
PHYSICAL REVIEW E NOVEMBER 2000VOLUME 62, NUMBER 5
Evolution of interfaces and expansion in width

H. Arodź and R. Pełka
Institute of Physics, Jagellonian University, Reymonta 4, 30-059 Cracow, Poland

~Received 31 May 2000!

Interfaces in a model with a single, real nonconserved order parameter and purely dissipative evolution
equation are considered. We show that a systematic perturbative approach, called the expansion in width and
developed for curved domain walls, can be generalized to the interfaces. A procedure for calculating curvature
corrections is described. We also derive formulas for local velocity and local surface tension of the interface.
As an example, evolution of spherical interfaces is discussed, including an estimate of the critical size of small
droplets.

PACS number~s!: 61.30.Jf, 11.27.1d
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I. INTRODUCTION

An important aspect of the dynamics of phase transiti
in condensed matter is time evolution of an interface se
rating a retreating phase from the new one. Studied in
framework of Ginzburg-Landau type effective macrosco
models, the interface can be regarded as a kind of smo
asymmetric domain wall subject to a transverse force. T
asymmetry and the force are due to a difference in poten
energy across the interface. Pertinent evolution equations
order parameters typically are nonlinear partial differen
equations. In general they imply rather nontrivial phase
dering dynamics; see, e.g., review article@1#. A relativistic
version of the problem, not considered here, is also inter
ing because of its connection with field-theoretical cosm
ogy @2#.

Recently, evolution of ordinary domain walls has be
studied with the help of the Hilbert-Chapman-Ensk
method applied in a suitably chosen comoving coordin
system @3–5#; a systematic and consistent perturbat
scheme has been developed. It yields the relevant solut
of the evolution equations in the form of expansion in
parameterl 0 that can be regarded as a measure of width o
static planar domain wall. Consecutive terms in this exp
sion contain extrinsic curvatures of a surface comoving w
the wall, and also contain certain functions~below denoted
by Ck) that can be regarded as fields defined on that sur
and coupled to the extrinsic curvatures. In the present pa
which is a sequel to@3#, we show that that perturbative ex
pansion can be generalized to the case of curved interfa

The Hilbert-Chapman-Enskog method and the comov
coordinates technique, which we have learned from@6,7#,
respectively, have already been used in theoretical inves
tions of planar interfaces@6#, and of curved ones in supe
conducting films@8#. We apply these tools to curved inte
faces in the three-dimensional space, in a Ginzburg-Lan
type model defined by formulas~1! and ~2! and Eq.~3! be-
low. Interfaces in this model have been under investigat
for a long time; see, e.g.,@9#. Our main contribution consist
in providing a systematic iterative scheme for generating
relevant solution in the form of a perturbative series. T
role of small parameters is played by the ratiosl 0 /Ri , where
l 0 is the width andRi the curvature radii of the interface. I
spite of the nonlinearity of the evolution equation, the p
PRE 621063-651X/2000/62~5!/6749~11!/$15.00
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turbative contributions can be generated in a surprisin
simple manner. This is achieved by introducing the functio
Ck , which saturate certain integrability conditions. As
application, we derive a formula for the local velocity of th
interface with curvature corrections included, and we disc
the critical size of nucleating spherical droplets.

We consider a system described by a real, scalar, non
served order parameterF, with the free energyF of the form

F5E d3xS 1

2
K

]F

]xa

]F

]xa
1V~F!D , ~1!

where

V5AF21BF31CF4. ~2!

Time evolution is governed by the dissipative nonline
equation

g
]F~xW ,t !

]t
5KDF2V8~F!. ~3!

Here (xa)a51,2,3 are Cartesian coordinates in the space,V8
denotes the derivativedV/dF, andK,g,A,B,C are positive
constants. The free energy of the form~1! arises in, e.g., a de
Gennes–Landau description of a nematic-isotropic transi
in nematic liquid crystals in a single elastic constant appro
mation (L250) @10#. ThenF50 corresponds to the isotro
pic liquid phase, while in the nematic phaseF5” 0.

The concrete form~2! of the potential has the advantag
that the solution of Eq.~3! describing a planar interface has
simple, explicitly known form. It can be found in, e.g.,@9#.
The planar interface plays an important role in the pertur
tive scheme: the main idea is that there exist curved in
faces that do not differ much from the planar one if cons
ered in an appropriately chosen coordinate system~which in
particular should comove with the interface!. Therefore, one
may hope thatF(xW ,t) for such curved interfaces can be ca
culated perturbatively, with the planar interface giving t
zeroth-order term. Toward this end, it is necessary to in
duce the comoving coordinate system explicitly, and to g
a prescription for the iterative computation of the perturb
tive corrections.
6749 ©2000 The American Physical Society
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The plan of our paper is as follows. In Sec. II we descr
the planar interface and the comoving coordinates. This
tion contains preliminary material quoted here for the con
nience of the reader as well as in order to fix our notation
Sec. III we describe the perturbative scheme for the cur
interfaces. In Sec. IV we present formulas for the veloc
and the free energy of the curved interface. Section V
devoted to a discussion of spherical droplets of the sta
phase which nucleate during the phase transition. Sev
remarks are presented in Sec. VI. In Appendix A we co
struct solutions of linear equations obeyed for corrections
the transverse profile of the interface. Appendix B contain
brief discussion of the stability of the interface.

II. THE PRELIMINARIES

A. The homogeneous planar interface

Let us assume that the planar interface is perpendicula
the z axis (z[x3) and homogeneous. ThenF depends only
on z and t, and Eq.~3! is reduced to

g] tF5K]z
2F2V8~F!. ~4!

The interface type solutionF(z,t) interpolates smoothly be
tween minima ofV when z changes from2` to 1`. V
given by formula~2! has two minima,

F250, F152AK/~8Cl0
2!,

where l 0 is given by formula~9! below. The corresponding
phases we shall call isotropic and ordered, respectively.
us multiply Eq.~4! by ]zF and integrate overz. The result-
ing identity,

gE
2`

1`

dz]zF] tF5V~F2!2V~F1!,

implies that] tF5” 0 if the minima are nondegenerate. Fu
ther assumption that the interface moves in a uniform m
ner with velocityv0, that is, that

F~z,t !5F~z2z02v0t !,

leads to the formula

gv0E
2`

1`

~]zF!25V~F1!2V~F2!, ~5!

where

Z5z2z02v0t. ~6!

