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Precise determination of the void percolation threshold for two distributions
of overlapping spheres

M. D. Rintoul
MS 1111, Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185-1111

~Received 26 January 2000!

The void percolation threshold is calculated for a distribution of overlapping spheres with equal radii, and
for a binary-sized distribution of overlapping spheres, where half of the spheres have radii twice as large as the
other half. Using systems much larger than previous work, we determine a much more precise value for the
percolation thresholds and correlation length exponent. The value of the percolation threshold for the mono-
disperse case is shown to be 0.030160.0003, whereas the value for the bidisperse case is shown to bepc

50.028760.0005. The fact that these are significantly different is in contrast with previous, less precise works
that speculated that the threshold might be universal with respect to sphere size distribution.

PACS number~s!: 64.60.Ak, 05.45.Df, 05.70.Jk
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I. INTRODUCTION

The concept of percolation was originally introduced
describe the flow of a fluid through a porous medium@1#.
However, once an understanding regarding the universa
of the problem was achieved, much of the mathemat
work was relegated to lattice models that showed the s
mathematical behavior with regard to the critical expone
@2–7#. While work on lattice percolation allowed for ease
simulation and mathematical tractability in special cases,
technique also lost some of the information regarding qu
tities such as pore size and flow rate.

Continuum percolation differs from lattice percolation
the sense that the problem is not restricted to a lattice, b
defined on the fullD-dimensional space. There are two com
mon continuum percolation problems based on overlapp
spheres. The first is that of percolation of overlapping di
or spheres themselves@8–16#. This problem is analogous t
the lattice percolation problem where the points are dist
uted randomly through space. A bond between two site
formed when the distance between the two spheres is
than the sum of the two sphere radii~i.e., the two spheres
overlap!. This is what is usually referred to in the literatu
under the name ofcontinuum percolation. A variation of this
includes percolation of partially overlapping spheres w
hard, nonoverlapping cores~the cherrypit model! @17#. In the
limit that the overlapping part disappears, one is left with
problem of percolation of hard spheres. This is genera
considered identical to the determination of the random cl
packing limit.

The other type of continuum percolation problem is t
complementary problem to the first type. In this case, o
considers a system of overlapping spheres and asks whe
space not occupied by the spheres percolates@18–20#. This
is generally referred to asvoid percolation, but is also re-
ferred to asSwiss-cheese percolation~althoughcomplemen-
tary continuum percolationwould probably be a more de
scriptive term!. This type of percolation is very similar to th
PRE 621063-651X/2000/62~1!/68~5!/$15.00
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original definition involving fluid flow through a porous me
dia.

Without any additional mathematical tools to help sol
the problem, the question of determining whether or n
there is a connected path for fluid to flow through a syst
of overlapping spheres would be difficult. Fortunately, Ke
stein @18# showed that the problem could be mapped to
bond percolation problem on the edges of the Voronoi t
sellation of the sphere centers. The primary computatio
problem is then reduced to that of determining the Voro
tessellation@21#. Once the bond percolation model is esta
lished from that, one can apply well-known Monte Car
techniques to determine the percolation threshold and rel
exponents.

Due to the increased complexity involved in calculati
the Voronoi tessellation and the increased memory requ
to store the corresponding data structures, the size of
problem that one can effectively work on is greatly reduc
relative to lattice or standard continuum percolation pro
lems. The net effect is that there has been much less w
done on the void problem, and the numerical results t
have been obtained are much less precise. One intere
recent result has shown that the void percolation thresh
for a binary system of spheres with unequal radii seems to
equivalent to that of a system of spheres with equal ra
@20#.

The fact that the void percolation thresholds for two sy
tems with different sphere distributions should be the sa
would be a remarkable result if it were true, since the ar
ments that apply to universality of the critical exponen
should not apply to the percolation thresholds. There
been much more work done on the question of percola
threshold universality for the problem of the space occup
by the spheres. Theoretical works indicate that such a
versality should not exist@22,23#, and computational studie
of simple systems have borne out these results@14#.

In this paper, we use much larger systems to obtai
precise value for the void percolation threshold for a syst
68 ©2000 The American Physical Society
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PRE 62 69PRECISE DETERMINATION OF THE VOID . . .
of equisized spheres. In a similar way, we calculate the v
percolation threshold for a set of spheres that have two
ferent values for their radii, and show it is statistically d
ferent. We also calculate the correlation length exponenn,
and confirm that it is similar to that of lattice percolation a
ordinary continuum percolation, as universality dictates.

