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Evolution of interfaces and expansion in width
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Interfaces in a model with a single, real nonconserved order parameter and purely dissipative evolution
equation are considered. We show that a systematic perturbative approach, called the expansion in width and
developed for curved domain walls, can be generalized to the interfaces. A procedure for calculating curvature
corrections is described. We also derive formulas for local velocity and local surface tension of the interface.
As an example, evolution of spherical interfaces is discussed, including an estimate of the critical size of small
droplets.

PACS numbe(s): 61.30.Jf, 11.27-d

[. INTRODUCTION turbative contributions can be generated in a surprisingly
simple manner. This is achieved by introducing the functions
An important aspect of the dynamics of phase transition€y, which saturate certain integrability conditions. As an
in condensed matter is time evolution of an interface sepaapplication, we derive a formula for the local velocity of the
rating a retreating phase from the new one. Studied in théterface with curvature corrections included, and we discuss
framework of Ginzburg-Landau type effective macroscopicthe critical size of nucleating spherical droplets.
models, the interface can be regarded as a kind of smooth, We consider a system described by a real, scalar, noncon-
asymmetric domain wall subject to a transverse force. Th&erved order parametdr, with the free energ¥ of the form
asymmetry and the force are due to a difference in potential
energy across the interface. Pertinent evolution equations for 1 b P
order parameters typically are nonlinear partial differential F‘f X EK%§+V(‘D) : (N
equations. In general they imply rather nontrivial phase or-
dering dynamics; see, e.g., review arti¢ld. A relativistic
version of the problem, not considered here, is also interest-
ré;yt[aze]cause of its connection with field-theoretical cosmol- V=Ad2+BD3+Ch4, )
Recently, evolution of ordinary domain walls has been— PR At :
studied with the help of the HiIbert-Chapman-EnskogZ;nagtigxomuon 's governed by the dissipative nonlinear
method applied in a suitably chosen comoving coordinate

here

system [3-5]; a systematic and consistent perturbative I (%t
scheme has been developed. It yields the relevant solutions ’yl,)ZKACD—V'(CD). 3
of the evolution equations in the form of expansion in a dt

parametet that can be regarded as a measure of width of a

static planar domain wall. Consecutive terms in this expanHere k“),-1 23 are Cartesian coordinates in the space,
sion contain extrinsic curvatures of a surface comoving withdenotes the derivativeV/d®, andK,y,A,B,C are positive
the wall, and also contain certain functioftelow denoted constants. The free energy of the fo(i arises in, e.g., a de
by C,) that can be regarded as fields defined on that surfaceennes—Landau description of a nematic-isotropic transition
and coupled to the extrinsic curvatures. In the present papelf) nematic liquid crystals in a single elastic constant approxi-
which is a sequel t§3], we show that that perturbative ex- mation (L,=0) [10]. Then®=0 corresponds to the isotro-
pansion can be generalized to the case of curved interfaceBic liquid phase, while in the nematic phade# 0.

The Hilbert-Chapman-Enskog method and the comoving The concrete forn{2) of the potential has the advantage
coordinates technique, which we have learned fi@y], that the solution of Eq(3) describing a planar interface has a
respectively, have already been used in theoretical investiggimple, explicitly known form. It can be found in, e.¢9].
tions of planar interfacefs], and of curved ones in super- The planar interface plays an important role in the perturba-
conducting films[8]. We apply these tools to curved inter- tive scheme: the main idea is that there exist curved inter-
faces in the three-dimensional space, in a Ginzburg-Landaf@ces that do not differ much from the planar one if consid-
type model defined by formulad) and(2) and Eq.(3) be- ered in an appropriately chosen coordinate sysgehich in
low. Interfaces in this model have been under investigatiofarticular should comove with the interfac&herefore, one
for a long time; see, e.d.9]. Our main contribution consists may hope thatb(x,t) for such curved interfaces can be cal-
in providing a systematic iterative scheme for generating theulated perturbatively, with the planar interface giving the
relevant solution in the form of a perturbative series. Thezeroth-order term. Toward this end, it is necessary to intro-
role of small parameters is played by the raligdR;, where  duce the comoving coordinate system explicitly, and to give
l5 is the width andR; the curvature radii of the interface. In a prescription for the iterative computation of the perturba-
spite of the nonlinearity of the evolution equation, the per-tive corrections.
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The plan of our paper is as follows. In Sec. Il we describe oK
the planar interface and the comoving coordinates. This sec- Vo= (B—\9B?—32A0C), (8)
tion contains preliminary material quoted here for the conve- 32y°C

nience of the reader as well as in order to fix our notation. In
Sec. Ill we describe the perturbative scheme for the curve@"
interfaces. In Sec. IV we present formulas for the velocity
and the free energy of the curved interface. Section V is -1 1
devoted to a discussion of spherical droplets of the stable ° 2\2KC
phase which nucleate during the phase transition. Several

remarks are presented in Sec. VI. In Appendix A we con-The constang, can be regarded as the position of the inter-
struct solutions of linear equations obeyed for corrections tdace att=0, andl, as its width.®, smoothly interpolates
the transverse profile of the interface. Appendix B contains detween the local minima of: ®_ for z— —o and® .. for

(3B++/9B%2—32AC). 9

brief discussion of the stability of the interface. z— +o, The corresponding values of the potential are
Kyvg
Il. THE PRELIMINARIES V(O )=0, V(d,)= .
96l;,C

