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Fine structure of defects in radial nematic droplets
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We investigate the structure of defects in nematic liquid crystals confined in spherical droplets and subject
to radial strong anchoring. Equilibrium configurations of the order-parameter tensor field in a Landau—de
Gennes free energy are numerically modeled using a finite-element package. Within the class of axially
symmetric fields, we find three distinct solutions: the familiar radial hedgehog, the smallainigop
disclination predicted by Penzenstadler and Trebin, and a solution that consists of a short disclination line
segment along the rotational symmetry axis terminating in isotropic end points. Phase and bifurcation diagrams
are constructed to illustrate how the three competing configurations are related. They confirm that the transition
from the hedgehog to the ring structure is first order. The third configuration is metaSteble symmetry
clasg and forms an alternate solution branch bifurcating off the radial hedgehog branch at the temperature
below which the hedgehog ceases to be metastable. Dependence on temperature, droplet size, and elastic
constants is investigated, and comparisons with other studies are made.

PACS numbe(s): 61.30.Jf, 61.30.Gd, 64.70.Md

[. INTRODUCTION figurations. In addition, we examine how closely our calcu-
lated (unconstrainedsolutions conform to the constraint of
The study of equilibrium structures and defects of con-{2,4].
fined liquid crystals has been an area of interest for some Another matter concerns the dependence of the phase
time. Here we consider the problem of spherical droplets of #oundaries on anisotropy of the elastic constants. The nu-
nematic with radial strong-anchoring conditions modeled byMerics in [3] (as well as[6]) considered only the equal-
a Landau—de Gennes tensor order-parameter model. We ###astic-constants model; whereas Rosso and Viitdepay
motivated primarily by the succession of papiirs4]. In [1] considerable atter!tlon to the change_s in stablllty'and strup-
Schopohl and Sluckin illustrated for this problem the struc-tural phase behavior induced by varying the relative magni-
ture of a radial hedgehog configuration with an isotropictudes of these constants. Here we use a general Landau
core. Penzenstadler and Treb# then showed that the core Model with two elastic constants—because of the strong-
should instead broaden to a small rifay loop) disclination ~ @nchoring conditions and elastic-constant degeneracy of
(of 180° or strength 12 This was validated numerically by these models, this is the maX|maI number of independent
Sonnet, Kilian, and Hess {i8] (using a tensor representation constants that can be considered. We observe marked quan-
and iterative solution algorithm similar {&]) and was also fitative differences as the elastic constants are varied.
validated in[6] (using a lattice Monte Carlo modelRosso .A flnal issue concerns the equilibrium radius of the dis-
and Virga[4] argued that the radial hedgehog solution re-Clination loop and hovy it depends on the model.paranjeters.
mained at least metastable over a certain, broader range 6P" large droplets, this should depend only on intrinsic pa-
parameters. rameters, and an indication of this is giver{8]. Penzensta-
Several issues raised by these papers have motivated usqgr and Trebir(2] perform an analysis that leads to a pre-
our present investigation. A prediction of the first-order na-diction of how the radius of the ring should depend on
ture of the transition from the hedgehog to the ring configutémperature and elastic constants. We explore this numeri-
ration is stated ifi3]. Related to this is the analysis 4] of ~ cally and find qualitative agreement.
the metastability limits of the hedgehog. In the latter paper
(as well as if2)]), a certain approximatio(constraint on the
degree of orderwas used, and the question arose as to what
extent some of the conclusions of those papers might have A. Free energy and scalings

been affected by the imposition of this assumption. These Consider a Landau—de Gennes expansion of the free en-

issues are clarified here where we explicitly delimit coexist- . .
ence regions and metastability limits for the competing conor9y IN pOWers of the tensor order paramegeand its gra

dientdQ={Q,p ,}
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Ly L, TABLE I. Experimental material constants of MBBA_ is the

fe::7 Qap,yQapyt ?Qaﬁ,BQav,v clearing pointTy,, T# is the pseudocritical point or supercooling
limit Tse, A=a(T—T5), K1, Ky, andKg; are the Frank elastic
constants aT =25 °C.

and
A , B ; C , Constant Value

for=5 Q) = g Q)+ 7 Q)% & 0.42x 10 Jin? °C

B? 0.64x 10* J/n?

