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Shear response of a frictional interface to a normal load modulation
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We study the shear response of a sliding multicontact interface submitted to a harmonically modulated
normal load, without loss of contact. We measure, at low velocities 100 ums 1), the average valug of
the friction force and the amplitude of its first and second harmonic components. The excitation frequency
(f=120 H2 is chosen much larger than the natural one, associated with the dynamical aging of the interface.
We show the following{i) In agreement with the engineering thumb rule, even a modest modulation induces
a substantial decrease Bf (i) The Rice-Ruina state and rate model, though appropriate to describe the slow
frictional dynamics, must be extended when dealing with our “high” frequency regime. That is, the rheology
which controls the shear strength must explicitly account not only for the plastic response of the adhesive
junctions between load-bearing asperities, but also for the elastic contribution of the asperities bodies. This
“elastoplastic” friction model leads to predictions in excellent quantitative agreement with all our experimen-
tal data.

PACS numbeps): 46.55+d, 68.35.Ja, 83.50.Nj

[. INTRODUCTION and replaced by a new one over a characteristic sliding
length Dy, and the state variable is thus expresseddas
Friction between solids carrying a time-dependent normak D /V.
load is a subject of interest in different fields, from mechani- More generally, the model specifies the time evolution
cal engineering, where the “friction-lowering” effect of ex- law of ® as
ternal vibrations is well known1] and commonly used in

applications, to geophysical studies of the effect of rapid . XD

stress changes on static and dynamic friction of rdex3], O=1- Dy’ 2
aiming at a better understanding of the coupling between

normal and tangential stress states on slipping fddks]. In Eq. (1), the two corrections ta, have distinct physical

. These studies involve multicontact interfac@dCI's),  meanings: the first term describes an instantaneous velocity
i.e., interfaces between macroscopic solids with rough sursyrengthening of the interface, while the second expresses
faces. The real area of contact thus consists of a large numyengthening of the interface with its “age,” which in sta-
ber of small contacts with sizes on the micrometer scale. tionary sliding, where®=D,/V, leads to a velocity-

In a situation of constant normal load on the MCI, the yeakening effect.
phenomenological state- and rate-dependent frict®RP In the spirit of the Bowden and Tabor analy§gj, for a
model, formulated by Rice and Ruif], successfully de- \c, one can write the friction force 40]
scribes the details of the low-velocity dynamiggpically in
the 0.01-100ums ! rangé of such systems, such as the Fro=0yX)3 (d,W) 3)
bifurcation between steady state and stick-slip oscillations fr e s

[8]. The model states that the dynamic friction foleg  \hereo defines an interfacial shear strengh, is the real
depends on the instantaneous sliding velocitand on a  area of contact between the solids, adds the normal load
dynamic state variabl® as carried by the multicontact interface. The age-strengthening
effect is associated with the creep growth of the microcontact
Vod area under normal load:
+B In( —)
Do

Fe(X,®)=W| uo+Aln
Vo

(@

DV,
2@ W) =3o(W)| 1+ £In| 52| 4)

whereu is the dynamic friction coefficient in steady sliding
at the reference velocity, andA andB are measured to be
positive and of typical order I& (with B>A).

The state variablé can be interpreted as the “age” of
the MCI, i.e., the average duration of the transient contac
between load bearing asperities. For example, in stationar
sliding at velocityV, the set of microcontacts is destroyed

> —the real area of contact dt=D,/V,—exhibits a linear
dependence oW, as explained by Greenwood and William-
on’s mode[11] of contact between rough surfaces. That is,
he friction force obeys the Amontons lakw, o< W.

Y The velocity-dependent interfacial strength of the inter-

face is described as:
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This form for the interface “rheology,” discussed in detail in  In this paper we present an extensive study of the effect of
Ref.[10], results from the thermally activated depinning of a harmonic modulation of the normal loadV=W,(1
multistable nanometric units localized in a layer of nanomet—+ € cost)), on the dynamic frictional response of a multi-
ric thickness forming a junction between micrometric asperi-contact interface. Experiments are conducted on an interface
ties. Equations(4) and (5 yield Eqg. (1) with pug between two blocks of polynethyl-metacrylate (PMMA),
=0420/W, é=Blug, and n=A/u,. Also, sinceé, <1, at velocitiesV<100 ums !, a load modulation frequency
non-linear logarithmic terms can be neglected. f=120 HzV/(2wD,), and a relative amplitude in the
The SRF model, and its physical interpretation presentedange 5< 10 3-0.5 (so that no loss of contact between the
above, have been validated by friction experiments on differsurfaces occujs
ent classes of contacting materials, namely, granite, paper, e study quantitatively the average and the compo-
polymer glasses, and elastomers, under constant normal loggnts at frequency and %, F, and F,, of the tangential

applied to the solids. pulling force,
In the case of a time-dependent normal load, one can first
note that in the Amontons-Coulomb descriptidfy(= uW, F=K(Vt—x)=MX+F;, 7)

with constaniu), a change iW would lead to a proportional

change inF,, in particular a harmonic normal load modu- for different values ol ande; these results are presented in
lation W=W(1+ € cos(t)) would produce a harmonic fric- Sec. IIl. We find in particular that the modulation \8f in-
tional modulation about a nonmodified average vaiW,. duces a systematic decrease of the average dynamic friction

In the SRF framework, the variations af and & are  coefficient x=F/W,. This effect, which increases with

nonlinearly coupled, through Eq¢l) and (2), to the load higher e, is quite substantial: a typical magnitude of this
modulation, thus resulting in nontrivial effects on the friction o¢tact is a 20% decrease Hfor €=005.

