explicitly only as forces with
finite range. Their influence on the magnetization in our a
proach is therefore independent of the geometry of the pro
The geometry dependence enters only via the effective ‘‘
ternal’’ field Hs from the far-field contribution.

A. Born-Mayer expansion method

Since an integral such as Eq.~3.1! is hard to solve even
numerically we use the Born-Mayer expansion method@27#
to get analytical results. The key point of this method is
write

Z5E )
k

e2vk)
i , j

~11 f i j !dG, ~3.8!

where

f i j 5e2v i j 21. ~3.9!

If the typical interaction energy is small compared tokT, the
f i j can be considered as small parameters, andZ can be
expanded into a series:

Z5E )
m

e2vmdG1E )
m

e2vm(
i , j

f i j dG

1E )
m

e2vm(
i , j

f i j (
k, l

f kldG1••• . ~3.10!

These integrals can be factorized and are therefore easi
handle.

The first order of Eq.~3.10! contains terms like

E )
m

e2vme2v12
DD

2v12
HC

dx¢ dVW . ~3.11!

Here dx¢ dVW is an abbreviation for
dx1 , . . . ,dxN dV1 , . . . ,dVN , and dV i means the integra
tion over the possible orientations ofmi .

B. Expansion in powers ofvDD

Obviously even the first order still cannot be evaluat
analytically. Therefore a second series expansion is mad

f i j 5e2v i j
HC

e2v i j
DD

215 f i j
(0)1 f i j

(1)1 f i j
(2)1•••,

~3.12a!

f i j
(0)5~e2v i j

HC
21!, ~3.12b!

f i j
(a)5

~2v i j
DD!a

a!
e2v i j

HC
, a>1. ~3.12c!
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So we expandf i j in powers of the reduced dipolar intera
tion v i j

DD . The integrals in Eq.~3.10! that remain to be solved
are of the form

E )
m

e2vmf i j
(a) f kl

(b)
•••dx¢ dVW . ~3.13!

We now introduce a modification of the common grap
cal representation of Born-Mayer integrals as follows.~1!
Every distinct particle that appears via interaction terms
the form f i j

(a) is represented by a circle.~2! A zeroth order
interaction term f i j

(0) is represented by an overlap of th
circles i and j. ~3! First, second, etc. order interaction is re
resented by one, two, etc. lines connecting the circles. N
that the representation of the zeroth order dipolar interac
by two overlapping circles is a reminder that in this case
integrand is nonzero only if the particles are assumed to b
a configuration in which they would indeed overlap.

It turns out that the expansion in terms of thef i j
(a) means

an expansion in powers of the two parameterse andf that
define the thermodynamic system. Every line in a repres
ing graph, i.e., every power ofv i j

DD , results in a factore.
Every n-particle subgraph in which all circles are connect
to each other directly or indirectly gives a factor offn21. In
the next two sections we will present two expansions con
ering different terms.

IV. EXPANSION UP TO FIRST ORDER IN f

In this section only terms up toO(f) will be taken into
account.

A. Partition function

In O(f) the canonical partition function reads

Z5E )
k

e2vk dx¢ dVW 1E )
k

e2vk(
i , j

f i j dx¢ dVW 1O~f2!.

~4.1!

The f i j have yet to be expanded in powers ofv i j
DD . Figure 2

shows the corresponding graphs. There areN(N21)/2
'N2/2 ways to choosei and j. Because all particles ar
identical one can write

FIG. 2. The first four graphs needed for the expansion ofZ in
Sec. IV. They correspond to the termsf i j

(n) (n50,1,2,3), and are of
orderfen.
-

f

te
n
e
in

t-

-

Z5E )
k

e2vk dx¢ dVW 1
N2

2 E )
k

e2vkf 12dx¢ dVW 1O~f2!.

~4.2!

Integrating over most degrees of freedom results in

Z5Z01
N2

2
z0

N22E e2v12v2f 12dx1 dx2 dV1 dV21O~f2!.

~4.3!

Here

Z05z0
N , z054pV

sinhas

as
, ~4.4!

is the partition function of a paramagnetic gas of nonint
acting particles in the fieldHs defining the Langevin param
eter

as5
mHs

kT
. ~4.5!

B. Expansion in the dipolar interaction

Now we expandf 12 appearing in Eq.~4.3! in a power
series ine. Thenth summand of this series contains integra
of the form

An5E e2v12v2f 12
(n) dx1 dx2 dV1 dV2 . ~4.6!

A0 is special. Here one gets

A05S 4p
sinhas

as
D 2E ~e2v12

HC
21!dx1 dx2

5
1

V
z0

2E ~e2v12
HC

21!dr12. ~4.7!

The integrand vanishes ifr 12.D. Otherwise its value is
21. Thus

A052
4

3
p

D3

V
z0

2 , ~4.8!

or by expressing the result in terms off

A052
8

N
fz0

2 . ~4.9!

For n>1 we have

An5
1

n! E e2v12v2~2v12
DD!ne2v12

HC
dx1 dx2 dV1 dV2 .

~4.10!

Switching fromr2 to the relative coordinater12 and integrat-
ing overr1 gives a factor ofV. Thenr12 runs over the sphere
volume. We introduce spherical coordinates, i.e.,
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m15m~cosw1 sinq1 ,sinw1 sinq1 ,cosq1!,

m25m~cosw2 sinq2 ,sinw2 sinq2 ,cosq2!, ~4.11!

r125r 12~cosw sinq,sinw sinq,cosq!.

