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Magnetization of ferrofluids with dipolar interactions: A Born-Mayer expansion
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For ferrofluids that are described by a system of hard spheres interacting via dipolar forces we evaluate the
magnetization as a function of the internal magnetic field with a Born-Mayer technique and an expansion in the
dipolar coupling strength. Two different approximations are presented for the magnetization, considering
different contributions to a series expansion in terms of the volume fraction of the particles and the dipolar
coupling strength.

PACS numbgs): 75.50.Mm, 05.70.Ce, 05.20.Jj

[. INTRODUCTION perature approximation showed good res[&3].
Our approach assumes the magnetic particles in the fer-
Ferrofluids[1] are suspensions of ferromagnetic particlesrofluid to be hard spheres with a common diame?eand
of about 10 nm diameter in a carrier fluid. The particles aredipolar momenim. We use the technique of the Born-Mayer
stabilized against aggregation by coating with polymers ofXPansior|27] together with an expansion in the strength of

by electrostatic repulsion of charges on their surfaces. OHje dlpo!ar COPP"”Q to get analytlcal approximations. They
macroscobic scales. ferrofluids can be described as liquid€ obtained via series expansions of the free energy in terms

acroscop ' X . q two parameters(i) the volume fraction of the hard core
with intrinsic superparamagnetic properties.

. ! I articles¢ and(ii) a dimensionless dipolar coupling constant
In this paper, we are concerned with the equilibrium mag P ¢ (i) P bling

o . : o ‘e, given by the ratio between a typical dipolar energy for
n§t|zat|onM as a function of 'ghe internal magnetic f|é+b|fo_r articles in hard core contact and the thermal en&MyOur
given temperature and particle concentration. Ferrofluids o

o : X ~tesult for the magnetization goes beyond the high tempera-
sufficiently low concentration behave like a paramagnetiqyre approximatioi22] and reduces to it in linear order if
gas. There the interaction between the particles can be ngpq

glected and the equilibrium magnetization can be described Dibolar forces fall off agr ~2 and are thus of long range
properly by the Langevin function. The magnetic propertiesnature. This long range character requires great care when
are then necessarily weak. To produce ferrofluids with strongnhyvoking the thermodynamic limif28—3@. To circumvent
magnetic properties either one has to have a higher particiéhe problem we model the dipolar fields that are generated by
concentration or one has to use ferromagnetic material with distant particles by a magnetic continuum fiédmilar to the
large bulk magnetization, e.g., cobalt instead of magnetite. Itreatment in the Weiss modelvhile incorporating the near
both cases the magnetization is strongly influenced byield contributions explicitly in a statistical mechanical de-
dipole-dipole and other interactions between the particles. scription. The magnetizatiol is then derived as a function
Several models of dipolar interacting systems have beeof the internal magnetic fieltd. The relationM (H) so ob-
studied in the literature. Numerical investigations have beetained is independent of the probe geometry. OMdél) is
based on density functional approact@s-6] and Monte  known, the magnetization for a given geometry can in prin-
Carlo simulationg7—14]. The models differ in the treatment ciple be derived by solving the macroscopic Maxwell equa-
of the short range interactions, which have been described hyons. This may still be a difficult task in practice, at least as
hard spherg4,8,9,13—1% other hard cor§4,12], soft sphere long as the external field is small or absent. In this case it is
[7,10|, or Lennard-Jones potentid!®,3,6,7,11. These inves- known that the magnetization will show a nontrivial spatial
tigations were mainly undertaken to reveal the phase transisariation at high enough densities for general shaped probes
tion properties. These properties are substantially differents,6.
for different short range interactions. Thus, for example, the Since our method yields an expression for the free energy
question whether a system of particles interacting via longf the model system, we can in principle calculate other ther-
range dipolar forces shows a “liquid-vapor” phase coexist-modynamic quantities also and in particular address the
ence of a dense and a less dense phase without any dispguestion of phase transitions, e.g., between gas and liquid or
sive energy, e.g., from the attractive van der Waals energy isetween ferromagnetic and nonferromagnetic phases. We
currently being discussdd,12,14—18 have not addressed the question of a gas-liquid transition of
Analytical models focus mainly on the equilibrium mag- the magnetic particles suspended in the ferrofluid since it is
netization in the gas phasehere the term “gas” refers, as believed that short range van der Waals—like attractions
far as ferrofluids are concerned, to the magnetic particle subwould have to be incorporated to model real ferrofluids ap-
system within the liquid carrigr Such models are the On- propriately in this regard[10]. However, the question
sager mode[19], the Weiss mod€l20], the mean spherical whether a strong dipolar coupling induces a spontaneous
approximation [21], and an approach by Buyevich and magnetization in zero external field, which is currently de-
Ivanov [22] (called the high temperature approximation in bated in the literaturg2,3,8,9,31,32is briefly touched upon
[23]). These models were tested experimentally for ferrofluin Sec. VI A of this paper.
ids [23—26. The mean spherical model and the high tem- The paper is organized as follows. In Sec. Il we discuss

1063-651X/2000/6(5)/687516)/$15.00 PRE 62 6875 ©2000 The American Physical Society



6876 B. HUKE AND M. LUCKE PRE 62

the connections between the various fields that are of relfhis is the field that a single magnetic particle experiences

evance in a ferrofluid. We present the model to treat the longvithin the Weiss model, i.eHyca=Hs.

range dipolar forces. In Sec. lll we present the expansion The Onsager model, on the other hand, is restricted to

method to get analytical solutions in terms of the two smalllinearly responding fluids and calculates the field inside the

parameters and ¢. In Sec. IV we calculate an expression sphere on the assumption that it is really hollow and that

for the magnetization that contains only linear terms¢in thereforeH and M differ near the sphere from their bulk

but, at least in principle, arbitrarily high orders énln Sec. values. In that case the field within the sphere is

V a different expression is derived containing quadratic

terms in¢ also but also only up to second order terms:in H ~3x+3

In Sec. VI we discuss our findings and investigate the appli- local™ 5y +3""

cability of the results in theb-e plane. Section VII contains

a short conclusion. x is the susceptibility. In both models the magnetization is
calculated as the magnetization of a systemafinteracting

Il. MAGNETIC FIELDS AND MAGNETIZATION dipoles in the magnetic fielt ¢y, i-€.,

2.2

We are interested in the effect of dipolar interactions of m
the magnetic particles in a ferrofluid on the equilibrium mag- M= Msatﬁ(k—-l-Hmcal) : 2.3
netization of the ferrofluid. To that end we consider the fer-
rofluid as an ensemble of identical spherical particles of diere
ameterD, each carrying a magnetic moment of magnitade
These patrticles interact with each other via magnetic dipole- N m
dipole interactions and a hard core repulsion with hard core Msar=y; ' (2.9
diameterD. We assuméd =D 54 WhereD 54 is the diam- 0
eter of the magnetic core of the particles, thus allowing for gs the saturation magnetization of the fluifi,the Langevin
surfactant surface layer that provides a steric repulsion.  fynction, m the magnetic moment of the particles, aNtV
The particles can lower their potential energy by orientingtheir number density. In the Onsager model the Langevin
their magnetic moments parallel to a local magnetic fieldfynction is consistently used only in linear order. Letting

