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The spinodal decomposition of a binary mixture has been studied within several mesoscopic models. It has
been found that the form of the equilibrium free energy has a crucial effect on the morphological development
in asymmetric blends. We have shown that the principal quantity that determines the topology of the interface
(and type of morphologyis the equilibrium minority phase volume fraction, while the transition from bicon-
tinuous to droplet morphology can be treated as a percolation. The concentration dependence of the square
gradient coefficient attributed for the Flory-Huggins—de Gennes free energy has no significant influences on
the average domain growth, but can be distinguished experimentally from its constant-coefficient alternative by
measuring the maximum wave vector of the scattering intensity as a function of the minority phase volume
fraction for spinodally decomposing asymmetric blends. The concentration dependence of the Onsager coef-
ficient has the weak, systematic effect of slowing down the morphological development. The local shape of the
interface is not affected considerably by the concentration dependence of the square gradient and Onsager
coefficient.

PACS numbds): 64.75+g, 64.60—i

. INTRODUCTION order parameters(r) should satisfy the local conservation
law, which can be written as a continuity equat{d®]
A homogeneou#\/B binary mixture after a rapid change

of external conditiongquench can be driven into a thermo- ag(r,t)
dynamically unstable state that will cause a phase separation at
process. By a rapid enhancement of concentration fluctua-
tions domains rich inA or B components will be formed WhereVJa(r) is the local flux of theA component, and the
shortly after the quench. These domains will grow with time,Stochastic termw(r,t) represents the thermal noi$e—3].
changing the length scale of the phase separation from tHeEt Us assume that_ the molecu_lar transport is governed only
microscopic molecular scale of the very early times to the?Y the differences in the chemical potentidlffusion), and

macroscopic scale of the final stages of this process, compA&9Iect possible order parameter transport by the hydrody-

rable with the system size. Therefore, time-dependent mesi—amlc flow[3,11,13. Then one can postulate a linear rela-

scopic models that cover the most interesting intermediat |ons|h|E be_twleentth?_ 'fg?‘f:c current ang3tge gradient of the
regime of the growth have become a convenient frameworkCC2 chemical potential i erence(r) [13,14 as
for modeling these phenomena. Governed by the same gen- A(r—r")
eral principles, time-dependent mesoscopic models were suc- J(r)=- J kB—T

cessfully used to study the decomposition kinetics in both

simple and complex mixturgd—3]. However, the final form  Here A(r—r') is the Onsager coefficient that specifies the
of the Cahn-Hilliard-Cook equation, which has to be solvediransport properties of the considered system at a certain
numerically, is very dependent on the model coarse-grainefime and length scale, and which is nonlocal in general. The
free-energy functional and Onsager coefficient specificallyjocal chemical potential difference(r) can be found in a
chosen for a given system. However, even for the same systandard way as a functional derivative of the coarse-grained
tem, the final dynamic equation may take different formsfree-energy functionaF[ ¢]:
[4-9] depending on the simplifying assumptions made by
authors about the free-energy functional and Onsager coeffi- oF[ ]

: - - ibe K p(r)= : 3
cient. At the same time, these equations should describe ki- Sh(r)

netics of essentially the same systems. The main purpose of
this paper is to answer the following question: “What influ- Finally, the noise term in Eq.l) should satisfy the appro-
ence do model assumptions about the coarse-grained frepriative fluctuation-dissipation relatiof8]. In this way, all
energy and Onsager coefficient have on th@rphologyde-  information about specific properties of the system enters
velopment during the simulated phase separation process?fto the dynamic equatiofil) via the free-energy functional

Let us consider a dynamically symmetric binary mixtureand Onsager coefficient.

described by the scalar order parameter fig(d), which is The simplest free-energy functional that describes an in-
the local volume fraction of componet at pointr. The  homogeneous mixture can be written in the form

==VIa(r) +5(r,1), @

V' u(r’)dr. (2)
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5°F B 1 . 1
5¢?/ , N#oD(a%Rg)  N(1-¢o)D(6?RY)
where f(r) is the homogeneoutulk) free energy of the @)

mixing. The square gradient term in E@) measures the whereRy is the polymer chain radius of gyratio(x) is the
free-energy cost of the inhomogeneitigsterface, and the  pepve function,, is the average volume fraction of the
coefficientK is often regarded as the “range” of the inter- omnonent, and the incompressibility constraint has been

actions[1]. In the case of a symmetric homopolymer mix- jjn5sed. Expanding the Debye function in the limit of small
ture, the equilibrium free energy can be written in the Flory-q as

Huggins(FH) form [15]