The direction of the magnetic field defines thez axis. Then
the integral assumes the form

An5
V

n! E eas cosq11as cosq2S m2

4pm0kTr12
3 D n

3Pn~w1 ,q1 ,w2 ,q2 ,w,q!e2v12
HC

r 12
2 dr12dv12dV1 dV2 .

~4.12!

The new spherical anglev12 representsw andq. The exact
form of the functionP is not important, butP and therefore
Pn is a polynomial in the cosines and sines of the six ang
Integration over four of them can be done analytically.
nally this can also be done forq1 and q2 by substituting
u1,25cosq1,2. One gets an expression of the form

An5
V

n!
Gn* ~as!E

D

RsS m2

4pm0kTr12
3 D n

r 12
2 dr12. ~4.13!

Here we have introduced the correct bounds of the last
maining integral explicitly. By setting the lower bound toD
we have incorporated the hard core factor. The upper bo
is given by the cutoff radiusRs for the near-field dipolar
contribution. While the evaluation ofGn* can be done ana
lytically, it is quite difficult to do this by hand even fo
n52. We therefore used the computer algebra sys
MATHEMATICA to perform the integrations. See Appendix
for the form ofGn* .

For n>2 one can safely setRs5` ~see below!. For n
51 this would result in a logarithmic divergence of the i
tegral. ButG1* [0 anyway, because the calculation ofG1*
involves an averaging over a dipolar field. So by usinge and
f one finally has

An5
2V2

Np~n21!n!
Gn* ~as!e

nf, n>2, ~4.14!

A150. ~4.15!

Note thatA1 vanishes only in our spherical configuratio
with finite Rs . The divergence ofA1 in the general, spatially
unrestricted case is just an expression of the fact that
dipolar forces are long range. By treating the distant part
the ferrofluid as a continuum we incorporate any long ran
effects and the resulting geometry dependence via the
Hs5H1M /3. Into this field enters the relation between t
external field and the macroscopic internal field.

Two further comments should be made here. A gener
zation of our calculation for central symmetric interactio
other than a hard sphere potential is possible. It require
analytical or numerical evaluation of integrals of the for
*r 223ne2vSR

dr in Eq. ~4.13!, with vSR5VSR/kT and VSR

denoting ther-dependent short range potential in question
s.
-

e-

nd

m

e
of
e
ld

li-

an

The second comment is that we can now make quan
tive statements about how large a virtual sphere has to
chosen. To ensure thatA1 vanishes unambigously in Eq
~4.13! and to introduceHs instead ofHe as the ‘‘external’’
field, Rs has only to be finite. The largerRs the better is the
modeling of large distance particle correlations entering i
An for n.1. Taking the limitRs→` as the final step in the
calculation of theAn is therefore appropriate from this poin
of view. On the other hand, the requirement of uniformity
the fieldsH andM , which allows us to writeHs5H1M /3,
restrictsRs to values below the scale on whichH and M
vary. If one used a finite radiusRs one would get instead o
Eq. ~4.14! for n>2

An5
2V2

Np~n21!n!
Gn* ~as!e

nf@12~D/Rs!
3n23#,

~4.16!

which allows an error estimate. Consider a system whereM
andH do not vary on a scale of, say, micrometers. For f
rofluids, D'10 nm. ChoosingRs510D or 100D are then
both allowed and imply a difference inA2 of about 0.1%.
The result forRs5100D is better than forRs510D, because
in the latter case particles in a distance ranging between
nm and 1mm are treated in the continuum approximatio
and not correctly. But the error that is made by treating
ferrofluid already as a continuum beyondRs510D is only
about 0.1%. We can safely assume that the macrosco
magnetic properties do not vary on this scale. Thus 100
is an appropriate medium scale on which both requireme
hold: The continuum approximation works well beyond th
cutoff radiusand the macroscopic fieldsH andM should be
constant on this scale. Except for the calculation ofA1, it is
then possible to setRs5` in the calculations of the integrals

Using the results~4.14!, ~4.15!, ~4.9!, and ~4.6! in Eq.
~4.3!, one gets the following expression forZ:

Z5Z0F124Nf1Nf (
n52

`

Gn~as!e
nG1O~f2!.

~4.17!

Here we introduced the functions

Gn~as!5
1

16p3~n21!n!
S as

sinhas
D 2

Gn* ~as!, ~4.18!

some of which are given in Appendix A.

C. Free energy and magnetization

The next step is to compute the free energy

F

kT
52 ln Z52N ln z02 lnF124Nf1Nf (

n52

`

Gn~as!e
nG

1O~f2!. ~4.19!

In O(f), we can use ln(11x)511x here:
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F

kT
52N ln z014Nf2Nf (

n52

`

Gn~as!e
n1O~f2!.

~4.20!

The magnetization turns out to be

Msphere~as!52
1

m0V

]F

]Hs

52
m

m0VkT

]F

]as

5
Nm

m0V FL~as!1f (
n52

`

Gn8~as!e
nG1O~f2!.

~4.21!

The leading term is the Langevin functionL times the satu-
ration magnetizationMsat5Nm/m0V of the fluid.