force (such as, for instance, an anharmonic response t0 & 14 analyze our experimental data quantitatively, we need
harmonic normal load However, the model as expressed by, eyajuate which fractione, /e, of the load modulation is
Egs. (1) and (2) may not be sufficient to describe correctly gfectively borne by the microcontacts. Indeed, the normal
the frictional response for the following reasoi:the in- 554 modulation is too fast for air to be drained in and out of
terface rheology expressed by EG) may not hold for ine micrometer-thick interfacial gap. We have studied this
fast” changes ofW, and(ii) the load variation may modify  «eaking air cushion” effect by conducting similar experi-
the interface age strengthening process, thus leading tQents under a primary vacuum. From these experiments we
changes in the evollution d, with @, or in the evolution jnfer that €orile~0.4, and we use this in the subsequent
law of the state variable> itself. analysis as a scaling factor for the modulation amplitude.
Based on their results on the response to normal streS§ection |11 is devoted to the analysis of these results in terms

steps and pulses in granite friction experiments, Linker angyt 1he SRE model and its possible extensions to fast load
Dieterich[2] suggested modifying the evolution law @,  ,odulations:

while retaining the functional forrfEq. (4)] of the ® depen- (i) We first test the unmodified SRF model by setting in
dence ofX, . Arguing that a sudden change in normal stresszq (1) W—W(t) and using the evolution lafEg. (2)] for
would result in a sudden changedn, they postulated the state variablab. Numerical integration of these equa-
@ tions leads to a quantitatively good prediction of the average
Hh=1— X Eq), (6) friction force F(e€). However, the predicted oscillating tan-
Do Bo gential force components; andF, strongly depart from the

where they inferredr=0.2, for granite, from their analysis obsgr\@d ?ﬁper:detntc;]es erand\'/t.' f Link d Dieterich
of the response to sudden normal load steps. U .(") the' en Iet's |ev$|r50p?;]lon ((j)thln eran dle eI”C :
In a recent study, Richardson and Mar¢Bginvestigated sing their evoy lon fa - g. an e|rBropo§e value
the influence of normal stress modulations on the so-calle@ @=0.2, we find that(i) the decrease oF (¢) is much
“frictional healing” effect in a granular material layer con- Smaller than the measured values, &indthe agreement for
fined between rough granite blocks: starting from steady 1 @ndF is not better than in the previous=0 test.
sliding, shear loading is stopped, and the subsequent shear An attempt to describe the dependence of correctly,
stress relaxation is measured in presence of a 1-Hz normalith a value ofe small enough ¢=0.02), leads to results
load modulation(a modulation frequency close to the char- close to those obtained with the basic SRF equations; this
acteristic stick-slip oscillations frequency that can be inferredalso holds for=; andF,. That is, to say, as confirmed by a
for their system perturbation calculation ire, our experiments do not dis-
Friction experiments with confined granular media havecriminate with respect to the Linker-Dieterich evolution law
been successfully described by the SRF model in situationfr such small values ofk.
of constant normal loafil2] (although the physical meaning Thus, this modified aging law, even if valid, does not
of the variable® is not clear yet for these systemélow-  suffice to account properly for the details of the frictional
ever, the use of the constitutive law proposed by Linker andesponse.
Dieterich to include the time dependence of the normal load (iii) We propose to modify expressidb) for the follow-
did not account properly for the details of the results ob-ing physical reason: we know from static measuremgiis
tained by Richardson and Marone, in particular the amplithat a MCI exhibits, at shear forces much smaller than the
tude of stress relaxation after stopping the drive, and thetatic threshold, an elastic tangential response. One can de-
height of the stress overshoot after resuming loading. duce from this a shear stiffnesg, with the particular fea-
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The normal load modulation is achieved by means of a
vibration exciter rigidly attached to the slider: a harmonic
voltage input of given amplitude and frequerfaesults in a
harmonic vertical motion of the moving element of the ex-
citer on which an accelerometer is fixed. An acceleration of
amplitude y of this moving element of mass induces a
normal load modulation on the slider of amplitudey at
frequency f. We thus obtain a normal loadVv=W,(1
+ e cost)) with w=27f and e=my/W, in the range 5
X 10 3-0.5.

We use the loading leaf spring as a dynamometer by mea-
suring its deflectiomAX by means of an eddy current dis-
placement gauge. The tangential force applied to the slider is
thusF=KAX. We measure the average value of the output
________ voltage of the gauge, and use a lock-in amplifier to measure

[ | the amplitude of the first and second harmonics of this output
signal with respect to the harmonic excitation signal. We

KL 580800 00550558500 ) I
thus characterize the shear force through its average ¥alue