However, any interaction of the particles with the fluid me- = yH on the left hand side of Eq2.3) and using Eq(2.2)
dium in which they are suspended is ignored. The latter igyjiows calculation ofy.

taken to be magnetically inert. In the Weiss model the self-consistent solutidifH) is
_ o determined using Egsi2.3) and (2.1). The Onsager and
A. Different magnetic fields Weiss models differ in the treatment of the back reaction of

Before we outline in Sec. Il B how we determine in prin- the particle inside the sphere on the magnetic continuum near

ciple the magnetization of the ferrofiuid, we would like to the sphere’s boundary.
review briefly the different magnetic fields that one has to
distinguish and that are of importance in a system with di- B. Decomposition of fields

polar interactions. The first field is the external magnetic  gjnce the magnetic continuum is a macroscopic concept
f@eld H, that is applied ou_tside the pr_obe. If dipolar_i_nterac-One should be careful when using it on the mesoscopic
tions can be neglected is also the field at the position of on4th scales of interparticle distances and particle diameters.
the particles—at least as long as the carrier fluid can b@ first principles statistical mechanical calculation of the
treated as a magnetic vacuum, which we will assumenagnetization would start by expressing the energy of the
throughout the paper. In the presence of dipolar interactionsy stem in terms of the statistical variables of the constituents.
additional fields have to be considered. One of them is thg, s context the local magnetic fieldh,,, that a magnetic
internal fieldH, which is the macroscopic field inside the moment, say, at position experiences is of importance. It is

probe. By assuming that the equation of std¢H) is  omposed of two different magnetic fields, the external field
known,H can be calculated by the common methods of CoNY_ and the dipolar contributiott g;1e from the otherN

fcinuum magnetostatigs. But the macroscopic fi!dlcUiffgrs —1 particles at positions; , possessing a magnetic moment
in general from the fieldH,., that the magnetic particles m;. Thus within the first-principles approach one has

EXpSerlence' . . HIocaI:He+Hdipolev where

o far two models have been employed in the ferrofluid

literature to calculateHqc, from H, which are similar in 3f; (M- 1) —m.

spirit, namely, the Weiss modE20] and the Onsager model Haipote(X)) = 2, ————. (2.5
[19]. Both introduce a virtual hollow sphere inside a mag- ] A ol ]

netic continuum such that the sphere contains a single mag- R

netic particle in its center. The Weiss model assumes thélerer;;=x;—x;, rij=|r;;|[, andrij=r;; /r;; .

magnetizatiorM and the internal field to be constant ev- The long range character of the dipolar forces requires
erywhere in the magnetic continuum surrounding the spherespecial care when invoking the thermodynamic liivits o
Then the field inside the sphere is given by andN—« (N/V=const) (for a critical discussion see, e.g.,

Refs.[29,28). The reason is that the dipolar contribution
(2.5 will in general depend on the geometry of the ferrofluid

M
He=H+ = 2" Hrobe and the location of within it. Thus the equilibrium

3
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H\ocal CONSists of the continuum contributiéty from the far
magnetic continuum region and the contribution for the dipoles within the sphere:

M
Higca=Hst Hdipole,near: H+ 3 + Hdipole,near-
(2.9

This result agrees with E¢27.26 of Ref.[33], where it was
derived with slightly different arguments for electric dipoles.
Due to the long range character of the dipolar foregg,q e

will be in general geometry dependent and spatially varying.
Hs (H) andM will then also show these features as men-
tioned above.

If the dipolar coupling between the particles is so weak
that even the dipolar fields of the nearest neighbors of par-
FIG. 1. Geometry of our model. Every particflack) experi- ticlei can be d_escribed by a continuum fie[d, i.eRifcan be
ences the magnetic near field generated by the dipoles of the neigﬁ-hosen as being smaller than t_he mean distance between the

bors (dark gray within the radiusR, and a contribution from the Particles, we can drop the contributiéfyipei,near altogether

continuum(light gray) that models the fields of the faraway par- and arrive at the Weiss model, where a single particle is
ticles and the external field. located inside the hollow sphere in the continuum.

magnetization of a probe in an external field will in general C. Equilibrium magnetization

depend on the geometry of the latter, and furthermore it will We want to determine the thermodynamic equilibrium re-

be spatially varying. We therefore use here an approach sim'e—ition M(H) between the magnetization

lar to the one that has been used successfully in solid state

theory [33] to determine, e.g., the crystal field splitting 1 N

caused by local fields. It properly accounts for the contribu- M= Y, E (mi>=—v<m> (2.10

tions from microscopic and macroscopic scales. KoV i Ko
Consider some magnetic particlen a ferrofluid probe in . S .

thermodynamic equilibrium. The particles beyond some di:sfr’."“.j the macroscopic r.naglnet|c f|e{tj]n the t'hermod'ynamlc

tanceR, from x; can be considered as independent of particl imit. Instead of considering the dipolar interaction of all

i if R, is larger than the correlation length induced by theParticles in an external field in the statistical mechanical
s . - .
dipolar interactions. Furthermore, R is large enough, their problem(2.10 we take into account explicitly only interac-

contribution to the local field at; can be approximated by a :'r?;: tﬁgt\geﬁenr;hrgff parEll'ﬂgsotvgz??r?tesrgggcr)ztslogrelsresnr]:-"er
contribution from a magnetic continuum with equilibrium P U . P

magnetizatiorM and macroscopic fielti. We assume that iel\r;lt;agd _Pﬁ’ the far-tflelii_ ;j(ljntlnuug apprCJIf;lmaftl(Hg:”I;l_
the distancer; is still small compared to the length scale on - Ihe magnetizatio SPhe'ﬁi S)_r_esu Ing from this
which the macroscopic fielddl andH vary. Thus we intro- decomposition of fields is then identified with the equilib-
duce a virtual sphere of radiu’s around particlei (dark rium magnetizatiorM (H) of the ferrofluid,

particle in the center of Fig.)lto separate the dipolar field

into a “far” and a “near” contribution, Mspherd H+M/3)=M(H). (213

Thus after obtaining the approximate expressionMQgpere
(2.6) as a function ofH+ M/3 we then obtain by solving Eq.

(2.11) for M an approximation for the sought after equilib-

rium relationM (H). The functional dependence bf on H

is independent of the probe geometry.

Hdipole,far(xi): 2 3
rij>Rs AT ol ]

. V= ) In the limit of weak dipolar coupling or wheRg becomes
Haipotenead i) riJ-ZRS Aarpor @ smaller than the mean distance between the particles, we find
Msphere™ MsaL[(MKT)(H+M/3)] so that the Weiss
Then model is recovered as discussed above.
The magnetizatioM spnerein Eg. (2.11) depends on two
Hiocai=He* Haipole far + Hdipolenear- (2.8)  dimensionless parameters that characterize the thermody-

namic state of the ferrofluid. One of these parameters is the

If the sphere were empt¥ o+ Hipole rar=Hs Would be the ~ Volume concentration of the particles,
local field inside the sphere. 3

A key point of our treatment is to express the far field _NaD”
Haipole,far Within the continuum approximation. Using this V 6 °
approach the field in the empty sphere is givenHy~=H
+M/3 [Eq. (2.1)]. Note that this approximation is not valid The ratiog,,4 of the volume of the magnetic material to the
near the sphere’s boundary. But at the center of the sphetetal volume is¢mag:(Dmag/D)3¢. The other parameter is

(2.12
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m2 being at the center of a sphere of radRisinside a magnetic
€= ———, (2.13 continuum such that each particle experiences the “exter-
A7k TD nal” field Hg and explicit dipolar fieldsHyipoleneardX;) [EQ.