In order to determineM (H) we identify, according to Eq
~2.11!, Msphere(as) with M (a), i.e.,

M

Msat
5LS a1

mM

3kTD1f (
n52

`

Gn8S a1
mM

3kTD en1O~f2!,

~4.22!

wherea is the usual Langevin parameter,

a5
mH

kT
. ~4.23!

Instead of trying to find the functionM (a) that solves this
equation exactly we expand the functionsL andGn8 for small
f into a series aroundM50 and reinsert this on the righ
hand side. Using the fact thatmMsat/3kT58fe grows lin-
early in f we arrive at

M ~a!

Msat
5L0,01f (

n51

`

L1,nen1O~f2! ~4.24a!

with

L0,05L~a!, ~4.24b!

L1,158L~a!L8~a!, ~4.24c!

L1,n5Gn8~a! for n>2. ~4.24d!

This is a consistent approximation in terms off. On the
other hand, solving Eq.~4.22! in a formally exact manner fo
M would introduce higher orders inf that we already ne-
glected to arrive at Eq.~4.22!.

Note also thatMsphere(as)/Msat @Eq. ~4.21!# containsex-
plicitly a term ;fe2 as lowest nontrivial power coming
from the expansion in the near-field dipolar coupli
strength. On the other hand, the self-consistent solu
~4.24! that solves Eq.~4.22! starts out with a contribution
;fe. The latter arises from the far-field dipolar continuu
via the magnetizationM in the dipole-induced shift of the
argument a1mM/3kT of the Langevin function in Eq.
n

~4.22!—in the absence of any dipolar interactions in the s
tem one would haveHs5He5H, leading to ideal paramag
netism.

D. Comparison with previous results

The Onsager model, the Weiss model, and our calcula
agree that up to orderfe

M

Msat
5L~a!18feL~a!L8~a!1O~f2!1O~e2!.

~4.25!

This expression was also derived by Buyevich and Ivan
@22# with a calculation similar to ours. However, they did n
introduce a magnetic continuum approximation. Inste
they assumed a special probe geometry of a long cylin
parallel to the external magnetic field and performed an
tegration over all the particle’s dipolar fields in the cylind
explicitly. The magnetization was therefore given in terms
the external field. Their result agrees with ours because
the cylindrical geometry chosen in@22# He equalsH.

A second paper that deals with our problem in a simi
way was published by Kalikmanov@34#. In Sec. IV, the au-
thor arrives at an equation for the magnetization that read
our notation

M

Msat
5L~a!13fe2G28~a!E

1

`g0~x!

x4
dx. ~4.26!

Here g0(x) is the hard sphere correlation function. In o
O(f) approximation this function has to be set to 1. Th
thefe2 term agrees with ours. Note, however, that the abo
result ~4.26! of Kalikmanov does not contain thefe term
resulting from the magnetic field from the continuum.

V. EXPANSION UP TO SECOND ORDER IN f AND e

It is possible to calculateO(f2) terms of the Born-Mayer
expansion whene is taken into account up to second ord
only. A more elegant way to calculate the magnetization
this approximation makes use of the grand canonical ra
than the canonical ensemble. This approach allows on
avoid the determination of some terms that can be factori
into already known integrals and cancel out in the calculat
of the free energy. However, the grand canonical appro
has the disadvantage that it yields the magnetization a
function of the chemical potentialm rather than the particle
numberN. Some more algebra is then required to find t
functionm(N). Here we continue to work with the canonic
ensemble.

A. The graphs

Figure 3 shows the 12 additional graphs that are of sec
order in f and of less than third order ine. Four of them
vanish because they contain at least one first-order dip
interaction term between otherwise unrelated particles. In
gration over the relative positions of these particles wh
leaving the relative positions between all other particles a
the direction of the magnetic moments fixed yields zero si
it involves a spatial averaging over a dipolar field. The gra
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labeled with the letterF vanishes for similar reasons that a
explained in Appendix B where we calculate the integr
one by one. Their respective contributions to the partit
function are

ZA /Z0532Nf2, ~5.1a!

ZB /Z05216Nf2e2G2~as!, ~5.1b!

ZC /Z058~N226N!f2, ~5.1c!

ZD /Z0524~N226N!f2e2G2~as!, ~5.1d!

ZE /Z0525Nf2, ~5.1e!

ZF /Z050, ~5.1f!

ZG /Z05
116 ln 2

4
Nf2e2G2~as!, ~5.1g!

ZH /Z052Nf2e2K~as!. ~5.1h!

The functionsG2 andK are given in Appendix A.

B. Free energy and magnetization

Now we have all necessary terms at hand to calculate
canonical partition function up to the desired order:

Z

Z0
5124~N21!f1~N21!fe2G2~as!132Nf2

216Nf2e2G2~as!18~N226N!f2

24~N226N!f2e2G2~as!25Nf2

1
116 ln 2

4
Nf2e2G2~as!2Nf2e2K~as!1~h.o.t.!,

~5.2!