FIG. 1. Main elements of the experimental setup: translationand its ac components at frequendiesd 2, of respective
stage(Drv); loading leaf spring(Lsp); displacement gaugéGg); amplitudesF; andF,.
vibration exciter(Vb); weighting springSpn; accelerometefAcc). The experiments are conducted according to the following
The inset is the schematic representation of the spring-slider-tracbrotocm; for a fixed set of parameter valueg andV lead-

dyr_la_mical sy_stem with control par_ametgw (normal load, V ing to steady sliding wher=0, we measurej(0)=F(e
(driving velocity, andK (external spring stiffness =0)/W,. The normal load modulation is then set at ampli-
tude €, while sliding, and shear force measurements yield
is then switched off, and(e=0) is systematically remea-
sured before setting a new value &fin order to check that
strictly speaking, this strain rate realsd(x— F/Kqsp/dt. no drift occurred during the measurement. Moreover,' we
In quasistationary motion. this reduces to i strain rate check that fore#0 the shear force signal does not exhibit

q Y T ~ ' low-frequency stick-slip oscillations. The experimental re-
hence the usuaky(x) expression. In the present experimen-gyits reported below have been obtained with an average
tal situation,x s, is modulated a®Vitself, and the difference |54 W,=7 N and modulation frequencidsof 120 or 200

between the total and plastic strain rates becomes relevant; chosen to be away from any mechanical resonance fre-
Indeed, we show that this extended phenomenological elagyency of the setup.

toplastic generalization of interfacial dissipation leads to a
very satisfactory description of the average and oscillating B. Results
shear responses to fast normal load modulations. '

Track |Slider

ture ka5, W. Now, in our interpretation of friction, the rate
variable appearing i must be the true rate of irreversible
(plastig strain of the interfacial junction of nanometer thick-
nessh. When taking into account the asperity elastiaiy,,

1. Average dynamic friction

Il. EXPERIMENTS AND RESULTS The effect of the normal load modulation on the average
tangential force response is to systematically lower the dy-

namic friction coefficient. The ratige=F/W, decreases as

The tribometer is composed of a slider of maéglriven  the modulation amplitudes is increased. The variation
along a track through a loading spring of stiffnégsone end A;(e)=;(e)—;(0), plotted in Fig. 2, becomes larger than
of which is pulled at constant velocity, as schematized in - yhe eyperimental noise for=0.05, and is then quasilinear
the inset of Fig. 1. The slider and track are made of PMMA,ith e, though it does not extrapélate to 0@t 0.

[14] with nominally flat surfaces lapped with SiC powder to Figure 3 displays measurements/,_c(t\/) for different val-

a roughness of order lum, thus forming a multicontact .
interfa?ce e g ues ofe. It appears that the only effect of an increase of the

A detailed drawing of the setup is given in Fig. 1. We load modulation amplitude is to shift down thgV) curve,
impose the velocityV of the loading point, in the range without changing the slop&u/d In(V). Therefore, within ex-
0.1-100 ums™*, by means of a translation stage driven by perimental accuracyl x(e) is velocity independent.

a stepping motor. The tangential load is applied on the slider
through a leaf spring of stiffneg6=0.2 N um™!, which is

the more compliant part of the system. The dead weight of
the slider is 16 N. The average normal |0 can be set in The oscillating force response to a load modulation at
the range 3-16 N with the help of a vertical spring attachedrequencyf is found to be weakly anharmonic. We charac-
to a remote point itself translated horizontally at the pullingterize it by the amplitudes of the first and second harmonics
velocity V through a second translation stage, in order tow; andu,. The ratiow, /4 typically lies in the range 0.1—
prevent any tangential coupling. 0.2.

A. Experimental setup and methods

2. ac components of the force response
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FIG. 2. Variation of the reduced average friction forag. 2 510
= (F(€)—Fg)/W, vs modulation amplitude at f=120 Hz. Open ’
symbols correspond to two sets of result¥atl ums *, and full 2. 0x10% L .
symbols to two sets &f=10 ums 1. .
1.5x10* | . . *
The reduced first harmonje, = |F,|/W, increases mono- £ .
tonically with e, and does not show any measurable depen- 1.0x10% |- Lt
dence on the driving velocity, as presented in Fig) #&vhere . o 5
- —1 . 3 5.0x10° | N
we plot results a/=1 and 10 ums . w4 is of order 10 K2 )
ate=0.5, i.e., two orders of magnitude lower than the aver- omatle @ & % .
age shiftA . © 01 02 03 04 05
The amplitude of the second harmonic in the shear force €

response also exhibits a monotonic increase with the modu- FIG. 4. Amplitude of the harmonic components of the reduced
lation amplitude. Moreovery,(€) depends significantly on (o ce response dt=120 Hz: (a) first harmonicu;(e); (b) second
velocity, the measured amplitude of this component beingyarmonicu,(e). Two sets of data are plotted for each velocky:
lower for smallerV, as presented in Fig.(d). =1 ums ! (open symbolsandV=10 ums * (full symbolg.

3. Role of the interfacial air layer vacuum. The setup described in SBEA) was placed in a

All the above results correspond to experiments pervacuum chamber and allowed to work at pressures down to 1
formed at atmospheric pressure. The PMMA surfaces in conmbar (a pressure at which the mean free path of air mol-
tact are nominally flat over typicall®,=7Xx7 cn?, but ecules becomes of order 10m, i.e., much larger than the
their roughness implies that air is trapped in an interfaciainterfacial gap, ensuring that the air effect has become neg-
gap of micrometric thicknesky. Any increase in normal ligible).
load is borne in parallel by the microcontacts and by the We first measure the average dynamic friction coefficient
interfacial air layer. This excess pressure leads the air to leaknder constant normal load and fipgg~0.5, a value equal
out of the edges of the sample, the rate of flow being limitedf© the friction coefficient at atmospheric pressure. This con-
by the air viscosity. For instance, when trying to lift the firms that when the interfacial air Iayer is Slmply sheared, the
slider from the track, a strong suction is experienced. On&orresponding viscous force is negligible with respect to the
may therefore expect that the air layer plays a nonnegligibl&olid friction one.
role in the interfacial response to load modulation. Then, following the protocol described in Sec. Il A, we

