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Precise determination of the void percolation threshold for two distributions
of overlapping spheres
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The void percolation threshold is calculated for a distribution of overlapping spheres with equal radii, and
for a binary-sized distribution of overlapping spheres, where half of the spheres have radii twice as large as the
other half. Using systems much larger than previous work, we determine a much more precise value for the
percolation thresholds and correlation length exponent. The value of the percolation threshold for the mono-
disperse case is shown to be 0.03@L0003, whereas the value for the bidisperse case is shown @ be
=0.0287:0.0005. The fact that these are significantly different is in contrast with previous, less precise works
that speculated that the threshold might be universal with respect to sphere size distribution.

PACS numbes): 64.60.Ak, 05.45.Df, 05.70.Jk

[. INTRODUCTION original definition involving fluid flow through a porous me-
dia.

The concept of percolation was originally introduced to  Without any additional mathematical tools to help solve
describe the flow of a fluid through a porous medi{ihi the problem, the question of determining whether or not
However, once an understanding regarding the universalitthere is a connected path for fluid to flow through a system
of the problem was achieved, much of the mathematicabf overlapping spheres would be difficult. Fortunately, Ker-
work was relegated to lattice models that showed the samgtein[18] showed that the problem could be mapped to the
mathematical behavior with regard to the critical exponentdond percolation problem on the edges of the Voronoi tes-
[2—7]. While work on lattice percolation allowed for ease of sellation of the sphere centers. The primary computational
simulation and mathematical tractability in special cases, thiproblem is then reduced to that of determining the Voronoi
technigue also lost some of the information regarding quantessellation21]. Once the bond percolation model is estab-
tities such as pore size and flow rate. lished from that, one can apply well-known Monte Carlo

Continuum percolation differs from lattice percolation in techniques to determine the percolation threshold and related
the sense that the problem is not restricted to a lattice, but isxponents.
defined on the fulD-dimensional space. There are two com- Due to the increased complexity involved in calculating
mon continuum percolation problems based on overlappinghe Voronoi tessellation and the increased memory required
spheres. The first is that of percolation of overlapping diskgo store the corresponding data structures, the size of the
or spheres themselvé8—16. This problem is analogous to problem that one can effectively work on is greatly reduced
the lattice percolation problem where the points are distribelative to lattice or standard continuum percolation prob-
uted randomly through space. A bond between two sites ilems. The net effect is that there has been much less work
formed when the distance between the two spheres is leskone on the void problem, and the numerical results that
than the sum of the two sphere radiie., the two spheres have been obtained are much less precise. One interesting
overlap. This is what is usually referred to in the literature recent result has shown that the void percolation threshold
under the name afontinuum percolationA variation of this  for a binary system of spheres with unequal radii seems to be
includes percolation of partially overlapping spheres withequivalent to that of a system of spheres with equal radii
hard, nonoverlapping coréthe cherrypit model[17]. In the  [20].
limit that the overlapping part disappears, one is left with the The fact that the void percolation thresholds for two sys-
problem of percolation of hard spheres. This is generalljtems with different sphere distributions should be the same
considered identical to the determination of the random closeould be a remarkable result if it were true, since the argu-
packing limit. ments that apply to universality of the critical exponents

The other type of continuum percolation problem is theshould not apply to the percolation thresholds. There has
complementary problem to the first type. In this case, ondoeen much more work done on the question of percolation
considers a system of overlapping spheres and asks when ttieeshold universality for the problem of the space occupied
space not occupied by the spheres percolglt8s-20. This by the spheres. Theoretical works indicate that such a uni-
is generally referred to agoid percolation but is also re-  versality should not exid22,23, and computational studies
ferred to asSwiss-cheese percolatigalthoughcomplemen-  of simple systems have borne out these regiis.
tary continuum percolatiowould probably be a more de- In this paper, we use much larger systems to obtain a
scriptive term. This type of percolation is very similar to the precise value for the void percolation threshold for a system
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of equisized spheres. In a similar way, we calculate the voiahot been any calculations of for void percolation systems
percolation threshold for a set of spheres that have two difthat could confirm this with precision.

ferent values for their radii, and show it is statistically dif-

ferent. We also calculate the correlation length exponent B. Voronoi diagrams

and confirm that it is similar to that of lattice percolation and

ordinary continuum percolation, as universality dictates. A Voronoi diagram of a set of points is a decomposition