In Sec. II, we give the mathematical background for t
calculations of the correlation length exponent, along w
the formulas used to calculate the percolation thresholdpc .
Section III gives a detailed explanation of the algorithm
used to construct the Voronoi tessellation associated with
spheres. The numerical details of the calculation are give
Sec. IV. The results of the calculation are given in Sec
and compared with previous results. Finally, we summa
our conclusions in Sec. VI.

II. MATHEMATICAL BACKGROUND

A. Scaling laws

The precise value of the percolation thresholdpc for any
system is defined in the limit of a system of infinite size.
practice, one can only calculate the value of the effect
percolation threshold for a system of finite linear sizeL,
pc(L). Then, one uses the scaling relation@3#

pc~L !2pc}L21/n, ~1!

wheren is the correlation length exponent.
In many lattice applications, it is a natural variable

write the scaling relation in terms of the variableL. How-
ever, in continuum systems, especially those with a var
of particle sizes, the number of particlesN is a much more
natural scaling variable. Using the fact that

N}LD, ~2!

whereD is the dimensionality of the embedding space,
can write Eq.~1! as

pc~N!2pc}N21/(nD). ~3!

In order to calculatepc , one must calculatepc(N) for dif-
ferent values ofN, and plot them againstN21/(nD). For large
values ofN, this should be linear, and an extrapolation of t
line to the limitN21/(nD)→0 (N→`) will give the result for
the infinite system.

Before that calculation can be done, one also needs
value ofn. Values obtained for lattice models can be us
but for the sake of self-consistency, we will calculaten from
the data. This is done by calculatingpc(N) for a large num-
ber of finite systems ofN particles, and calculating the stan
dard deviationDpc(N) of those values. Then, one applies t
scaling relation@3#

Dpc~N!}N21/(nD) ~4!

to calculaten.
There is another reason to independently calculaten in

the case of the void problem. It turns out that universa
doesnot apply to all exponents in this case. The mechani
and transport exponents are different, due to the nar
bottlenecks that form in the system@24#. It is generally un-
derstood thatn does not change in this case, but there ha
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not been any calculations ofn for void percolation systems
that could confirm this with precision.

B. Voronoi diagrams

A Voronoi diagram of a set of points is a decompositi
of the space into regions~which we will call cells! that are
associated with each point, such that every point in
Voronoi cell is closer to the associated point than any ot
point in the system@25#. Mathematically, if there areN
sphere centers, and the coordinates of the sphere cente
given byxi , wherei 51, . . . ,N, then the Voronoi cell asso
ciated withi is defined as the set of all pointsx such that

d~x,xi !,d~x,xj !, ; iÞ j . ~5!

In this definition,d(x,y) is the distance between pointsx and
y.

The boundaries of the Voronoi cells represent points t
are equidistant from two or more sphere centers. From thi
is easy to see physically that any void space in the system
it exists, can be associated with a Voronoi vertex since
Voronoi vertices represent points in the systems that are
far away as possible from its associated sphere centers~gen-
erally four, for random three-dimensional systems!. In the
same way, any connected path in the void region can
associated with a Voronoi edge that links two Voronoi ve
tices. The edge represents the set of points equidistant to
sphere centers that are common to the two vertices th
connects. Therefore, once the network of vertices and ed
has been established, it is just necessary to determine w
of the vertices represent void space and which of the ed
are not intersected by any spheres. This procedure is pro
by Kerstein@18#.

The method of solving the void percolation problem f
overlapping spheres with possibly different radii follows t
same basic idea, but uses a more general version of
Voronoi tessellation known as aradical Voronoi tessellation
@26#. This definition is similar to the definition for the stan
dard Voronoi tessellation, except now for a spherei with
center atxi , there is an associated radiusr i , and the defini-
tion of the radical Voronoi cell becomes the set of pointsx
such that

d~x,xi !
22r i

2,d~x,xj !
22r j

2 , ; iÞ j . ~6!

This is known as a ‘‘radical’’ Voronoi tessellation since th
cell boundaries now represent points that are equidis
from tangent lines drawn from each sphere. This definition
often referred to as apower diagramin the mathematics
literature@27#.

This tessellation has a number of nice properties, incl
ing preserving planarity of the faces that separate the res
ing cells. Most importantly, the vertices and edges cont
precisely the same connectivity information as the case
equisized spheres@20#, so the algorithm is essentially un
changed. In the case of all sphere radii being equal, the s
dard Voronoi tessellation is recovered.