. . . . . (2.7] from the particles whose separation is smaller tRan
t_he ratio bgtwee_n a typ|ca_l energy of Q|pole-d|pole INterac-" rpe aforementioned statistical mechanical problem with
tion Of. particles in contac{i.e., at the distance of the hard the long range nature of the bare dipolar interactions is thus
core diameteD) and the thermal energyT. circumvented by the cutoff aR, in Eq. (3.7) that results
from decomposing dipolar fields into a near and a far contri-
IIl. CANONICAL PARTITION FUNCTION bution. Dipolar forces appear explicitly only as forces with a
We use the canonical ensemble average to evaluafinite range. Their influence on the magnetization in our ap-

Given a system oN interacting particles with an proach is therefore independent of the geometry of the probe.
The geometry dependence enters only via the effective “ex-

ternal” field Hg from the far-field contribution.

Msphere-
interaction potentiaV;; (1<i,j<N) and external potential
per particleV;, the canonical partition function is given by

A. Born-Mayer expansion method
Z=] ex _2 Uk_E Uij dr. (31) . . .
k i< Since an integral such as E@®.1) is hard to solve even
numerically we use the Born-Mayer expansion metf@d

Here v;=V;/KT, vj;=V;; /kT, and dI" means integration to get analytical results. The key point of this method is to
over the configuration space. In our case, a configuration igite

characterized by specifying the position vecigrand two

angles for each magnetic particle. The two angles define the

direction of the magnetic momemb;. The modulusm is Z:f l_k[ e

assumed to be constant and the same for all particles. Note

that we ignore any translational and rotational degrees oOfyhere

freedom of the particles that carry the magnetic moments,

since they have no effect on the magnetization. Only the fiy=e vi—1. (3.9

locations of the moments, i.e., of the particles, and the ori-

entations of the moments are considered as statistical varif the typical interaction energy is small compareckib the

ables. fij can be considered as small parameters, Znchn be
In the first-principles statistical mechanical problem iden-expanded into a series:

tified by a superscript 0, the external potential would be the

“o] ] (1+f;)dr, (3.9

i<j

f a dipole in th ( | tic field
energy of a dipole in the external magnetic field, Z:f 1 e’”mdl“+f [T eonS, f,dr
VP=—m;-He. (32 i mo i)
The interparticle potential is modeled by a dipole-dipole +J [T ewmd ;> fydl'+---.  (3.10
(DD) interaction plus hard coréHC) repulsion. Thus m =l kel
Vf} :Vi(},DD +ViFjIC: 3.3 These integrals can be factorized and are therefore easier to
handle.

- - The first order of Eq(3.10 contains terms like
3(m;-rij)(my-rij) —m;-m;

0DD _ __
V= Aarar3 ’ 34 DD_ HC > =
Holij f [ e vme vz ~v2’dx dQ). (3.11
m
0 for r;j>D
HC_ g >3
Vi, for r;<D. B9 Here dxdq) is an abbreviation for

dxq, ... dxndQq, ...,dQy, anddQ; means the integra-
The replacement of the dipolar magnetic fields from far-tion over the possible orientations of; .
away particles by a field that has its origin in a magnetic
continuum results in a new canonical partition function with B. Expansion in powers ofy°P

the “external” potential of a dipole, . . .
P P Obviously even the first order still cannot be evaluated

Vi=—m;-Hs, (36 analytically. Therefore a second series expansion is made,
in the fieldHs=H+ M/3, and a dipolar interaction term with fome et 1= fO 4 fM @4 ...
a cutoff, i.e., ! o ' (3.123
V2P for r. <R he
PP — 1] J S 3. fO— (e vij —1 , 3.12
4 0 for rij>R;. S (e : (8420
DD\«

Note that when using Eq$3.6) and (3.7) in the expression f(q):me—uﬁc a=1 (3.120

(3.1) for the partition function we describe every particles g a!
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I \ .
Z:f 11 e‘”kdxdﬂ+7f [T e vf,dxdQ+O(¢?).
k k

Ca) 4.2)

Integrating over most degrees of freedom results in

n= n=1
N2
Q Z=Zo+ 7zg"zf e V17 v2f 1, dx, dx, dQ, dQ,+ O($2).
(4.3
Here
n=2 n=3
N sinhag
FIG. 2. The first four graphs needed for the expansioZ @i Zo=2y, Zo=4mV P (4.9
Sec. IV. They correspond to the terff§ (n=0,1,2,3), and are of s

d n, . . . . .
order e is the partition function of a paramagnetic gas of noninter-

So we expand; in powers of the reduced dipolar interac- acting particles in the fieltH g defining the Langevin param-

tionv " . The integrals in Eq3.10 that remain to be solved

are of the form mH,

= (4.5

N KT

J 11 e_vmfi(ja)f(kf)...dxdg, (3.13
m

B. Expansion in the dipolar interaction
We now introduce a modification of the common graphi-

cal representation of Born-Mayer integrals as follows).
Every distinct particle that appears via interaction terms o
the form fi(j“) is represented by a circlé2) A zeroth order
interaction termfi(o) is represented by an overlap of the
circlesi andj. (3) First, second, etc. order interaction is rep- An:f e 17 v2f{) dx; dx, dQ4 dQ,. (4.9
resented by one, two, etc. lines connecting the circles. Note

that the representation of the zeroth order dipolar interaction, i

by two oveprlapping circles is a reminder thatFi)n this case the?\o 's special. Here one gets

Now we expandf,, appearing in Eq(4.3) in a power
fseries ine. Thenth summand of this series contains integrals
of the form

integrand is nonzero only if the particles are assumed to be in sinhag| 2 He
a configuration in which they would indeed overlap. A0=(477 ) f (e7v12 —1)dx, dx,
It turns out that the expansion in terms of g means @s
an expansion in powers of the two parametei@nd ¢ that 1 He
define the thermodynamic system. Every line in a represent- = VZSJ (7”12 =1)dry,. (4.7)

ing graph, i.e., every power in[j’D, results in a factore.

Every n-particle subgraph in which all circles are connected-l-he integrand vanishes if,,>D. Otherwise its value is

to each other directly or indirectly gives a factorgdt? 1. In ~1. Thus
the next two sections we will present two expansions consid- ~
ering different terms. 4 D2
2
Ao:—gﬂvzo. (4.8

IV. EXPANSION UP TO FIRST ORDER IN ¢

In this section only terms up t@(¢) will be taken into  or by expressing the result in terms ¢f
account.