A. The homogeneous planar interface

Let us assume that the planar interface is perpendicular tat ® ,= —3B/4C— & , the potentiaV has a local maximum
the z axis (z=x3) and homogeneous. Thah depends only if A>0. The substitution&— —Z andvy— — v, in formu-

on z andt, and Eq.(3) is reduced to las (7) and (8) give another solution of Eq4), called anti-
) ) interface.
Y P=Ka;® -V’ (D). 4 It is clear that solutior(7) exists if
The interface type solutio®(z,t) interpolates smoothly be- 9B2=32AC. (10)
tween minima ofV when z changes from—« to +«. V
given by formula(2) has two minima, The parameteA has the following dependence on the tem-
peratureT [10]:

®_=0, d,.=-K/(8CI),

wherel, is given by formula(9) below. The corresponding
phases we shall call isotropic and ordered, respectively. L
us multiply Eq.(4) by 9, and integrate over. The result-
ing identity,

A=a(T-T,),

wherea>0. The constant8, C, anda do not depend on
eL{e‘mperature. ConditiofiL0) is satisfied if the temperature
is from the interval T, ,T.), whereT, is determined from
the equation B2=32aC(T.—T,). It is clear thatT,;>T, .
e For temperatures in this interval one phase is stable and the
),f dzd, D0, P=V(®_)—V(dD,), other one is metastable.

- The potential2) can also lead to a static, symmetric do-
main wall. Namely, for the temperaturg, such thatB2

implies thatd;®#0 if the minima are nondegenerate. Fur- =4AC the velocityv, vanishesV(®.)=V(®_)=0, and
ther assumption that the interface moves in a uniform manthe potential can be written in the following form:
ner with velocityv, that is, that
V=C[(®~ D)~ DL, (12)
D(z,t)=D(z—2p—vot),
where forT=T,
leads to the formula

B
i , D =- ac
J’Uof (0, P2)"=V(P,)=V(D_), (5

o In this particular case there is the degenerate ground state

given byd®=® ., . The potential1l) possesses thé, sym-
where
metry
Z=2—2Z¢—vot. (6) D—20,—D,

Hence the interface moves towards the region of higher poand the interface becomes a static homogeneous, symmetric
tential V(®..), as expected. domain wall with theZ, topological charge.
The exact solution of Eq4) has the following forn{9]:

B. The comoving coordinates

K 1 . . . .
Dy=— , 7 Here we quote the main definitions in order to introduce
gI12c 1+exp(—2/2) our notation. A more detailed description of this change of

coordinates, as well as a discussion of related mathematical
where guestions, can be found [3-5].
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ComponentsG*? of the inverse metric tensor have the

=(ot,0%,0%=¢), wherea=1,2,3, are defined by the fol- form

lowing formula:

x=X(o' ,t)+ £p(a t). (12)

Herefz(x“), wherex® are the Cartesian coordinates in the

spaceR3. PointsX(o',t) form a smooth surfacg which is
parametrized by the two coordinates',o. In general, the

interface moves in space, henféedepends on the time

The surfaceSis fastened to the interface—the shape of it
mimics the shape of the interface and they move together.

G33=l, G3k=Gk3=0, Gikz(Nfl)Lgrl(Nfl):(,

where
—1,\i 1 I\ o i
(N = L(1= &K &+ &Ky,

and

N=deiN})

We shall see that for consistency of the perturbative scheme

X(o',t) has to obey certain equations from which one can

determine the evolution of the surfa& The coordinatet

parametrizes the axis perpendicular to the interface at point

X(o',t). The vectorp(c',t) is a unit normal toS at this
point, that is,

p?=1, pX,(o',1)=0,

where X = aXldoX. The surfaceS is characterized in par-
ticular by an induced metric tensor &

gi=X Xk

and the extrinsic curvature coefficients
K| = pX,i' .

The matrix @"‘) |s by definition the inverse of the matrix
(Gu), i.e.,g%gu=

The two-by- two matnx Kix) is symmetric. Two eigen-
values ky k, of the matrix K|), where Kj=g"K,;, are

called extrinsic curvatures & at pomtX. The main curva-
ture radii are defined aR;=1/k;. Thus, by the definition

11
Ki=—+—

RtR %K)-gR

RiRy’

In general, the curvature radii vary aloSgand with time.

The coordinates €“) replace the Cartesian coordinates
(x%) in the vicinity of the interface. Components of the met-
ric tensor in the space transformed to the new coordinates a

denoted byG,;. They are given by the following formulas:

Ga3=1l, Gx=Gk3=0, Gy= Nglr

where
Nl=sl—&K!.

Dependence of5,5 on the transverse coordinateis ex-
plicit, and o*,0? enter through the tensorgik,K' which
characterize the geometry of surfaBe

The Greek indicesy, 8, . . .
the three-dimensional space, while the Latin indicgsk,l, ...
have values 1,2 and they refer to the inner coordinates? on the
surfaceS.

have values 1,2,3 and they refer to

i1 il il
=1 &K+ 5 (KK - KiK))

)

In order to transform Eq(3) into the comoving coordi-
nates, we use the standard formula

G*B E) ,
doP

£
Ry

1 9

\/_6 do”

whereG=det(G,z), G = yVgN,g=det(g;).