—_c1

2x,

F[(b(r)]:kBTf d*r[f(p(rN)+KEVS(r)?, 4 (

D(X)=(2/X)(1—(1—e X)/x)~1—X/3, (8)
1
f(¢)=1¢In(¢)+ (1= ¢)In(1= )i+ xB(1- ), where x=(qR,)?, the following form of K can be found
(5 [18]:
2
whereN is the polymerization index ang is the FH inter- K = i T _ 9)
action parameter. This expression was originally derived to 36 do(1— o)

describe the system of polymer chains on a lattice, but can . o

also be used in course-grained models. In this case, tHgerec is the statistical Kuhn segment lendttb], such that
Flory-Huggins interaction parameter measures an effectivéRy= VNo/\/6 . The truncation of the infinite Landau-type
relative affinity betweer\ andB components, averaged over €xpansion at the lowest order term is justified when the order
some mesoscopic length scale, and can be determined pHearameter gradients are small, which requires a smooth
nomenologically from experiments. The only specific poly-variation of the order parameter through the interface. In the
mer feature of the FH free energy is its dependence on thgase of polymer mixtures this truncation can be made when
polymerization indexN, which simply refers to the fact that the interface width is larger than the polymer chain radius of
N monomers form one macromolecule. Therefore, thegyration @*R;<1). The higher order corrections for Ed)
coarse-grained free energy of mixing for a simple binarycan be derived in a systematic wgy7,18.

mixture must be given by the same expressj&j. (5)], but An alternative way to find the expression fidris to as-
with N=1. On the other hand, near the critical point, thesume that the same form of the structure fagkx. (7)] will
free-energy can be written in the standard Landau-Ginzburglso be valid locally for the inhomogeneous system, if the

(LG) form with its homogeneous part: average volume fractiom, in Eq.(7) is replaced by its local
values ¢(r). Guided by this assumption one can allow the
= L B2+ L ud(n4 coefficient at the gradient term to be dependent on the local
fé(n) 2N +zud(n) ® volume fractions, and writ& as
Herer and u are positive phenomenological constafs, 1 o2
and = ¢— ¢, (¢, is the critical value of the order param- K(¢)= 36 1= (10)

eten. It was speculatefll6] that the specific form of the FH

free energy may be responsible for some experimentally obxs was argued7] that this concentration dependence Kof
servable nonuniversalities of the polymer blend phase sepafescribes the loss of the conformation entropy related to
ration, while none of those were observed in computer simusome specific chain conformations at the interface. The free-
lations with the LG free energy. Since the LG free energyenergy functional in the form of Eq4), with the FH bulk
can be obtained by expanding E8) in ¢ around the critical  free energy and a nonconstant square gradient coefficient
concentration, no significant differences between those twpgq. (10)], was postulated by de Gennlds], and has since,
models appear within the critical region. Here we shall showheen widely used by othdtl0,14,5,7 to model the phase
that even far from the critical region the LG free energy withseparation phenomena in polymer mixtures. It must been
correctly chosen parameters leads to quantitatively the samgressed that no rigorous derivation of the above expression
phase-separated morphology, i.e., the average domain sigan be made from the standpoint of the traditional Landau-
and the interface topology, if it is used instead of the FHtype analysis[17]. The first derivation of the Flory-
expression in the computer simulations. Huggins—de Gennes free-energy was made by Tang and
The square-gradient term in E@l) can be derived from  Freed[17] within the framework of the density functional
the Landau-type free-energy functional expansion by identitheory. Despite the considerable clarification of the theoreti-
fying that term with the lowest-order inhomogeneous correccal aspects of this problem, it is still not known which func-
tion. This formalism implies that an expansion of the inho-tional with a constant or nonconstant square-gradient coeffi-
mogeneous system free energy above that of the referenegent better describes behaviors of real systems. In this paper
homogeneous system was mdd&], and, therefore, coeffi- we compare morphological evolutions simulated for both
cients of this expansions are constaieealuated for the ref-  free-energy functionals.
erence uniform systemA more detailed form oK can be The most frequently used expression for the Onsager co-
surmised from the shape of the equilibrium correlation func-efficient for a simple binary mixture reads
tion that in the case of the polymer bletwlithin the random
phase approximatioris [15] A(r=r")=Mé(r—r"), (12)
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where M is a phenomenological mobility. For a polymer 307
blend, the form of the Onsager coefficient depends on the | i
scale on which the phase separation is considered. If the 4i i

minimal length scale detectable in the simulatidinsesh ! Landau-Ginzburg j
sizg is larger than the radius of gyration of a polymer coil, 204 S — - Flory.—HugginS ’ i
then the nonlocal Onsager coeffici¢h0,14] can be approxi- P T Modified Landau-Ginzburg
mated as i ‘
=)
A(r=r")=DN¢(1—¢)é(r—r"), (12 -

whereD is the self-diffusion constant of a polymer chain. In
the last expression, the concentration dependence of the On-
sager coefficient originates from the zero total current diver-
gence constraint that must be satisfied for any incompress-
ible system[13]. Therefore, the Onsager coefficient for any
simple mixtures that can be considered incompressible must
also be concentration dependent. However, this dependence ¢

of A is often disregarded in the computer simulations g 1. The homogeneous free energies computeEi=e25°C
[4,5,19. We shall show below what influence this simplifi- by ysing the Flory-HuggingFH) expressionEq. (18)], and the
cation has on the phase separation kinetics. Landau-Ginzburg expressions E@9) (LG) and (20) (LGy,).