Ag=— 8 bz3. 4.9

A. Partition function N

In O(¢) the canonical partition function reads
Forn=1 we have

z:J 11 e’”kdidﬁJrJ IT e o> fi; dxdQ+0(¢?). 1
K K i<

A e U1 v2( — yPPYNe V17 dx, dx, d); dO,.
@ n 12 10X 08, all;

(4.10

“nl

The f;; have yet to be expanded in powersu@”. Figure 2

shows the corresponding graphs. There &E&N—1)/2  Switching fromr, to the relative coordinate,, and integrat-
~N?/2 ways to choosé and j. Because all particles are ing overr, gives a factor ol/. Thenr, runs over the sphere
identical one can write volume. We introduce spherical coordinates, i.e.,
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m;=m(cos¢; sind;,sing; sind,,cosd;), The second comment is that we can now make quantita-
tive statements about how large a virtual sphere has to be
M,=M(coSg, Sin9,,Sing, sind,,cosd,), (4.11) chosen. To ensure tha%; vanishes unambigously in Eq.
(4.13 and to introduceH; instead ofH, as the “external”
M= rlZ(COS(P sin ﬂ,sin(P sin ﬂ,cosﬁ)_ f|6|d, RS has Only to be finite. The |arg§{s the better is the
modeling of large distance particle correlations entering into
The direction of the magnetic field defines thaxis. Then A, for n>1. Taking the limitRs— as the final step in the

the integral assumes the form calculation of theA,, is therefore appropriate from this point
of view. On the other hand, the requirement of uniformity of
\V; m2 n the fieldsH andM, which allows us to writeH,=H+ M/3,
An=rr| €% cosdytascosly| — restrictsR, to values below the scale on whidh and M

vary. If one used a finite radiugs one would get instead of

KPP 1, 91,02, 0,0, ) U5 12,dr pdwy,dQ, dO,. o (414 forn=2

An= [Gh(ae"¢[1-(DIRY™ ],
The new spherical angle,, representsy and . The exact Na(n—1)n!
form of the functionP is not important, buP and therefore (4.16

P" is a polynomial in the cosines and sines of the six angles.

Integration over four of them can be done analytically. Fi-which allows an error estimate. Consider a system where

nally this can also be done fa#,; and 9, by substituting andH do not vary on a scale of, say, micrometers. For fer-

Uy o= 005191,2- One gets an expression of the form rofluids, D~10 nm. Choosing?s= 10D or 10 are then
both allowed and imply a difference iA, of about 0.1%.

n The result forRg=100D is better than foRs= 10D, because

) rfzdrlz. (4.13 in the latter case particles in a distance ranging between 100
nm and 1um are treated in the continuum approximation

) and not correctly. But the error that is made by treating the

Here we have introduced the correct bounds of the last rera rofiuid already as a continuum beyofd=10D is only

maining integral explicitly. By setting the lower bound®  ,5ut 0.1%. We can safely assume that the macroscopic,

we have incorporated the hard core factor. The upper boung,sgnetic properties do not vary on this scale. Thus 100 nm

is given by the cutoff radiuR for the near-field dipolar s 4 appropriate medium scale on which both requirements

contribution. While the evaluation d&7 can be done ana- ho|d: The continuum approximation works well beyond this

lytically, it is quite difficult to do this by hand even for cytoff radiusandthe macroscopic fieldsl andM should be

n=2. We therefore used the computer algebra systergonstant on this scale. Except for the calculatiorgf it is

MATHEMATICA to perform the integrations. See Appendix A then possible to s&®.= in the calculations of the integrals.

for the form of G . Using the resultd4.14), (4.19, (4.9), and (4.6) in Eq.

For n=2 one can safely sé®s== (see below Forn  (4.3), one gets the following expression far

=1 this would result in a logarithmic divergence of the in-

tegral. ButG; =0 anyway, because the calculation ®f

involves an averaging over a dipolar field. So by uséirand Z=Z,

¢ one finally has

2

AT GX( )JRS
= G*(a "
"onl T p A pokTrs,

©

1-4Ng+ N¢Zz Gn(as)e”} +0(¢?).

(4.17
2Vv2 . .
A”:Nw(n—l)n! Gnlag)e'd, n=2, (414 pere we introduced the functions
A;=0. (4.15 a 2,
Glag)= 3 . ) Gl (as), (4.18
Note thatA; vanishes only in our spherical configuration 167%(n—1)n! | sinhas

with finite Rg. The divergence of; in the general, spatially
unrestricted case is just an expression of the fact that theome of which are given in Appendix A.
dipolar forces are long range. By treating the distant parts of
the ferrofluid as a continuum we incorporate any long range
effects and the resulting geometry dependence via the field
Hs=H+M/3. Into this field enters the relation between the The next step is to compute the free energy
external field and the macroscopic internal field.

Two further comments should be made here. A generali- F InZ=

. : L . —=—InZ=-NInzg—In
zation of our calculation for central symmetric interactions kT
other than a hard sphere potential is possible. It requires an
analytical or numerical evaluation of integrals of the form +0(¢). (4.19
[r2=3ne=o°%gr in Eq. (4.13, with vSR=VSRIKT and VSR
denoting ther-dependent short range potential in question. In O(¢), we can use In(x)=1+x here:

C. Free energy and magnetization

1—4N¢+N¢22 Gy ae) €
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= > (4.22—in the absence of any dipolar interactions in the sys-
P NInzy+4N¢— N¢E Gp(ag) €"+0O(d?). tem one would havél;=H.=H, leading to ideal paramag-
n=2 4.20 netism.

The magnetization turns out to be D. Comparison with previous results

The Onsager model, the Weiss model, and our calculation

1 oF agree that up to ordepe
Mspheréas):_m IH M
S v = L(a)+8peLl(a)L (a)+O(p?)+0(e).
_— sat

o

Nm ) . ) This expression was also derived by Buyevich and Ilvanov
= m Las)+ ¢Z42 G(as) €| +0(d%). [22] with a calculation similar to ours. However, they did not
introduce a magnetic continuum approximation. Instead,
(4.21)  they assumed a special probe geometry of a long cylinder
. o parallel to the external magnetic field and performed an in-
The leading term is the Langevin functidhtimes the satu-  tegration over all the particle’s dipolar fields in the cylinder

ration magnetizatioMs,=Nm/uoV of the fluid. explicitly. The magnetization was therefore given in terms of
In order to determiné/ (H) we identify, according to EqQ.  the external field. Their result agrees with ours because for
(2.1, Mgpherd as) With M(a), i.e., the cylindrical geometry chosen [22] H, equalsH.

A second paper that deals with our problem in a similar

mM - mM way was published by Kalikmanda4]. In Sec. 1V, the au-
— ! n 2 !
Msat—ﬁ at 3kT +¢,§2 Gn| at 3kT) € +0(47), thor arrives at an equation for the magnetization that reads in
(4.22  our notation
where« is the usual Langevin parameter, *go(X)
“ gevinp :z(a)+3¢ezeg(a)f 9 4 (426
Msat 1 X4
mH
a=——. (4.23 . . .