III. VORONOI DIAGRAM CONSTRUCTION

The fact that the passages through the void space ca
mapped to the edges in a Voronoi tessellation is indee
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70 PRE 62M. D. RINTOUL
fortuitous one, since the problem is very difficult to sol
without prior knowledge of this fact. However, this is st
one of the more time-consuming steps in the calculation,
having an efficient method of constructing the Voronoi te
sellation is important.

There are a number of ways to create Voronoi tesse
tions used in this simulation, depending on how the poi
are arranged, the specific information needed from the
sellation, and what boundary conditions are used. E
works were based on identifying the vertices first by sear
ing through a collection of nearby sphere centers and ch
ing each combination of four different sphere centers to
if it had a corresponding Voronoi vertex@28#. Other early
methods included identification of the Voronoi faces first
constructing the planes associated with the neighbo
points and then identifying the vertices@29#. This method is
especially useful if one is interested in the details of a sm
number of cells.

There were two methods of calculating the Voronoi te
sellation, both different than the two described above. T
primary method was via insertion. To use this method, o
starts with an initial tessellation, and then inserts the n
sphere center and changes the structure accordingly@21#.
This method is very quick since it can be implemented
finding a single vertex that will be affected by the insertio
and recursively searching through all of its neighbors u
one has identified all of the vertices that will be affecte
Determining whether or not a vertex will be affected is jus
matter of checking to see whether it is closer to the n
sphere center than it is to its previous sphere centers~taking
into account the radii in the case of the radical tessellatio!.
Because searches just involve looking at neighbors of ve
ces currently being considered, there is no need to searc
neighbors using geometrical comparisons.

The primary drawback with the method is that one ne
some initial tessellation to start using the method. This w
accomplished by starting with a small initial set of partic
centers and performing a ‘‘shooting’’-type tessellation. F
this tessellation, a single vertex was initially located, a
then its neighboring vertices were then located. The dete
nation of neighboring vertices is fairly straightforward in th
case, as one knows that the neighboring vertices will h
three of the four particle centers in common. Using this
formation it is simple enough to search along the equidis
line of these three centers to find the position of the nei
boring vertex. This is a little slower than the previo
method since there are more geometrical calculations to
form. Also, the data structures needed to perform all of
operations efficiently are much more complex in th
method, due to the fact that one must associate a ne
found vertex with all of its neighbors that may have alrea
been found.

The amount of time for the insertion algorithm to perfor
N insertions generally behaves asO(N) for N particles, as-
suming them to be uniformly distributed. It has a worst ca
behavior ofO(N2) in the case of certain pathological distr
butions of particles, but those distributions were not relev
for these simulations. The shooting algorithm had a sligh
worse thanO(N) scaling, but its behavior was not studied
detail since it was only used on small sets of particles
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never played a significant role in the amount of time taken
do the calculations.

IV. NUMERICAL DETAILS

To answer the question regarding universality of the p
colation threshold for different sphere size distributions,
chose to study two different systems. In both sets, half of
spheres had a radius ofr 1, and the other half were assigne
a radius ofr 2. In the first set,r 15r 2, while in the second,
r 15r 2/2. The factor of 2 in radii sizes was chosen with t
hope that if there were differences in the percolation thre
old, it would manifest itself strongly at that ratio. This wa
not based on any analytical prediction, but simply on the f
that in the limit thatr 1 /r 2 approaches either 0 or 1, on
recovers the equisized case. Given limited resources to
many different values ofr 1 /r 2, one would hope thatr 1 /r 2
51/2 would be a possible candidate for a measurable dif
ence in the percolation threshold.

Finite-size scaling was used to calculaten and pc , as
dictated by Eqs.~3! and~4!. Values ofN ranged from 312 to
80 000, with the value increasing by approximately a fac
of 2 each time. The number of configurations used to gen
ate the data for each value ofN ranged from 10 000 forN
5312 to 500 forN580 000.

Calculation of the percolation threshold for each syst
was done by a binary search through the different value
volume fraction for a fixed set of sphere positions and sph
radii ratios. One started with an initial value for the upp
and lower bound for the percolation threshold for the syste
and chose a first test value halfway between the two for
initial guess. If the void percolated, the upper bound was
at this value, and a new guess was chosen halfway betw
the lower bound and the new upper bound. Similarly, if t
void did not percolate, the lower bound was set at this va
and a new value was chosen halfway between the new lo
bound and the upper bound. The search was reiterated
the difference between two previous guesses was less th
specified tolerance. This tolerance was chosen to be 1026.
Periodic boundary conditions were employed, and perco
tion was defined as the point when the largest clus
spanned one of the directions of the unit cell and overlap
with itself.