The time derivative in EqQ.3) is taken under the condition
that allx® are constant. It is convenient to use a time deriva-
tive taken at constant®. They are related by the formula

AD= (13

J
at
x

J +
ot o,
ag

d

X (90"3

doP

P (14)

Finally, let us introduce the dimensionless varialdesd
¢ instead of, respectivel\§ and ®:

. [ K .
E=2lgs, D(&0't)=— 8CI%¢(S,0",t). (15

The coordinates gives the distance frons in the unit 2,
relative to the width of the planar interface.
Using formulas(13)—(15) we can write Eq.(3) in the
Fgllowmg form, which is convenient for construction of the
expansion in width:

2

, .
2:(_07% Uk_;aa_‘i_L(N 1)Lgk’)2,,()2+2|05.5)¢,i
2
e
—ad+(1+ a)p?— 3, (16
where
— Yoo
v= ?p

is the dimensionless transverse velocity of the surfadbe
dot denotes the derivativ@ it| ,«, and
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4AI§ hope that a systematic perturbative expansiohyiwill turn
a=—- out to be useful, as is the case with other perturbative expan-
sions so numerous in theoretical physics. The perturbative
Formula(9) and condition(10) imply that O<a<1 for tem-  Series can be constructed in the standard manner: the solution

peratures in the rangg, ,T.. sought¢ and the velocity are written in the form

The homogeneous planar interfat® can be obtained o . .
from the evolution equation written in the forf6) in the d=otlop1+13d+ ..., v=votlguitlivt ...,
following manner. As the surfac we take a plane, hence (20

=0. Moreover,Sis assumed to move with constant ve-

locity v, hence and inserted in Eq(16). Coefficients in front of successive

powers ofl in this equation are equated to zero. Notice that
after the rescaling=2lgs, the expansion parametéy is
present also it and (N"1), . In the zeroth order we obtain
the following equation:

pXo=vo=CONst.
Finally,

i I 9% 1 & o
ot B VoTss Js _2 (95

o

—— —agot(l+a)pi—d3. (2D

because we look at the interface from the comoving referwhich formally coincides with Eq(17). Therefore, we can
ence frame, andi¢p/do'=0 because of the homogeneity. immediately write the relevant solution
Then equatior(16) is reduced to

_ 1 . exgs—Co(o',1)]
—d¢p 1°¢ 2 3 vo=a= 3, do(s,0'\t)= —.
“Vog —E——aqﬂ-(l-{—a)d) P>, 17 1+exgs—Cola',t)] .
The solution previously given by formuld§)—(9) now has  There are, however, two differences between the planar so-
the form lution (18),(19) and the solution22). First, we do not as-
1 sume homogeneity of the interface; therefore, the constant
b= bo(S), U_Oz a=s, (18  from formula(19) is replaced by the functio@(d"',t) of the

indicated variables. Second, the surfé&és not fixed yet,
while in the former case it was a plane.

where It is convenient to rewrite Eq16) as an equation for the
exp(s—Sp) correctionsé¢, év, which are defined by the formulas
bo(S)= T e (19
1+exp(s—Sp) . -
d=o(s,0',t)+8p, v=vg+v. (23

¢o(s) smoothly interpolates between 0 and 1. This corre- o
sponds to interpolation between the minidha , & of the  After taking into account the fact that, obeys Eq(21), we

potential V if p is directed from negative towards positive ©Ptain an equation of the form

z's. If we choose the opposite direction fﬁrwe obtain the [ st (24)

anti-interface. The constast, corresponds t@, from for- ¢=1,

mula (6). N
©) with the linear operatot. defined as

IIl. EXPANSION IN WIDTH FOR CURVED INTERFACES

1\ 9

Let us begin with a brief description of the ideas under- o= E)g_“+2(“+1)¢0_3¢81

lying the calculations presented below. The set of solutions

of the nonlinear, partial differential equatiof®) is very g4

large. We are interested here only in a rather special subset

of it, consisting of solutions that represent the evolution of a 1 N \agy 292064 0Co\ ddo

smooth interface. Moreover, even within this subclass wef=—| — — - —
(ZN ds ) ( | . ot &s)

concentrate on rather special interfaces, called by us the

—+
Js K

“basic” ones. Their defining feature is that one can find a 2|2 ) ] 9

comoving coordinate system in which the order parameter of ~ _ —Oy(N‘l)Lgkr)?,,()?Jr 2lys 5)( 8¢~ Co; _0)

the interface is essentially given hyy(s), formula (19), K Js

modified by small corrections that take into account the non- 1 N 5 1

vanishing curvature. _(_‘9_ 50)‘9 ¢ 2|2 d [ Jk\/_N( 5 i
By writing the evolution equation in the forr(il6), we 2N Js Js 0 \/_N

have shown thdt, can be regarded as a parameter analogous )

to a coupling constant—it appears in E@6) only as a co- _ 0) " o 2, 3

efficient in severalbut not al) terms. Therefore, one may Coxg (3o a=1)(54)"+(56)%, (25
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wherev, and ¢, are given by formulag22). Now it is easy ~=1/2, that is when the interface becomes the domain wall,
to see that in each order Ig we obtain an inhomogeneous 1-€., the two zero modes coincide.

linear differential equation of the form Let us multiply both sides of Eq$26) by ¢(s) and take
the integralf *Zds. The left-hand sidélhs), of the resulting
Lon="f,, (26)  formula vanishes because (#0), hence
wheren=1,2, ... . Forexample, +oo
| aspto-o (32
i —.9%0 o
f1=(K=_Ul)E- (27
forn=1,2,... . Itturns out that these conditions are non-

In the whole perturbative scheme EQJ) is the only non- trivial. In particular, they give an evolution equation for sur-
linear equation for the contributions to the order parametefaces - )
6. We show in Appendix A that EqS26) can easily be It should be noted that the conditior{82) are in fact

solved with the help of standard methods—one can constru@PProximate, but the neglected terms are exponentially
\ . ~ small. The point is that in order to obtain E§26) we use an
the relevant Green’s function fdr. It is remarkable that the

N i i expansion of the type
same operatoL appears in all equation®6), and that the

form of it does not depend on the surfaSeFor these rea- 1 * <2|05 k

sons, calculation of the correctiogs, is reduced to the rela- —_ = =
i

1-21sIR &5

tively simple task of findingf,, and calculating the one-

dimensional integrals ovesr shown in the Appendix. ) )
The perturbative Ansat{20) and Eqs(26) are two parts (i=1,2), which are convergent fos<sy where sy

of the Hilbert-Chapman-Enskog method. The third and most MiN(R1/2l¢,R,/2l0). Therefore, when deriving conditions

crucial part consists of integrability conditions for Eqg6) (32, the integration range should be restricted gp<sy, .