KT Here go(x) is the hard sphere correlation function. In our

O(¢) approximation this function has to be set to 1. Then
Instead of trying to find the functioM («) that solves this  the ¢¢? term agrees with ours. Note, however, that the above
equation exactly we expand the functiofgndG , for small  result (4.26) of Kalikmanov does not contain thée term
¢ into a series arount! =0 and reinsert this on the right resulting from the magnetic field from the continuum.
hand side. Using the fact thatMg,/3kT=8¢e grows lin-

early in ¢ we arrive at V. EXPANSION UP TO SECOND ORDER IN ¢ AND e

* It is possible to calculat®(¢?) terms of the Born-Mayer
=Logt ¢ >, Line"+O0(4?) (4.243  expansion wher is taken into account up to second order

n=1 only. A more elegant way to calculate the magnetization in
this approximation makes use of the grand canonical rather
than the canonical ensemble. This approach allows one to
avoid the determination of some terms that can be factorized
into already known integrals and cancel out in the calculation
of the free energy. However, the grand canonical approach
has the disadvantage that it yields the magnetization as a
function of the chemical potential rather than the particle
numberN. Some more algebra is then required to find the
function w(N). Here we continue to work with the canonical
ensemble.

M(a)
Msat

with
Loo=L(a), (4.24h
L11=8L(a)L'(a), (4.249
L1n=G/(a) for n=2. (4.249

This is a consistent approximation in terms ¢f On the
other hand, solving Ed4.22) in a formally exact manner for
M would introduce higher orders i that we already ne-
glected to arrive at Eq4.22.

Note also thaM gpperd as)/ Mg, [EQ. (4.21)] containsex- Figure 3 shows the 12 additional graphs that are of second
plicitly a term ~ ¢e® as lowest nontrivial power coming order in ¢ and of less than third order ia. Four of them
from the expansion in the near-field dipolar couplingvanish because they contain at least one first-order dipolar
strength. On the other hand, the self-consistent solutiointeraction term between otherwise unrelated particles. Inte-
(4.29 that solves Eq(4.22 starts out with a contribution gration over the relative positions of these particles while
~ ¢e. The latter arises from the far-field dipolar continuum leaving the relative positions between all other particles and
via the magnetizatiotM in the dipole-induced shift of the the direction of the magnetic moments fixed yields zero since
argumenta+mM/3KT of the Langevin function in Eq. itinvolves a spatial averaging over a dipolar field. The graph

A. The graphs



where h.o.t. represents higher order terms. The terms in
O(¢) appear already in Eq4.17). They are presented here
including the next higher order iN. The other terms come
from Zyo—Z, . To include all terms oD(¢?,€?) in the free

B
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energy one has to approximate the logarithm 4L by x
—x2/2. The quadratic order is necessary only for @p)

A

terms. New terms ofD(N?) appear and cancel the terms

@ from Zc andZp . One gets
F
= Nin Zo+4Np+5N P2 —NpeGy( ag)
1+61In2 - -
@ —TNqﬁ €“Gy(ag) + Nop“e“K(ag) +(h.o.t).
(5.3

D

The result is proportional tdl as it has to be.

E

The magnetization of the sphere is

M a 1+61In2

® @ §> "hj,—"() = L{ag)+ pe*Gylag) + —5—— ¢?*Gi(ay)
F G H -

FIG. 3. The 12 additional graphs needed for@f¢?, %) ex-
pansion ofZ. The integrals for the crossed out graphs vanish. Graphrg calculate the magnetization as a functioroive identify
F vanishes also; see Appendix B 6. Eq. (5.4) with M and use agaim= -+ mM/3kT. The right
. ) . hand side of Eq(5.4) has now to be expanded arouadup

labeled with the letteF vanishes for similar reasons that are 1, second order and the resulting equation has to be iterated

explained in Appendix B where we calculate the integralsyice to take into account all important terms up efp?.
one by one. Their respective contributions to the partitiontne result is

function are

@
@

— ¢2e’K’ (a9 +(h.0.1). (5.4

_ 2 o
ZalZo=32N¢7, (513 M )_ Loot delyrt pe?ly o+ p?€’Lyot - -
Zp/Zy=— 16N %G, ay), (5.1b sat (5.59
— 2_ 2
Zc/Zo=8(N"—6N)¢%, 519 it Loo,L11, andLy, defined in Eqs(4.240—(4.249 and
Zp/Zo=—4(N?—6N) p?€>G,( ag), (5.10 L, = 64L(a) £ (a4 320( @) L"(@)
2,2~
ZelZo=—5N¢?, (5.18 Li6In2
Z:1Z,=0, (5.1f) + 7 Gala)—K'(a). (5.5b
ZG/ZO=#|”2N¢%ZGZ(%), (5.19 For the discussion in the next section we decompose
L — Lspher +Literatiue ) 56
ZH /20: _ N¢262K(a/5). (Slh) 2,2( a) 2,2 Gta) 2,2 (a) ( 3
The functionsG, andK are given in Appendix A. The function
1+6In2
B. Free energy and magnetization nghere=TGé— ' (5.6b

Now we have all necessary terms at hand to calculate the ) ) o
canonical partition function up to the desired order: already occurs in the expressith4) for the magnetization
Mgpherd @s) Of the sphere. The contribution

z
—=1-4(N—1)¢p+(N—1)pe’Gy(as) + 32N p?

Zy L5521 e=64L(L")2+32LL" (5.60
— 16N ¢*€°Gy( ag) +8(N?—6N) arises in obtaining the self-consistent solution of the equation
— 4(N2=6N) p2€2G(ag) — SN2 M =Mgpnere With an expansion and iteration.
1+61In2 VI. DISCUSSION OF THE RESULTS

7 Np?e€?Gy(ag) — N@p?e?K(ag) +(h.o.t),
We will first show that our resul(5.4) for Mgpnerd Hs)

(5.2 does not lead to a ferromagnetic solution, in contradistinction
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to the Weiss model. Then we discuss the behavior of the 0.8
different terms contributing to Eq$4.24) and (5.5 and we

delineate the range of reliability of the simplest approxima-

tion. Finally, we address problems arising when comparing

with experiments. 0.6

A. Spontaneous magnetization?

Investigations based on density functional methods by
Groh and DietricH4] and on Monte Carlo methods by Weis
and Levesqud8,9] provided support for the existence of
magnetized phases absent the external fitld i.e., ferro-
magnetism, in the system of dipolar hard spheres we con-
sider in this work. Groh and Dietrich considered a ferrofluid 0.2
probe of needlelike shape where=H, and found a transi-
tion to a magnetized phase a4t~ 0.35. But they considered
this value as being overestimated and referref@jo Weis
and Levesque studied a case without demagnetizing fields, . . ‘ .
i.e., againH=H,. They found a transition to a magnetized 0 2 4 6 8 10
phase at=6.25 for ¢~0.35. As discussed in detail below, o
these values are outside the range of reliability of our results.