In Sec. Il we discuss the time evolutions of several char-
acteristic measures of the phase separated morphology that |n order to make comparison between our simulation and
have been simulated within six different mesoscopic modelgrevious simulations, we took the input parameters that cor-
of the same binary mixture. The influence of the equilibriumrespond to the previously studied polybutadienes system
free-energy fornf(¢), the concentration dependence of the[20,16,7. We shall assign different quench conditions to the
square gradient coefficient, and the concentration depenemperature changes of the polybutadiene-deuterated poly-
dence of the Onsager coefficient will be investigated. Resultputadien system by using the experimental dependi2iie
are summarized in Sec. Ill.

TN

0.6

0'8

y=0.326T—0.00023. (17)

Il RESULTS AND DISCUSSION The critical temperature measured for this system is about

A symmetric binary homopolymer mixtureNg=Ng=N 62 °C (yor="7.43x 10" %). More details about the simulation
and op=o0g=0) has been used as a model system for allprocedure can be found in R¢8].
further investigations. Since the phase diagram of this system
is symmetric, only the left partf,=<0.5) has been consid- A. Landau-Ginzburg and Flory-Huggins homogeneous
ered. Dynamic equatiofll) has been solved numerically on free-energies
t_hg cut_)lc 98 lattice by using the explicit I.Euller schgme..No The Flory-Huggins free energy in the rescaled variables
finite size effects have been observed within the time inter Eq. (14)] reads
vals studied. The following rescaled variables have beeJ; '

used: Fen=2[6109(¢)+ (1~ $)Iog(1— ¢)Ixer+ S(1— ).
112 (18
(X=X
- r (13  The Landau-Ginzburg free energy can be obtained from Eg.

(18) by expanding it in powers oth— ¢. (¢.=0.5) and
D(x— xe)? keeping all terms up to the fourth order:
S
=—t. 14
T )(50'2 19 FLG:%(d’_0-5)4Xcr+(Xcr_X)(¢_0-5)2- 19

In the above expressiong,is the Flory-Huggins parameter, There are several important dlfferences between théEEH
andys=1/(2N¢o(1— ¢o)) andy.,= 2/N are the values of (18] and LG[Eq. (19)] expressions for the free energy
at the spinodal and critical points, respectively. In accor-lustrated in Fig. ]..F|rst, the equilibrium yolume fractlon_s of
dance to the previous studi€s,6], all phenomena will be the component in the B component rich phasepi?, is
described in the experimental rescaled variafjieg]. The  always lower for the free energy given by H49). Conse-

new rescaled time, and distance, are quently, the equilibrium volume fraction of the minority
phase,fi (the phase rich in thé component determined
Te=18po(1— ) 7, (15 by the lever rule from the phase diagram is always higher for
the LG expression. Please note that, only for a symmetric
re=vV18po(1— o). (16) mixture, f,,=f(7) = ¢9=0.5. For any asymmetric compo-

sition (¢o#0.5) the volume fraction of the minority phase,
The numerical prefactors in Eqél5) and (16) originate in  f,,, decreases with time, approaching its equilibrium value
the linearized theory of the critical quenghl. In all figures ~ f;. It will be shown below that this feature significantly
the subscripe in 7, will be omitted. modifies the morphology development in asymmetrif, (
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#0.5) blends. Second, the difference between the minimun 1
[F(#5%] and maximun{ F(1/2)] values of the free-energy 3.0
density is larger for the LG expressigh9), if compared to
the FH expression. Third, the shapes of the tail$-at0 and

¢—1 are essentially different. The unphysical valuesgof
<0 and¢>1 are automatically forbidden for the FH free- ]
energy expression, while for the LG one they are formally 2.0
allowed. The first two disparities can be corrected if, instead J
of expression(19) the modified LG homogeneous free en-
ergy (LGy,) will be postulated as

In(Ry)

Fre, =[a(X)3(6=0.9*c+ (Xer = X)(#—0.57]B(x). T,
(20 1
The two constants and 8 have to be chosen in such a way 2%
that the equilibrium volume fraction of th& componentin = & 1

the B phase, ¢79, and the free-energy difference 2.0
FLGM(qﬁ‘iq)—FLGM(l/Z), are exactly the same as those for 0,035
T=25C

the FH free energy at a givep The FH, LG, and_G,, free 15
energies, are plotted in Fig. 1 fox=8.64x10"* (T To20 0 40 e
=25°C). In(»