[6]. Such conditions appear because the operﬁf‘orthe Bgcaqse .Of the expongntlal decrease/p@ndfn at largefs, .
Hermiti . o h lizable ei ith this will give exponentially small corrections to these condi-
ermitian conjugate oft, has a normalizable eigenstate With 4, ‘\ve assume that the ratiBs/l, are so large that we

the eigenvalue equal to zero. Such an eigenstate is called ”ﬁ?ay neglect those corrections

zero mode. Let us first find the zero mode for the Oper‘EAitor Let us Compute the basic interface up to the Oﬂquor
Inserting ¢, into Eg. (21) and differentiating this equation n=1 condition(32) gives
with respect tcs gives the following identity:

Ly,=0, (28) vi=—+ — (33

where
because

aiso ~ exps—Cy)
IS [1+exps—Cq)]?

Pi(s, o' t)= (29

ap(a@)= J’j:dS(m Y, =B(2a+1,3—2a)

Notice thaty, exponentially vanishes fas— * . Because
the operatop/ Js is anti-Hermitian with respect to the scalar does not vanish for in the interval(0,1). Here B denotes

product(g;|g,)= /" Zdsd g,, the operatof. is not Hermit- the Euler beta function. The functi@p(«) has the symmet-

equal to 1/6 atv=1/2, and the upper ends reaching the value
1 42 1\ g 1/3 for «=0 and 1. The conditio33) implies that the sur-
LT=§ ﬁ_ E)g—cﬁ 2(a+ 1)¢0—3¢§. face S obeys the following evolution equation:
S
~ Y. 2a—1 .
The operatot." has a zero mode, too, namely, K p= o +Kj. (34
0
Lty=
h=0. 30 It formally coincides with the well-known Allen-Cahn equa-
wheré tion [11].
Now Eq. (26) with n=1 is reduced to
p=exd (2a—1)(s—Co) ] . (31

L¢,=0. 35
The functiony, vanishes exponentially fa— *=o because ¢ 39

0<a<1 for all temperatures in the rangg, ,Tc. For a It has the following solution, which vanishes &t * «:

¢1:C1(0ivt)¢r ’ (36)
The subscript$ andr stand for left and right, respectively. The
point is that(30) can be written as),L=0. whereC; is a smooth function of the indicated variables.
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Forn=2, we obtain from formuld25), after taking into Mo . Lo —
account the result&33) and (36), « 61(Xp)=lgv,,

f2=(25KiK] =v2)dsbo+ (3cbo— @ —1)Ci(dsho)? _ L

whered;(-) denotes the first-order correctionXg. In con-
2y kg 2 h ill b tion to the solutioof th

L 2Y Lok % XC sequence, there will be a correction to the solutonf the
k (~%Cot X, XCoi)dso Allen-Cahn equation, and correctionsdg andK;, . These

corrections have to be taken into account when calculdting

J with k=3. It is clear that this version of the perturbative

k
+2\/_§ Q(gl ‘/§C0,k33¢0)' (37 scheme is rather cumbersome.

On the other hand, if we p@zo, then the evolution of
Straightforward integration oves as in Eq.(32) can be a the surfaceSis still governed by the relatively simple Allen-
little bit cumbersome. This calculation can be significantlyCahn equatior34). The integrability condition39) is now
simplified with the help of the following identity: saturated by the functio@,—it has the form of the evolu-
tion equation forCy, namely,
Zfds¢[3¢ —(a+1)]a¢¢>=fdsa fa, (39 . . 1\

nere o il %[ﬁtco_g'kaakxxco,i]_Azco_ a=3 9'Co;Cox
where in the case at hant=1. Identity (38) is obtained 1
from Eq. _(26)_ by differentiati_ng both_ sides of_it with respect - COK}K{ =5 al(a)K}K{ ) (42)
to s, multiplying by ¢, and integrating oves, just as in the

derivation of the integrability conditiong32). The integra- Let us also check the third integrability condition. Formu-

bility condition gives las (20),(25) give
o 2y s — . o . 2
al(a)K}Kf—vz+?(—(9tco+g'kx'kxco,i)+2A2C0 f3=—vai + 2K{[BK{K] = (K}) ]y, + %at(cldfr)
+(2a=1)g™Co;Coxt2CoK]K] =0, (39 2y oo 4y o tiig
+?g er(clwr),i"'rco,i(g erK XrX)Sl,br
where
19 ik 9 425K K] dadhy — 2A5(Co i) + AsKi—— Jagkc
A,=——| Jgg — sKiKjdsy 2(Caty) +4s i\/—( 99" Coxthr)
g do' Jo g
is the Laplacian on the surfa&and

4s ) 8s )
— —(NOg*K|Couth) j+ —=(NaKKCop )
dag(a) \/a( g9 K, Coxts J \/a( g okt )

dar +2(3¢o—a—1) 1o+ 41, (42
For o from the interval[0,1] the functiona;(a) is almost

ay(a)=ag(a)*

. ) where we have pui,=0. The term with¢, contains a new
linear. In particulara(0)= —3,a(1/2)=0a(1)=3. function C, (see Appendix A however, this function will
The integrability condition(39) allows the freedom t0 ot gppear in the integrability condition because the integra-
choose whether we keep nonvanishl@g or v,. It is clear  tion overs eliminates the term proportional ©,. This can
that we cannot put to zero both of them unlgsK!=0  be seen from the identity38): on the rhs we havé, in
(thenSis a plané. The choiceCy,=0 gives which C, is not present. We see already from form(42)

u_zzal(a)K}K{ _ (40) that we can choose whether to keep nonvanishingr C;.

