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This paper deals with regular arrays of macroscopic deféatsl conic domainsobserved when a slab of
lamellar phase is sandwiched between two substrates imposing difterentationalanchorings. We report,
in particular, detailed observations of the texture of a lyotropic lamellar phase in contact with a glass substrate
and a lyotropic sponge phase. We consider several models for the defects depending on the material and the
substrate parameters. Their energy has a common form, and the main features of the textures are explained in
the framework of a simple model where disks of different sizes tile a plane in order to minimize a particular
interface energy.

PACS numbds): 61.30.Jf, 68.10.Cr

[. INTRODUCTION textures. Due to the strong first-order character of the transi-
tion, hysteretic phenomena are indeed present, and the tex-

Lamellar liquid crystal phases, which consist of a periodictures are not perfectly reproducible above the critical thick-
stack of parallel surfaces, occur in different materials such asess in the thermotropic liquid crystals which have been used
thermotropic liquid crystals or surfactant-solvent mixtures.[6]. Moreover, from a theoretical viewpoint, the models built
On a large scale, they share some common behaviors whict® far deal only with isolated defects, whereas the patterns
are related to their one-dimensional crystal nature, and not ttormed by these defects have not been studied. However, it
their specific microscopic structure. This is particularly re-should be noted that several theoretical models in the past
vealing when macroscopic defects are involved. For exconsidered the tiling of a plane with focal conic domains.
ample, focal conics domaind=CD’s), which are made of The most popular model is the Apollonius tiliigee Fig. 3,
parallel layers folded along Dupin cyclidé¢4,2], are the where small TFCD’s(represented here by their singular
classic macroscopic defects of the thermotropic smektic- circle) iteratively fill the interstices between larger ones. This
(SmA) materials, but are also observed in the lamellagr model is clearly not fit to explain the regular lattices that
lyotropic phase$3-5]. have been observed.

FCD's are often unstable defects, frozen in a smectic Similar arrays of defect¢ésee Fig. 4 were recently re-
sample during its preparation, and they disappear when theorted [9] in a lyotropic lamellar system sandwiched be-
sample is annealed. In confined lamellar phases, howevelyeen a glass substrate and a sponge plitge isotropic
the macroscopic defects are necessarily present in order &onge phase is also a phase of membranes, but is usually
satisfy different anchorings at the interfaces. One of the mogiescribed by a single disordered and multiply connected
spectacular illustration of this phenomenon is the formatiormembrane which divides the solvent into two equivalent
of regular lattices of TFCD'storic focal conics domaingn  subvolumes; see details in Reff$0—14)). The appearance of
a thin slab of SPA material sandwiched between its isotropic defects in a slab of lamellar phase is also due to the compe-
melt and the aifFig. 1).

These lattices were first reported at the beginning of the
last century by Friedel1], but their appearance was accu-
rately studied only much latef6—8]. The antagonistic
boundary conditions—parallel anchoring of the layers at the
SmA-air interface vs perpendicular orientation at the
isotropic-SnA interface(see Fig. 2—are the driving force of
a texture instability which appears above a critical thickness.
A transition is indeed observed between a homeotropic ge-
ometry, where the orientation of the layers is imposed by the
air, and the nucleation of defects when the thickness of the
smectic sample increases. The defects are TFCD’s, which
display a singular line along their axis of revolution and a
quasivirtual singular circle, sitting at the $wisotropic in-
terface(see Fig. 2

Apart from the study of the nucleation of isolated defects, i, 1. A thin slab of Sr phase between air and its isotropic

several factors have limited a further study of the equilibriummelt is unstable toward the formation of macroscopic defects. This
micrograph was obtained with the thermotropic liquid crystal 4,4
diethyl azoxydibenzoate, which undergoes a smectic-to-isotropic
*Electronic address: blanc@Imcp.jussieu.fr transition at 120 °C. Bar is approximately equal to 2.
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FIG. 2. Geometric model of the macroscopic defects of Fig. 1 . .
proposed by J.-B. Fournier, I. Dozov, and G. Durand, Phys. Rev. A FIG. 4. A thin slab of lamellar phase sandwiched between glass