The FH, LG, "?md-GM b_U|k free energies, combined W_'th FIG. 2. The growth of the domains estimated from the first
the square-gradient term in the form of B§) were substi-  ;ero5 Ry, in the pair correlation functions. The following models
tuted into the dynamic equatiofl) together with the con-  haye been compareda) and (b) Models with the homogeneous
stant Onsager coefficier{Ll). The sequence of the order piory-Huggins(FH), Landau-GinzburdLG), or modified Landau-
parameter configurations has been analyzed by computinginzburg (LG,) free-energies, constant square gradient and On-
the pair correlation function, structure factor, and severakager coefficientsc) and(d) Flory-Huggins—de Gennd&HD) and
other morphological measurg8]. The average domain size Flory-Huggins constant square-gradient coefficigfitiL) models
has been determined by locating either the first zero in thevith nonconstant Onsager coefficients.
pair correlation functionRy, or the maximum of the struc-
ture factor,q,,. The interface topology has been characterels at the same conditioriigs. 3a) and 3b)]. At some
ized by computing the Euler characterisfi@,21,23. The  special quench conditiong=9.02x10"* and ¢,=0.35
Euler characteristic describes the connectivity of the domainfrFig. 3(b)], the simulated morphologies differ even qualita-
and is related to the other topological measure, the ggnus tively: the droplet-matrix morphology is observed for the FH
as xeuler=2(1—9). The genus has a simple geometrical or modified LG free-energy expression, but for the unmodi-
meaning: it counts the number of holes in a closed surfacefied LG expression the simulated morphology is bicontinu-
Also, for a closed surface, the Gauss-Bonnet theorem relatesus. This discrepancy is directly related to the larger equilib-
the Euler characteristic to the surface integral from the locatium minority phase volume dictated by the unmodified LG

Gaussian curvature&(r): free-energy forniEqg. (19)]. At the same time, if the minima
of the LG and FH free energies coincides, then no significant
Xeul :if Ko(r)dS. 21) differences betwc_aen the Euler characteristic levolutions. are
ver 2@ )s observed. The tail shape of the free energy slightly modifies

o N the local volume fraction probability distributions. That in
The Euler characteristic is an additive mead#®]. There-  turn affects the way the phase volumes approach their equi-
fore, the interconnected bicontinuous morphology is charactibrium limits (Fig. 4). Due to that fact, the FH and L

terized by the large and negative Euler characteristic, whilgurves deviate from each other at the beginning times of the
for the droplet-matrix morphology it is large and positive sjmulation.

[23]. The algorithm used to calculate the Euler characteristic
was discussed in Reff9] and[21].

The domain growth simulated for the FH, LG, ah@),
bulk free energies is shown in Figsa2and Zb). There are
minor deviations in the average domain growth regarding to The Flory-Huggins—de Genn¢sHD) free energy is con-
the form of the homogeneous free-energy in both symmetristructed by combining the equilibrium Flory-Huggins free
[Fig. 2(@)] and asymmetri€Fig. 2(b)] blends. Also, the Euler energy[Eq. (18)], with the square-gradient term in the form
characteristic density in the symmetric cases does not depemd Eq. (10). Our aim is to detect the influences that the non-
much on the form of the homogeneous free eneffyg.  constant coefficient at the square-gradient term has on the
3(a)]. However, for asymmetric blends the topology of the morphology development during spinodal decomposition. In
simulated interface depends significantly on the model equierder to do that, we construct a slightly different inhomoge-
librium free energy. The interface simulated with the un-neous free energy, which is referred to here as the Flory-
modified LG free energyEq. (19)], is more interconnected, Huggins-Landau{FHL) type free energy, by combining the
if compared to the interfaces simulated within the other mod+H expressiofEq. (18)], with the square-gradient term in

B. Flory-Huggins—de Gennes and Flory-Huggins Landau-type
inhomogeneous free-energies
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FIG. 4. The influence of the homogeneous free-energy form on
the time evolution of the minority phase volume fractiép,. The
tail shape of the free-energ¥ig. 1) modifies the way the phase
volumes approach their equilibrium limits. The symbols correspond
to the considered model as follows: FH is represented by triangles,
LG by diamonds, and Lfz by squares. The quench conditions are
$0=0.4 atT=25°C (empty symbolsand ¢,=0.25 atT=25°C
(filled symbols.