In order to quantify experimentally this “leaking air cush- measureu(e), at V=10 ums ! and f=200 Hz. In this
ion” effect, we conducted a set of control experiments undercontrol experiment we have not been able to use the fre-
quency f=120 Hz at which all other data have been ob-
tained, due to the presence of a spurious mechanical reso
nance of the vacuum chamber close to 120 Hz.
L 4 5 A comparison of the average friction coefficient variation

0.46 - . A; measured aP=1 atm and aP=1 mbar is presented in

B . o Fig. 5. Note that for a given modulation amplitudd,u| is
s * 2 larger in vacuum than in air. Moreover, when plotted as a
0.42 I 4 ¢ function of eq¢;= €/2.5, the results obtained Bt=1 atm are
- A PO found to collapse on those &=1 mbar(see Fig. 5.
0.38 L L In the Appendix we present a model calculation of the
1 10 100 elastohydrodynamic response of the air layer. We show that,
V (um.s™) over the entire range of used in our experiments, the nor-
mal response of the interface is linear; hence the ratig/ e
FIG. 3. Reduced average friction forpevs V for various values ~ does not depend on Moreover, the estimated order of mag-
of load modulation amplitude. open circles=0; open triangles: nitude of this parameter dt=200 Hz is found to be com-
€=0.2; full circles: e=0.35; full triangles:e=0.5. patible with the above measured value.

05} °
A

~»
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0 puece—— 50 =0—dy= Re(ed, expliwt)), (12)
A G A Fa
- A A
a \ Sx=X—Xs= Re(eXy expli ot)), (12
0.1
EY i % to first order ine we obtain
<
02k %; e 2 . A BV —
—I\/Iw +K+IWva xl+W0D_(I)1:_Wo/.L(V),
L 0
% (13
03 1 1 [
0 0.1 02 03 04 05 _w _ Vv
e |vxl+ |w+D—0 ®,=0 (14
FIG. 5. Reduced average friction forcA;(e), for V — )
=10 ums ! and f=200 Hz at pressure®=1 mbar (open Whereu(V)=puo—(B—A)In(V/V), We thus obtain
circles andP=1 atm(open triangles The same set of data &t _
=1 atm is also plottedfull triangles as a function of the scaled _ Wou [ \
amplitudee/2.5. X1=——3 '“’+D_O ’ (15)
Ill. DISCUSSION AND MODEL . —
. | H)WOM
In this section we analyze our data within the SRF frame- 17 VA (16)
work. The three parametefs B andD involved in the SRF
laws are determined experimentally, at a constant M&Ad whereA reads
using the velocity dependence of the friction coefficient , , ,
wn(In(V)) and the dynamic characteristics of the response A:ﬁ(g _£+ 1 o (&
close to the bifurcation thresholthis method was described Dy | o, Ke g ®
in detail in Ref.[10]). For our system we measurd 5
=0.013+0.005, B=0.026+0.01, and Do=0.4+0.04um. _i(&) B-A (g) _(1_ ﬁ) an
All the numerical integrations of SRF laws presented below 1) A g Ko
are performed with this set of parameter values.
and (see Ref[10])
A. Rice and Ruina’s model (B—A)W,
Before coming to the question of whether or not the Rice- KC:D—01 (18
Ruina (RR) equations themselves should be modified in the
presence of load modulations, it is reasonable to study first B_AV
which response is predicted by the RR model as such. Re- we=\——=, (19
placingW in Eq. (1) by its instantaneous value, the equation A Do

of motion of the center of mass of the slider reads

X
Vo

: 8

MXx=K(Vt—x)—Wo[ 1+ € cog wt)]| wo+Aln

PV,

+BlIn Dy

wherex(t) is the instantaneous position of the center of mass
of the slider with respect to the track. We assume the evolu-

tion law of ® [Eq. (2)] to be unmodified:

d=1 X0 9
=175, 9

1. Perturbative regime

Let us first consider the case whete1l. We linearize
Egs.(8) and (9) about the steady sliding state at velocity
e=0:

(I)St: Dolv,

Xe=Vt— W, /K (10)

Setting

respectively, are the critical stiffness and pulsation at the
stick-slip bifurcation for the unmodulated systenmg
=K/IM=360 s!is the inertial frequency.

In our experimental conditions, witi=10ums ! and
(B—A)/A~1, w,=25 s !, so w.<w,wy. On the other
handK/K.=1. ThenA~ — w?AW,/V, indicating in particu-
lar that inertia is negligible. Finally,

KXy emV K

F177W, TA 0 Wy

(20

Similarly, a second order expansion ényields the cor-
rections at frequencieses2and 0, namely,

Vo oKu?
~— €, (21)
H2™ 0 w,A2
— ulpt2A
AMN—%GZ. (22)