41, 2252(1990. The layers are part of a toric focal conics domain .‘"isng Sﬁzngrﬁa‘:gasgs dzlaT[t)l)a)llz ar:: hs;(gg;;a:oagayngf défeiciaess
(TFCD) and the singular lines consist of a straight li@ong the IS approxi y equ am, Qum).
axis of revolution and a circle sitting on the isotropic Jwminter-

face. Note that a small depression is expected at the ak-fater-
face.

experimental observations of lamellar textures confined be-
tween the sponge phase and the glass substrate, and show
that the simple hexagonal lattice is an equilibrium pattern for
small thicknesses, whereas other textures appear at larger
tition between different anchorings at the glassinterface  thicknesses. In Sec. Ill, we consider the most common ex-
and at the_ /L ; interface. The layers are parallel to the glassperimental situations for a confined smectic slab, and show
substrates whereas they are strongly tilted at an alghear  that the free energy of a single defect has the same form. We
the L3 phase. Contrary to the thermotropic case, hexagona|so show that the main experimental features of the lattice
lattices of defects observed just above a critical thickness argre explained by the minimization of a particular interface
reproducible. In a recent papgt5] we proposed a simple energy. In Sec. IV we then discuss the dynamics of the de-
model which explains the observed quantitative evolution ofects and textures.

the defect lattice parameter with the thickness of the lamellar

slab. The aim of the present paper is, first, to extend this Il. OPTICAL MICROSCOPY OBSERVATIONS
model to thick slabs and to different experimental situations _
and, second, to discuss the observed textures on a scale A. Experimental system

larger than one defect. In particular, we show that our model Tpe system which has been studied is a mixture of

predicts the disappearance of a hexagonal lattice above @tylpyridinium chloride(CPC)), hexanol and solveriwater
second critical thickness, and the appearance of other pafitn 1 wt. % of NaC). For the brine weight fractionp,,
terns. , =0.7, the domain of coexistence between thgand L,

The paper is structured as follows. In Sec. Il, we prese”bhases is found for a weight ratio of hexanol over CR@
between 1.05 and 1.11.

A thin slab of lamellar phase confined between the sponge
phase and the lamellar phase is submitted to two different
anchoringq 15]. The glass gives a homeotropic orientation,
whereas the layers are strongly tilted at the/L 5 interface
with an angleé, close to 70° for this dilutioi9]. The sys-
tem responds to this frustration by the formation of defects.

The experimental formation of the, slab can be ob-
tained in two different ways. Fir$fl5], we used the fact that
the L; phase changes to the lamellar phase when increasing
the temperature. A sample of the phase at room tempera-
ture (h/c~1.115-1.120) is introduced in a glass capillary
(Vitrodynamics, thickness 200, 300, or 4Q0n) which is
sealed by the flame. The sample is heated in the domain of
coexistence T~40°C). When the rate of temperature in-
crease is small enougbelow 0.1-0.2 °C min?) the lamel-

FIG. 3. The Apollonius tiling consists of packed circles that fill 1ar phase grows slowly from the glass substrate but does not
the plane iteratively. Such a model can be used to propose a textugpear in the bulk in the form of nuclei. Above a critical
made of toric focal conics domains which ensures a planar anchoithicknessh. ;, a hexagonal lattice of defect appeésse Fig.
ing everywhere at the isotropic-@minterface. 4). Due to the slow growth of the lamellar phase, organized
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FIG. 5. The layers of the lamellar phase cannot satisfy both the
homeotropic anchoring on the glass substrate and the tilt angle at FIG. 6. Hexagonal lattice obtained in a thin sldb~65 nm) of
the lamellar-sponge interface. A small-angle curvature wall is exl. Phase. Note that the picture is not perfectly focused in order to
perimentally observed. The curvature wall has an exact cone shap@lake the defects more visible. Each white spot is a single TFCD.
and the two strong boundary conditions are satisfied everywherBar 100um.
inside the defects.
slab is obtained from the contact of the lamellar nuclei with
the glass. The observed textures are characterized by the
presence of large single-crystals of defgsise Fig. 6 sepa-
rated by grain boundaries. This shows that the hexagonal
fttice is not only obtained by a slow growth process, but
formed from the nuclei of lamellar phase in contact with the
glass. It should be noted that defects in the grain boundaries
are often more visible than other defects. The size of a defect
: ¥ndeed depends on the local organization. Figure 7 shows
separate slowly in a few hours. The, phase has a lower that the size of a defect depends strongly of the number of its
density, and settles on the upper glass substrate. Note that ‘ﬁ%ighbors. We have circled the two largest and smallest de-