Hence the interface moves towards the region of higher
tential V(F6), as expected.

The exact solution of Eq.~4! has the following form@9#:

F052A K

8l 0
2C

1

11exp~2Z/2l 0!
, ~7!

where
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v05A 9K

32g2C
~B2A9B2232AC!, ~8!

and

l 0
215

1

2A2KC
~3B1A9B2232AC!. ~9!

The constantz0 can be regarded as the position of the int
face att50, and l 0 as its width.F0 smoothly interpolates
between the local minima ofV: F2 for z→2` andF1 for
z→1`. The corresponding values of the potential are

V~F2!50, V~F1!5
Kgv0

96l 0
3C

.

At Fm523B/4C2F1 the potentialV has a local maximum
if A.0. The substitutionsZ→2Z andv0→2v0 in formu-
las ~7! and ~8! give another solution of Eq.~4!, called anti-
interface.

It is clear that solution~7! exists if

9B2>32AC. ~10!

The parameterA has the following dependence on the tem
peratureT @10#:

A5a~T2T* !,

where a.0. The constantsB, C, and a do not depend on
temperature. Condition~10! is satisfied if the temperatureT
is from the interval (T* ,Tc), whereTc is determined from
the equation 9B2532aC(Tc2T* ). It is clear thatTc.T* .
For temperatures in this interval one phase is stable and
other one is metastable.

The potential~2! can also lead to a static, symmetric d
main wall. Namely, for the temperatureT0 such thatB2

54AC the velocityv0 vanishes,V(F1)5V(F2)50, and
the potential can be written in the following form:

V5C@~F2Fm!22Fm
2 #2, ~11!

where forT5T0

Fm52
B

4C
.

In this particular case there is the degenerate ground s
given byF5F6 . The potential~11! possesses theZ2 sym-
metry

F→2Fm2F,

and the interface becomes a static homogeneous, symm
domain wall with theZ2 topological charge.

B. The comoving coordinates

Here we quote the main definitions in order to introdu
our notation. A more detailed description of this change
coordinates, as well as a discussion of related mathema
questions, can be found in@3–5#.
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The comoving coordinates in the space denoted by (sa)
5(s1,s2,s35j), wherea51,2,3, are defined by the fol
lowing formula:

xW5XW ~s i ,t !1jpW ~s i ,t !. ~12!

HerexW5(xa), wherexa are the Cartesian coordinates in t
spaceR3. PointsXW (s i ,t) form a smooth surfaceS which is
parametrized by the two coordinates1 s1,s2. In general, the
interface moves in space, henceXW depends on the timet.

The surfaceS is fastened to the interface—the shape o
mimics the shape of the interface and they move toget
We shall see that for consistency of the perturbative sch
XW (s i ,t) has to obey certain equations from which one c
determine the evolution of the surfaceS. The coordinatej
parametrizes the axis perpendicular to the interface at p
XW (s i ,t). The vectorpW (s i ,t) is a unit normal toS at this
point, that is,

pW 251, pW XW ,k~s i ,t !50,

whereXW ,k5]XW /]sk. The surfaceS is characterized in par
ticular by an induced metric tensor onS,

gik5XW ,iXW ,k ,

and the extrinsic curvature coefficients

Ki j 5pW XW ,i j .

The matrix (gik) is by definition the inverse of the matri
(gkl), i.e., gikgkl5d l

i .
The two-by-two matrix (Kik) is symmetric. Two eigen-

values k1 ,k2 of the matrix (K j
i ), where K j

i 5gil Kl j , are

called extrinsic curvatures ofS at pointXW . The main curva-
ture radii are defined asRi51/ki . Thus, by the definition

Ki
i5

1

R1
1

1

R2
, det~K j

i !5
1

R1R2
.

In general, the curvature radii vary alongS and with time.
The coordinates (sa) replace the Cartesian coordinat

(xa) in the vicinity of the interface. Components of the me
ric tensor in the space transformed to the new coordinates
denoted byGab . They are given by the following formulas

G3351, G3k5Gk350, Gik5Ni
lglr Nk

r ,

where

Ni
l5d i

l2jKi
l .

Dependence ofGab on the transverse coordinatej is ex-
plicit, and s1,s2 enter through the tensorsgik ,Kr

l which
characterize the geometry of surfaceS.

1The Greek indicesa,b, . . . have values 1,2,3 and they refer
the three-dimensional space, while the Latin indicesi , j ,k,l , . . .
have values 1,2 and they refer to the inner coordinatess1,s2 on the
surfaceS.
t
r.
e

n

nt

re

ComponentsGab of the inverse metric tensor have th
form

G3351, G3k5Gk350, Gik5~N21!r
i grl ~N21! l

k ,

where

~N21!r
i 5

1

N
@~12jKl

l !d r
i 1jKr

i #,

and

N5det~Nk
i !

512jKi
i1

1

2
j2~Ki

iKl
l2Kl

iKi
l !

5S 12
j

R1
D S 12

j

R2
D .

In order to transform Eq.~3! into the comoving coordi-
nates, we use the standard formula

DF5
1

AG

]

]sa S AGGab
]F

]sbD , ~13!

whereG5det(Gab),AG5AgN,g5det(gik).
The time derivative in Eq.~3! is taken under the condition

that allxa are constant. It is convenient to use a time deriv
tive taken at constantsa. They are related by the formula

]

]t U
xa

5
]

]t U
sa

1
]sb

]t U
xa

]

]sb
. ~14!

Finally, let us introduce the dimensionless variabless and
f instead of, respectively,j andF:

j52l 0s, F~j,s i ,t !52A K

8Cl0
2
f~s,s i ,t !. ~15!

The coordinates gives the distance fromS in the unit 2l 0
relative to the width of the planar interface.