We nondimensionalize this model in terms of tffexed) c? 0.35x< 10* Jin?
length scaleéqy:=+27CL,/B?=\L,/Ay, (where Ay:=B?/ L,? 0.61x 101 I/m
27C denotes the nematic-isotropic transition value for a ho- Ky 0.6x 10 J/m
mogeneous uniaxial bulk sample governedfly and res- K,o° 0.4x 10~ J/m
caled variables Kas 0.75x 10~ 3/m
L,/L,° <1.6/(1.45:0.4)

roo. [27C2 ~ | 27C3 TS 46°C
Ti=—, = , Fi= — F. ¢ « o
& ° 282 4B23 Te—Te* 1°C
°E. B. Priestley, P. J. Wojtowicz, and P. Shemgtroduction to

In terms of theséafter dropping the tildgsthe densities take Liquid Crystals(Plenum, New York, 1976 p. 168, Table 1.

the form bT. W. Stinson and J. D. Litser, Phys. Rev. L&, 688(1973.
L. M. Blinov and V. G. Chigrinov Electro-optic Effects in Liquid

1 7 . . .
erEQaﬁ,yQaﬁ,y“L EQaﬁ,ﬁQay,v Crystal Materials(Springer, New York, 1994 p. xiv, Table I.
and i<y (6
¢ 1 (see[8,9)).
fo== tr(Q?)— J6 tr(Q?)+ = tr(Q?)? As a point of reference, we give in Table | the relevant
2 2 ’ experimental material parameters for MBBA, which we take

as a representative low-molecular-weight liquid crystal.
where From these data, we obtain a nematic correlation leigath
the clearing pointof
L, 27AC A

ni=—, t: = —
L 2 A 27CL
! B N €=\ 57 L-1.186x10"7 m~120 nm

The important dimensionless parameters, then, are the
elastic-constant ratig;, reduced temperatuteand radius of and a reduced temperature of
the droplet in units o€y, which we shall denote bR.

These units were chosen to permit easy comparison with 27AC 27aC
[1-4]. The length scal&, is comparable to the length scales e
utilized in [1,3]; it corresponds to dtemperature indepen- B B
deny coherence length or nematic correlation length, at thq—|ereA=a(T—T*), with T in °C andT* =45°C, the ex-
nematic-isotropic transition temperature. For this interpreta- . e . ¢
tion to be completely validé, should depend as well dn, perimental pseudocrltlgal pqmzt for MBBA. I,T .theory,. we
(see, for exampld7], Sec. 2.5, as is the case if] and[2], should have the relationship</27aC=T.—T; ; so this

c
Eq. (15); we have chosen the definition & above for con- agrees well with the experimentally determined valuel pf
venience.

—Tg=1°C. Thus we can simply think dfas the number of
In terms oft, the critical values in the bulk are=0

(T—T%)=0.91T—45).

degrees above or below the pseudocritical temperature for

(“pseudocritical temperature,” below which the isotropic the given materialhere, above or below 45°C for MBBA
phase is unstablet=1 (nematic-isotropic transition tem- Our rescaling of the order parameter for this material gives

perature or “clearing point), and t=% (“superheating 5
limit,” above which the ordered phase does not exi¥hus ~ /27C ~20
one unit of our reduced temperature roughly corresponds to Q= 2B2 Q=2.010.

the width of the coexistence range for the nematic and iso-

tropic phases of the material in the bulk, which is aroundThus for MBBA our order-parameter values are roughly
1-2°C for typical low-molecular-weight liquid crystals. In doubled.

order for the elastic free-energy density to be positive defi- One can compare such a Landau model to the Frank elas-
nite, it is necessary that tic model, under the assumption of uniaxiality

0<L,, 0<3L,+5L,, Q=S(A®h—11),

or to obtain the relations
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z dom. For this purpose, we have found it convenient to utilize
the formalism of( 5] (see alsq3]) and use the representation
L — Q(r2)=0y(r.2E;+0y(r. 2Ex+qs(r.2)Es,  (2)
radial where
-1 0 1 0 O
t E ! 0 1 E ! 0 1
symmetry == - , pi=—— - ,
Q \\ \/6 0 0O 2 v2 0O 0 O
: and
00 1
j r 1
symmetry R E3‘:5 0 0 0]
1 0 O

FIG. 1. Computational domain and boundary conditions.
Here the normalization is chosen so that these basis tensors
K1 =Kgzs=(2L;+L,)S? and K,,=2L,S%. satisfy the orthogonality condition

This illustrates the well-known elastic-constant degeneracy tr(EiEj) = 6ij

of the model and leads to two slightly different experimental
values forp(=L,/L,) for MBBA:g y P which helps to simplify some of the formulas.