The Weiss model does also show ferromagnetic behavior. FIG. 4. The functiond, ; andL, , versusa. Note the different
It is recovered from Eq(5.4) by keeping only the leading- Scaling.
order termL(«s) describing a single moment in the field
H,=H+M/3. The resulting self-consistency equation

04

L, (o)

1. Behavior in linear order of¢

We will first discuss the resuli4.24) for the magnetiza-
6.1) tion that was obtained up to linear order in the volume frac-
tion ¢. In Fig. 4 the functiond.; ; andL, , are plotted. The
values of the higher order functions are smaller, but their
shape remains more or less the same as the logarithmic plot
allows for zero field a solution with finite magnetization in Fig. 5 shows. Becaude, , andL, . , differ by about one
when kT<mM,,/9. Using Eg.(2.4 combined with Egs. order of magnitude one can conclude that by including
(2.12 and (2.13 this condition is equivalent t@pe>3/8, higher and higher orders efthe serieg5.5) for the magne-
about the same value as [i#]. So according to the Weiss tization converges, as long ass smaller tharn~3. For this
model the ferrofluid will show ferromagnetic behavior below large value ofe strong agglomeration can already be ex-
a critical temperature that grows linearly with the saturationpected.
magnetizationM g,; of the ferrofluid. But even for a ferro-
fluid consisting of cobalt particles with a magnetic core di- 10°
ameter of 10 nm and a magnetic volume fractiondgf,4
=0.1, the critical temperature would be as low as 90 K. n=1
While the transition combinatioa=6.25, ¢~ 0.35 of[9]
is outside the range of reliability of our results, the threshold
location ¢pe=8/3 of the Weiss model might be inside. How- 10
ever, in agreement with9] we do not find self-consistent
ferromagnetic solutions of Eq5.4) M=Mgppe {H+M/3)
within this range. We have numerically confirmed that for
H=0 the equationM =Mg,,e,{ M/3) always allows only
the trivial solutionM =0.

m H+M
T -

=Msall 3

. M
MIM\S’\{)?]'S;(HvL?

Ly (00

B. Contribution from different orders

Now we will take a closer look at the functions af
involved in Eqs.(4.24) and(5.5). All these functions are odd
as they have to be for reasons of symmetry. &esoo they
vanish as 12 or faster. Because-1£( )~ 1/a, that means
that the predicted magnetization is always smaller than the
saturation magnetization far— . Nevertheless, the mag-
netization can assume unphysical values greater Map
for intermediatex if € or ¢ is big enough for the approxi-
mations to become invalid. FIG. 5. The functiond.,, versusa.
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FIG. 7. The weights of th®(¢°) terms that appear in E¢.5)
iterative

are shown versus. The termsL3%"®"[Eq. (5.6b] and L%
[Eq. (5.60] that add up td., , [Eq. (5.68] are discussed in the text.

FIG. 6. Initial magnetic susceptibility fogp=0.15 as a function . :
. gnetic susceptibility fop uncti For comparison, th®(¢e€) termL ; is plotted as well.

of e.
2. Behavior in second order ot

Now we take a look at the functiorli?zhere[Eq. (5.6b]
and L3¢ [Eq. (5.60] that add up toL,, [Eq. (5.6a],
which enters in order¢?e? into the magnetizatior{Eq.
(5.53].

Figure 7 shows that the contributions3%"*™ and
L55@1” almost cancel each other at smallThis is why the
influence of thep?e? terms on the susceptibility in Fig. 6 is
so small. However, at higher the ¢?€2L, , term becomes
important. Comparing the latter with the linear tegbel ; ;
one finds that they contribute equally ferp~0.5 at larger

6.3 a.
Except for very smalle L, , is negative, because it in-
cludes higher order particle position correlations that result
is the initial susceptibility of the ideal paramagnetic gas, andn a better modeling of the distance distribution due to the

the nonvanishing, , we calculated are finite size of the particles. The mean distance is bigger in this
approximation and the induced dipolar fields at the particle

positions are therefore smaller.

For smalla, L, is proportional tox (o) for odd (even
n. The initial susceptibility can therefore be written as

x(H=0)=xo(H=0) 1+¢n§0 Spmi1€" 1+ 0(4?)|.
(6.2
Here

M Mg ¢
3kT

Xo(H=0)=

S, 1=§' S, 3=§, S, 5=£, The influence of thep?€e?L , , contribution to the magne-
3 <75 © 3675 tization is shown in Fig. 8 foe=2 and#=0.05. For these
(6.9 parameters this term is already large enough to cancel almost
8 148 exactly the sum of all contributioris; ,¢€" with n=2 from
S| 7=, S| the linear order ing at moderatea. Figure 9 shows the
© 19845 12006225 susceptibility y(H)=dM(H)/dH for the same parameters.

At higher a, the cancellation of the highér, , terms against
Figure 6 showsyo(H=0) (thick dashed ling and the theL contribution can again be seen. At smalierhow-
susceptibilityy(H=0) [Eq. (6.2)] including progressive or- €Ver, the behavior is different. There the contribution of the
dersge, ¢e, dpe, dpe’, andpe® (thin dashed lines, from Lin terms is much larger, whereas the, contributions van-
bottom to top as a function of for ¢=0.15. The sequence SM-

of these thin dashed lines shows that this series converges in
the e range of Fig. 6. The last thick full line in Fig. 6 repre-
sentsy(H=0) including the contributions in ordep?e?. It

shows that the latter are not yet important even br
=0.15.

C. Reliability of the O(¢e€) approximation
We can determine the range of reliability of the simplest
approximation
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0.2
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< 0.05
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error < 0.01
08 | 0
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----- +L,, term €
===+ higher L, terms
+L,, term
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( ) error > 0.1
0.75 . .
4 6 8 10 0.15
o

FIG. 8. The reduced magnetization fer=2 and ¢=0.05 for
moderatea. Taking into account¢e” terms results in a higher © 01
magnetization than given by the Langevin function. However, all
contributions from the termgbe" with n=2 are almost exactly
canceled by the contribution from the second-order terfe® for 0.05
the parameters, ¢ considered here.

error < 0.01

0
—Lada)+Lqa)de 0 0.5 1 15 2
v ~Lod @)+ Lig(a)d L
=L(a)+8L(a) L' (a)pe (6.5 FIG. 10. Quality of the lowest order expressi@h5) for the

o . ) . magnetization(a) shows the isolines of the maximal—with respect
to the magnetization that includes effects of dipolar interacto o—ratio (6.6) in steps of 0.01 andb) shows those of the ratio
(6.7).

1.5 T T T

tions since we know the higher order correctiongias well
as ine. To that end we investigated the ratios

\ ‘O(qﬁen) terms (n>1)‘ 6.6

— Ly term
Lool@)+Ly(a)de

---- +L,, term
=== +higher L, terms
+L,, term

and

-0)

O(¢?) terms ‘
Loola)+ |—1,1(6Y)¢€‘ '