have also used homemade cells in order to obtain thickness?écts present in the micrograph. The respective numbers of

up to a few millimeters. These cells consist in pierced slidegqir neighbors are 7 and 5, i.e., the observed defect is itself

Of. Plexiglass in which we confi_ne the sgmple by COVGT‘”Q i'[a defect(disclinatior) of the hexagonal array. In the follow-
with a cover glass. This latter is glued in order to avoid the;

. f th le. Th I din th ing we shall use “defect” to describe elements of the tiling,
evaporation of the sample. The samples prepared In theyg,eier the considered defect belongs to a perfect array or
different ways are observed under an optical polarizing mi

4 . ; ‘not. We have also circled an empty interstice which is not
croscope LeitZDMRXP) equipped with a hot stag&lettler Py
82HT), a movie camera, and a movie recorder.

domains are observed on a large sd¢afpical size=1 mm;
see further details in Ref15]).

In the second method, either we prepare the sample in
domain of coexistence at room temperatuhdc( between
1.05 and 1.1}, or we quickly bring anL; sample b/c
~1.11-1.12) into the domain of coexistence. The two
phases, in both cases, are initially mixed in the bulk, but the

B. Observations
1. Defects of the regular lattices

We previously reported experimental observations of the
appearance of hexagonal lattic@dL’s) in thin slabs of
lamellar phaséthicknessh=<200 um), and the existence of a
critical thicknessh, ;~35-40um below which the orienta-
tion of the layers is homeotropic and imposed by the glass.
Although the instability is also driven by two different an-
chorings at the interfaces, the texture is somewhat different
from Fig. 2. The glass is indeed far more rigid than thg
layers, and no depression is observsde Fig. 5. On the
other hand, we have demonstrated the presence of a curva-
ture wall that separates a homeotropic region and the defect
itself. The side views of the defedt$5] have shown that the
shape of the wall is nearly conical, as drawn in Fig. 5.

The lattices of Ref{15] were obtained by a slow growth  FIG. 7. In a grain boundary, the local hexagonal arrangement of
process. In order to study their stability, we have checkedhe defects is not present everywhere. The size of the defects de-
that they are also formed by the second method, where thgends strongly of the local organization. Bar gh.
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FIG. 8. A typical texture observed abo¥wg , exhibits a large FIG. 10. Local hexagonal lattice with two different sizes of
distribution of sizegplotted in Fig. 9. Note, however, that a hex- defects. The smaller ones fill the interstices between the larger ones.
agonal lattice can be observed localipp left). Bar 100 um. We have subtracted a part of the background to the micrograph in
Thicknessh~900 pum. order to make the contacts between defects more visible. Thickness

780 um. Bar 100um.
filled by a defect. For each thickness there exists a minimal L
radius below which an empty interstice is not filled, that is®yPes of defects are perfectly visible in the local hexagonal
the minimal size of the defects here is much larger than théattices HLy which are observed locallffor example in the
size of the interstices of the HL. Note eventually that thistOP left corner of Fig. & The two different sizes shown in
behavior is strongly reminiscent of defects present in the 19- 10 are then well defined, since the packing of the larger
lattices of magnetic bubbles observed in thin magnetic madefects gives the sizes of the second generation of defects in

terials submitted to a magnetic figld6]. close contact. _
The study of the local hexagonal arrangement gives a
2. Thicker slabs third critical thicknessh, 3~800—-1000um, above which