FIG. 3. The 12 additional graphs needed for anO(f2,e2) ex-
pansion ofZ. The integrals for the crossed out graphs vanish. Gr
F vanishes also; see Appendix B 6.
s
n

e

where h.o.t. represents higher order terms. The terms
O(f) appear already in Eq.~4.17!. They are presented her
including the next higher order inN. The other terms come
from ZA–ZH . To include all terms ofO(f2,e2) in the free
energy one has to approximate the logarithm ln(11x) by x
2x2/2. The quadratic order is necessary only for theO(f)
terms. New terms ofO(N2) appear and cancel the term
from ZC andZD . One gets

F

kT
52N ln z014Nf15Nf22Nfe2G2~as!

2
116 ln 2

4
Nf2e2G2~as!1Nf2e2K~as!1~h.o.t.!.

~5.3!

The result is proportional toN as it has to be.
The magnetization of the sphere is

Msphere~as!

Msat
5L~as!1fe2G28~as!1

116 ln 2

4
f2e2G28~as!

2f2e2K8~as!1~h.o.t.!. ~5.4!

To calculate the magnetization as a function ofa we identify
Eq. ~5.4! with M and use againas5a1mM/3kT. The right
hand side of Eq.~5.4! has now to be expanded arounda up
to second order and the resulting equation has to be iter
twice to take into account all important terms up toe2f2.
The result is

M ~a!

Msat
5L0,01feL1,11fe2L1,21f2e2L2,21•••

~5.5a!

with L0,0,L1,1, andL1,2 defined in Eqs.~4.24b!–~4.24d! and

L2,2564L~a!L8~a!2132L~a!L9~a!

1
116 ln 2

4
G28~a!2K8~a!. ~5.5b!

For the discussion in the next section we decompose

L2,2~a!5L2,2
sphere~a!1L2,2

i terative~a!. ~5.6a!

The function

L2,2
sphere5

116 ln 2

4
G282K8 ~5.6b!

already occurs in the expression~5.4! for the magnetization
Msphere(as) of the sphere. The contribution

L2,2
i terative564L~L8!2132LL9 ~5.6c!

arises in obtaining the self-consistent solution of the equa
M5Mspherewith an expansion and iteration.

VI. DISCUSSION OF THE RESULTS

We will first show that our result~5.4! for Msphere(Hs)
does not lead to a ferromagnetic solution, in contradistinct

h



th

a
in

b
is
f

o
id

ld
d
,
lt
io

-
ld

n

s
w
io
-
di

ol
-

t

o

th
-

-

c-

eir
plot

ing

x-

PRE 62 6883MAGNETIZATION OF FERROFLUIDS WITH DIPOLAR . . .
to the Weiss model. Then we discuss the behavior of
different terms contributing to Eqs.~4.24! and ~5.5! and we
delineate the range of reliability of the simplest approxim
tion. Finally, we address problems arising when compar
with experiments.

A. Spontaneous magnetization?

Investigations based on density functional methods
Groh and Dietrich@4# and on Monte Carlo methods by We
and Levesque@8,9# provided support for the existence o
magnetized phases absent the external fieldHe , i.e., ferro-
magnetism, in the system of dipolar hard spheres we c
sider in this work. Groh and Dietrich considered a ferroflu
probe of needlelike shape whereH5He and found a transi-
tion to a magnetized phase atfe'0.35. But they considered
this value as being overestimated and referred to@9#. Weis
and Levesque studied a case without demagnetizing fie
i.e., againH5He . They found a transition to a magnetize
phase ate56.25 forf'0.35. As discussed in detail below
these values are outside the range of reliability of our resu

The Weiss model does also show ferromagnetic behav
It is recovered from Eq.~5.4! by keeping only the leading
order termL(as) describing a single moment in the fie
Hs5H1M /3. The resulting self-consistency equation

M5Msphere
Weiss S H1

M

3 D5MsatLF m

kT S H1
M

3 D G ~6.1!

allows for zero field a solution with finite magnetizatio
when kT,mMsat/9. Using Eq. ~2.4! combined with Eqs.
~2.12! and ~2.13! this condition is equivalent tofe.3/8,
about the same value as in@4#. So according to the Weis
model the ferrofluid will show ferromagnetic behavior belo
a critical temperature that grows linearly with the saturat
magnetizationMsat of the ferrofluid. But even for a ferro
fluid consisting of cobalt particles with a magnetic core
ameter of 10 nm and a magnetic volume fraction offmag
50.1, the critical temperature would be as low as 90 K.

While the transition combinatione56.25,f'0.35 of@9#
is outside the range of reliability of our results, the thresh
locationfe58/3 of the Weiss model might be inside. How
ever, in agreement with@9# we do not find self-consisten
ferromagnetic solutions of Eq.~5.4! M5Msphere(H1M /3)
within this range. We have numerically confirmed that f
H50 the equationM5Msphere(M /3) always allows only
the trivial solutionM50.

B. Contribution from different orders

Now we will take a closer look at the functions ofa
involved in Eqs.~4.24! and~5.5!. All these functions are odd
as they have to be for reasons of symmetry. Fora→` they
vanish as 1/a2 or faster. Because 12L(a);1/a, that means
that the predicted magnetization is always smaller than
saturation magnetization fora→`. Nevertheless, the mag
netization can assume unphysical values greater thanMsat
for intermediatea if e or f is big enough for the approxi
mations to become invalid.
e

-
g

y

n-

s,

s.
r.

n

-

d

r

e

1. Behavior in linear order off

We will first discuss the result~4.24! for the magnetiza-
tion that was obtained up to linear order in the volume fra
tion f. In Fig. 4 the functionsL1,1 andL1,2 are plotted. The
values of the higher order functions are smaller, but th
shape remains more or less the same as the logarithmic
in Fig. 5 shows. BecauseL1,n andL1,n12 differ by about one
order of magnitude one can conclude that by includ
higher and higher orders ofe the series~5.5! for the magne-
tization converges, as long ase is smaller than'3. For this
large value ofe strong agglomeration can already be e
pected.