For the same reason as in the casenef2, we ChOOSQTg
This implies a correction to the Allen-Cahn equation of the=0, and the integrability is saturated I64. The resulting
form evolution equation fo€C, has the following form:

. . - 1) .
%[atcl—g'kagkxxagicl]—Azcl—K}K{cl—(a—E)ngakcoajcl

1 2
_a2+ a1CO+ CO

2 Ki[ 3K K|~ (K})?]+2

y . L ' S5 1
gljajK: - %[g”(o"rXp) + K”(&rXX)]}aiCO( Co+ >3

, (43

1 1
C0+Ea1 1+(20[_1)(C0+ Eal

4 . )
- Taaj(KJk@akco) — 2K, Co0;Cy
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where To recapitulate, the perturbative solution to the first order
has the form(45), where ¢, #, are given by formulag22)
ag and(29), respectively. Formuléd5) gives the dependence on
azza—o- s explicitly. The functionsCy,C, are to be determined from

Egs.(41) and(43) with the initial data(44). One also has to
éolve the Allen-Cahn equatio{84). In certain cases, these
|equations can be solved analytically, e.g., for the spherical
interface discussed in the next section. In the general case,
one will be forced to use numerical methods. In comparison
with the initial evolution equatiori3) the advantage is that
the equations fo8,C,,C, involve only two spatial variables
o!,0. Such a reduction in the number of independent vari-
tables is a valuable simplification in numerical calculations.
The perturbative solution obtained above can be used in
calculations of the physical characteristics of interfaces. In

h In otrder to F’b‘?'r?tf"‘f%”‘t’fetf basic '?te&gge(:f)llzzgn’ Wehe following section we obtain formulas for the local veloc-
ave 1o speC|fy_ initial data_for equatio N )'. ity and surface tension of the interface. In Sec. V we discuss
There is no restriction on the initial data, except the obV|ou§he evolution of a spherical interface

requirement that perturbative corrections of a given order
should be small in comparison with those of preceding or-
ders. In particular],C;<1, 13C,<1, andl/R{<1. If we

consider the interface solution only up to the first-order cor-
rection (36), a simplification appears: without any loss of et us apply the expansion in width in order to find the

It is easy to proceed to the second and higher order
Using formulas from Appendix A, one can write the general
solution ¢,, of Eq. (26). It contains the functiorC,(d",t),
which obeys an equation analogous (&) or (43). This
equation follows from the integrability conditiqi32) with n
replaced byn+2 if we putv,=0. Due to identity(38), in
the derivation of that equation we do not need the explici
form of ¢, 1. In the present paper we will end our consid-
erations at the first order.

IV. LOCAL VELOCITY AND SURFACE TENSION
OF THE INTERFACE

generality we may adopt the homogeneous initial data  |ocal transverse velocity and surface tension of the interface.
) ) We shall use the first-order solutiq@5). The velocity is
Co(o',t=1t5)=0, Cy(o',t=tg)=0. (44)  obtained from the conditiogy=const. It does not necessar-

ily coincide with pX given by the Allen-Cahn equatidi34).
Because we neglect terms of second and higher ordky; in
we may write¢ in the form ¢o(s—Cy+1,C4), from which
we see thatp is constant on surfaces given in the comoving
coordinates by the conditios+ Cy+1,C;=5s,, wheres is a

This can be justified as follows. Local deformation by

shifting a small piece of it along the directignresults in the

corresponding shift of the coordinate Therefore, for any

given basic interface, we can choose an initial positiors of

such thatCy(a',t=1tg) =0 in formula(22) for ¢4. This can .

be done atocgr?e instoa)nt of time, e.g (at t)he in(ij;ioal time. Value constant. It foIIovys from formuld12) that in the Iabora'tory

of Cy and the position ofS at’ Ia{te.} times are deteri’nined eart¢5|an coordinate frame these surfaces are given by

I

uniquely by Eqs(34) and (41) and in generaC, does not Xo(¢".t), where

vanish. Notice, however, that such a shift will influence

terms of the orderé and higher in formulg25) for f—due

to the explicit presence afin N,(N~1),, f is not invariant .

under the translations— s+ C,,. The transverse velocity of the interface is equakgp. In
The rhs of Eq.(41) vanishes fora=1/2, that is, in the order to calculate it, we take time derivativexpf project it

domain wall case. In this case, the initial conditi@®) im-  on p, and use equation®4), (41), and(43) with the initial

plies thatCy,=0 for all times and, in consequendgy dis-  data(44). The result can be written in the form
appears from the first-order perturbative solution.

Xo(a', 1) =X (o' ,t) + 2l 5(So+ Co—14C1)p(a,1).