Th lar lattice HL i | b d ab three different sizes of defects are present in the local lattice
h € Fte.gul ?rr] ?( |ce9 J;O%O ggger oEserveﬂ a 0¥e an'HL2 (see Figs. 11 and 12&vhich replaces HL The thickness
other critical thiICKNESS,; p™= cUD—sUum. Even arteratew 3 is poorly defined because the appearance of a third gen-

days at rest, the texture does not feature a perfect hexagonéﬂéﬁon of defects does not occur at the same time. We show

lattice, but rather exhibits a broad distribution of the size ofthis phenomenon in Fig. 13, where we mark the defects of

the defects as shown in Fig. 8. We give a histogram of thi§he third generation appearing in a local HL
(rjnllcfcrogr?ph in Fig. 9, wizl_chthne\t/er:hele?rsh S?.OV;’S ttf;]at t;vo In conclusion, the hexagonal lattice seems to be an equi-
merent sizes are present in e texture. The firstis the chagg, ; o, texture, but only for small thicknesses abdvg; .
acteristic size of the largest defects which are the most vis- '
ible in Fig. 8. The second is the size of the smallest defects

which fill the interstices between the largest ones. The two

0.3 - :
DO fraction of the area covered

0.25 | M fraction of the number of defects
0.2 -
0.15 A
0.1
0.05 -

O 4

0.001 0.007 0.013 0.019 0.025 0.031 0.037 0.043 0.049
w=alh (rad.)
FIG. 9. Histogram of the defects observed in Fig. 8, wheris FIG. 11. Above the thickneds, 3, the local hexagonal arrange-

the ratio between the radiwsof a defect, anch=900 um is the  ment is made of three types of defects which are the first steps of
thickness of the sample. We have represented the distribution ahe Apollonius tiling. In Fig. 12 we give a magnification of the
sizes and the distribution of the area covered by the defects. arrangement of the interstices.
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FIG. 12. Local arrangement of the two smallest types of defects G- 14. Model of a TFCD in a St phase confined between
in the lattice HL, of Fig. 11. Bar 20um. two flat interfaces with a weak anchoring at tklg-SmA interface.

) . “geometric approximation”(in which the smectic layering
Moreover, we have noted that the size of the defects is Nqlemains parall¢lis not compatible with a flat upper inter-
unique but depends on the local organization in the graifiace. In the model proposed by Fournral. [6], each de-
boundaries. A second critical thicknefgs, is observed when  fect carries a small depression at the air/Sinterface, and
the HL disappears, and is replaced by a more disorderegherefore a slight increase of energy of this interface. In the
texture. A regular lattice HL with two sizes of defects is |yotropic defects, there is no depression but a curvature wall
nevertheless observed locally, and is replaced at a thirgs present, which confines some dilation in the wall. If the
thicknessh 3 by the lattice HL in which three different  homeotropic anchoring were much weaker, another simple
types of defects form the first stages of the Apollonius filing.model should be considered where the anchoring slightly

departs from homeotropy at the upper interface and avoids

IIl. THEORETICAL APPROACH the dilation in the smectic samplsee Fig. 14 Since the
_ aspect ratica/h is usually small <0.2 rad in the experi-
A. Different types of defects ments reported in Sec.)|l we will now use a=tanwh

Consider the defects represented in Figs. 2 and 5. The?wh, wherew is the angle defined in the three figures. In all
appear in the smectic slab in order to permit a planar ancho€ases, the total free energy of one defect appearing in a pla-
ing (or a strong'y ob“que one at an anw@ C|Ose tO7T/2) at nar slab SplItS into three par@see Ref[15] for a discussion
the lower interface, whereas the anchoring remains homef the approximations usgd

tropic at the upper interface. It is obvious that the classic (i) An energy gain at the lower interfad = — Ao ma?
due to the change of orientation of the layers, whake

>0 is the difference between the interface energy of the
homeotropic orientation and the interface energy at the angle
00.
(i) An energy penaltyE. due to the curvature of the
layers within the defect. Since is so small, this contribu-
tion is of the order of the energy of a semi-infinite TFCD,
and its main term i€.=amKa, whereK is the smectic
bending modulus of the layers amda numerical factor of
order 20-30.