Using formulas~13!–~15! we can write Eq.~3! in the
following form, which is convenient for construction of th
expansion in width:

2l 0
2g

K

]f

]t U
sk

2 v̄
]f

]s
2

2l 0
2g

K
~N21!k

i gkrXW ,r~XẆ 12l 0spẆ !f ,i

5
1

2

]2f

]s2
1

1

2N

]N

]s

]f

]s
12l 0

2 1

AgN

]

]s j
~GjkAgNf ,k!

2af1~11a!f22f3, ~16!

where

v̄5
g l 0

K
pW XẆ

is the dimensionless transverse velocity of the surfaceS, the
dot denotes the derivative]/]tusa, and



e
e-

fe
y.

re

e

er
on

bs
f
w
t
a

r

on

ou

y

an-
tive
ution

e
at

so-

t

6752 PRE 62H. ARODŹ AND R. PEŁKA
a5
4Al0

2

K
.

Formula~9! and condition~10! imply that 0<a<1 for tem-
peratures in the rangeT* ,Tc .

The homogeneous planar interface~7! can be obtained
from the evolution equation written in the form~16! in the
following manner. As the surfaceS we take a plane, henc
K j

i 50. Moreover,S is assumed to move with constant v
locity v0, hence

pW XẆ 05v05const.

Finally,

]f

]t U
sa

50

because we look at the interface from the comoving re
ence frame, and]f/]s i50 because of the homogeneit
Then equation~16! is reduced to

2 v̄0

]f

]s
5

1

2

]2f

]s2
2af1~11a!f22f3. ~17!

The solution previously given by formulas~6!–~9! now has
the form

f5f0~s!, v̄05a2
1

2
, ~18!

where

f0~s!5
exp~s2s0!

11exp~s2s0!
. ~19!

f0(s) smoothly interpolates between 0 and 1. This cor
sponds to interpolation between the minimaF2 ,F1 of the
potentialV if pW is directed from negative towards positiv
z’s. If we choose the opposite direction forpW we obtain the
anti-interface. The constants0 corresponds toz0 from for-
mula ~6!.

III. EXPANSION IN WIDTH FOR CURVED INTERFACES

Let us begin with a brief description of the ideas und
lying the calculations presented below. The set of soluti
of the nonlinear, partial differential equation~3! is very
large. We are interested here only in a rather special su
of it, consisting of solutions that represent the evolution o
smooth interface. Moreover, even within this subclass
concentrate on rather special interfaces, called by us
‘‘basic’’ ones. Their defining feature is that one can find
comoving coordinate system in which the order paramete
the interface is essentially given byf0(s), formula ~19!,
modified by small corrections that take into account the n
vanishing curvature.

By writing the evolution equation in the form~16!, we
have shown thatl 0 can be regarded as a parameter analog
to a coupling constant—it appears in Eq.~16! only as a co-
efficient in several~but not all! terms. Therefore, one ma
r-
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et
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e
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hope that a systematic perturbative expansion inl 0 will turn
out to be useful, as is the case with other perturbative exp
sions so numerous in theoretical physics. The perturba
series can be constructed in the standard manner: the sol
soughtf and the velocityv̄ are written in the form

f5f01 l 0f11 l 0
2f21 . . . , v̄5 v̄01 l 0v̄11 l 0

2v̄21 . . . ,
~20!

and inserted in Eq.~16!. Coefficients in front of successiv
powers ofl 0 in this equation are equated to zero. Notice th
after the rescalingj52l 0s, the expansion parameterl 0 is
present also inN and (N21)k

i . In the zeroth order we obtain
the following equation:

2 v̄0

]f0

]s
5

1

2

]2f0

]s2
2af01~11a!f0

22f0
3 . ~21!

which formally coincides with Eq.~17!. Therefore, we can
immediately write the relevant solution

v̄05a2
1

2
, f0~s,s i ,t !5

exp@s2C0~s i ,t !#

11exp@s2C0~s i ,t !#
.

~22!

There are, however, two differences between the planar
lution ~18!,~19! and the solution~22!. First, we do not as-
sume homogeneity of the interface; therefore, the constans0
from formula~19! is replaced by the functionC0(s i ,t) of the
indicated variables. Second, the surfaceS is not fixed yet,
while in the former case it was a plane.

It is convenient to rewrite Eq.~16! as an equation for the
correctionsdf,d v̄, which are defined by the formulas

f5f0~s,s i ,t !1df, v̄5 v̄01d v̄. ~23!

After taking into account the fact thatf0 obeys Eq.~21!, we
obtain an equation of the form

L̂df5 f , ~24!

with the linear operatorL̂ defined as

L̂5
1

2

]2

]s2
1S a2

1

2D ]

]s
2a12~a11!f023f0

2 ,

and

f 52S 1

2N

]N

]s
1d v̄ D ]f0

]s
1

2g l 0
2

K S ]df

]t U
sa

2
]C0

]t U
sa

]f0

]s D
2

2l 0
2g

K
~N21!k

i gkrXW ,r~XẆ 12l 0spẆ !S df ,i2C0,i

]f0

]s D
2S 1

2N

]N

]s
1d v̄ D ]df

]s
22l 0

2 1

AgN

]

]s j FGjkAgNS df ,k

2C0,k

]f0

]s D G1~3f02a21!~df!21~df!3, ~25!
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wherev̄0 andf0 are given by formulas~22!. Now it is easy
to see that in each order inl 0 we obtain an inhomogeneou
linear differential equation of the form

L̂fn5 f n , ~26!

wheren51,2, . . . . Forexample,

f 15~Ki
i2 v̄1!

]f0

]s
. ~27!

In the whole perturbative scheme Eq.~21! is the only non-
linear equation for the contributions to the order parame
f. We show in Appendix A that Eqs.~26! can easily be
solved with the help of standard methods—one can const
the relevant Green’s function forL̂. It is remarkable that the
same operatorL̂ appears in all equations~26!, and that the
form of it does not depend on the surfaceS. For these rea-
sons, calculation of the correctionsfn is reduced to the rela
tively simple task of findingf n and calculating the one
dimensional integrals overs shown in the Appendix.