As for C,, the reason for the homogeneous initial condi- y.. 2a—1 1 1 1 1
tion is that the interface with the first-order correction, that —PXo=—F7— + 5t 5+l 5+ =
is K 2l, Ri R, i R%
— bo(s— _ , [1 1
b= bo(s—Cp) +1oC14(s—Cy), (45) +lia,| —+ —|. (46)
IR R

can be regarded agy(s— Cy+1,C;) to the first order if g, .
S0 again we can canc€l; at the initial timet, by suitably ~ The unit normal vectop is directed from the isotropic phase
correcting the initial position of the surfac Let us stress (®=d) to the ordered phase&l=® . ). In the next section
again that this works only at the fixed time instant. we shall use formul#46) in the case of spherical droplets.
The initial data(44) imply that at the initial time the order The surface tension is another basic characteristic of the
parametere is equal togy(s). Hence, in choosing initial interface. It can be determined from a formula for free en-
data for¢, the only freedom we still have is in the position ergy of the interface, which is defined as follows. The sur-
of surfaceS. When the second and higher order correctiongace S cuts the total volume of the sample into two regions
are included, one has to allow for initial data more generabenoted below by | and II. Let us imagine that in region |
than (44) for C, andC,. Nevertheless, the initial form ap  there is the homogeneous isotropic phase with a constant free
is always uniquely fixed by these data and the initial positionenergy density equal tg¢(® _)=0, and in region Il the ho-
of surfaceS mogeneous  ordered phase for  whichV(®,)
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=Kyu0/(96lgC). The normal vectorﬁ points to region II.
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V. EVOLUTION OF THE SPHERICAL INTERFACE

The free energy of the interface is defined as the difference | ot ys now apply the formalism developed in Secs. IlI

Fi=F=V(® )V,

where)),, denotes the volume of region Il, afidis the total
free energy of the sample given by formul®. We shall
computeF; using the first-order solutio®5). Then, without
any loss of generality we may p@,=C;=0 at the given

time, as argued in the preceding section, while the surface

remains arbitrary. Therefore, we need onlyy(s)

=expE)/[1+expE)]. Because the dependence on the coordi

nates=¢/2l is explicit, we can integrate overin formula

(1) for the free energy. The volume element and the gra-

dient free energy are taken in the form

098 _ 20 0

d3x=/Gdédatda?, .
IXY X Jo® daP

Neglecting terms quadratic i /R; we obtain the following
formula for the free energy of the interface:

Fi: f KdA,
S

where

R—JR—ZH “7

K2 772
K= 1- ——2) 1-2a
96ISC[ ( 3 ( )

can be regarded as the local surface tension of the interface
at pointsx(ot,0?,t). R;,R, are the main curvature radii of

the surfaceS at that point, andiA= \/gdoda? is the sur-
face element ofS Of course, this formula foF; can be
trusted ifl 3 /Rj<<1.

For a spherical droplet of the ordered phase embedded in

the isotropic phaseR;,R, are positive(the signs follow

from formulas given in Sec. Il Band of course equal to the
radius of the sphere. #<<1/2, formula(46) implies that the

droplet grows(if its radius is large enoughbecausepx,

<0 andf) is the inward normal. In this case the curvature

and IV to the evolution of spherical droplets. We assume that
a#1/2 in order to exclude the relatively simpler case of the
domain wall. The surfac8is parametrized by

Xo=FR(1)P(6, ).

Here 6,4 are the spherical angles, af)ds the inward(out-
ward) normal to the sphere when<1/2 (a>1/2). Thus,

- >

pXO::R, with the upper sign corresponding te<1/2.

The Allen-Cahn equation has the form

lR_i_l (48)
2K R, R’
where
4l,
R*_|1—2a|'

Integration of Eq(48) yields the following formula:

R(t)+l ‘R(t) 1 2K . R(O)+| ‘R(O) 1‘
n -1|= n —1].
Re IR Ry  Re | R
(49
Evolution equation4l) for C, now has the form
Y. 1 ap
=-Co— Co= . (50)
2K™® R(1)2 7% 2R(1)?
It has the following solution:
a; R, R(0O)—R(t
Co(t)= 1 * ( ) ( ) (51)

2 R(t) R(O)—-R,

which obeys the initial conditiol©y(0)=0.
The evolution equation fo€, is obtained from the gen-
eral equation43). For the spherical bubble it has the form

1 2
_a2+ alC0+ CO

7 (52

2

. 1

Rcl_ R_Cl: -+ 2 % y
where as usual the upper sign corresponds<al/2. We do
not know the explicit solution of this equation.

There are two cases in which the spherical droplets grow:

correction diminishes the surface tension, aniicreases as a droplet of the ordered phase wher 1/2, and a droplet of
the droplet grows. In the reverse situation—the isotropicthe disordered phase when>1/2. In both cases formula
phase inside and the ordered one outside—the curvature if4e) for the radial velocity of expansion, gives

creases the surface tension anddecreases as the droplet

grows.
In the case of a growing droplet of radiBsof the isotro-

pic phase in the ordered mediutrhas the same dependence

on the curvature. Hereﬁ is the outward normal,a

>1/2, pX,>0, andR;=R,=—R. Nevertheless, the values
of surface tension in both cases are different becdyse

present in formula(47) depends ona, namely, |,~(1

+a); see formulaAl) below. Note that the first-order cur-
vature correction toc vanishes in the domain wall case (

—1/2).

’ylo. _|2a—1| |0
2K 4 R

+lay(a)]

2 |0 3
_az(a)(ﬁ) .
(53

lo
R

The expansion velocity is identical for all surfaces of con-
stant¢.
It is clear that there is a minim&, which we denote by

Rmin(@), such thaif0>0. We have found numerically that

*

Rmin( @) = Z(_a)' (54)
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where the functionz(a) is symmetric with respect tar
=1/2 and it has values in the intervf0.866,1.049. For
example, z(0)=0.866z(0.1)=0.9847(0.20)=1.0452(0.3)
=1.04((0.4)=1.0127(0.5)=1.0. Notice thatR () di-
verges whenv— 1/2. Thus, in the Ginzburg-Landau model

nucleation of expanding droplets is possible only if we heat

the ordered phase to a temperature ab®yge or cool the
isotropic phase below,.
For large timet, when the droplets are very large, the

velocity 'r(t) becomes equal to the velocity of the planar
interface

. K
I’OO(CY)Z m|1_2a|,

as expected. Note th&,,,(a) andr..(«) are not indepen-
dent:

. 2K
Z(a)r (@) Rmin(@) = >
Parametew is related to the temperature:

20

1 26+V1-40'

where

B 8aC

0_
oB?