(ii ) A saturation[17] term E¢ due to the presence of the
depression, the curvature wall or the departure from the ho-
meotropic anchoring. In the first case, the increase of inter-
face energy of the upper interface is

wh?3 w?
12
(6N

FIG. 13. The appearance of a new generation of defects occuhereX is the free interface energy of the upper interface.
for a large range of thicknesses. For example, this micrograph reg=or the lyotropic system of Sec. Il, the energy penalty is due
resents a local HLin which some defects of the third generation to the curvature wall of energy per unit are& @3\,
have appeare@heir position is given by the black majkdar 100  where\ is the smectic penetration lengfh5]. The satura-
mm. Thickness 91Q.m. tion term is therefore

ES=EJ 2m(a—hsing)hde—3 7ra’~
=0
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60 X>Xg |
40 X=XC,1
E, 20 X<X¢ 1
mminw 03
-20
Omax
 (rad.)

FIG. 15. Variation of the energy of an isolated defect with the

geometrical parametap for different thicknessex (x=50, 128, FIG. 16. Since two defects do not intersect in the bulk, the
and 200. A defect is stable only above the thicknégs=X.,aN.  smectic texture of the slabs is represented by a packing of disks of
different sizes in the plane.
27K w*h? ) .
ES:T' (2 B. Properties of the packings of defects

We showed in Ref[15] that the variation with thickness
8{ the size of the defects in the hexagonal lattice is compat-
dple with such an expression of the energy, but we did not
consider different arrangements of the defects. We now as-
;sume that the experimental observations reported in Sec. II
are tilted at a small angle (see Fig. 1% The expansion of _reflect the minimization ofi the total free energy of the pac_k—
W(¢) about its minimum =0 yields W(¢)~W, ings of defects. We establish some properties of the packings

T+ (°W/ 90> 2/p E.is gi in the frame of such a hypothesis.
(9°WI3¢)lo(¢7/2), andEs is given by Consider an assemblp; of defects represented by their

singular circle at the lower interfadsee Fig. 16 The total

For the case of a weaker anchoring, the increase of area
the upper interface or the dilation of the layers are avoide
by a departure of the homeotropic anchoring. WWte) be

the energy by unit area of the upper interface when the laye

E— Jw 2h(tane — tane)W( ¢)d(h tang) — Wy ra? energy of the texture defines an interface eneigy
¢=0
, W > E(xo)
Thw* —— AV
(9(,02 0 2P.({IDI}) S({D,}) 1 (5)
T 12 @

when the total are&®({D;}) of the texture is much larger
than the size of one defect. Note that this area is not only the
total area of the disks but also includes the interstices. Now
consider a single defect of this texture. If it has a radius
lower thanxwp,, (see Fig. 15 its energy is positive. Its

E«(X, @)=~ Px*w’+xo+® X0, (4 disappearance therefore decreasgs On the other hand, if

its radius is larger thaRw . Wherew, . is the minimum of

where®=Ao\/K, x=h/a\ is the dimensionless thickness E(X,w), a texture of smaller energy is obtained when de-
of the slab andb;=3\/12K, 2/3, or (*W/dp?)\/12K ac-  creasing its size t&8w 4, Without disturbing the surrounding
cording to the relevant model. In the following graphs, wedisks.
will use the values obtained from R¢fl5]: &=0.065, P, The size of a defect in a texture is therefore in the range
=2/3, andaA=0.3 um. The variation of the enerdgy, of an  A=[wmin,®max] Which is shown in Fig. 17. The boundaries
isolated defect with the thickness and the anglés shown

The resulting energy of amsolated defectin units of
a?7K\ can therefore be written as

in Fig. 15. There exists a critical thickness, (X 1~ 128 for 0.25
the L, slab considered hexrebelow which a defect has a : E{“J
positive energy and is unstable, whereas a range of possible 02} !
sizes corresponding to negative values of the energy occurs
in thicker samples. o(rad.) 0131
Note eventually that the final expression given in K. o1t
is not a Taylor expansion of the free energy according to '
since we have retained only the leading term of each source 0.05
of energy. However, since we consider cases in which these ob—
terms compete, each remaining term is much smaller than 250 500 750 1000 1250 1500 1750 2000

the leading term of Eg4), and the energy is well approxi- x

mated by this polynomial expression, as detailed in the Ap- FIG. 17. Range\ of the possible sizes of the defects as a func-
pendix. tion of the thickness.
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FIG. 18. The vertices of three disks in contact defines the
shaded triangl€.