of the phase volume fractions. In the slightly asymmetric

b) blends @,=0.4), the average mean curvature changes its
. sign with time, which reflects a transformati@®] from the
200 percolated cluster morphology ¢H)<0 to the “intercon-
nected passage” structure @fl)>0 (the mean curvature of
FIG. 3. The influence of the homogeneous free-energy form or@t SingleA-type droplet is defined as negativ®ur observa-
the time evolution of the Euler characteristic density. The differenttion is that within the FHD model this transformation occurs
values of the equilibrium phase volumes derived from the form ofmore rapidly. Also, in the case of the droplet-matrix mor-
the equilibrium free energgFig. 1) significantly modifies topologi-  phology (¢o=0.35x=9.02<x10 %), the absolute value of
cal properties of the interface. The symbols correspond to the corthe average mean curvature is smaller for the FHD model.
sidered models as follows: fap,=0.5, the FH free energy corre- ~ One may assume that the difference in the average mean
sponds to a solid line, LG to a dotted line, and @ a long-  curvature behaviors originates in some local interfacial prop-
dashed line. Forpo#0.5, FH is represented by triangles, LG by erties described by the concentration dependenéevaithin
diamonds and L& by squares. The quench conditions @t #o  the FHD model, but ignored for the FHL model. However, as
=0.5 atT=25°C (lines), $o=0.4 atT=25°C (empty symbols il pe shown in Sec. Il QFig. 11, the local properties of
and ¢o=0.4 atT=40°C (filled symbolg; and (b) $o=0.35 aT e interface are insensitive to the form of the dynamic equa-
;OTS? C (empty symbolsand ¢o=0.35 atT=25°C (filled sym- i) The only factor that affects the average mean curvature
: evolution is the change of the phase volume with time. In
form Eq.(9). Both functionals have been substituted into the:c: '9- sei(r?utlr;?etcljmvatg;pgggher%c()edg]lcsﬂi]se ;?]L:lv?lgt¥¢zia§i\;()r:3me,
dynamic equation(1) toge.ther with the concentration- Xm=,8.64>< 10~%. When the FHD model predicts a more rapid
dependent O_nsager coe_fﬁue[ﬁq. (12)]'_ decrease of the minority phase volume fraction, the topology
The domain growth simulated within the FHD and FHL of the interface must be the same as for the FHL mp#ie).

models is_ sr':]pwn (ijn T)Ilg g fo_lr_hsymmetr[(t:ig._ 2(?] andd 5(a)]. This requires a significant modification of the total
a;symmetrlc[ ig. 2d)] blends. There are no significant de- ;e face shape, which is quantitatively indicated by the dif-
viations between them. Also, the Euler characteristic dens't¥erent values of the average mean curvature

evolution,[Fig. 5a@)], is insensit_ive to the concentration dt_a— It has been arguef4,7] that the concentration depen-
pende_nce of the square-gradient term. However, the UMBence of the square-gradient term reflects some entropic con-
evolution of the average mean curvature defined as tributions related to specific configurations of the polymer
chains at the interface. In this case, the entropic barrier as-
sociated with the transport of the polymer chains across the
interface must slow down the phase separation process. A
dynamic model in which such effects are taken into account
must result in a slower morphology development. In con-
where S is the total interface area, depends on the freetrast, very similar time evolutions of the average domain size
energy form used in the simulatiofiSig. 5(b)]. For symmet-  and the Euler characteristic of the phase-separated structures
ric blends,(H) fluctuates around zero due to the symmetryhave been found, regardless of the concentration dependence

9 100
T

jH(r)dS

(H)="—5—, (22)
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FIG. 5. The influence of the concentration dependence of the FIG. 6. The influence of the concentration dependence of the
square-gradient coefficient on the time evolution of the Euler charSquare-gradient coefficient on the time evolution of the minority
acteristic densitya) and the average mean curvatipe. The data  Phase volume fractiofie), and the peak position in the scattering
obtained within the FHD model are represented by squares, aniftensity (b). The data from the FHD model are represented by
these from the FHL model by circles. The quench conditiongare Sauares, and these from the FHL by circles.
from bottom to top,y=0.5 atT=25°, ¢,=0.4 atT=25°C, ¢,

=0.4 atT=40°C, and¢,=0.35 atT=25 °C; and(b) ¢,=0.5 at B 12
T=25°C (small symboly ¢,=0.4 atT=25°C (filled symbol3, e B — (23
¢o=0.4 atT=40"°C (empty symbols and ¢,=0.35 atT=15°C 2 XEuler

FHD (filled triangles and FHL (¢)]. . . . .
[ ( gles (©)] This combines the area to volume ration with the Euler char-

of K. Even more, the volume fraction of the minority phaseacteristic of the hyperbolic surfa¢@5]. The time evolutions
approaches its equilibrium value faster within the FHD of the homogeneity index are shown in Fidc)Z There are
model[Fig. 6(@)], which can be explained by the largem  no systematic deviations of the homogeneity index time evo-
averagg contribution from the square-gradient term in the Jutions regarding the change &f In contrast, the time de-
concentration-dependent case. Thus we conclude that rgendence of the minority phase volume fractipffig. 7(d)]
slowing down due to the concentration dependenc bls s drastically affected by th& decrease. For the smallest
been observed in the simulations. This may also indicate thafguare gradient coefficient, the domain volume fractions are
in order to investigate such a specific polymer feature of thgyready at equilibrium very shortly after the quench. That
phase separation kinetics the model must operate at Muclects crucially the process of the droplet morphology for-

smaller length scales. ._mation[26]. The droplets are formed earlier with the smaller

g X Yver ize and larger droplet number density if compar
coefficient measures the free-energy cost of the interface. Fr‘)’l erage size and larger droplet number density if compared