The sphere radii were determined using the fact that i
system of overlapping spheres that are randomly distribu
over a periodic unit cube, the average total void volume fr
tion is given byeh, whereh is defined by

h5(
i 51

N
4

3
pr i

3 ~7!

and is just the sum of all of the individual sphere volumes
should be noted that this is not the precise value of the t
volume in each system, but it is very close. Attempts w
made to measure the effect of this by calculating the ex
volume in the system in systems with smallN, and adjusting
the radii until such a specific volume was reached, but t
had no measurable effect on the results.

The vertex percolation method was used to determine
Voronoi vertex network for the first 500 sphere centers~or
all of them for theN5312 case!, and then the insertion
method was used for the rest of the centers for each sam



e
n
la
th
f

a
ue
id

84
is

o
.

fo
e
ns
-
f

th
e

t

the
r-

e

f-
to
i-
,

een

sh-
s a
e of
ed
this
u-
old
dii

he
a

n, a
rt-

0.

t t
rs

PRE 62 71PRECISE DETERMINATION OF THE VOID . . .
It should be noted that in the case where all of the sph
radii are the same size, the Voronoi network does not cha
as the sphere radii change, and it only needs to be calcu
once. However, in the case where the radii are different,
vertex network needs to be recalculated for each value op.
The main effect of this is that the cases wherer 1 /r 251/2
took significantly longer to run.

V. RESULTS AND DISCUSSION

The log-log plot of Dpc(N) vs N is shown in Fig. 1.
Although the numerical values ofDpc(N) are different for
each of the two cases, the slope values are indistinguish
within the numerical tolerance of the simulation. The val
for N5312 is not used for the fit, as it appears to lie outs
the scaling region. The slope of the line for ther 1 /r 251
case corresponds to a value ofn50.90260.005, while the
r 1 /r 251/2 case gives a value ofn50.90160.005.

This value is significantly larger than the value of 0.
computed for void percolation from two different sphere d
tributions ~one equisized, one not! in @20#. However, that
work used only five different values ofN that ranged from
100 to 10 000 for the equisized case, and used only f
values~ranging from 100 to 3162! for the nonequisized case
As demonstrated here, much of that region did not seem
lie in the scaling regime. Also, fewer samples were used
each value ofN. The value ofn calculated here is much mor
in line with the value 0.88 reported for lattice calculatio
@3#, and the value 0.8960.01 reported for ordinary con
tinuum percolation@16#. It should be noted that the value o
0.84 given in@20# is not completely out of line, given the
errors for the different cases. We also note here that for
and later comparisons with@20#, that their nonequisized cas
had a different value ofr 1 /r 251/4, and the number fraction

FIG. 1. Log-log plot of the standard deviationDpc(N) as a
function of N for the case ofr 15r 2 ~filled circles! and r 15r 2/2
~filled squares!. The lines represent a least-squares power-law fi
the data. The caseN5312 is excluded from the fit since it appea
to be out of the scaling regime.
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of larger spheres was 0.2070~instead of 1/2 for the curren
study!.

Using a value of 1/(nD)50.37 ~corresponding ton
50.901), the values ofpc(N) were plotted againstN21/(nD).
Then a least-squares fit was done to fit a line through
values forN>2500 to extrapolate the value of the void pe
colation threshold forN21/(nD)50 (N5`). These data are
shown in Fig. 2. From the plots, it is very clear that th
values are significantly different. Forr 1 /r 251, we find that
pc50.030160.0003, while for r 1 /r 252 the value ispc
50.028760.0005. Not only are the values significantly di
ferent but from the graph it is clear that the extrapolation
N5` will give different values. These values are very sim
lar to the values given in@20#, but are much more precise
allowing the difference between the two values to be s
clearly.

VI. CONCLUSIONS

We have precisely calculated the void percolation thre
old for two distinct overlapping sphere systems. First, a
benchmark, we have calculated a much more precise valu
the void percolation threshold for a system of equisiz
spheres. Then we have shown a recent conjecture that
value might be universal for different sphere size distrib
tions to be false by calculating the void percolation thresh
for a set of spheres with half of the spheres having ra
twice as large as the others.
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FIG. 2. Plot ofpc(N) vs N1/(nD). The solid line represents a
linear fit to the r 15r 2 data for N<2500, while the dashed line
represents the same thing for ther 15r 2/2 case. They intercepts for
the two fits are very clearly different.
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