C. Texture of the thin slabs

As shown aboveA is reduced to a single value only for
the thickness, ;. The HL is in this case the most compact
arrangement of the disks, and therefore minimiZgs This
geometrical argument can be extended for thicker samples. A
lower boundary o, is indeed given by

3.=d({D;}) minog(w), (14

wel

It should be noted that the range of acceptable sizes increases ] ) ) )
rapidly abovex., in contrast to the fact that the regular whered({D;}) is the area fraction occupied by the disks. The

hexagonal lattices are observed at least u46200 um
(that is,x~700).

exact largest value taken lf{D;}) for noncongruent disks
is known when the ratio of smallest over largest admissible

It will be useful to define the energy per unit area of onefadi is not too smal[18]. For wyin/wmaxe[0.78 ... .1,

defect by

E(xw) @& 1 &0°

X2 w? T TXW

(10

oo(X,w)=

The interface energ¥ . of a given texture can therefore be

expressed as

E 7TX2(1)i20'e(X, (l)i)

I)I
2({Dih=

(D) a1

Now, consider a given arrangeméd®, } of the disks. It is
stable if the homogeneous dilation of the disks by a fagtor

increases the energy,

2 mEyroloe(X, ye)

Seo(y)= : (12)
° YS(D))
which implies that a stable packing verifies
doo(X, wj
Z w?M:Q (13)

L dw

This equation will give us the size of the defects in the
texture of minimal energy for a given arrangement. It makes 2
sense to compute this sum on an unit cell when the texture is

a regular lattice.

the densest packing is indeed a hexagonal lattice of disks of
same size for whichd({D;})=n/\12~0.907. Therefore,
Eq. (14) becomes an equality for an hexagonal packing of
disks with radiusxwy whereo/(wg) =0, that is

3 /1
wO(X): m (15)

In Ref.[15], we considered only the existence of hexagonal
lattices, and obtained this law, which was in rather good
agreement with the experimental data.

Finally, also note that this approach also explains why the
size of the defects in a grain boundary deviate from the op-
timal size of a defect in a HL. This size is indeed not only
fixed by the thickness of the slab, but also depends on the
local arrangement of the defects.

D. Transitions of texture in the thicker slabs

In order to look if another packing has a lower energy as
the thickness increases, we have considered three disks in
contact, as shown in Fig. 18. Note the respective radius of
the disks, &;,a,,a3) = (Xw{,Xw,,Xw3), and define an inter-
face energy for the triangl& (whose vertices are the centers
of the disks by

0P wlo(X, ;)
i={T23

ZSI(X,wl,wz,w3)

o(X,01,0p,w3) = , (16
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1000 1050 1100 1150 1200 1250
X

-0.015

FIG. 21. Evolution of2 (HL) (a) andZ(HL,) (b) . The two

FIG. 19. In the lattice HL, the radius, of the small circles is ~ Curves intersect at; ;~1071.

given byr,=B1r;. ) .
of this value. For example, let us compare the free energies

where 6; is defined in Fig. 18, and, is the area of the Of the lattices HL and HL Figure 19 shows that the radius
triangle. From geometric considerations, we obtain the fold 4= Xw,4 of the smallest disk in a cell of HLis related geo-

lowing relations(with all the permutation$1,2,3}): metrically to the radius;=xw; of the large disks by the
Apollonius numberB,~0.1547 . . .:

St(X,wl,wz,w3)=X2\/w1w2w3(wl+ (1)2+ 0)3), (17)

2
2(1)2(1)3 w4=(——l>wl=,81w1. (20)
- 3

(01t w3)(w1+ ;) (18 3

cosf,=1

Then applying Eq.(13) in an unit cell, the tiling Hl of
2\010,03(01+ w3+ w3) (19 lowest energy is obtained when
(w1t wy)(w1+ w3)

Sin 01:

Any triangle 7{w4,w,,w3) tiles the plane, but this does not
insure that the disk angles that it carries adjust correctly to
perfect full disks in the tiling, except for some special tri-
angles and tilings as in Fig. 19. However, any tiling with aln Fig. 21 we reported the variation &, for the two lat-
single triangle of lowestr, which readjusts the disk angles tices, which shows that HLis favored beyond,,=1071
gives an optimal packing of lowest interface eney  (h,~290-340um). Note that this last result is rather con-
=0y. sistent with the experimental datsee Sec. )l

We have numerically determined the absolute minimum In HL,, represented in Fig. 22, the radius of the next
of o, for (w1,w,,w3) e A3, and we give the resulting tri- generation ix8,w,, where
angle as a function of the thicknes# Fig. 20. This latter is
equilateral @,= w/3) for x<<1040, and isosceles above this 3-4/\3
value (we give the values taken by the larger angleas a 'BZZT' (22)
function of x). It therefore shows that the lattice HL is the

optimal packing at least up tx=1040. Note that this - ; o A .
method does not rigorously prove that the HL is no IongerThe radius of the larger diskew, is given by Eq.(13):

1/3
(%) | o1

20,x(1+2p4

the optimal packing above this value, but it can be shown 3
that other textures have a lower energy in the neighborhood o 1+2pB,+68B; 23
Yl ooxat2pi+6pY))
) '
125F 1 l...oooooo
[ [ %
00f |
b |
50F |
| [
25}
[ |
1 1
500 1000 1500
X

FIG. 20. Assembly of three disks in contact defining the triangle
7 of minimal interface energy, according to the thickness FIG. 22. Local arrangement of the lattice HL
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The comparison betweeh (HL;) and 2 (HL,) then pro- - Glass
vides a third critical thickness x.3~3629 (h.3 A -
~1000-1150um) which also agrees with the observed ex- H—
perimental thicknessh( 3~800—1000um) for which the s

third generation of defects appears locally, although some- ~

what larger. —

III\
1~
IV. DISCUSSION .

We have shown by the above approach that the form of L3
the energy of asingle defecexplains the qualitative features
of thetexturespresent in thick slabs df , phase. The values FIG. 23. Two main mechanisms are expected to lower the en-
®~0.065 andeh~0.3 um used in Sec. lll were obtained in ergy barrier of the nucleation of one defect: the penalty due to the
Ref.[15] from the measurement of the first critical thicknesscurvature energy can be reduced, first, by an anchoring at angles
he1~35-40um and the geometrical parameters of the cor-smaller thang, at theL /L, interface, and second by the presence
responding defects. The use of the same values in Sec. I9f irregularities at the glass substrate which favors the tilt of the
also provided a second critical thicknelss,~300 um for  layers and the nucleation of the defects.
which HL becomes unstable and is replaced by a less orga- o .
nized texture. Locally the texture Hlis favored up toh, , values fer the range of vanatmﬁ of the c_iefect size. For
~1000m, and beyond this third critical value Hichanges !arger thickness, the formation of local lattices Hand HL,
to HL, which has a lower energy. The corresponding transiiS N0t éxpected to come from a global rearrangement of the
tions are experimentally observed, which indicates that th&€fects, but rather from the nucleation of defects inside the
actual form of the energy is close to the expression given idnterstices. The typical size of the largest defects remains
Eq. (4). _close towg, because this value corresponds to the mmw_nal
Concerning the dynamic of formation of the textures, sevInterface energy.. at the scale of the disk. The characteris-
eral points require further study. First, we have not explained'c size of the'lntersuces between three large disks in contact
how defects form from the homeotropic slab. In the case thdS therefore given by, o, and enters the range when the
SmA slabs studied by Fourniet al.[8], the appearance of a f[hlekness increases, which permits the appearance of a defect
single defect is preceded by a Brsotropic interface insta- inside the interstice. The_same mechamsm is also expected
bility similar to the Mullins-Sekerka mechanisfi9], that  for other generations which appear in smaller empty inter-
helps its nucleation. In a lateral geomefa5] and with a  Stices at larger thicknesses.
slow growth(=1 ummin~!), we have not observed such a
large deformation of thé3/L, interface, but nevertheless V. CONCLUSION

observed the appearance of the defects, which suggests that|, yhis work, we discussed the arrangement of defects
the energy barrier is lower in this case. However, if we as-

h i fth leat il d b present in a slab of smectic phase in contact with two parallel
sume that earlier stagee of the nuc eation are S,t' escri eﬂterfaces and different boundary conditions. The toric focal
by Fig. 5, withw increasing continuously toward its equilib-