. : % the standard modéthe FHL model.
a model with a smalleK a larger amount of the interface can Unfortunatelv. it is still not e t th 5
be formed. Therefore the resulting morphology development y, 1L1S St not possible to measure the aver
is slower. In Fig. 7 the time evolution of several morphologi- 39¢ Mean curvature for a real polymer Syst@mza W'th'n.
cal measures simulated for the FHL models Wt yK , for the accuracy that is required to make an experimental judg-
y=1(0),0.5(V),1.5(A) (Ko= % 2/[ do(1— o)1) and for ment _about the proper free—en.ergy form..Nevert.heIess.,, an
the FHD modeli(squares are shown. At the same rescaled XPerimental investigation of this problem is possible, since
time unit, the average domain size is smaller for the modef Precise measurement of the phase volume fractions can
with the smallerk [Fig. 7(a)], but the interface is more in- Made by analyzing TEM or scanning electron microscopy
terconnected since the absolute value of the Euler characteicrographg29]. One can simply measure the time interval
istic is larger[Fig. 7(b)]. The dimensionless quantity that that is required to achieve a certain fracture of the minority
characterizes the shape of the bicontinuous interface is thghase volume during the spinodal decomposition, and com-
homogeneity index pare it with the simulation results. For example, a time inter-
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0 FIG. 8. The peak wave-vector position in the scattering intensity
- T T T T T T T T T T

20 30 40 50 60 7.0 as a function of the minority phase volume fraction simulated
In(z) T within the FHD (squaresand FHL (circles models.

FIG. 7. The influence of the magnitude of the constant Squaredissipation theorem that defines the way the noise term in
gradient coefficient on the morphology of the phase separation. Thgq (1) is generated was consequently modif{@d30]. To
average domain sizég), the Euler characteristics density), the generate the noise for concentration dependent Onsager co-

homogeneity indexy=[ — S¥/27 xeuleVZ]>? (€), and the minority - . > .
phase volume fractiotd) are plotted for the FHD modebquarey efficient[Eq. (12)], we introduce the additional vector white

and for the FHL models with the standafé&gq. (9)] (O) constant noise ¢ with the Gaussian components, which satisfies the
square-gradient coefficients two times small&f)(and 1.5 times ~ following relation:

aroer G 0G0
val more than three times longer is required to achieve thég'(x’ﬂé](x TN= bo(1—¢pg) ! (x=x)8(r=1").
volume fraction of minority phasg,= 0.345 within the FHL (29)
model if compared to the time predicted for the FHD model . :

[Fig. 6@)]. However, this experimental scheme requires prelf we now relate the rescaled noise variablgx, )
cise measurements of the self-diffusion constant and thg € = 7(I:t) 10 & as

Flory-Huggins interaction parameter in order to calculate the -

absolute time from Eq(14). However, since both models {(x,1)=VEX,7), (29

predict very similar time dependences of the peak wave: i cinat . -
vector position in the scattering intensifigig. 6b)], they the fluctuation-dissipation theoreffDT) will be satisfied.

can be used as a measure of the rescaled time. The pegpe white noise components are generated from the Gauss-

wave vector as a function of the minority phase volume frac- 2" distribution with the variancg¢(x) (1~ (X)) 1/ do(1

tion is plotted in Fig. 8 for both models. There are consider- ¢o)] independently at each lattice site. The noise intensity
able differences between the simulated dependences. B‘y:_l_h()(_?(s) lated domai wth for th i g
measuring a similar experimental dependence the relevance € simulated domain gro or the Symmetric an

of the FHD and FHL models for a description of the real a}symmetric blends is shown in Figsaand db), respec-

system phase separation can be determined. The only param/-.e'y' The'curves simulgted with the constant Onsager coef-
eters needed to compare simulations with experimental rdicient deviate systematically from those simulated with the

sults are the average blend compositibyiand the tempera- concentration dependent coefficient. In the former case, the
ture dependence of the Flory-Huggins parameter. Botﬁi.omain always has a larg@up to 10% at late timgsaverage

components of the experimental blend must have similar po§'ze_' Th'? fact can be explained qughtatlvely if one considers
discretized version of the dynamic equation. For the same

lymerization indices and Kuhn segment lengths, a slightlya d i p, i ithi i : f th
asymmetric average compositiogpd=0.4), and good con- order parametér configuration, within oné time step ot the

trast on scanning electron microscd@EM) or TEM micro- iteration procedure, the ratio .of the one-step chal order pa-
graphs. rameter change computed with the concentration dependent