Note that Eq.(22) correctly predicts a decrease of the aver-
age friction coefficient.
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FIG. 6. Predictions of the RR model for the average friction FIG. 7. Determination o&.¢; from A u. Full circles: raw experi-
decrease A;(e), at =120 Hz. Lines: RR model forV mental data aV=1 ums ! and f=120 Hz. Open circles: the
=1 ums 't (full line), andV=10 ums ! (dashed ling Sym- same set of data plotted as a functionegf;= €/2.1, which pro-
bols: raw experimental results &=1 ums ! (circleg andV  Vides the best agreement with the RR model predictioe).
=10 pms ! (triangles. The experimental data have been aver-
aged over three different runs. The error bars correspond to stagxperimental data will be plotted versus this effective modu-

dard deviations on these runs. lation parameter.
It is interesting to compare the relative perturbative cor- 3. ac response
rections on the age and velocity variables. One finds The computed first and second harmonics of the frictional
response are plotted in FigdaBand 8b). One can first note
oD/ D, %&< 1 23 that the quasilingar depende'ncequ andu, onV predicted
SxIV o by the perturbation calculation also holds here. Moreover,

both computed harmonics saturate at laeg&lone of these

able contributes negligibly to the shear response. conclude that, in spite of the excellent agreement between
Moreover, due to the smallness A&f the effective pertur- the predicted and observelu(e,V), the unmodified RR
bation parameter is given by model is insufficient to describe the full response of the in-
terface.
ox  eu
’V = T~50€; (24 1.2x10° = {

that is, the perturbative regime<«10?) is in practice out
of experimental reach. We thus must resort to full integration
of the above RR equations. - -

8.0x10™

[N
e

2. Average friction coefficient decrease

»
=)
X
oy
o
S
T
fa——
[

Numerical results foA;(e) are plotted in Fig. 6 at exci- L
tation frequency f=120 Hz and velocitiesV=1 and 0 :
10 ums 1. Note that a very weak dependence\bis pre-

dicted, as observed experimentally. Fott

In Sec. Il B we emphasized the role played by the inter- 2 Bxi0*
facial air layer in our experiments, and pointed out that it ’ b)
should be taken into account through an effective modulation 2.0x10% | {
amplitudeecs, accounting for the fact that only a part of the { t
excitation is borne by the contacting asperities. Therefore, 1.5x10 - I
the modulation parameter introduced in Eq.8) must be = oxdo* b ]
understood aggs. ' ¥

On the other hand, we have measured,fat200 Hz, 50105 | 1.7 !
e.11=0.4e. As explained in the Appendix, we expeci;s/ e 2 . :
to exhibit some relatively weak frequency dependence. This 0 feakt ‘ ' ' '
effect depends crucially on the interfacial normal stiffness 0 005 01 015 02 02 03
which is difficult to measure accurately. Thus, we have cho- et

sen to treak,¢s/ € as a free fitting parameter with an initial FIG. 8. Comparison between experimental d@gmbol$ and
trial value 0.4. the RR model predictiondines) atf =120 Hz for(a) w1(€q¢f) and

Figure 7 shows the best fit obtained fﬂr;(e) at v (b) wo(eers), at V=1 ums ! (full line and triangley and V
=1 uwms 1. It corresponds t@=0.48. From now on, all =10 ums ! (dashed line and circles
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B. Linker and Dieterich’s aging law 0 =
As mentioned in Sec. |, Linker and Dieteri¢g] (LD) 002 L ) T SR
proposed an extended version of the RR model in which the } ! T
evolution law of the age variabl® is modified according to _ 004t NN
Eq. (6). We now study the predictions of this extended '4
model. -0.06 -
A perturbation calculation to first order ia, using the 0.08
equation of motion8) and the age law®6), leads to a first T (e
harmonic amplitude 01 ! ; . . .
_ 0 005 01 015 02 025 03
elu—al V K €,
M= AT oW (295 3
1.2x10°
. . . . . b
This expression points to the fact that the dimensionless LD - © '
parameter acts as a correction to the bare dynamic friction 8.0x10% l
coefficient . For granite LD proposed=0.2-0.3, i.e., a B | %
sizable fraction ofu (~0.6 for that material This leads one = . o
to expect that such a value should induce significant effects 4.0x107 - — T T T
on the predicted shear response. However, we have estimated L LT
[15] an order of magnitude of for a sparse population of /. __________ e N e
microcontactgGreenwood interfacgll]) aging under nor- 0 0 005 01 045 02 025 03

mal load. We have considered the two limits @f linear
viscoelastic andii) fully developed plastic creep, using pa-
rameters compatible with the measured value of the RR pa- 2 5x10™
rameter B. Both limits lead to the same estimate fo,

namely, one order of magnitude smaller than the LD value. 2.0x10™
In view of this discrepancy, we have chosen to perform nu-
merical integrations of Eq$8) and(6) for various values of

a in the range 0.02-0.2.

The magnitude of the load modulation effect Arﬁ(e)
depends strongly or, as shown on Fig. (®). Whatever the 5.0x10°

value of «, A;(e) remains quasi-independent gf but for

1.5x10*

H,

1.0x10™

L A . 0
a=0.2 it is significantly smaller than the experimental one.
Moreover, the dependences pf and u, on € andV, €
shown in Figs. &) and 9c¢), as for the RR model, clearly
disagree with the experimental results. FIG. 9. Comparison between experimental datd-atl20 Hz

«=0.02 is found to provide a satisfactory fit faru(e). ~ @nd the LD model predictions fof@ Au(eers), (b) waleerr),
However, thise value is small enough for age effects to adndtt(csj “l?(eéffi/'_"g‘gs' LD?TOde(ljfor\_/B; “dm sh danl'daioil
become negligible, as noted in Sec. Il A 1. We indeed checkd©tt€d liné; V=10 ums~ and «=0.2 (dashed ling an

. . V=10 ums *, «=0.02 (full line). The predictions for
[Figs. 9b) and 9c)] that the corresponding,; and u, are B 21 -
very close to those obtained from the unmodified RR modelY -+ #MS  and a=0.02 are not plotted here because they
W y hus led lude the followi would be undistinguishable from the dotted lines. Symbols: experi-

e are thus led to conclude the tollowing. mental data atV=1 ums ! (triangle3 and V=10 ums?!