FIG. 4. The functionsL1,1 andL1,2 versusa. Note the different
scaling.

FIG. 5. The functionsL1,n versusa.
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For smalla, L1,n is proportional toa (a3) for odd ~even!
n. The initial susceptibility can therefore be written as

x~H50!5x0~H50!F11f (
n50

s1,2n11e2n111O~f2!G .
~6.2!

Here

x0~H50!5
mMsat

3kT
~6.3!

is the initial susceptibility of the ideal paramagnetic gas, a
the nonvanishings1,n we calculated are

s1,15
8

3
, s1,35

8

75
, s1,55

32

3675
,

~6.4!

s1,75
8

19 845
, s1,95

148

12 006 225
.

Figure 6 showsx0(H50) ~thick dashed line!, and the
susceptibilityx(H50) @Eq. ~6.2!# including progressive or-
dersfe, fe3, fe5, fe7, andfe9 ~thin dashed lines, from
bottom to top! as a function ofe for f50.15. The sequenc
of these thin dashed lines shows that this series converg
the e range of Fig. 6. The last thick full line in Fig. 6 repre
sentsx(H50) including the contributions in orderf2e2. It
shows that the latter are not yet important even forf
50.15.

FIG. 6. Initial magnetic susceptibility forf50.15 as a function
of e.
d

in

2. Behavior in second order off

Now we take a look at the functionsL2,2
sphere @Eq. ~5.6b!#

and L2,2
i terative @Eq. ~5.6c!# that add up toL2,2 @Eq. ~5.6a!#,

which enters in orderf2e2 into the magnetization@Eq.
~5.5a!#.

Figure 7 shows that the contributionsL2,2
sphere and

L2,2
i terative almost cancel each other at smalla. This is why the

influence of thef2e2 terms on the susceptibility in Fig. 6 i
so small. However, at highera the f2e2L2,2 term becomes
important. Comparing the latter with the linear termfeL1,1
one finds that they contribute equally foref'0.5 at larger
a.

Except for very smalla L2,2 is negative, because it in
cludes higher order particle position correlations that res
in a better modeling of the distance distribution due to
finite size of the particles. The mean distance is bigger in
approximation and the induced dipolar fields at the parti
positions are therefore smaller.

The influence of thef2e2L2,2 contribution to the magne
tization is shown in Fig. 8 fore52 andf50.05. For these
parameters this term is already large enough to cancel alm
exactly the sum of all contributionsL1,nfen with n>2 from
the linear order inf at moderatea. Figure 9 shows the
susceptibilityx(H)5]M (H)/]H for the same parameters
At highera, the cancellation of the higherL1,n terms against
the L2,2 contribution can again be seen. At smallera, how-
ever, the behavior is different. There the contribution of t
L1,n terms is much larger, whereas theL2,2 contributions van-
ish.

C. Reliability of the O„fe… approximation

We can determine the range of reliability of the simple
approximation

FIG. 7. The weights of theO(f2) terms that appear in Eq.~5.5!
are shown versusa. The termsL2,2

sphere @Eq. ~5.6b!# and L2,2
i terative

@Eq. ~5.6c!# that add up toL2,2 @Eq. ~5.6a!# are discussed in the text
For comparison, theO(fe) term L1,1 is plotted as well.
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M

Msat
5L0,0~a!1L1,1~a!fe

5L~a!18L~a!L8~a!fe ~6.5!

to the magnetization that includes effects of dipolar inter

FIG. 8. The reduced magnetization fore52 andf50.05 for
moderatea. Taking into accountfen terms results in a highe
magnetization than given by the Langevin function. However,
contributions from the termsfen with n>2 are almost exactly
canceled by the contribution from the second-order termf2e2 for
the parameterse,f considered here.

FIG. 9. The reduced susceptibility fore52 andf50.05 as a
function of a. The higher order corrections are largest ata50. At
moderatea, the cancellation of the terms of orderfen with n>2
against the term of orderf2e2 can again be seen.
-

tions since we know the higher order corrections inf as well
as ine. To that end we investigated the ratios

UO~fen! terms ~n.1!

L0,0~a!1L1,1~a!fe U, ~6.6!

and

U O~f2! terms

L0,0~a!1L1,1~a!feU. ~6.7!

The first ratio assumes its maximum ata50, which means
the initial susceptibility is most sensitive to higher order co
rections ine. The second ratio~6.7! assumes its maximum
arounda52, which is near the maximum of the absolu
value of the numerator~as seen in Fig. 7!.