The perturbative Ansatz~20! and Eqs.~26! are two parts
of the Hilbert-Chapman-Enskog method. The third and m
crucial part consists of integrability conditions for Eqs.~26!

@6#. Such conditions appear because the operatorL̂†, the
Hermitian conjugate ofL̂, has a normalizable eigenstate wi
the eigenvalue equal to zero. Such an eigenstate is calle
zero mode. Let us first find the zero mode for the operatoL̂.
Insertingf0 into Eq. ~21! and differentiating this equation
with respect tos gives the following identity:

L̂c r50, ~28!

where

c r~s,s i ,t !5
]f0

]s
5

exp~s2C0!

@11exp~s2C0!#2
. ~29!

Notice thatc r exponentially vanishes fors→6`. Because
the operator]/]s is anti-Hermitian with respect to the scal
product^g1ug2&5*2`

1`dsg1* g2, the operatorL̂ is not Hermit-
ian. Its Hermitian conjugate has the form

L̂†5
1

2

]2

]s2
2S a2

1

2D ]

]s
2a12~a11!f023f0

2 .

The operatorL̂† has a zero mode, too, namely,

L̂†c l50, ~30!

where2

c l5exp@~2a21!~s2C0!#c r . ~31!

The functionc l vanishes exponentially fors→6` because
0,a,1 for all temperatures in the rangeT* ,Tc . For a

2The subscriptsl and r stand for left and right, respectively. Th

point is that~30! can be written asc l L̂50.
r

ct

st

the

51/2, that is when the interface becomes the domain w
i.e., the two zero modes coincide.

Let us multiply both sides of Eqs.~26! by c l(s) and take
the integral*2`

1`ds. The left-hand side~lhs!, of the resulting
formula vanishes because of~30!, hence

E
2`

1`

dsc l f n50 ~32!

for n51,2, . . . . It turns out that these conditions are no
trivial. In particular, they give an evolution equation for su
faceS.

It should be noted that the conditions~32! are in fact
approximate, but the neglected terms are exponenti
small. The point is that in order to obtain Eqs.~26! we use an
expansion of the type

1

122l 0s/Ri
5 (

k50

` S 2l 0s

Ri
D k

( i 51,2), which are convergent fors,sM where sM
5min(R1/2l 0 ,R2/2l 0). Therefore, when deriving condition
~32!, the integration range should be restricted tousu,sM .
Because of the exponential decrease ofc l and f n at largeusu,
this will give exponentially small corrections to these con
tions. We assume that the ratiosRi / l 0 are so large that we
may neglect those corrections.

Let us compute the basic interface up to the orderl 0. For
n51, condition~32! gives

v̄15
1

R1
1

1

R2
~33!

because

a0~a!5E
2`

1`

dsc lc r5B~2a11,322a!

does not vanish fora in the interval~0,1!. HereB denotes
the Euler beta function. The functiona0(a) has the symmet-
ric ‘‘U’’ shape in the intervalaP@0,1#, with the minimum
equal to 1/6 ata51/2, and the upper ends reaching the va
1/3 for a50 and 1. The condition~33! implies that the sur-
faceS obeys the following evolution equation:

g

K
XẆ pW 5

2a21

2l 0
1Ki

i . ~34!

It formally coincides with the well-known Allen-Cahn equa
tion @11#.

Now Eq. ~26! with n51 is reduced to

L̂f150. ~35!

It has the following solution, which vanishes ats→6`:

f15C1~s i ,t !c r , ~36!

whereC1 is a smooth function of the indicated variables.
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For n52, we obtain from formula~25!, after taking into
account the results~33! and ~36!,

f 25~2sKj
i Ki

j2 v̄2!]sf01~3f02a21!C1
2~]sf0!2

1
2g

K
~2] tC01gikXW ,kXẆ C0,i !]sf0

12
1

Ag

]

]s i
~gikAgC0,k]sf0!. ~37!

Straightforward integration overs as in Eq.~32! can be a
little bit cumbersome. This calculation can be significan
simplified with the help of the following identity:

2E dsc l@3f02~a11!#]sf0fn5E ds]sc l f n , ~38!

where in the case at handn51. Identity ~38! is obtained
from Eq. ~26! by differentiating both sides of it with respec
to s, multiplying by c l , and integrating overs, just as in the
derivation of the integrability conditions~32!. The integra-
bility condition gives

a1~a!K j
i Ki

j2 v̄21
2g

K
~2] tC01gikXW ,kXẆ C0,i !12D2C0

1~2a21!gikC0,iC0,k12C0K j
i Ki

j50, ~39!

where

D25
1

Ag

]

]s i S Aggik
]

]skD
is the Laplacian on the surfaceS and

a1~a!5a0~a!21
da0~a!

da
.

For a from the interval@0,1# the functiona1(a) is almost
linear. In particular,a(0)523,a(1/2)50,a(1)53.

The integrability condition~39! allows the freedom to
choose whether we keep nonvanishingC0 or v̄2. It is clear
that we cannot put to zero both of them unlessK j

i Ki
j50

~thenS is a plane!. The choiceC050 gives

v̄25a1~a!K j
i Ki

j . ~40!

This implies a correction to the Allen-Cahn equation of t
form
g l 0

K
d1~XẆ pW !5 l 0

2v̄2 ,

whered1(•) denotes the first-order correction toXẆ pW . In con-
sequence, there will be a correction to the solutionXW of the
Allen-Cahn equation, and corrections togik andKik . These
corrections have to be taken into account when calculatinf k
with k>3. It is clear that this version of the perturbativ
scheme is rather cumbersome.

On the other hand, if we putv̄250, then the evolution of
the surfaceS is still governed by the relatively simple Allen
Cahn equation~34!. The integrability condition~39! is now
saturated by the functionC0—it has the form of the evolu-
tion equation forC0, namely,

g

K
@] tC02gik]skXW XẆ C0,i #2D2C02S a2

1

2DgikC0,iC0,k

2C0K j
i Ki

j5
1

2
a1~a!K j

i Ki
j . ~41!