The first ratio assumes its maximum at 0, which means
the initial susceptibility is most sensitive to higher order cor-
rections ine. The second rati@6.7) assumes its maximum
arounda=2, which is near the maximum of the absolute
value of the numeratafas seen in Fig. )7
In the e-¢ plane of Fig. 10a) we show isolines of the
maximal—with respect toa—ratio (6.6) and Fig. 1Qb)
~~~~~~ shows the analogous isolines for the raf@®7). The com-
, parison shows that the smallnesseofs more important in
0 1 2 3 4 5 keeping the rati@6.6) small, whereas ii6.7) the value of¢
is also important. As rules of thumb, one can say that the
FIG. 9. The reduced susceptibility fer=2 and$=0.05 as a approximation(6.5) is valid within about 1-2% ife<1 and
function of @. The higher order corrections are largestat0. At €¢$<<0.04. If the first constraint is not fulfilled, higher orders
moderatea, the cancellation of the terms of ordee” with n=2 in € have to be taken into account. Higher orderspirare
against the term of ordep?e? can again be seen. needed if the second constraint is not fulfilled.

(6.7)

X(H)/xo(H




6886 B. HUKE AND M. LUCKE PRE 62

the common particle diameter of the latteDidY3, whereD3
is the third moment of the particle size distribution

0.8

P(D):= e—(ln2 D/Dg)/20? 6.9

1
\/27TG'Doe”2/2

of the former. The mean magnetic momentand the satu-
ration magnetization of the two systems are the same. For
comparison with the effect of dipolar interactionritonodis-
persesystems the full curve in Fig. 11 shows our resultbr
[Eq. (5.5a] including all terms~ ¢€" and the term¢?e?.
/ Hence the effects of polydispersiveness alone, i.e., without
/ interaction, are comparable in size with the effect of dipolar
I interactions in monodisperse systems. Thus clearly an exten-
02 | ,’ ........... . : : | sion of the Born-Mayer e>.<pansio.n methqd pre;ente_d here to
< monadisperse, noninteracting the case of polydisperse interacting particles is desirable.
j
/

0.6 1

M/M_,

04 |

——~ polydisperse, noninteracting
—— monodisperse, interacting

VIlI. CONCLUSION

: : We calculated the free energy and in particular the mag-
0 2 4 6 8 netizationM of a ferrofluid as a function of the macroscopic
o magnetic fieldH. To do so, we used the technique of the

FIG. 11. Comparison of the effects of polydispersity and of Bom"\""?‘yer expans_lon together with an expansm_n in terms
of the dipolar coupling energy. The magnetic particles were

dipolar interaction. Plotted is the reduced magnetization vessus . .
P g assumed to be hard spheres with a common hard core diam-

for different ferrofluid models: a noninteracting monodisperse sys- . ! h
tem (only Lo, a noninteracting polydisperse system, and a mono£t€r D and magnetic moment that interact via long range

disperse system with dipolar interaction i=0.05 ande=2. The ~ dipolar interactions. This feature may result in a geometry
polydisperse system has a log-normal distribution of particle diamdependence of thermodynamic properties. We treated this

eters[Eq. (6.8)] with a typical width ofc=0.3 and the same third Problem by dividing the dipolar field at some positigrthat
D3 is produced by the magnetic moments of the particles into a

near-field and a far-field part depending on whether the par-
D.C . , ) ticle distance fronx; is larger than some radid or not. In
. Comparison with experiments? . . Lo . .
this wayeverymagnetic particle is imagined to be located in

There are several papg23—26 that aim at investigating the center of a sphere of radil®. The far-field dipolar
the influence of dipolar interactions on the magnetization bycontribution from particles beyonR is then replaced by a
comparing theoretical models developed so far with experimagnetic continuum with magnetizatiod and magnetic
mental magnetizations of ferrofluids. The mean sphericafield H. Here Ry is chosen to be such thad and H are
model[21] was reported to show good agreement with ex-homogeneous on the scale Rf. The magnetic continuum
periments. Pshenichnikol23] also found good agreement outside the sphere produces in the center of the sphere the
with the high temperature approximati¢@2], i.e., the ap-  magnetic fieldH =H-+M/3. This field acts as an “exter-
proximation (6.5. But this ansatz failed in the magne- nal” field on the particle in the center of the sphere. The
togranulometric analysis done [26]. near-field interaction of the latter with the other particles

We do not present a comparison of our results with thewithin the sphere being at distances smaller tRais treated
experiments on the magnetization in the literature because @xplicitly. Thus in our statistical mechanical calculations
several problems. In our theory it is necessary to distinguisithere appear dipolar interactions only with interparticle dis-
between the particle diametBrand the magnetic core diam- tances less thaRs. However, since the cutoff dependence of
eter Dpy,q that is found in magnetogranulometric measure+the relevant expressions occurring in these calculations is
ments. This prOblem does not arise in the mean Sphericaheady neg||g|b|e beyond a radius of the order oD10
model or the high temperature approximation, wheead ¢ ~100 nm we usedR,= in these expressions.
enter only via the factorge=Nm?/24VuokT=Mgqm/ The expansion of the partition function for these interact-
24kT which is independent ob. Also, corrections such as ing particles in terms of the volume ratio and the dipolar
the temperature dependence of the saturation magnetizati@upling strengthe yields an expression for the magnetiza-
or the fluid density should be taken into acco[2f]. tion

But the major problem in comparing directly with experi-
ments is that our theory does not take into account the poly- Msphere= Mspherd H+M/3) (7.1

dispersity of ferrofluids. The effect of polydispersity is al-
ready significant in the absence of any dipolar interactionas a function of the “external” part of the field inside the

This can be inferred from the dashed and dotted curves isphere. The magnetizatidhs e eis then identified with the
Fig. 11 representing the reduced magnetizationarinter-  magnetizationM (H) inside the continuum so that a self-
acting magnetic particles having a polydisperse and a monoeonsistent relation results. The aforementioned geometry de-
disperse distribution of particle diameters, respectively. Her@endence oM in the general case is incorporated ¥a

momentD? as the monodisperse fluid.
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We presented two different expansionserand ¢, one 32 16
containing only linear terms i, the other containing also (3512)()/):1ﬁ.5y2‘F 7y4+ 12y°, (A5c)
second ordegp terms, but only up td(e?). We discussed
the range of applicability in the)-e plane of their results for 12 208 852 480 540
M(H) and compared them to the most simple approximation  G{(y) —385y2— 385y“— —7y6——1y - —1y ,

to the magnetization that contains the dipolar effects only in (AGa)
linear order ine and ¢. The self-consistent relation for

M(H) that contains only up to second orde'r terms'in bth . 8 16 472 600 1080
parameters does not admit a ferromagnetic solution with G(N(y)=— —y+ =——y3+ == y>+——y '+ ——V°,
spontaneous magnetization. Finally we showed that an ex- 2317 385 L 11 11

tension to polydisperse interacting particles is desirable. (ABD)
G(Z) 6 40 4 120 120 B 540
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! « ? All functions GM(x) have a well defined limit fox—0