In Sec. II, we give the mathematical background for the®! the space into regionsvhich we will call cells) that are

calculations of the correlation length exponent, along Withassoma_ted V.V'th each point, such that every point in the
the formulas used to calculate the percolation threspgld Vo.ron9| cell is closer to the assoma_ted p0|.nt than any other
Section Ill gives a detailed explanation of the aIgorithmspOInt in the syster{25]. Mathematlcally, if there are
used to construct the Voronoi tessellation associated with thﬁphere centers, aqd the coordinates of the sphere centers are
spheres. The numerical details of the calculation are given iqlven by_xi ' yvherg =1,... N, then the Vqron0| cell asso-
Sec. IV. The results of the calculation are given in Sec. \ciated withi is defined as the set of all pointssuch that
and compared with previous results. Finally, we summarize d(x,x)<d(x,x;), Vi#]. (5)
our conclusions in Sec. VI.
In this definition,d(x,y) is the distance between pointgnd
IIl. MATHEMATICAL BACKGROUND .
_ The boundaries of the Voronoi cells represent points that
A. Scaling laws are equidistant from two or more sphere centers. From this, it
The precise value of the percolation threshpjdfor any  is easy to see physically that any void space in the system, if
system is defined in the limit of a system of infinite size. Init exists, can be associated with a Voronoi vertex since the
practice, one can only calculate the value of the effectivé/oronoi vertices represent points in the systems that are as
percolation threshold for a system of finite linear size far away as possible from its associated sphere cefgers

pC(L) Then, one uses the Sca“ng re|at[@j erally four, for random three-dimensional SyStQMSl the
Y same way, any connected path in the void region can be
Pe(L) =Pl ™™, 1) associated with a Voronoi edge that links two Voronoi ver-

tices. The edge represents the set of points equidistant to the
sphere centers that are common to the two vertices that it
connects. Therefore, once the network of vertices and edges
X : ) : ._has been established, it is just necessary to determine which
ever, in continuum systems, especially those with a varietyy v ertices represent void space and which of the edges

of particle sizes, the number of particlbsis a much more 5.0 1ot intersected by any spheres. This procedure is proven
natural scaling variable. Using the fact that by Kerstein[18]

wherev is the correlation length exponent.
In many lattice applications, it is a natural variable to
write the scaling relation in terms of the variallle How-

NeLP, ) The method of solving the void percolation problem for
overlapping spheres with possibly different radii follows the
whereD is the dimensionality of the embedding space, wesame basic idea, but uses a more general version of the

can write Eq.(1) as Voronoi tessellation known asradical Voronoi tessellation
—1/D) [26]. This definition is similar to the definition for the stan-
Pe(N) = pc=N : ) dard Voronoi tessellation, except now for a sphemith

center atx;, there is an associated radiys and the defini-
tion of the radical Voronoi cell becomes the set of poixts
such that

In order to calculatg., one must calculatp.(N) for dif-
ferent values oN, and plot them again$t "), For large
values ofN, this should be linear, and an extrapolation of the
line to the limitN~¥("®) -0 (N— ) will give the result for d(x,x)2=rf<d(x,x)?=rf, Vi#]. (6)

the infinite system.

Before that calculation can be done, one also needs thEhis is known as a *“radical” Voronoi tessellation since the
value of v. Values obtained for lattice models can be usedcell boundaries now represent points that are equidistant
but for the sake of self-consistency, we will calculatdom  from tangent lines drawn from each sphere. This definition is
the data. This is done by calculatipg(N) for a large num- often referred to as @ower diagramin the mathematics
ber of finite systems ol particles, and calculating the stan- literature[27]. _ o
dard deviatiom\ p.(N) of those values. Then, one applies the ~ This tessellation has a number of nice properties, includ-

scaling relation3] ing preserving planarity of the faces that separate the result-
ing cells. Most importantly, the vertices and edges contain
Apg(N)oN~Y0P) (4)  precisely the same connectivity information as the case of
equisized sphereg20], so the algorithm is essentially un-
to calculatew. changed. In the case of all sphere radii being equal, the stan-

There is another reason to independently calculaia dard Voronoi tessellation is recovered.
the case of the void problem. It turns out that universality
doesnot apply to all exponents in this case. The mechanical
and transport exponents are different, due to the narrow
bottlenecks that form in the systej@4]. It is generally un- The fact that the passages through the void space can be
derstood that does not change in this case, but there havenapped to the edges in a Voronoi tessellation is indeed a