Let us also check the third integrability condition. Form
las ~20!,~25! give

f 352 v̄3c r12Ki
i@3K j

i Ki
j2~Ki

i !2#s2c r1
2g

K
] t~C1c r !

1
2g

K
gir XW rXẆ ~C1c r ! ,i1

4g

K
C0,i~gir XW rpẆ Kir XW rXẆ !sc r

12sKj
i Ki

j]sf122D2~C1c r !14sKi
i 1

Ag
~AggjkC0,kc r ! , j

2
4s

Ag
~AggjkKl

lC0,kc r ! , j1
8s

Ag
~AgKjkC0,kc r ! , j

12~3f02a21!f1f21f1
3 , ~42!

where we have putv̄250. The term withf2 contains a new
function C2 ~see Appendix A!; however, this function will
not appear in the integrability condition because the integ
tion overs eliminates the term proportional toC2. This can
be seen from the identity~38!: on the rhs we havef 2 in
which C2 is not present. We see already from formula~42!

that we can choose whether to keep nonvanishingv̄3 or C1.
For the same reason as in the case ofn52, we choosev̄3
50, and the integrability is saturated byC1. The resulting
evolution equation forC1 has the following form:
g

K
@] tC12gik]skXW XẆ ]s iC1#2D2C12K j

i Ki
jC12S a2

1

2Dgjk]kC0] jC1

52S 1

4
a21a1C01C0

2DKi
i@3K j

kKk
j 2~Kl

l !2#12Fgi j ] jKl
l2

g

K
@gir ~] rXẆ pẆ !1Kir ~] rXW XẆ !#G] iC0S C01

1

2
a1D

2
4

Ag
] j~K jkAg]kC0!S C01

1

2
a1D22K jk]kC0] jC0F11~2a21!S C01

1

2
a1D G , ~43!
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where

a25
a09

a0
.

It is easy to proceed to the second and higher ord
Using formulas from Appendix A, one can write the gene
solution fn of Eq. ~26!. It contains the functionCn(s i ,t),
which obeys an equation analogous to~41! or ~43!. This
equation follows from the integrability condition~32! with n

replaced byn12 if we put v̄n50. Due to identity~38!, in
the derivation of that equation we do not need the expl
form of fn11. In the present paper we will end our consi
erations at the first order.

In order to obtain a concrete basic interface solution,
have to specify initial data for equations~34!,~41!,~43!.
There is no restriction on the initial data, except the obvio
requirement that perturbative corrections of a given or
should be small in comparison with those of preceding
ders. In particular,l 0C1!1, l 0

2C2!1, and l 0 /Ri!1. If we
consider the interface solution only up to the first-order c
rection ~36!, a simplification appears: without any loss
generality we may adopt the homogeneous initial data

C0~s i ,t5t0!50, C1~s i ,t5t0!50. ~44!

This can be justified as follows. Local deformation ofS by
shifting a small piece of it along the directionpW results in the
corresponding shift of the coordinates. Therefore, for any
given basic interface, we can choose an initial position oS
such thatC0(s i ,t5t0)50 in formula ~22! for f0. This can
be done at one instant of time, e.g., at the initial time. Valu
of C0 and the position ofS at later times are determine
uniquely by Eqs.~34! and ~41! and in generalC0 does not
vanish. Notice, however, that such a shift will influen
terms of the orderl 0

2 and higher in formula~25! for f —due
to the explicit presence ofs in N,(N21)k

i , f is not invariant
under the translationss→s1C0.

The rhs of Eq.~41! vanishes fora51/2, that is, in the
domain wall case. In this case, the initial condition~44! im-
plies thatC050 for all times and, in consequence,C0 dis-
appears from the first-order perturbative solution.

As for C1, the reason for the homogeneous initial con
tion is that the interface with the first-order correction, th
is,

f5f0~s2C0!1 l 0C1c r~s2C0!, ~45!

can be regarded asf0(s2C01 l 0C1) to the first order inl 0,
so again we can cancelC1 at the initial timet0 by suitably
correcting the initial position of the surfaceS. Let us stress
again that this works only at the fixed time instant.

The initial data~44! imply that at the initial time the orde
parameterf is equal tof0(s). Hence, in choosing initia
data forf, the only freedom we still have is in the positio
of surfaceS. When the second and higher order correctio
are included, one has to allow for initial data more gene
than~44! for C0 andC1. Nevertheless, the initial form off
is always uniquely fixed by these data and the initial posit
of surfaceS.
s.
l

it
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-
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n

To recapitulate, the perturbative solution to the first ord
has the form~45!, wheref0 ,c r are given by formulas~22!
and~29!, respectively. Formula~45! gives the dependence o
s explicitly. The functionsC0 ,C1 are to be determined from
Eqs.~41! and~43! with the initial data~44!. One also has to
solve the Allen-Cahn equation~34!. In certain cases, thes
equations can be solved analytically, e.g., for the spher
interface discussed in the next section. In the general c
one will be forced to use numerical methods. In comparis
with the initial evolution equation~3! the advantage is tha
the equations forS,C0 ,C1 involve only two spatial variables
s1,s2. Such a reduction in the number of independent va
ables is a valuable simplification in numerical calculation

The perturbative solution obtained above can be use
calculations of the physical characteristics of interfaces.
the following section we obtain formulas for the local velo
ity and surface tension of the interface. In Sec. V we disc
the evolution of a spherical interface.

IV. LOCAL VELOCITY AND SURFACE TENSION
OF THE INTERFACE

Let us apply the expansion in width in order to find th
local transverse velocity and surface tension of the interfa
We shall use the first-order solution~45!. The velocity is
obtained from the conditionf5const. It does not necessa

ily coincide with pW XẆ given by the Allen-Cahn equation~34!.
Because we neglect terms of second and higher order inl 0,
we may writef in the formf0(s2C01 l 0C1), from which
we see thatf is constant on surfaces given in the comovi
coordinates by the conditions2C01 l 0C15s0, wheres0 is a
constant. It follows from formula~12! that in the laboratory
Cartesian coordinate frame these surfaces are given
xW0(s i ,t), where

xW0~s i ,t !5XW ~s i ,t !12l 0~s01C02 l 0C1!pW ~s i ,t !.