After integrating with respect t@, we obtain a free en-

K_u_ . Kss ) ergy of the form

7"\ Kaa

The elastic constantt, is difficult to determine, and this

material does not conform exactly to the conditiéh, . . . N
— K. Taking into account the reported experimental upper'I'he expressions for the densities ab@wecylindrical coor-

bound onL,/L, in Table I, we take reasonable values fpr dinat_es are somewhat complicated and are presented in Ap-
for this material to be in the range &0;<1.5. pendix A.

=1.0 or =2

F(q)=47TJQ[fe(q,Vq)+fb(q)]r drdz

B. Symmetry reduction C. Boundary conditions

I — We impose a radial strong-anchoring condition on the
Our initial objective was to compare the hedgehog and o L .
. LT . : outer boundary, requiring th@ tensor to be uniaxial with a
ring-disclination solutions. Both of these possess high de-

. . .~degree of ordefscalar order paramefeequal to the bulk
grees of symmetry, which we use to reduce the domain fo(ra uilibrium value:
the calculations as well as the number of degrees of freedom ’
in the tensor order-parameter field. o= \/%So(é@ér—% 1) on r2+z22—R?, 3)
1. Geometry with
The radial hedgehog configuration is completely spheri-
cally symmetric; while the ring disclination is axially sym- 3+y9—8t
metric. In addition, the ring solutiotas well as the hedge- So(t)= 4 4
hog possesses a reflection symmetry across the plane
perpendicular to its rotational symmetry axis. We takezhe This is translated into conditions on the scalar degrees of
axis to be the rotational-symmetry axis and thg plane to  freedomq,, g,, andqgs in Appendix B.
be the mirror-symmetry plane, and we thus reduce our geo- Mirror symmetry across thg-y plane implies the condi-
metric domain to the quarter circle depicted in Fig. 1. Wetjons
will use cylindrical coordinate$r, 6, 20 and give below ap-
propriate symmetry boundary conditions for the 0 andz d1,=02,=03=0 on z=0.
=0 boundaries of the domain. ) o
Rotational symmetry around tleaxis implies

2. Tensor representation
] 01,=02=0,=03=0 on r=0.
The tensor order parameté normally possesses five de-

grees of freedom: it is a symmetric, traceless, second-rankhe coordinate-system-induced singularity a0 gives rise
tensor. However, the particular configurations we seek areo this larger number of conditions there.

such that theQ tensor always has an eigenvector in the di- The numerical finite-element package we utilize below
rection@, (normal to ther-z plane. This enables us to rep- takes the problem input in its weak formulatiGrariational
resentQ at each point in terms of just three degrees of freeform, weak/integral form of the Euler-Lagrange equatjpns
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as opposed to the strong formulation of the equilibrium con- > 4P b
ditions (as a Euler-Lagrange system of partial differential
equations In such a situation, it is necessary to specify only
the essential boundary conditions to be satisfied by the trial
functions, which for our problem are

g;=0, onz=0
SPLIT CORE RADIAL HEDGEHOG  RING DISCLINATION

n o . . -
and FIG. 2. Qualitative features of three axially symmetric equilib-

9,=9s=0 onr=0 rium director profiles in a radially aligned spherical nematic droplet.

We see that symmetry demands that the eigenframe d@the lution is metastable or nptFor these analyses, we were able
tensor align with the&-&,-&, coordinate frame along the to use the auxiliary functionals and eigensolvers of the

axis: whileQ is required to be uniaxial along tizeaxis with ~ VECFEM library. o _ .
director in the direction o&, [its scalar order parameter be- The accurate determination of phase boundaries for this

ing given along this axis by the values 8€z) :=q,(0,2)] problem requires highly accurate values of the free energies,
e and this motivated us to use high-order finite elements, type-

2 triangular elements. In addition to conforming better to the
Il NUMERICAL APPROACH curved part of the boundary, they give more accurate solu-

The strong form of the equilibrium condition&uler- tion fields and free energies with fewer total triangles and
Lagrange equatiopsconsists of a coupled system of three degrees of freedom than the traditional type-1 triangular
nonlinear elliptic partial differential equations in the un- elements—the asymptotic error is fourth order versus second
known scalar fieldsy(r,z), i=1,2,3. The nonlinearity is in the mesh sizésee, for examplg14]).