(T_T*)

is a reduced temperatur&, and T, correspond tod=2/9
and 1/4, correspondingly. The intervale[0,1/2] corre-
sponds tofe[0,2/9], andae[1/2,1] to #e[2/9,1/4. The
temperature dependencelgfcan be seen from formula

V2KC

IO:(1+C() 38 y

(59

which follows from definition(9) after some algebraic ma-
nipulations. R, is proportional toly/|1—2«|, which can
be written in the form

lo  \2KC 4
[1-2a] 6B |3\1-46-1|

In the interval 6e[0,2/9,
e[T,.Tol, lo/|1—2a| monotonically grows
V2K C/3B to infinity.

Using formula(55) and the symmetry of z(1/2— 6)
=2(1/2+ 6), we obtain the following relation:

which corresponds toT
from

Rmin(1/2—68) 3-26 L
Rmin(1/2+6) 3426 7

(56)

where e (0,1/2). Thus, the minimal size of the droplets of
the isotropic phase that appear and grow when1/2 is

significantly larger than the size of the droplets of the or-

dered phase that can appear fox 1/2.

EVOLUTION OF INTERFACES AND EXPANSION IN WIDTH

6757

The velocitiesr,, depend on temperature. In particular,
comparing them for temperatures below and abbye

r.(1/2—98) 3+268
: = >1.
ro(1/2+68) 3-26

Hence, the droplets of the isotropic phase expand more
slowly than the droplets witlp=1 inside.

Our main goal in this paper has been to develop the per-
turbative expansion for the curved interfaces. We plan to
apply it to interfaces in liquid crystals in a subsequent work.
Nevertheless, just in order to get an idea of what our formu-

las predict, we have estimateg andr., for interfaces in
nematic liquid crystal MBBA. The model defined by formu-
las (1) and(2) and Eq.(3) can be related to the de Gennes-
Landau theory in a single elastic constant approximation
(L;=K,L,=0). We take data found in12-14: T,
~316 K, a~0.021 J/(cK), B~0.07 J/cm, C~0.06 J/
cm® (after a change in our notatipn and K~6
X10 12N, y=~5.2x10"2 kg/ms. We have identifiedy
with the rescaled rotational viscosifyL /K44 at a tempera-
ture close toT, . Then, To—T,~1 K T.,—T,~1.2 K.
The widthl, and the velocityr .. of the planar interface are
given by the following formulas:

[1—2a| cm
lta s

lo~40(1+a)x1078 cm, r.(a)~1.4

Note that even for rather small droplets with a radius of
several hundred Angstng, the ratiol ,/R is rather small.

VI. REMARKS

(1) We have shown how one can systematically compute
curvature corrections to the transverse proffleand to the

local velocity'ro of the interface. Due to the presence of
functions, theC, evolution equation for the surfa&has the
relatively simple form(34) and there are no curvature cor-
rections to it. The formalism for interfaces is a generalization
of the one constructed for domain wall3—5]. The main
new ingredients are th&, function and the (&—1)/l, term
in the Allen-Cahn equatio(84). By including them, we have
significantly enlarged the range of physical applications of
the perturbative scheme. This justifies the present publica-
tion.

(2) The model we have considered is special in the sense
that the exact planar interface solutigp is known. More-

over, the solutions of the equatiohsp,= f,, are given(al-
mos) explicitly too, because the one-dimensional integra-
tions in formula (60) below can be easily calculated
numerically. Here the crucial point is that we know explicitly
the two linearly independent solutions and i, of the ho-

mogeneous equatidng=0. In other models, the analogs of
b0, , o can be found at least numerically because the per-
tinent equations are relatively simple differential equations
with the single independent varialkdgor s after a rescaling

In our perturbative scheme we need to perform explicitly
only integrals oves, as in the integrability condition@2) or

in formula (60) for ¢,. Such integrals can easily be calcu-
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lated numerically also in the case when only numerical so- ACKNOWLEDGMENT
lutions ¢o, ¥, are kngwn. . . This paper was supported in part by KBN through Grant
(3) In our approach, in order to describe the evolution OfNo. 2P03B 095 13.
a curved interface we introduce the surf&end the func-
tions C, which can be regarded as auxilliary fields defined .
on S and coupled to extrinsic curvatures of it. The corre- APPENDIX A: THE EQUATIONS Lé¢,=F,
sponding evolution equations, that is, the Allen-Cahn equa-
tion (34) for Sand equation$41) and(43) and the analogous
equations forC,, have one independent variable less tha
the original equatior§3). This is a significant simplification
from the viewpoint of both computer simulations and ana-
lytical approaches. Therefore, we think that our perturbative
scheme is an interesting tool with which to investigate the
dynamics of interfaces in Ginzburg-Landau effective models.
(4) The perturbative solution we have presented above i# order to remove functioil€, from ¢, present in the op-
based on the planar homogeneous interfagés). More-  eratorL. Then Eq.(26) acquires the following form:
over, the dependence on the transverse coordisaie
uniquely fixed by the perturbative scheme once the initial
position of the surfac& and initial data for the function€
are fixed. This means that in our scheme we obtain a special
class of interfaces distinguished by the particular form of thevhere
dependence om. In other words, the transverse profiles of
the interfaces provided by the perturbative solution are not _ 1 42
arbitrary. Intuitively, the interfaces can be regarded as the L= §—2+
planar interface folded to a required shape at the initial in- 2
stant of time and modified by necessary curvature correc-
tions. Therefore, it seems appropriate to regard the curved F.(x,0' 1) =f,(x+Cqy,0 1),
interfaces obtained in our paper as the basic ones. More gen-
eral interfaces could be obtained by choosing more general - _ _
initial data and solving Eq(3). For such generic interfaces dn(X, 0", 1) = ¢n(X+Co, 0, 1),
no analytic perturbative approach is available.
(5) One of the advantages of a systematic perturbativeind
approach is that one can make reliable estimates of neglected
contributions and, in consequence, check whether a given exp(x)

- 1+expx)’

In order to determine, we have to solve Eq26). Using
standard methodgdl5], it is not difficult to obtain an appro-
Moriate solution.