The transverse velocity of the interface is equal toxẆ0pW . In
order to calculate it, we take time derivative ofxW0, project it
on pW , and use equations~34!, ~41!, and~43! with the initial
data~44!. The result can be written in the form

g

K
pW xẆ05

2a21

2l 0
1

1

R1
1

1

R2
1 l 0a1S 1

R1
2

1
1

R2
2D

1 l 0
2a2S 1

R1
3

1
1

R2
3D . ~46!

The unit normal vectorpW is directed from the isotropic phas
(F5F0) to the ordered phase (F5F1). In the next section
we shall use formula~46! in the case of spherical droplets

The surface tension is another basic characteristic of
interface. It can be determined from a formula for free e
ergy of the interface, which is defined as follows. The s
faceS cuts the total volume of the sample into two regio
denoted below by I and II. Let us imagine that in region
there is the homogeneous isotropic phase with a constant
energy density equal toV(F2)50, and in region II the ho-
mogeneous ordered phase for whichV(F1)
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5Kgv0 /(96l 0
3C). The normal vectorpW points to region II.

The free energy of the interface is defined as the differe

Fi5F2V~F1!VII ,

whereVII denotes the volume of region II, andF is the total
free energy of the sample given by formula~1!. We shall
computeFi using the first-order solution~45!. Then, without
any loss of generality we may putC05C150 at the given
time, as argued in the preceding section, while the surfacS
remains arbitrary. Therefore, we need onlyf0(s)
5exp(s)/@11exp(s)#. Because the dependence on the coo
nates5j/2l 0 is explicit, we can integrate overs in formula
~1! for the free energyF. The volume element and the gra
dient free energy are taken in the form

d3x5AGdjds1ds2,
]f

]xa

]f

]xa
5Gab

]f

]sa

]f

]sb
.

Neglecting terms quadratic inl 0 /Ri we obtain the following
formula for the free energy of the interface:

Fi5E
S
kdA,

where

k5
K2

96l 0
3C

F12S p2

3
22D ~122a!S l 0

R1
1

l 0

R2
D G ~47!

can be regarded as the local surface tension of the inter
at pointsx(s1,s2,t). R1 ,R2 are the main curvature radii o
the surfaceS at that point, anddA5Agds1ds2 is the sur-
face element ofS. Of course, this formula forFi can be
trusted if l 0 /Ri!1.

For a spherical droplet of the ordered phase embedde
the isotropic phase,R1 ,R2 are positive~the signs follow
from formulas given in Sec. II B! and of course equal to th
radius of the sphere. Ifa,1/2, formula~46! implies that the

droplet grows~if its radius is large enough! becausepW xẆ0

,0 andpW is the inward normal. In this case the curvatu
correction diminishes the surface tension, andk increases as
the droplet grows. In the reverse situation—the isotro
phase inside and the ordered one outside—the curvatur
creases the surface tension andk decreases as the dropl
grows.

In the case of a growing droplet of radiusR of the isotro-
pic phase in the ordered mediumk has the same dependen
on the curvature. HerepW is the outward normal,a

.1/2, pW xẆ0.0, andR15R252R. Nevertheless, the value
of surface tension in both cases are different becausl 0
present in formula~47! depends ona, namely, l 0;(1
1a); see formula~A1! below. Note that the first-order cur
vature correction tok vanishes in the domain wall case (a
51/2).
e

i-

ce

in

c
in-

V. EVOLUTION OF THE SPHERICAL INTERFACE

Let us now apply the formalism developed in Secs.
and IV to the evolution of spherical droplets. We assume t
a5” 1/2 in order to exclude the relatively simpler case of t
domain wall. The surfaceS is parametrized by

XW 057R~ t !pW ~u,c!.

Hereu,c are the spherical angles, andpW is the inward~out-
ward! normal to the sphere whena,1/2 (a.1/2). Thus,
pW XẆ 057Ṙ, with the upper sign corresponding toa,1/2.
The Allen-Cahn equation has the form

g

2K
Ṙ5

1

R*
2

1

R
, ~48!

where

R* 5
4l 0

u122au
.

Integration of Eq.~48! yields the following formula:

R~ t !

R*
1 lnUR~ t !

R*
21U5 2K

R
*
2 g

t1
R~0!

R*
1 lnUR~0!

R*
21U.

~49!

Evolution equation~41! for C0 now has the form

g

2K
Ċ02

1

R~ t !2
C05

a1

2R~ t !2
. ~50!

It has the following solution:

C0~ t !52
a1

2

R*
R~ t !

R~0!2R~ t !

R~0!2R*
~51!

which obeys the initial conditionC0(0)50.
The evolution equation forC1 is obtained from the gen

eral equation~43!. For the spherical bubble it has the form

g

2K
Ċ12

1

R2
C1572S 1

4
a21a1C01C0

2D 1

R3
, ~52!

where as usual the upper sign corresponds toa,1/2. We do
not know the explicit solution of this equation.

There are two cases in which the spherical droplets gr
a droplet of the ordered phase whena,1/2, and a droplet of
the disordered phase whena.1/2. In both cases formula
~46! for the radial velocity of expansionṙ 0 gives

g l 0

2K
ṙ 05

u2a21u
4

2
l 0

R
1ua1~a!uS l 0

RD 2

2a2~a!S l 0

RD 3

.

~53!

The expansion velocity is identical for all surfaces of co
stantf.

It is clear that there is a minimalR, which we denote by
Rmin(a), such thatṙ 0.0. We have found numerically that

Rmin~a!5
R*

z~a!
, ~54!
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where the functionz(a) is symmetric with respect toa
51/2 and it has values in the interval@0.866,1.049#. For
example, z(0)50.866,z(0.1)50.984,z(0.20)51.045,z(0.3)
51.040z(0.4)51.012,z(0.5)51.0. Notice thatRmin(a) di-
verges whena→1/2. Thus, in the Ginzburg-Landau mod
nucleation of expanding droplets is possible only if we h
the ordered phase to a temperature aboveT0, or cool the
isotropic phase belowT0.