In the e-f plane of Fig. 10~a! we show isolines of the
maximal—with respect toa—ratio ~6.6! and Fig. 10~b!
shows the analogous isolines for the ratio~6.7!. The com-
parison shows that the smallness ofe is more important in
keeping the ratio~6.6! small, whereas in~6.7! the value off
is also important. As rules of thumb, one can say that
approximation~6.5! is valid within about 1–2% ife,1 and
ef,0.04. If the first constraint is not fulfilled, higher orde
in e have to be taken into account. Higher orders inf are
needed if the second constraint is not fulfilled.

ll

FIG. 10. Quality of the lowest order expression~6.5! for the
magnetization.~a! shows the isolines of the maximal—with respe
to a—ratio ~6.6! in steps of 0.01 and~b! shows those of the ratio
~6.7!.
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D. Comparison with experiments?

There are several papers@23–26# that aim at investigating
the influence of dipolar interactions on the magnetization
comparing theoretical models developed so far with exp
mental magnetizations of ferrofluids. The mean spher
model @21# was reported to show good agreement with e
periments. Pshenichnikov@23# also found good agreemen
with the high temperature approximation@22#, i.e., the ap-
proximation ~6.5!. But this ansatz failed in the magne
togranulometric analysis done in@26#.

We do not present a comparison of our results with
experiments on the magnetization in the literature becaus
several problems. In our theory it is necessary to distingu
between the particle diameterD and the magnetic core diam
eter Dmag that is found in magnetogranulometric measu
ments. This problem does not arise in the mean sphe
model or the high temperature approximation, wheree andf
enter only via the factorfe5Nm2/24Vm0kT5Msatm/
24kT which is independent ofD. Also, corrections such a
the temperature dependence of the saturation magnetiz
or the fluid density should be taken into account@25#.

But the major problem in comparing directly with expe
ments is that our theory does not take into account the p
dispersity of ferrofluids. The effect of polydispersity is a
ready significant in the absence of any dipolar interacti
This can be inferred from the dashed and dotted curve
Fig. 11 representing the reduced magnetization ofnoninter-
actingmagnetic particles having a polydisperse and a mo
disperse distribution of particle diameters, respectively. H

FIG. 11. Comparison of the effects of polydispersity and
dipolar interaction. Plotted is the reduced magnetization versua
for different ferrofluid models: a noninteracting monodisperse s
tem ~only L0,0), a noninteracting polydisperse system, and a mo
disperse system with dipolar interaction forf50.05 ande52. The
polydisperse system has a log-normal distribution of particle dia
eters@Eq. ~6.8!# with a typical width ofs50.3 and the same third
momentD3 as the monodisperse fluid.
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the common particle diameter of the latter isD31/3, whereD3

is the third moment of the particle size distribution

P~D !ª
1

A2psD0es2/2
e2(ln2 D/D0)/2s2

~6.8!

of the former. The mean magnetic momentm̄ and the satu-
ration magnetization of the two systems are the same.
comparison with the effect of dipolar interaction inmonodis-
persesystems the full curve in Fig. 11 shows our result forM
@Eq. ~5.5a!# including all terms;fen and the termf2e2.
Hence the effects of polydispersiveness alone, i.e., with
interaction, are comparable in size with the effect of dipo
interactions in monodisperse systems. Thus clearly an ex
sion of the Born-Mayer expansion method presented her
the case of polydisperse interacting particles is desirable

VII. CONCLUSION

We calculated the free energy and in particular the m
netizationM of a ferrofluid as a function of the macroscop
magnetic fieldH. To do so, we used the technique of th
Born-Mayer expansion together with an expansion in ter
of the dipolar coupling energy. The magnetic particles w
assumed to be hard spheres with a common hard core d
eterD and magnetic momentm that interact via long range
dipolar interactions. This feature may result in a geome
dependence of thermodynamic properties. We treated
problem by dividing the dipolar field at some positionxi that
is produced by the magnetic moments of the particles int
near-field and a far-field part depending on whether the p
ticle distance fromxi is larger than some radiusRs or not. In
this wayeverymagnetic particle is imagined to be located
the center of a sphere of radiusRs . The far-field dipolar
contribution from particles beyondRs is then replaced by a
magnetic continuum with magnetizationM and magnetic
field H. Here Rs is chosen to be such thatM and H are
homogeneous on the scale ofRs . The magnetic continuum
outside the sphere produces in the center of the sphere
magnetic fieldHs5H1M /3. This field acts as an ‘‘exter
nal’’ field on the particle in the center of the sphere. T
near-field interaction of the latter with the other particl
within the sphere being at distances smaller thanRs is treated
explicitly. Thus in our statistical mechanical calculatio
there appear dipolar interactions only with interparticle d
tances less thanRs . However, since the cutoff dependence
the relevant expressions occurring in these calculation
already negligible beyond a radius of the order of 10D
'100 nm we usedRs5` in these expressions.

The expansion of the partition function for these intera
ing particles in terms of the volume ratio and the dipo
coupling strengthe yields an expression for the magnetiz
tion

Msphere5Msphere~H1M /3! ~7.1!

as a function of the ‘‘external’’ part of the field inside th
sphere. The magnetizationMsphereis then identified with the
magnetizationM (H) inside the continuum so that a sel
consistent relation results. The aforementioned geometry
pendence ofM in the general case is incorporated viaH.
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We presented two different expansions ine and f, one
containing only linear terms inf, the other containing also
second orderf terms, but only up toO(e2). We discussed
the range of applicability in thef-e plane of their results for
M (H) and compared them to the most simple approximat
to the magnetization that contains the dipolar effects only
linear order in e and f. The self-consistent relation fo
M (H) that contains only up to second order terms in b
parameters does not admit a ferromagnetic solution w
spontaneous magnetization. Finally we showed that an
tension to polydisperse interacting particles is desirable.
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APPENDIX A: THE FUNCTIONS Gn AND K

The functionsGn* (x) in Eq. ~4.13! are related toGn(x)
via Eq. ~4.18!:

Gn~x!5
1

16p3~n21!n!
S x

sinhxD 2

Gn* ~x!. ~A1!