(i) The LD evolution law with their proposed value af (circles.
does not agree with the experimental results.

(i) The Au data permit one to set an upper limit @n It has been showfl3] that when a multicontact interface
without, however, allowing to check the validity of the func- is submitted to a shear much smaller than the static thresh-
tional form of the LD model. Experiments at much lower old, its response is elastic. Since the asperity “bodies”
frequencies(comparable to the stick-slip frequenay.) (which deform on a micrometric thickness, of the order of
would be needed to answer this question. their diameter are much more compliant than the
nanometer-thick elastically pinned adhesive jdibd], it is
their response which controls the interfacial shear stiffness
. . ) Kasp- ThisS obeys an extended Amontons lamgs,=W/N\,

The above analysis suggests that in our “high frequency”with \ a length of order 1um for our surfaces.
regime, where the response is controlled by_ the velocity sjiding amounts to a depinning of the adhesive joint
modulations, it is the “rheological” factoros(x) which  which becomes dissipative, while the bodies of the asperities
should be modified. As mentioned in Secol,describes the retain their elasticity. Therefore, we can schematically repre-
plastic dissipation occurring in a junction of nanometersent the sliding interface as an elastic element of stiffness
thickness between contacting asperities, and the rate ine,,, accounting for the bulk elastic strain of the asperities,
volved in o is a rate ofirreversiblestrain of this junction.  coupled in series to #&frictional) dissipative elementsee

C. Extension of the RR model
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Fig. 10. When this latter is sheared at velociiqg,, the Eett
corresponding force i =f(x,),

F= KaspXer= T (Xp1), (26)

with X¢; and x,, the elastic and irreversible displacements,
respectively. The instantaneous velocity of the center of
mass of the slider thus reads

d(F/kasp)

it +f71(F). (27

X:Xe|+Xp|:

and the tangential force on the slider finally reads:

(28 2.5x10™

d
sz(&(X—F/Kasp)

-4
We therefore express the external force using the same 2.0x10
functional form as in Eq(1), but the argument of the rate- 1.5x10™
dependent term become@. In stationary sliding under o .
constant normal loadk/ ks iS constant; hence the usual 1.0x10
dependence or. In the presence of a load modulation, both 5.0x10°
F and xas,=Wp(1+ e cos(t))/N are modulated, and the
elastic strain term becomes significant. 0
Hereafter we present results obtained from numerical in-

tegration of the corresponding extended RR equations. Tak- Eott
ing into account the above-mentioned fact that in our experi-

mental conditions, inertia can be neglected, @g.becomes FIG. 11. Comparison between experimental daté-at20 Hz

(symbols and theextendedRR model predictionglines) for (a)

Ap(eerd), (0) pi(eerd), and (©) py(eer) at V=1 ums* (full

K
F/W= V—V(Vt—x) =ugtAln lines and trianglesandV=10 ums ! (dashed lines and circles

1 d KVt
Vo dt1 % reep VY

Vo® saturation within the relevant rangg<0.3. As appears
+B In(D—). (29 from Fig. 11, the global agreement is now excellent, con-
0 firming the validity of the extended RR model.

The parameterd, B, andD are set to their experimen-

tally determined values. The length has been obtained D. Concluding remarks
from a quasi-static loading-unloading test3] at various This study leads us to the following conclusions.
normal loads. We find=0.62-0.15 um. In view of the On the one hand, from an engineering point of view, the

relatively _Iarge experimental uncertair_1ty on this parametery,qst spectacular effect of modulating the normal load ap-
we have integrated Eq$29) and (2), with A as a free pa- pjied to a frictional system is to lower the dynamic friction

rameter. The best fit, performed on the most sensitive datggefficient significantly. This occurs as soon as the modula-
namely, theu;(eesr) ones, is found to correspond ®  tjon is applied, even though its amplitude is low enough to
=0.7 um, within the experimental uncertainty bracket.  ensure permanent interfacial contact between the sliding

While A u(€) is found to be only very weakly affected by bodies.

the rheological correction, this extension of the model yields On the other hand, an important aim of this study was to
predictions foru,; and u, markedly different from those of elucidate the question, relevant to seismology, of whether the
both the unmodified RR and LD models. That is, their qua-RR model should be modified to describe the frictional re-

silinear V-dependences are replaced by much weaker onesponse to fast variations of the normal stress. We have
On the other hand, neithes,; nor w, exhibit any longer shown that, in order to study this, it is essential to measure
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and analyze not only the zero frequency component of thef the surface heights, here 1,3m). In the small amplitude
response to an oscillatory load, but also its harmonic contenfinear regime Ah<\,), the stiffnessk,=WI/\, is a con-
In the range of frequencies, much larger than the stick-sligtant, and the elastic restoring force in thdirection reads
one, that we have studied, the shear response is controlled by
the velocity modulation, that is by theite-dependenterm ., (h—ho)
of the RR constitutive law. However, the quantitative analy- e o,
sis of w4 and u, data shows that the relevant displacement
rateis not for fast load modulationghe slider velocitybut ~ This expression has its exact counterpart for tangential mo-
the rate of plastic deformation of the adhesive frictionaltion, as discussed in the text. Shear elasticity involves a
joint. This confirms our picturgL0] of sliding friction as 2D length A which is expected[17]) to be about 1.X, for a
plasticity prelocalized within a nanometer-thick adhesivePoisson ratiov=0.44. Therefore, the measured value
joint coupled to the bulk of the slider through elastic asperi-=0-7 um yieldsA,=0.4 um. _ o
ties, and enables us to extend correspondingly the expression (P) Elastohydrodynamic response of the interfacial air