. | h dina barri s q conics domains occurring above a first critical thickness
rium value, the corresponding barrier enefly (estimated ¢, 4 regular hexagonal lattice in thin slabs. The size of the
from Fig. 15 is rather large compared ol (the unit of E;

o 5 . defects is fixed not only by the thickness but also depends on
is indeeda WKhélong with the usual orderK~KkT/d  hq ocal order, i.e., the deviations from hexagonal order, and
and\~d, whered is the thickness of the smectic layerd/e g therefore different in grain boundaries. When the thickness
think that two phenomena actually strongly decre&se  jncreases, the regular lattices are unstable and become disor-
which is mainly due to the curvature of the layétise term

Xw in Eq. (4)]. First, if the orientation of the layers increases a) x=90 b) x=128
continuously from 0 to its equilibrium valug, at theLs-L 10
interface, the large bending energy of the layers associate:
with the focal conics domains in the nucleating defect can beg,
avoided(see Fig. 28 Second, any irregularity at the glass
substrate tends to deform the layers, and therefore strongl
decreases the barrier. Such irregularities could be very effi. 0 005 01 ols 02 025 ¢Sy 0B
cient seeds for the defects which move easily once formed. ) x=200 ) x=1500

A second interesting point is the dynamical formation of N 0
the hexagonal lattices. Indeed we think that the spontaneou _1'(5)008
organization of defects in the thin slabs is due to the exis-

-1500
. . E¢10
tence of a finite range of sizes for the defects, and that the - -2000

S ; . I -15 N -2500

situation here is very different from the organizations of -3000

single-sized disks in the plane which would form random 0 005 01 015 02 025 0 005 01 015 02 025
. . .. . o (rad.) o (rad.)

close packings. The continuous variation of size could help

to overcome some geometric lockings during the formati(_)n FIG. 24. Comparison of the energy of a single defect given by

of the lattices. Such rearrangements should, however, be linEq. (4) (plain lineg and Eq.(A1) (dashed linesfor different thick-

ited to small thicknesses, which correspond to not too larg@esses (C=0.59, o= 30, and® =0.065).
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dered on a large scale. We have shown that regular assemence in the geometrical parameters of the defects. We there-
blies are nevertheless locally observed. In these textures, déere expect that similar behaviors should be observed in
fects form the first stages of Apollonius packings of disks inother smectic systems.

a plane. We have modeled a defect by a disk in the plane,

and computed its surface energy. The minimization of the

total surface energy of assemblies of noncongruent di;ks re- APPENDIX
produces the main features of the textures, and explains the
presence of different transition thicknesses. In this appendix, we compare the energy of the defect

We have also shown that the main type of saturating ternsketched in Fig. 5 to the polynomial expression given in Eq.
for the energy of a single defetdleformation of the inter- (4). The exact free energyn units of a®>7K\) of the defects
face, dilation or energy of anchoripdpas the same depen- sketched in Fig. 5 is given bji5]

tanw—w 2 tanwx 2= 2w
Ei(X,0)=—®x? tarfw+ 2x% — tarfw + [In(axtanw)—2](8p—2w)— In cosgde
sinw a l2— 8y
X tanw _ . . ,
» [In(ax tanw)— 1][sirf2w(tan o —tan 2w) + sirf6,/tandy]+ Cxtanw, (A1)

where the first and second terms represent the gain of energylai-thg interface and the energy of the conical wall, whereas
the other terms account for the curvature energy of the layers sketched in Eigs &.constant of order unity which accounts

for the energy of the straight line defel@5], and we have takeih as a value of the cutoff lengths which appear in the
neighborhood of the two line defects. Figure 24 shows that the main featug s correctly described by the much simpler

expression given in Eq4).
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