mild (involving only undifferentiated terms in the differential ~ FOr typical runs, we have used 64 triangles per edge
equationy and the equations are singular alang0 (due to ~ (manually graded to be denser near the ojigiving a total

the coordinate systemThere exist modern software pack- Of 4096 triangles, 8385 nodésix nodes per triangle and
ages capable of solving such problems in general, and wé# 385 unknownsthree unknowns per nogleFrom a crude
have utilized two of them: parall&LLPACK (//ELLPACK) [10]  initial guess, it can take a few minutes on our workstation to
and thevecrem library [11]. converge; in continuation mpc_(i_where parameters are being

JIELLPACK is a prototype of a domain specific problem changed slightly and good initial guesses are avaijalte
solving environment for elliptic and parabolic partial differ- convergence is faster. In the “nice” parameter rangesd-
ential equations and systems. It contains a wide array of too/@St R, around 20-25 units, say, artdclose to zerg the
for the input of problemin a high-level specification syn- accuracy of the computed fields is about 2@ 10" *; while
tax), generation of grids and meshes, discretizations, solver§e accuracy of the associated free energies and minimum
visualization, and postprocessing. In the future, much of th&igenvalues is 10° to 10" . This deteriorates @R increases
type of numerical modeling in which we have engaged herénd/ort becomes more negative, and some indications of this
will be performed with the aid of such environments. More ¢an be detected in the extremities of some of our graphics.
information can be obtained from the reference$§lid] and
from [12]. IV. NUMERICAL RESULTS

VECFEM is a FORTRAN library of discretizations and solv-
ers for finite-element analysis of nonlinear elliptic and para-
bolic partial differential equations and systems. It is less Within this model and symmetry class, we find three dis-
comprehensive in its functionality tharell PACK—in which  tinct configurations: the familiar radial hedgehog, the ring
it is in fact contained as a submodule—but it is quite pow-disclination of Penzenstadler and Trelp#t], and a solution
erful for the problems within its scope. It requires as input athat we refer to as the split-core configurati@@onsistent
finite-element mesh, user-coded subroutines to define theith [15]). A qualitative rendering of the director fields of
problem (partial differential equations in weak formulation, these three solutions is given in Fig. 2.
essential boundary conditiongparameter choices and set-  The radial hedgehog is the most familiar. It is completely
tings (tolerances, types of elements, array sizes),eiad an  spherically symmetric, everywhere uniaxial with a director
initial guess. It returns an equilibrium solution, which may orin the radial direction, and possesses an isotropic core. We
may not be locally stabléor metastablg calculated to user- give a rendering of one of our calculated hedgehogs in Fig.
specified stopping tolerances. In addition, it contains mod3. The order-parameter tensor field is visualized as a field of
ules for the evaluation of auxiliary functionals on the calcu-rectangular boxessimilar to [3], here down-sampled from
lated solutions, eigensolvers for associated eigenvaluthe actual calculated fieldligned with the eigenframe of the
problems, andh posteriorilocal error estimators. For more Q tensor with axes scaled in proportion toN;2- A)/3A

A. Configurations

information sed11] or [13]. e[0,1], where\;, i=1,2,3, are the eigenvalues of the tensor
For our application, in addition to computing equilibrium at the point and\ is a normalizing constant chosen so that
solutions, we require their free energi@s order to deter- —A/2<)\;=<A. Adjacent is a plot of the three eigenvalues

mine the globally stable solution and to generate phase dialong ther axis. The degenerat@ouble, minimum eigen-
grams and also the minimum eigenvalue of the secondvalues are visually indistinguishable, and the calculated so-
variation of the free energgto determine if a computed so- lution is uniaxial to the level of our discretization error. The
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FIG. 3. Hedgehog tensor field and associated eigenvalu€s of

! FIG. 4. Ring-disclination tensor field and associated eigenvalues
tensor along axis. Parameters: =0, t=0.75,R=25.

of Q tensor along axis. Parameters: =0, t=0.75,R=25.

core structure and profile agree with those reportddjmand
[3]. N max= \/g S

Here(and in all of the figuresall lengths continue to be ) o )
expressed in units of, (the nematic correlation length at for the extremal eigenvalue d@. Thus in Fig. 3, witht
T.), which for our reference material MBBA is roughly 120 = 0-75, we havgfrom Eq. (4)]
nm. For this particular sequence of pictures, we also have
taken =0, which corresponds th,=0 (the equal-elastic-
constants casi;=K,,=Kgzg). Thus, for a low-molecular-
weight liquid crystal with roughly equal elastic constants,
this would correspond to a core size of approximately 0_5and
um for this temperature, which is in the coexistence region
(in the bulk and close tdr ..