I1l. VORONOI DIAGRAM CONSTRUCTION
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fortuitous one, since the problem is very difficult to solve never played a significant role in the amount of time taken to
without prior knowledge of this fact. However, this is still do the calculations.

one of the more time-consuming steps in the calculation, and

having an efficient method of constructing the Voronoi tes- IV. NUMERICAL DETAILS

sellation is important. ) To answer the question regarding universality of the per-
~ There are a number of ways to create Voronoi tessellag|ation threshold for different sphere size distributions, we
tions used in this simulation, depending on how the pointghose to study two different systems. In both sets, half of the
are arranged, the specific information needed from the teSpheres had a radius of, and the other half were assigned
sellation, and what boundary conditions are used. Early radius ofr,. In the first sety,=r,, while in the second,
works were based on identifying the vertices first by searchr, =r,/2. The factor of 2 in radii sizes was chosen with the
ing through a collection of nearby sphere centers and checkwope that if there were differences in the percolation thresh-
ing each combination of four different sphere centers to seeld, it would manifest itself strongly at that ratio. This was
if it had a corresponding Voronoi vertd®8]. Other early not based on any analytical prediction, but simply on the fact
methods included identification of the Voronoi faces first bythat in the limit thatr,/r, approaches either O or 1, one
constructing the planes associated with the neighboringecovers the equisized case. Given limited resources to try
points and then identifying the verticE29]. This method is many different values of,/r,, one would hope that; /r,
especially useful if one is interested in the details of a small=1/2 would be a possible candidate for a measurable differ-
number of cells. ence in the percolation threshold.

There were two methods of calculating the Voronoi tes-  Finite-size scaling was used to calculateand p., as
sellation, both different than the two described above. Thédlictated by Eqs(3) and(4). Values ofN ranged from 312 to
primary method was via insertion. To use this method, oné0 000, with the value increasing by approximately a factor
starts with an initial tessellation, and then inserts the newpf 2 €ach time. The number of configurations used to gener-
sphere center and changes the structure accordiifly ate the data for each value bf ranged from 10000 foN
This method is very quick since it can be implemented by~ 312 t0 500 forN=80 000.
finding a single vertex that will be affected by the insertion,
and recursively searching through all of its neighbors unti

Calculation of the percolation threshold for each system
was done by a binary search through the different values of
one has identified all of the vertices that will be affected volume fraction for a fixed set of sphere positions and sphere

- . - ‘radii ratios. One started with an initial value for the upper
Determining whether or not a vertex will be affected is just 83nd lower bound for the percolation threshold for the system,

matter of checking .tq see whethgr it is closer to the NEWand chose a first test value halfway between the two for an
sphere center than it is to its previous sphere certtaking

. - : __initial guess. If the void percolated, the upper bound was set
into account the radii in the case of the radical tessellation 4 this value. and a new guess was chosen halfway between
Because searches just involve looking at neighbors of vertige [ower bo,und and the new upper bound. Similarly, if the

ces currently being considered, there is no need to search fgbid did not percolate, the lower bound was set at this value
neighbors using geometrical comparisons. and a new value was chosen halfway between the new lower
The primary drawback with the method is that one needg,ound and the upper bound. The search was reiterated until
some initial tessellation to start using the method. This washe difference between two previous guesses was less than a
accomplished by starting with a ;mall initial set of .part|cle specified tolerance. This tolerance was chosen to bé.10
centers and performing a “shooting”-type tessellation. Forperiodic boundary conditions were employed, and percola-
this tessellation, a single vertex was initially located, andijon was defined as the point when the largest cluster
then its neighboring vertices were then located. The determispanned one of the directions of the unit cell and overlapped
nation of neighboring vertices is fairly straightforward in this \yitpy itself.
case, as one knows that the neighboring vertices will have The sphere radii were determined using the fact that in a
three of the four particle centers in common. Using this IN-system of overlapping spheres that are randomly distributed

formation it is simple enough to search along the equidistangyer a periodic unit cube, the average total void volume frac-
line of these three centers to find the position of the neighyign is given bye”, wherez is defined by

boring vertex. This is a little slower than the previous

method since there are more geometrical calculations to per- 4

form. Also, the data structures needed to perform all of the ﬂ:i:l §7Tri (7

operations efficiently are much more complex in this

method, due to the fact that one must associate a newlgnd is just the sum of all of the individual sphere volumes. It

found vertex with all of its neighbors that may have alreadyshould be noted that this is not the precise value of the total

been found. volume in each system, but it is very close. Attempts were
The amount of time for the insertion algorithm to perform made to measure the effect of this by calculating the exact