The functionsGn(x) introduced in Eq.~4.18! have the
form

Gn~x!5Gn
(0)S 1

xD1Gn
(1)S 1

xD cothx1Gn
(2)S 1

xD coth2 x,

~A2!

where the functionsGn
( i )(y) are polynomials. The first fou

triples are given by

G2
(0)~y!5

8

5
1

8

5
y21

12

5
y4, ~A3a!

G2
(1)~y!52

8

5
y2

24

5
y3, ~A3b!

G2
(2)~y!5

12

5
y2, ~A3c!

G3
(0)~y!52

4

35
y22

48

35
y42

12

7
y6, ~A4a!

G3
(1)~y!52

8

35
y1

8

5
y31

24

7
y5, ~A4b!

G3
(2)~y!5

16

105
2

8

35
y22

12

7
y4, ~A4c!

G4
(0)~y!5

8

105
1

8

35
y21

92

35
y41

72

7
y6112y8, ~A5a!

G4
(1)~y!52

16

105
y2

8

5
y32

88

7
y5224y7, ~A5b!
n
n

h
h
x-

e-

G4
(2)~y!5

32

105
y21

16

7
y4112y6, ~A5c!

G5
(0)~y!5

12

385
y22

208

385
y42

852

77
y62

480

11
y82

540

11
y10,

~A6a!

G5
(1)~y!52

8

231
y1

16

385
y31

472

77
y51

600

11
y71

1080

11
y9,

~A6b!

G5
(2)~y!5

16

1155
1

16

1155
y22

40

77
y42

120

11
y62

540

11
y8.

~A6c!

All functions Gn
( i )(x) have a well defined limit forx→0

although this is not obvious for the above explicit expre
sions. Their values atx50 are closely related to the coeffi
cients in thee expansion of the second virial coefficient fo
the system of dipolar hard spheres in the absence of a m
netic field. The calculation of this coefficient dates back
@35# and can also be found in@36#.

The functionK @Eq. ~B22!# that appears in theO(f2)
terms of the free energy is given by

K~x!52
6

x
coth3 x1S 18

x2
112D coth2 x

2S 18

x3
1

24

x D cothx1
6

x4
1

12

x2
. ~A7!

APPENDIX B: GRAPHS IN SECOND ORDER OF f

Here we determine the contribution to the canonical p
tition function from the graphsA–H shown in Fig. 3. There
often appear hard core interaction terms that are just exp
sions of the requirement that two particles have to or m
not overlap. We define two abbreviations:

e2v i j
HC

2152Oi j , ~B1!

e2v i j
HC

5Ōi j . ~B2!

1. Graph A

The graphA representsf i j
(0)f ik

(0) . There areN3 ways to
choose the constituting particles, but becausej and k are
equivalent onlyN3/2 distinctive graphs remain. Integratio
over all variables except the positions of particlesj and k
relative toi yields

N3

2 E f 12
(0)f 13

(0))
l

e2v l dx¢ dVW

5
N3

2 S 4p
sinhas

as
D N

VN22E O12O13dr12dr13.

The remaining integral factorizes and we can make use of
results forA0 @Eq. ~4.9!#. The contribution of graphA to the
partition function is
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ZA532NZ0f2 ~B3!

whereZ0 is given by Eq.~4.4!.

2. Graph B

The graphB representsf i j
(0)f ik

(2) . All three particles appea
in different ways; thus there areN3 different graphs. After
integration over the degrees of freedom of the noninvolv
particles and switching to relative coordinates with respec
particle i the integral factorizes again and one can make
of the results forA0 @Eq. ~4.9!# andA2 @Eq. ~4.14!#. We get

ZB5216NZ0f2e2G2~as!. ~B4!

3. Graph C

The graphC representsf i j
(0)f kl

(0) . Here we have also to
include the next higher order term when we calculate
number of combinations to get theO(N) terms in the final
result: There are (N426N3)/8 different terms. The integra
for graphC can be factorized so that

ZC58~N226N!Z0f2. ~B5!

4. Graph D

The graphD representsf i j
(0)f kl

(2) . The calculation is similar
to the calculation of graphC. Again, we need the next highe
order term inN. There are (N426N3)/4 combinations, twice
as many as for graphC because the pairs (i , j ) and (k,l ) are
not identical. One gets

ZD524~N226N!Z0f2e2G2~as!. ~B6!

5. Graph E

The integral containing the termf i j
(0)f jk

(0)f ki
(0) is the first

really new integral. It involves only hard core interactio
and does not contribute to the final expression for the m
netization. But for completeness we will calculate it als
The trivial integrations yield

ZE52
N3

6 S 4p
sinhas

as
D N

VN22E O12O13O23dr12dr13.

~B7!