A to that computed with the constant is proportional to
d(rYA—d(r))[ Ppo(1—dp)]. Therefore, within the one
time step, the average magnitude of the order parameter
In order to detect the influences that the concentratiorthange is larger for the model where the constant Onsager
dependence of the Onsager coefficient has on the morphatoefficient is used. This results in the faster phase separation
ogy development, the FHD and FHL models have both beedynamics and the larger average domain size for the constant
simulated with constarfEq. (11)] and concentration depen- Onsager coefficient scheme. However, the influence of the
dent [Eq. (12)] Onsager coefficients. The fluctuation- concentration dependence @ cannot be reduced to a

C. Concentration dependence of the Onsager coefficient
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FIG. 9. The domain growth estimated from the first zeRyg,in 20 ! I ! I
the pair correlation functions compared for models with constant
and concentration dependent Onsager coefficients. The following F|G. 10. The influence of the concentration dependence of the
four models have been considered: the FHL model with the conppsager coefficient on the time evolution of the Euler characteristic
stant(triangles and concentration dependeaircles Onsager co- density(a), and the minority phase volume fractigh). The sym-
efficients; and the FHD model with the constardt Y and concen-  pois have the same meaning as in Figti filling of the symbols
tration dependentsquares Onsager coefficients. has been changgdrhe quench conditions shown g& ¢,=0.5 at

. . . L . . T=25°C (four upper lineg ¢,=0.4 at T=25°C (four lower
simple rescaling of the time unit, since it could also slightly ineq ~ang $o=0.35 atT=25°C (insed; and (b) ¢o=0.4 atT

modify the slope of the domain growfirig. a)]. =25 °C (four upper lines and ¢,=0.35 atT=25 °C (four lower
The interface topology, that is characterized by the Eulefjneg).

characteristic densithFig. 10a)], is affected by the form of

the Onsager coefficient in a similar manner. For the constarjends, the concentration dependence of both factors speed
Onsager CoefﬁCient, the ConneCtiVity of the bicontinuous in'up the zero average mean curvature transition, while in the
terface is smaller if compared to the morphology simulatectase of droplet-matrix morphology it decreases the absolute
for the concentration dependent case. The same dependengg e of (H).
also holds in the case of the droplet morphologg The local shape of the interface can be studied by con-
=0.35x=8.64[inset in Fig. 10@a)]. In this case the Euler strycting curvature probability distribution functiof@,28].
characteristic density is exactly twice the droplet numbenn Fig. 11, the local mean curvature probability distributions
density. We have found that for a constant Onsager coeffigre shown for all six models considered in this paper. Only
cient a smaller number of droplets with a Iarger average SiZﬁ)r the unmodified homogeneous Landau_Ginzburg free en-
is observed in comparison to simulations performed with th%rgy[Eq_ (19)] is a considerable change of tRéH) shape
concentration dependent. observed. This suggests that neither the concentration depen-
The temporal evolution of the minority domain volume dence of the Onsager coefficient non the concentration de-

fraction is not very sensitive to the form of the Onsagerpendence of the square gradient coefficient significantly af-
coeff|C|ent[F|g. 1Qb)] There is a small systematic deCfeaSEfectS local properties of the interface.

of f,, in the case of the constant Onsager coefficient. How-
ever, this effect is much smaller in comparison to the similar
effect of the minority phase volume change when, instead of
the constant, the concentration dependent square gradient co-The spinodal decomposition of the homopolymer blend

efficientK( ) in the free-energy functional is used. The time has been simulated within several mesoscopic models. The
evolution of the average mean curvature depends both on thefluence of the three following factors have been investigat-

form of A andK. In the case of the bicontinuous asymmetric eds: the form of the homogeneous part of the free-energy

In{1)

Ill. CONCLUSIONS
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Flory-Huggins—de Gennes free-energy functional has no sig-
nificant influence on the average domain growth law and,
consequently, on the interface topolddpigs. 4c), 2(d), and

Fig. 5@].