N insertions generally behaves @§N) for N particles, as- volume in the system in systems with smid|land adjusting

suming them to be uniformly distributed. It has a worst casdhe radii until such a specific volume was reached, but this

behavior ofO(N?) in the case of certain pathological distri- had no measurable effect on the results.

butions of particles, but those distributions were not relevant The vertex percolation method was used to determine the

for these simulations. The shooting algorithm had a slightlyWoronoi vertex network for the first 500 sphere cent@rs

worse tharO(N) scaling, but its behavior was not studied in all of them for theN=312 casg and then the insertion

detail since it was only used on small sets of particles andnethod was used for the rest of the centers for each sample.

N
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FIG. 1. Log-log plot of the standard deviatialp:(N) as a FIG. 2. Plot ofp,(N) vs N'/(¥D). The solid line represents a
function of N for the case ofry=r; (filled circles andry=r,/2  |inear fit to ther,=r, data for N<2500, while the dashed line

(filled squarek The lines represent a least-squares power-law fit torepresents the same thing for the=r,/2 case. The intercepts for
the data. The case =312 is excluded from the fit since it appears the two fits are very clearly different.

to be out of the scaling regime.

of larger spheres was 0.20Tibistead of 1/2 for the current
It should be noted that in the case where all of the spherstudy).
radii are the same size, the Voronoi network does not change Using a value of 1/4D)=0.37 (corresponding tov
as the sphere radii change, and it only needs to be calculated0.901), the values gf.(N) were plotted againgt~¥(*?).
once. However, in the case where the radii are different, th&@hen a least-squares fit was done to fit a line through the
vertex network needs to be recalculated for each valye of values forN=2500 to extrapolate the value of the void per-
The main effect of this is that the cases whegdr,=1/2  colation threshold foN~Y(*®)=0 (N=%). These data are

took significantly longer to run. shown in Fig. 2. From the plots, it is very clear that the
values are significantly different. Fog /r,=1, we find that
V. RESULTS AND DISCUSSION p.=0.0301+0.0003, while forr,/r,=2 the value isp,

=0.02870.0005. Not only are the values significantly dif-
The log-log plot of Ap.(N) vs N is shown in Fig. 1.  ferent but from the graph it is clear that the extrapolation to
Although the numerical values dfp.(N) are different for  N=o will give different values. These values are very simi-
each of the two cases, the slope values are indistinguishablgr to the values given ifi20], but are much more precise,

within the numerical tolerance of the simulation. The Valueanowing the difference between the two values to be seen
for N=312 is not used for the fit, as it appears to lie outsidec|early.

the scaling region. The slope of the line for the/r,=1
case corresponds to a value of 0.902+0.005, while the VI. CONCLUSIONS
r./r,=1/2 case gives a value of=0.901+0.005. . . .

' T?]is value is %ignificantly larger than the value of 0.84 We have pre_usely calcula_lted the void percolatlo_n thresh-
computed for void percolation from two different sphere dis-Old for two distinct overlapping sphere systems. F'rSt’ as a
tributions (one equisized, one notn [20]. However, that benchmark, we haye calculated a much more precise ya!ue of
work used only five different values o that ranged from (he void percolation threshold for a system of equisized
100 to 10000 for the equisized case, and used only f0u§pheres.. Then we.have showr) a recent conjeqture .th"?t this
values(ranging from 100 to 316Xor the nonequisized case. v_alue might be universal fgr dlfferen_t sphere size distribu-
As demonstrated here, much of that region did not seem t ons to be false by caICL_JIatlng the void percolation thresholg_l
lie in the scaling regime. Also, fewer samples were used fo or a set of spheres with halt of the spheres having radi
each value oN. The value ofy calculated here is much more W€ @S large as the others.
in line with the value 0.88 reported for lattice calculations
[3], and the value 0.890.01 reported for ordinary con-
tinuum percolatior16]. It should be noted that the value of ~ The author would like to acknowledge support from the
0.84 given in[20] is not completely out of line, given the MICS program of the Department of Energy. Sandia is a
errors for the different cases. We also note here that for thisnultiprogram laboratory operatated by Sandia Corporation, a
and later comparisons wift20], that their nonequisized case Lockheed Martin Company, for the United States Depart-
had a different value of, /r,=1/4, and the number fraction ment of Energy under Contract No. DE-AC04-94AL85000.
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