of the rate-dependent part of the RR state- and rate’@Yer: When the gap is, e.g., narrowed, air is compressed

dependent model. until being drained out of the interfacial zone. The resulting

The question of the precise nature of the effect of a load’r€SSure force on the slider will be denoteg. For the sake
modulation on interfacial age remains at this stage operPf€valuating=,, we will simplify the problem, and consider
That is, how should this effect be modeled? The only con? thin layer of air, of viscosityy and densityp, at atmo-
clusion we can draw about this is that, at least for our sysSPheric pressur®,, trapped between twperfectly smooth
tem, if the Linker-Dieterich phenomenology is valid, then dlsks_of _rad|usR, parallel and distant ofi<R. The relative
the magnitude they suggest for the modulation effect i&/€lOCity is supposed to vanish zt0 andz=h, an assump-
strongly overestimated. Clearly, it is at frequencies of thdion which is legitimate if the_roughness of the surfaces is
order of the stick-slip one, that the shear response is mostMuch smaller than the gap width. Brown and Schigpl®])
sensitive to the age dynamics. This indicates that further inf€Ported measurement of the gap width between macroscopic
vestigations of this question should be performed in either ofround 9""}_)53 surfaces. At a low average pressure correspond-
two ways: (i) working at modulation frequencies=w., or g to 10°° of the Young modulus of the glass, as encoun-
(i) studying the low frequency content of the shear responsiréd in our experiments, they found that the gap width is

to a high frequency modulation when crossing the stick-sliptypica”y five times larger than the rms roughness of the sta-
bifurcation line. Such work is presently in progress. tistically identical surfaces. This figure is clearly too small
for the “smoothed” model of the interfacial gap to be ex-

pected to provide a very accurate value of the hydrodynamic
force, though it is certainly sufficient to estimate its order of
magnitude.

The aim of this appendix is to establish the equation for An upper bound for the average pressure excess resulting
the vertical motion of the slidefi.e., along thez direction  from the motion of the disk ia P=eW, /3, with eW, the
normal to the interfageand to estimate the relative contri- amplitude of the normal load modulation abig= 7R?. The
butions of the forces that are involved. We will, as a result,macroscopic loading pressuk,/2, remains of order 10
justify the use of areffectiveamplitude of modulation of the mbar in the reported experiments, whikeis smaller than
normal load, to account for the fraction of the modulationunity. As a resultAP remains much smaller than the atmo-
which is borne by the air cushion trapped within the interfa-spheric pressur®,. However, thecompressibilityof the air
cial gap. The order of magnitude of this fraction, referred tolayer may be of paramount importance, as suggested by the
aseq¢t/ € in the text, and which is the only fitting parameter following argument. For infinite plates, no leak occurs at the
of our model, is checked independently in a control experi-edge of the gap and the response of the layer, trapped under

(A1)

APPENDIX: ELASTOHYDRODYNAMIC RESPONSE
OF THE INTERFACIAL AIR LAYER

ment, performedn vacuq and described in the text. the mean pressur@,, is elastic with an overall stiffness:
The motion of the slider along theaxis is assumed to be
decoupled from the sliding motion alomglt is parametrized Kair=Po2o/hg. (A2)

by the widthh of the “gap,” i.e., the separation between the

average planes passing through the rough surfaces of te@r Po=10° Pa,3,=49 cnf, andhy=6.5 um, one finds

track and the slider, respectively. When no modulation is<air=7.5 10 N/m, namely, one order of magnitude larger

superimposed on the bare normal |04, the width ishy, a  than the interfacial stiffness, originating from the load

value fixed by the deformation of the load bearing asperitiedearing asperitiegsee Eq.(A1)] at Wo=7 N. For a finite

which are randomly distributed over the interface of nominalradiusR, edge flow will reduce the amount of air to be com-

macroscopic ared,. pressed in order to accommodate the change of gap volume.
(a) Elastic response of the multicontact interfadecord- It is therefore necessary to compute the expressida,dfy

ing to Greenwood and Williamson’s model for multicontact taking account the radial, viscosity controlled, Poiseuille

interfaces, the number of load bearing asperities and the re#lpw which results from the densihence pressujgradient

area of contact increase linearly with the load. This induces gompatible with mass conservation.

nonlinear dependence on load of the gap thickness. Experi- The continuity equation for the radial flow reads

mentally, it has been found th&y—h=x\, In(W/W), with 5 1

\, a length, the order of magnitude of which is given by the 7 o =

roughness of the surfaces in contétte standard deviation at(ph)+r ar (roph) =0, (A3)
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whereu (r) is the mean velocity at radius(averaged across
the gap along the direction. The pressure field is given by
the equation of state of the air at pressures closBge 1
atm, which is assumed to be

P P

. (A4)
P Po
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values of yR, ﬁp has both a reactive component, which
increases the interfacial stiffness, and a dissipative compo-
nent.