Let us shift the variabls,

S=X+ Co,

Lo(x, 0 t)=F,(x,0"1), (A1)

1\ 4 ~ >
a= 3|5~ at2(at 1) do(x) - 3B,

perturbative result is reliable. Formalism with that level of bo(X)
control can be used to make straightforward predictions of
the dynamical behavior of an interface, but perhaps a more
important application is to “inverse problems,” that is, de-  In the first step, we find two linearly independent solu-
termination of parameters of the Ginzburg-Landau effectivdions of the homogeneous equatibiy=0. The zero mode
theory. From the dynamical behavior of the interfaces oney,(x) is one solution of this homogeneous equation, and the
could reliably infer which values have the parameters of theother one has the form
model. For example, for a given liquid crystal one could
experimentally determine coefficients in front of higher pow- Pa(X)= i, (X)N(X),
ers of the order parameter such &@s,®°® or terms of the
type ®9,99,P in the formula for free energy¥. For a ~
discussion of the form of for liquid crystals see, e.gi16].  Wherey;=d¢o/dx and

One could try to generalize our perturbative scheme for
calculating the curvature corrections to interfaces coupled to 1 1
a noise. In that case, the rhs of E®) would contain an (X) == 5 77 X~ (2a+1)x]——2 exp —2ax)
external stochastic force which in particular would lead to
fluctuations of the planar interface. In our formalism the de-
pendence of, e.g., the surface tensioan curvature radiR; + 1-2a
is explicit and it comes from purely geometric quantities
such as the metric tensor or Jacobian, while numerical coef-
ficients in front of powers of,/R; are given by integrals
over thes coordinate and they are determined essentially by
properties of the planar interface. Therefore, one may expect
that if the stochastic force is present, values of these integrals
would have to be averaged over the stochastic ensemblEOr a— 1/2 the first term in the second line reduces ta 6
Th|s is an interesting direction in Wh|Ch one Cou|d take theW|th those Solutions, one can construct the I’e|evant Green'’s

present work. function and the solutiomp,, ,

{exd (1—2a)x]— 1}+%2

Xexg2(1—a)x]+

1
3 %a exd (3—2a)x].

(A2)
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we obtain the following equation:

Dn(X,00,1) = — 24 (X) foxdy%(y)h(y)fn(y,cr‘,t)

212 .
X , - Toyat\lfzw,
+2¢2(X)J_ dyygn(y)fa(y,a',t)
i where
+Ch(a', ) ¢ (X), (A3)
where N 1,1 1)2 21,2 2
N=—§(95+§ a+§ +2|Ok —2(a+1)¢0+3¢0,
h(y)=exd (2a—1)y]e(y).
L2 (N2 2 : i
The functionsC,,n=1,2, ..., areutilized to saturate the with k= (ky)"+ (k2) ", ki,k; being the wave number Fou

rier conjugate withx*,x2.
Note that the Hermitian operatdt has an eigenfunction
V¥, given by the following formula:

integrability conditiong32).
The solution of Eq(26) is given by the formula
¢n(svo-i!t)=&n(s_0010i1t)'

S|,

\Ifozexp{ ( a— =
APPENDIX B: STABILITY OF THE INTERFACE 2

The significance of our theoretical analysis of the i”ter'wherezp, is the zero mode introduced in Sec. Ill. The corre-
faces depends on their stability with respect to small pe”“r'sponding eigenvalue is equal to zero. Becalgedoes not
bations. It is sufficient to check the stability of the planaranish at any finites, it represents the “ground state” of a
interface because our perturbative solution is based on ihctitious svstem withN as the “Hamiltonian.” Hence. all
Mathematically, the stability is related to the signs of the Y ' '

eigenvalues of certain operators and it is a model-dependefther eigenvalues dfi are strictly positive. Moreover, look-
property. The considerations presented below apply to thing at the “potential” in the HamiltoniamN, one can see that
model defined by formulaél)—(3), of course. In this case the zero eigenvalue and the next one are separated by a finite
the linearized evolution equation for small amplitude pertur-gap. The eigenmod® , corresponds to a parallel shift of the
bations 8¢ of the planar interfacep,(s), formula (19), in  interface as a whole in the® direction. All other eigenmodes
the comoving reference frame has the form decay exponentially with a characteristic time equaltto
=2I§y/(K)\), where A denotes the corresponding eigen-
value. Thus, the planar interface in our model is stable. Con-
sequently, the curved interfaces are also stable with respect
to small perturbations provided that their curvature radii are
whereL has been given below formul@4), andx*,x? are  large enough for our perturbative expansion.

the two Cartesian coordinates in the plane of the interface. Let us point out that from the point of view of applica-

Becausd. does not depend otf,x2, we may pass to Fourier tions in condensed matter physics, even unstable interfaces

modesd¢ of 8¢ with respect to these coordinates. After the can be interesting if unstable modes grow in time so slowly
substitution that the interface manages to travel across the sample before
~ 1
Sp=ex 5« S

2|§y R 5 )
— hdp=Log+ 215(00+ 22 8¢,

these modes become visible. The interface has finite normal

v velocity pX,, formula (46), and in any real experiment the
sample occupies a finite volume.
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