For large timet, when the droplets are very large, th
velocity ṙ (t) becomes equal to the velocity of the plan
interface

ṙ `~a!5
K

2g l 0
u122au,

as expected. Note thatRmin(a) and ṙ `(a) are not indepen-
dent:

z~a! ṙ `~a!Rmin~a!5
2K

g
.

Parametera is related to the temperature:

a5
2u

122u1A124u
,

where

u5
8aC

9B2
~T2T* !

is a reduced temperature.T0 and Tc correspond tou52/9
and 1/4, correspondingly. The intervalaP@0,1/2# corre-
sponds touP@0,2/9#, andaP@1/2,1# to uP@2/9,1/4#. The
temperature dependence ofl 0 can be seen from formula

l 05~11a!
A2KC

3B
, ~55!

which follows from definition~9! after some algebraic ma
nipulations.Rmin is proportional tol 0 /u122au, which can
be written in the form

l 0

u122au
5

A2KC

6B

4

u3A124u21u
.

In the interval uP@0,2/9#, which corresponds toT
P@T* ,T0#, l 0 /u122au monotonically grows from
A2KC/3B to infinity.

Using formula ~55! and the symmetry ofz: z(1/22d)
5z(1/21d), we obtain the following relation:

Rmin~1/22d!

Rmin~1/21d!
5

322d

312d
,1, ~56!

wheredP(0,1/2). Thus, the minimal size of the droplets
the isotropic phase that appear and grow whena.1/2 is
significantly larger than the size of the droplets of the
dered phase that can appear fora,1/2.
t

-

The velocitiesṙ ` depend on temperature. In particula
comparing them for temperatures below and aboveT0,

ṙ `~1/22d!

ṙ `~1/21d!
5

312d

322d
.1.

Hence, the droplets of the isotropic phase expand m
slowly than the droplets withf>1 inside.

Our main goal in this paper has been to develop the p
turbative expansion for the curved interfaces. We plan
apply it to interfaces in liquid crystals in a subsequent wo
Nevertheless, just in order to get an idea of what our form
las predict, we have estimatedl 0 and ṙ ` for interfaces in
nematic liquid crystal MBBA. The model defined by formu
las ~1! and ~2! and Eq.~3! can be related to the de Genne
Landau theory in a single elastic constant approximat
(L15K,L250). We take data found in@12–14#: T*
'316 K, a'0.021 J/(cm3K), B'0.07 J/cm3, C'0.06 J/
cm3 ~after a change in our notation!, and K'6
310212N, g'5.231022 kg/m s. We have identifiedg
with the rescaled rotational viscosityg1L1 /K11 at a tempera-
ture close toT* . Then, T02T* '1 K,Tc2T* '1.2 K.
The width l 0 and the velocityṙ ` of the planar interface are
given by the following formulas:

l 0'40~11a!31028 cm, ṙ `~a!'1.4
u122au

11a

cm

s
.

Note that even for rather small droplets with a radius
several hundred Ångstro¨m, the ratiol 0 /R is rather small.

VI. REMARKS

~1! We have shown how one can systematically comp
curvature corrections to the transverse profilef and to the
local velocity ṙ 0 of the interface. Due to the presence
functions, theCk evolution equation for the surfaceShas the
relatively simple form~34! and there are no curvature co
rections to it. The formalism for interfaces is a generalizat
of the one constructed for domain walls@3–5#. The main
new ingredients are theC0 function and the (2a21)/l 0 term
in the Allen-Cahn equation~34!. By including them, we have
significantly enlarged the range of physical applications
the perturbative scheme. This justifies the present publ
tion.

~2! The model we have considered is special in the se
that the exact planar interface solutionf0 is known. More-
over, the solutions of the equationsL̂fn5 f n are given~al-
most! explicitly too, because the one-dimensional integ
tions in formula ~60! below can be easily calculate
numerically. Here the crucial point is that we know explicit
the two linearly independent solutionsc r andc2 of the ho-
mogeneous equationL̂c50. In other models, the analogs o
f0 ,c r ,c2 can be found at least numerically because the p
tinent equations are relatively simple differential equatio
with the single independent variablej ~or s after a rescaling!.
In our perturbative scheme we need to perform explic
only integrals overs, as in the integrability conditions~32! or
in formula ~60! for f̃n . Such integrals can easily be calc
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lated numerically also in the case when only numerical
lutions f0 ,c r ,c2 are known.

~3! In our approach, in order to describe the evolution
a curved interface we introduce the surfaceS, and the func-
tions Ck which can be regarded as auxilliary fields defin
on S and coupled to extrinsic curvatures of it. The corr
sponding evolution equations, that is, the Allen-Cahn eq
tion ~34! for Sand equations~41! and~43! and the analogous
equations forCk , have one independent variable less th
the original equation~3!. This is a significant simplification
from the viewpoint of both computer simulations and an
lytical approaches. Therefore, we think that our perturba
scheme is an interesting tool with which to investigate
dynamics of interfaces in Ginzburg-Landau effective mode

~4! The perturbative solution we have presented abov
based on the planar homogeneous interfacef0(s). More-
over, the dependence on the transverse coordinates is
uniquely fixed by the perturbative scheme once the ini
position of the surfaceSand initial data for the functionsCk
are fixed. This means that in our scheme we obtain a spe
class of interfaces distinguished by the particular form of
dependence ons. In other words, the transverse profiles
the interfaces provided by the perturbative solution are
arbitrary. Intuitively, the interfaces can be regarded as
planar interface folded to a required shape at the initial
stant of time and modified by necessary curvature cor
tions. Therefore, it seems appropriate to regard the cur
interfaces obtained in our paper as the basic ones. More
eral interfaces could be obtained by choosing more gen
initial data and solving Eq.~3!. For such generic interface
no analytic perturbative approach is available.