(c) Prediction for the effective amplitude of load modula-
tion. The slider of mas# oscillates in the norma direction
under the combined action of the load modulation, the restor-
ing elastic force resulting from deformation of the load bear-
ing asperities and compression of the air cushion, and the

The set of equations is closed by assuming that the flow is olamping force resulting from the air flow. The complex am-

the Poiseuille type, namely, is parabolic along tfdrection
and varies slowly along the radial direction according to

h? 9P

127 or° (A5)

plitude of modulation of the gap widthh is therefore given
by

(—Mw?+ k) Sh—3F ;= eW,, (A10)

As mentioned, the pressure modulation remains muckvith ﬁfp given by Eq.(A9).

smaller thanP,, and the gap modulation is smaller thiag

hence linearization of EqSA3)—(A5) is legitimate. One
therefore setsP=Py+ 6P, p=pg+ dp, and h=hy+ 6h,

with 6P<Pg, dp<py and sh<hgy. Eliminating Sp yields

the following equation for the pressure field:

d(OP)
or

5#_5?1 A6
e (A6)

h? 1 ¢
1271 ar

The fraction of the load which is effectively borne by the
microcontacts iseqti/e=|k,0h/(eWy)|. It reads

w?  wRZPo N, J(YR)|

feff: w-
Wo hoJo(YR)‘ ’

€

5 (A11)
wq

with wg=+«,/M.

The assumption thad.¢/e does not depend on the am-

where the dot indicates the partial derivative with respect tcblitude of the modulation relies upon the fact that both the

time.
Assuming that the normal elastic stiffness of the as-

perities remains linear, the gap modulation resulting from th
normal load one is harmonic and we therefore seek for a ., Wo=7 N, M=1.6 kg, \,=
il . y V4

complex solution to Eq(A6) of the form SP="6P exp(wt),
with éh=éh exp{wt). Taking into account the boundary

condition SP=0 atr=R, and the symmetry requirement
=0, and henc&P/dr=0, atr=0, one obtains

P="Pop |1~ JO(VR)}’ A7)

with J, the Bessel function of zeroth order, afch complex
constant given by

1-i [1270w A8)
==\ =%
V2V Pghj

elasticity and viscosity remain linear; that is, as previously
discussed, thaAhh<\, and hy. This reduces tce <1, a

&riterion which is always fulfilled in our experiments.

0.4 um, and wy/(27)
=530 Hz. Hence, at 120 Hz, the inertia is 5.20 2 of the
elastic restoring force due solely to the asperities. It is clear
from the above analysis that a key parameter for evaluating
the viscoelastic response of the air is the gap wigthTak-
ing, as discussed previously, the conservative value of five
times the roughness, namelyg=6.5 um, »=10° Pas,
and R=3.9 cm, one computeyR=4(1—i) and |eq¢(/¢€|
=0.24, a value of the same order of magnitude than the one,
namely, 0.48, which is found to provide the best agreement
between the experimental data and the model prediction for

Ap. The role of the interfacial air cushion is further con-
firmed by the control experiment performédvacua At a
remaining pressure of 1 mbar, the elastic stiffness of the air
layer falls two orders of magnitude below the multicontact
one. Moreover, since the mean free p@h300 K) of the gas

Integration of the pressure field over the interface yields thg,qjecules is now of order several 10n, i.e., larger than the

complex amplitude of the pressure force,

— 5h Jo(yR)
= 2___
OF = PomRP 1= 3 Ry (A9)

with J, the Bessel function of second order.
The asymptotic limits deserve comment. RdR— o and

J2/1Jo——1, 6F is real, and one recovers the purely elasticy gcaling ratioe?

respons¢Eg. (A2)] predicted for larger. It also corresponds
to the high frequency limit for which the air has no time to
leak. ForyR—0, J,/Jq— (yR)?/8= —iw(37R?)/(2Poh3);

hencedF, is purely imaginary, and reduces to a linear vis-

gap width, the viscosity of the layer should vanish. Conse-
quently, the effective amplitude is essentially ruled by the
slider inertia according t@23""" e=|1— w? | 1=1.2 at

200 Hz. At atmospheric pressure, keeping the nominal value

3,=49 cnf, €/e=0.23 at 200 Hz. When bringing the

data forA u(€) performed in the air anth vacuoto collapse
on a single curve, as explained in the text, one makes use of
St exdr "™ Its predicted value is 0.20. The
experimental value is 0.4.
The fact that, in both cases, the estimated value is smaller
than the observed one by the same amount may be possibly

attributed to some long wavelength modulations of the gap

cous damping force which could have been derived by aswidth hy which is likely to remain after the lapping process.
suming a noncompressive Poiseuille flow. For intermediatévlicrocontacts may be distributed on patches of macroscopic
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area smaller thaix,, separated by regions of much wider that a small amount of “rocking” would promote the air
gap in which the air would play a negligible role. Typically, flow and reduce the cushion effect.

a patch radius of 2.5 cm, while keeping the other parameters Finally, normal load modulation induces a tangential os-
unchanged, would account for the observed vatug/e  cillating motion of the slider of amplituddx, and hence an
=0.48 at 120 Hz in the air. This would correspond to anair shear flow within the gap. The associated ac viscous force
effective area of 03, a value still large enough for the on the sliderpwAx4/hg, which has been neglected in our
microcontacts—the number of which does not dependgn models, must be compared to the leading term in the rate
according to Greenwood—to remain elastically independentependent friction force for oscillations about the sliding ve-
In addition, we have assumed a single degree of freedom fdocity V, namely, AWowAX/V. The ratio of both terms is
the slider, which is certainly a strong requirement since theyS oV/(Wohg)=10"" for V=100 um/s; therefore, the
slider is left free to find its own seat on the track. It is clearshear viscosity of the layer is totally negligible.
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