In the case of asymmetric blendg{+ 0.5) the average
domain growth is also governed by the surface tension, simi-
larly to the symmetric blends. However, the interface topol-
ogy in this case is also affected by one additional factor—the
temporal evolution of the phase volume fraction. It was
shown[9,26] that a transition from bicontinuous to droplet
morphology occurs when the minority phase volume fraction
becomes smaller than the percolation threshold vdlye
=0.3. Therefore, the form of the equilibrium free energy that
determines the final, equilibrium phase volume fractions has
a crucial effect on the morphological development in the
asymmetric blendé&Fig. 3). The concentration dependence of
tions calculated for the phase separated morphology after 390 regbe square-gradient coeff_|C|ent d0e§ not C_h_ange the equilib-
caled time units of the simulated spinodal decomposition for differ-'UM phase volume fractions, but it modifies the way the
ent models. The symbols corresponds to the considered model ¥9lume fractions approach their equilibrium valugsig.
follows: the nonmodified LGfilled circles, modified LG (¢'), and ~ 6(@)]. For all quench conditions studied here this fact does
FH (V) homogeneous free energies with constant Onsager an@0t modify the Euler characteristic density evolution. The
square-gradient coefficients; the FHBguaresand FHL (O) free ~ average mean curvature is more sensitive to the phase vol-
energies with concentration dependent Onsager coefficients; and thgne fraction evolutioFig. 4b)]. In the case of bicontinu-
FH homogeneous free energy, and constant Onsager and concenteass asymmetric blends {*>0.3), the transformation of the
tion dependent square-gradient coefficients) ( The quench con-  percolated cluster morphology into the interconnected pas-
dition is ¢o=0.5 atT=25°C. sage structurédefined at(H)=0) takes place more rapidly

for a model with the concentration dependent square-
functional, the concentration dependence of the square grgradient coefficient. In the case of disperse morphology, the
dient coefficient, and the concentration dependence of theoncentration dependence Kfresults in smaller values of
Onsager coefficient. H).

In the case of symmetric blends the most important factor The influence of the square-gradient coefficient magni-
that quantitatively determines the morphology developmentude on the morphology development in asymmetric blends
is the square-gradient coefficient in the free-energy funcis more complex. A smaller square-gradient coefficient cor-

tional K. From the dimension analysis one can extract theqhonds to a smaller surface tensionthat, similarly to
following time dependence for the characteristic len@h  gymmetric cases, modifies the scaling factor in the growth

L(t)~(at)*™. For a flat interface, the interface tensiorcan  |aw: the domains have a smaller average size. However, it

FIG. 11. The local mean curvature probability distribution func-

be expressed d4] also changes the temporal evolution of the phase volume
5 fractions[Fig. 7(d)]. For bicontinuous blends those minority
;:Kf (d_c) dx (26) volume fractions are larger than the percolation threshold,;
dx ' the interface shapes characterized by the dimensionless ho-

mogeneity indices are remarkably insensitive to the magni-
where the integration of the concentration profilex) is  tude ofK [Fig. 7(c)]. Nevertheless, for more asymmetric or
performed in the direction normal to the interface. In theshallow quenches, the time for the bicontinuous morphology
computer simulations the asymptotic exponent 1/3 for theransformation into a droplet-matrix structure depends
average domain growth has never been achieved within thetrongly onK. The percolation threshold,,=0.3 for the
time interval studied. However, a qualitatively similar depen-FHD model has been determined phenomenologically, by
dence of the growth laws af has been observed. Due to the analyzing the available data. A similar analysis of the ob-
symmetry of the equilibrium phase volume fraction thetained results suggests that, in general, the value of the per-
growth law is not affected by the form of the equilibrium colation threshold is model dependent: for a smaKea
free energy; the average mean curvature of the interface reamaller percolation threshold is observed.
mains zero. From a geometrical consideration, the product of The experimental verification of the model assumptions
the average domain size and the interface area der@it§) (  about the free-energy form can be made by measuring the
must be a constant. Further, if one assumes that the dynamigaximum wave vector in the scattering intensity as a func-
scaling hypothesis also holds for the interface shape, then th@n of the minority phase volume fraction during the spin-
average Gaussian curvature would scalggs-L(t) 2. The  odal decomposition of the bicontinuous, asymmetric blends
change of the interface topology described by the Euler charFig. 8). By comparing the experimental results with the
acteristic density can be found from the Gauss-Bonnet theasimulation curves a definitive statement about concentration
rem: xeuer/V~L(t) 3. Therefore, more interconnected in- dependence of the square gradient coefficient and its magni-
terfaces are observed for models with smaller square gradieniide can be made.
coefficients[Fig. 7(b)]. Nevertheless, the concentration de- The concentration dependence of the Onsager coefficient
pendence of the square-gradient coefficient attributed to theas a weak, systematic effect on the morphology develop-
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ment: it slows down the phase separation prodésgs. 9 erage mean curvature, phase volume fraction and average
and 10. Its relative magnitude for the change of the averagedomain size. A semiempirical model that allows one to re-
domain size has been found smaller than 10% within theonstruct the three-dimensional morphology of the phase-
time interval studied. The local shape of the interface charseparated blend without numerical integration of the Cahn-
acterized by the local curvature probability distributions isHilliard-Cook equation is now being developed.
not affected considerably by the concentration dependence of
the square gradient and the Onsager coeffidiEif. 11).. ' ACKNOWLEDGMENTS
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