~5! One of the advantages of a systematic perturba
approach is that one can make reliable estimates of negle
contributions and, in consequence, check whether a g
perturbative result is reliable. Formalism with that level
control can be used to make straightforward predictions
the dynamical behavior of an interface, but perhaps a m
important application is to ‘‘inverse problems,’’ that is, d
termination of parameters of the Ginzburg-Landau effect
theory. From the dynamical behavior of the interfaces o
could reliably infer which values have the parameters of
model. For example, for a given liquid crystal one cou
experimentally determine coefficients in front of higher po
ers of the order parameter such asF5,F6 or terms of the
type F]aF]aF in the formula for free energyF. For a
discussion of the form ofF for liquid crystals see, e.g.,@16#.

One could try to generalize our perturbative scheme
calculating the curvature corrections to interfaces couple
a noise. In that case, the rhs of Eq.~3! would contain an
external stochastic force which in particular would lead
fluctuations of the planar interface. In our formalism the d
pendence of, e.g., the surface tensionk on curvature radiiRi
is explicit and it comes from purely geometric quantiti
such as the metric tensor or Jacobian, while numerical c
ficients in front of powers ofl 0 /Ri are given by integrals
over thes coordinate and they are determined essentially
properties of the planar interface. Therefore, one may ex
that if the stochastic force is present, values of these integ
would have to be averaged over the stochastic ensem
This is an interesting direction in which one could take t
present work.
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APPENDIX A: THE EQUATIONS L̂ fnÄF n

In order to determinefn we have to solve Eq.~26!. Using
standard methods@15#, it is not difficult to obtain an appro-
priate solution.

Let us shift the variables,

s5x1C0 ,

in order to remove functionC0 from f0 present in the op-
eratorL̂. Then Eq.~26! acquires the following form:

L̃f̃n~x,s i ,t !5 f̃ n~x,s i ,t !, ~A1!

where

L̃5
1

2

]2

]x2
1S a2

1

2D ]

]x
2a12~a11!f̃0~x!23f̃0

2~x!,

f̃ n~x,s i ,t !5 f n~x1C0 ,s i ,t !,

f̃n~x,s i ,t !5fn~x1C0 ,s i ,t !,

and

f̃0~x!5
exp~x!

11exp~x!
.

In the first step, we find two linearly independent sol
tions of the homogeneous equationL̃c̃50. The zero mode
c r(x) is one solution of this homogeneous equation, and
other one has the form

c2~x!5c r~x!h~x!,

wherec r5df̃0 /dx and

h~x!52
1

2a11
exp@2~2a11!x#2

1

a
2 exp~22ax!

1
6

122a
$exp@~122a!x#21%1

1

12a
2

3exp@2~12a!x#1
1

322a
exp@~322a!x#.

~A2!

For a→1/2 the first term in the second line reduces to 6x.
With those solutions, one can construct the relevant Gree
function and the solutionf̃n ,
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f̃n~x,s i ,t !522c r~x!E
0

x

dyc l~y!h~y! f n~y,s i ,t !

12c2~x!E
2`

x

dyc l~y! f n~y,s i ,t !

1Cn~s i ,t !c r~x!, ~A3!

where

c l~y!5exp@~2a21!y#c r~y!.

The functionsCn ,n51,2, . . . , areutilized to saturate the
integrability conditions~32!.

The solution of Eq.~26! is given by the formula

fn~s,s i ,t !5f̃n~s2C0 ,s i ,t !.

APPENDIX B: STABILITY OF THE INTERFACE

The significance of our theoretical analysis of the int
faces depends on their stability with respect to small per
bations. It is sufficient to check the stability of the plan
interface because our perturbative solution is based o
Mathematically, the stability is related to the signs of t
eigenvalues of certain operators and it is a model-depen
property. The considerations presented below apply to
model defined by formulas~1!–~3!, of course. In this case
the linearized evolution equation for small amplitude pert
bationsdf of the planar interfacef0(s), formula ~19!, in
the comoving reference frame has the form

2l 0
2g

K
] tdf5L̂df12l 0

2~]x1
2

1]x2
2

!df,

where L̂ has been given below formula~24!, andx1,x2 are
the two Cartesian coordinates in the plane of the interfa
BecauseL̂ does not depend onx1,x2, we may pass to Fourie
modesd̃f of df with respect to these coordinates. After t
substitution

d̃f5expF S 1

2
2a D sGC
nd
-
r-
r
it.

nt
e

-

e.

we obtain the following equation:

2
2l 0

2g

K
] tC5N̂C,

where

N̂52
1

2
]s

21
1

2 S a1
1

2D 2

12l 0
2k222~a11!f013f0

2 ,

with k25(k1)21(k2)2, k1 ,k2 being the wave number Fou
rier conjugate withx1,x2.

Note that the Hermitian operatorN̂ has an eigenfunction
C0 given by the following formula:

C05expF S a2
1

2D sGc r ,

wherec r is the zero mode introduced in Sec. III. The corr
sponding eigenvalue is equal to zero. BecauseC0 does not
vanish at any finites, it represents the ‘‘ground state’’ of a
fictitious system withN̂ as the ‘‘Hamiltonian.’’ Hence, all
other eigenvalues ofN̂ are strictly positive. Moreover, look
ing at the ‘‘potential’’ in the HamiltonianN̂, one can see tha
the zero eigenvalue and the next one are separated by a
gap. The eigenmodeC0 corresponds to a parallel shift of th
interface as a whole in thex3 direction. All other eigenmodes
decay exponentially with a characteristic time equal totc

52l 0
2g/(Kl), where l denotes the corresponding eige

value. Thus, the planar interface in our model is stable. C
sequently, the curved interfaces are also stable with res
to small perturbations provided that their curvature radii
large enough for our perturbative expansion.

Let us point out that from the point of view of applica
tions in condensed matter physics, even unstable interfa
can be interesting if unstable modes grow in time so slow
that the interface manages to travel across the sample be
these modes become visible. The interface has finite nor

velocity pW xẆ0, formula ~46!, and in any real experiment th
sample occupies a finite volume.
-

.
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