We keep the distancer12 fixed. The center of particle 3 the
has to be inside two spheres of radiusD around particles 1
and 2. Integrating over the position of particle 3 yields t
overlap volumeVo of the two spheres,

Vo5
4

3
pD3F12

3

4

r 12

D
1

1

16S r 12

D D 3G . ~B8!

Therefore

ZE52
N3

6

Z0

V2E O12Vo~r 12!dr12

52
N3

6

Z0

V2
4pE

0

D

Vo~r 12!r 12
2 dr12. ~B9!
d
o
e

e

g-
.

Performing the last integration results in

ZE525NZ0f2. ~B10!

6. Graph F

The graphF representsf i j
(0)f ik

(0)f jk
(1) . As already stated this

integral vanishes, which can be seen as follows. Conside
arbitrary configuration belonging to some value of the in
grand

e2v i2v j 2vkf i j
(0)f ik

(0)f jk
(1) . ~B11!

While leaving the direction of the magnetic moments fix
the whole configuration can be freely rotated around part
j, changing only thef jk

(1) term. Integration over the resultin
configurations involves again an averaging over a dipo
field on a spherical surface.

7. Graph G

The calculation of theN3/2 integrals belonging to
f i j

(0)f ik
(0)f jk

(2) is similar to the calculation for graphE. First we
integrate over all degrees of freedom except the distance
tween particlesj 51 andk52 and the position of particlei
53:

ZG5
N3

2 S 4p
sinhas

as
D N

VN22pG2~as!e
2D6

3E O13O23Ō12r 12
24 dr12dr3 . ~B12!

Integrating overr3 results again in an overlap volume term

ZG5
N3

2

Z0

V2
pG2~as!e

2D6E Ō12Vo~r 12!r 12
24 dr12.

~B13!

Here the lower integration boundary isr 125D because of the
remaining hard core factor. The upper integration bound
is r 1252D because the possibility that particle 3 overla
with particles 1 and 2 is still required. The final result is

ZG5
116 ln 2

4
NZ0f2e2G2~as!. ~B14!

8. Graph H

The last graphH is the most complicated one. It repre
sents the termf i j

(0)f ik
(1)f jk

(1) that appearsN3/2 times. The prob-
lem here is to fulfill the requirement that particlesj and k
have to overlap in terms of properly chosen integration li
its. We start by performing the trivial integrations

ZH52
1

2
N3z0

N23VE e2v12v22v3v12
DDv13

DDO23Ō12Ō13

3dr12dr13dV1 dV2 dV3 . ~B15!

Whether the integrand vanishes due to the hard core fac
depends only on the distancesr 12, r 13 and the angleq23
betweenr12 and r13. Consider a special orientation where
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r̂12
0 5~1,0,0!, ~B16!

r̂13
0 5~cosq2 ,0,sinq23!, ~B17!

with 0<q23<p. A general configuration of the particles
locations can be written as

r̂1(2,3)5Rz~w!Ry~q!Rz~c! r̂1(2,3)
0 , ~B18!

whereRx , Ry , andRz are Eulerian rotation matrices for th
anglesc, q, andw. Using this form the integration over th
factors that depend on these angles,

E
0

2pE
2p/2

p/2 E
0

2p

v12
DDv13

DD cosq dw dq dc, ~B19!

can easily be performed withMATHEMATICA . We call the
result I (r 12,r 13,q23,mi).

Next, we integrate over the orientations of themi :

E e2v12v22v3I ~r 12,r 13,q23,mi !dV1 dV2 dV3 .

~B20!

The result depends only onr 12, r 13, and q23. Using it in
Eq. ~B15! yields

ZH52
4

3
N3

Z0

V2
K~as!E O23Ō12Ō13

3
m4p2~2 cos2 q232sin2 q23!

10~4pm0kT!2r 12r 13

sinq23dr12dr13dq23,

~B21!

where
hy

e

.

ys
K~as!5
3

8 S as

sinhas
D 3E

21

1 E
21

1 E
21

1

eas(u11u21u3)

3~u1
213!u2u3 du1 du2 du3 . ~B22!

The explicit expression forK(as) is given in Appendix A
@Eq. ~A7!#.

Now we discuss the hard core terms.r 12 and r 13 have to
be greater thanD to avoid the overlap with particle 1. Fur
thermore,ur 122r 13u,D has to be fulfilled for particles 2 and
3 to overlap. As a last requirement,q23 has to be smaller
than some angleq23

max that depends onr 12 and r 13. Trigo-
nometry shows that

cosq23
max5

r 12
2 1r 13

2 2D2

2r 12r 13
. ~B23!

In this configuration the distance between particles 2 and
exactlyD.

We perform the integration overq23 from 0 to q23
max in

Eq. ~B21!, choose the correct limits forr 12 andr 13, and drop
all hard core terms:

ZH52
4

3
N3

Z0

V2
K~as!E

D

`E
min(D,r 132D)

r 131D m4p2

10~4pm0kT!2r 12r 13

3F r 12
2 1r 13

2 2D2

2r 12r 13
2S r 12

2 1r 13
2 2D2

2r 12r 13
D 3Gdr12dr13. ~B24!

The result of the last integration is

ZH52
4

3
N3

Z0

V2
K~as!

m4p2

48~4pm0kT!2

52NZ0f2e2K~as!. ~B25!
p-

.
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