although this is not obvious for the above explicit expres-

APPENDIX A: THE FUNCTIONS G, AND K sions. Their values at=0 are closely related to the coeffi-

The functionsG* (x) in Eq. (4.13 are related taG,(x) cients in thee expansion of the second virial coefficient for

via Eq. (4.18: the system of dipolar hard spheres in the absence of a mag-
netic field. The calculation of this coefficient dates back to
1 2 [35] and can also be found ir86].
G (X)= 5 ( i ) Gr(x). (A1) The functionK [Eq. (B22)] that appears in th©(¢?)
1673(n—1)n! | sinhx terms of the free energy is given by
The functionsG,(x) introduced in Eq.(4.18 have the 6 18
form K(X)=—;coth’5 X+| —+12 cothf x
X
(0) 1 1| = 1 (@) Z 1
Gn(x)=G +Gy| < | cothx+Gy; cothzx 18 24 6 12
- =+ — COthX+—4+ - (A?)
(A2) x3 X x* X

where the function@ﬂ)(y) are polynomials. The first four APPENDIX B: GRAPHS IN SECOND ORDER OF ¢
triples are given by

Here we determine the contribution to the canonical par-

12 tition function from the graphs&\—H shown in Fig. 3. There

G(zo)(y)= y + —y : (A3a)  often appear hard core interaction terms that are just expres-
sions of the requirement that two particles have to or must

not overlap. We define two abbreviations:

G (y)=— §y— gys, (A3b) He
5 5 e Yij _1:_Oij , (B1)
12 _pHe  —
cPy)=5y2 (A30) e =0y B2)
1. Graph A

O)pen_ 4 - 48 12 .
3 (Y)==3gy° - 35y —=Y (Ada) The graphA representst (V). There areN® ways to
choose the constituting partlcles but becajssnd k are
8 8 o4 equivalent onlyN®/2 distinctive graphs remain. Integration
6(31)(y): ——y+ Y3 — y , (A4b) over all variables except the positions of particjeand k
5 relative toi yields

16 8 12 N3 .
GP(Y)= 1o 35V~ 7Y (Ado) > f PRI e dxd
N3( sinha )N
8 8 92 72 - s N-2
(0) - 2 TT A T 8 =—I|\47 V J 012013dr12dr13.
Gy (y) 105+ 35y + 35y + - y°+12y°, (A5a) 2 ag
16 8 88 The remaining integral factorizes and we can make use of the
(D) — _ 7 results forA, [Eq. (4.9)]. The contribution of grapl to the
Ga ¥)=" 108Y 5y 7 7y =24y, (ASh) partition function is
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Zp=32NZy¢? (B3)  Performing the last integration results in
whereZ, is given by Eq.(4.4). Zg=—5NZy¢%. (B10)
2. Graph B 6. Graph F

The graphB represents{”f{?). All three particles appear ~ The graphF represent$(Vf Q1) As already stated this
in different ways; thus there amg® different graphs. After integral vanishes, which can be seen as follows. Consider an
integration over the degrees of freedom of the noninvolvedirbitrary configuration belonging to some value of the inte-
particles and switching to relative coordinates with respect t@rand
particlei the integral factorizes again and one can make use

—vi—vi—vKf(0)£(0)£ (1
of the results forAy [Eq. (4.9] andA, [Eq. (4.14]. We get e . I<fi(J )fi(k)fJ(k)' (B11)

Zg= — 16NZyp2€2G,( arg). (B4)  While leaving the direction of the magnetic moments fixed
the whole configuration can be freely rotated around particle
3. Graph C i ch_angin_g only thé},ﬁ) term._ Integration over the result_ing
’ configurations involves again an averaging over a dipolar
The graphC represents{Vf{’. Here we have also to field on a spherical surface.
include the next higher order term when we calculate the
number of combinations to get tH@(N) terms in the final 7. Graph G
result: There areN*—6N?%)/8 different terms. The integral

. 3 . .
for graphC can be factorized so that The calculation of theN®/2 integrals belonging to

fQ1Q12) is similar to the calculation for graph. First we

Zc=8(N?2—6N)Zy¢>. (B5) integrate over all degrees of freedom except the distance be-
tween particleg =1 andk=2 and the position of particle
4. Graph D =3

N

The graplD represents;;’f i’ . The calculation is similar VN-22G (o) €2D°

to the calculation of grap@@. Again, we need the next higher
order term inN. There are Kl*—6N®)/4 combinations, twice

as many as for grap@ because the pairs,{) and ,l) are XJ' 0.:0-0 2 drdr B12
not identical. One gets 18281z 12 TR A2E s (B12

Zo=—|4

N3( sinhag
—= | 4w

S

Zp=—4(N?>—6N)Zyp?€’G,( as). (B6) Integrating over 5 results again in an overlap volume term:
N® Z, — _
5. Graph E 2627 WWGz(as)sz(sj 012Vo(r12)r124dr12-

The integral containing the terf{?f{f() is the first
really new integral. It involves only hard core interactions
and does not contribute to the final eXpreSSion for the MagHere the lower integration boundaryriﬁzz D because of the
netization. But for Completeness we will calculate it aISO.remaining hard core factor. The upper integra’[ion boundary
The trivial integrations yield is r;,=2D because the possibility that particle 3 overlaps
with particles 1 and 2 is still required. The final result is

(B13)

N3 sinhag\
ZE:_€ 4’7T as V f 012013023dl’12dr13. 1+6 |n2 -
We keep the distanag, fixed. The center of particle 3 then
has to be inside two spheres of radiDsaround particles 1 8. Graph H
and 2. Integrating over the position of particle 3 yields the The |ast graptH is the most complicated one. It repre-
overlap volumeV,, of the two spheres, sents the terni(f (P () that appearti®/2 times. The prob-
4 3 1 3 lem here is to fulfill the requirement that particlpgand k
VO:—WD:{ 1-2 r_12+_<r_12> } (8g)  have to overlap in terms of properly chosen integration lim-
3 4D 16\D its. We start by performing the trivial integrations
Therefore 1 -
Zy=-— ENaZgisvf e 1 V2 vy PPy 020,301,013
N3 Z,
ZE=—g@f O12Vo(ri)dra, Xdr,dry3dQ; dQ, dQs. (B15)
NG 7 5 Whether the integrand vanishes due to the hard core factors
=_ __047Tf Vo(flz)rfzdflz- (B9) depends only on the distances,, ri3 and the angled,;
6 V2 betweerr, andr;. Consider a special orientation where
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r%=(1,0,0, (B16)

r2,=(cosd,,0,sind,3),

(B17)

with 0<9,5<m. A general configuration of the particles’
locations can be written as

F1239= RA Ry (N RN 53, (B18)

whereR,, R,, andR, are Eulerian rotation matrices for the
anglesy, ¥, ande. Using this form the integration over the
factors that depend on these angles,

2 (w2 27
0 —ml2

can easily be performed witATHEMATICA. We call the
resultl(rqs,r13,923,m;).
Next, we integrate over the orientations of tme:

J e V17278 (15,13, T93,M;)dQ; dQ, dQ5.
(B20)

The result depends only an,, ri3, and J,5. Using it in
Eqg. (B15) yields

4 .7, _
Zy=— §N wK(aS)f 0,301,013
*72(2 cof Vopg—Sir O
( 232 29 SinY,3dr,dri3ddys,
10047 oK T)“r 100 13
(B21)
where

MAGNETIZATION OF FERROFLUIDS WITH DIPOLAR . ..

6889

Klas)= (smhas)J Jf erelta Tz )

X (U2+3)uyug duy du, dus. (B22)
The explicit expression foK(as) is given in Appendix A
[Eq. (AT)].

Now we discuss the hard core termsg, andr ;3 have to
be greater tha to avoid the overlap with particle 1. Fur-
thermore|r,— 13 <D has to be fulfilled for particles 2 and
3 to overlap. As a last requirement,; has to be smaller
than some anglé%; that depends om,, andr 5. Trigo-
nometry shows that

2 _ 12
ris+ri;—D

cosdoa = (B23)

2119 13
In this configuration the distance between particles 2 and 3 is
exactlyD.
We perform the integration oved,; from 0 to 955~
Eqg.(B21), choose the correct limits far, andr 15, and drop
all hard core terms:

3 rigtD m*m?
——N —K(aS .
min(D,r13-D) 10(4 7oK T) T 11 13

2 02 _p2
ri,+ri;—D B

ZH:

2 2 2
ri,+riz—D

3

2r 10 13 2r 190 13

The result of the last integration is

. 4N320K() m*m?

- Nk ———

M3 V2 Va4 ok T)?
=—NZyp?e*K(as). (B25)
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