In our normalization, a uniaxial tensor is written

343
$5(0.75=—,—=1.183

N o= \/ 2 Sy=0.966,

and we can see that this value is approached asymptotically
just beyond the hedgehog core. As previously noted, these
values are amplified by the rescaling @f For MBBA (for
which this scaling factor is roughly) 2this would correspond

to a scalar order parametéin the traditional scaling of
roughly 0.48.

The small ring disclination was first predicted by Penzen-
stadler and Trebin if2]. It was numerically calculated for
the equal-elastic-constants case [B] (and in [6], using
Monte Carlo simulation It was further analyzed if4]. We
and present a representative of our calculated results in Fig. 4.

Q=\2s(hen-11),

whereSis the scalar order paramefgiegree of ordgrandf

is the director(unit eigenvector associated with the distin-
guished, nondegenerate, eigenvalugof This leads to the
relations

tr(Q?) =5
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constraint is imposedwith Figs. 5 and 6 of2], where the
smallest eigenvalue is forced by the constraint to bow out
and down.

The split-core configuration has not been previously re-
ported to our knowledge. We render an enlargement of the
inner area of this solution in Fig. 5. We have used a much
lower temperaturet=—12, in order to obtain features of
reasonable size. The configuration consists of a very short
line disclination segmenr(of 360° or strength 1, a local pla-
nar radial or planar uniaxial structyralong thez axis (rota-
tional symmetry axisterminating in isotropic end pointshe
split remnants of the isotropic core of the hedgehdihe
field of eigenvalues associated with tijstensor field is a
littte more complicated than those of the other two configu-
rations. Along thez axis, symmetry implies uniaxiality;
whereas approaching the origin from any other direction, one
observes local biaxiality. In Fig. 6, the eigenvalues are plot-
ted for three different directions of approach.

B. Bifurcation and phase behavior

It is not immediately clear how these three solutions are
related to each other. They can be seen to be topologically
equivalent, in that any one can be continuously transformed

FIG. 5. Split-core(line disclination segmepttensor field(en-  into any other. Both the ring and the split-core solutions
largement of inner region Parameters: »=0, t=—12, R=25. result from a breaking of the spherical symmetry of the
hedgehog. The ring configuration results from a horizontal

We see that the solution is effectively uniaxial away from theSPreading of the hedgehog core into a disclination loop;
vicinity of the ring, where it goes through a local biaxial While the split-core solution develops by splitting the core in
transition as the director reorients from the radial direction ath€ vertical direction to form a disclination line segment.
the boundary to the vertical direction at the origimithout We have explored these numerically. Figure 7 gives a
rotating the eigenframe of th® tensoy. The radius of the Fepresentative bifurcation diagram, which illustrates these
ring here(for this set of parameteris roughly the same size transformations with respect to temperature changes. A con-
(5&,) as the hedgehog core in Fig. 3. venient parameter to distinguish the three solutions is pro-
In [2], and also if4], the pointwise constraint vided by their scalar order parameter at the origif0)
=(,(0,0): all three configurations are uniaxial at the origin
(by symmetry, with the ring being positively ordered in the
vertical direction[S(0)>0], the hedgehog isotropicS(0)
=0], and the split core negatively orderg8(0)<0]. In
our bifurcation diagram, we plot this value on the vertical
axis against the reduced temperattir@ong the horizontal
is imposed on the eigenvalues of tietensor—this value axis. The similarity to the first-order nematic-isotropic tran-
results from minimizingA tr(Q?)/2+ C tr(Q?)?/4 with re-  sition in the(uniaxia) bulk is apparent.
spect to trQ?) (effectively treating the B term” in f, as a The picture now becomes clear. As temperature is re-
negligible perturbation The effect of this on the eigenvalue duced, the hedgehog loses its metastability at a certain point
profiles can be seen by comparing Fig. 4 hgveere no such (just beforet=—5 for the parameters herédeyond which it

r

A
Q) =AI+NZHNS=— (5)

3 3 3
2 2 2
£ 1 £
S & §
<0 <0 <0
-1 -1 -1
- 25 5 7.5 - 25 5 7.5 - 25 5 75
r P 4
(a) (b) (©

FIG. 6. Eigenvalues of) tensor field for inner region of split-corgine disclination segmentonfiguration(Fig. 5 alongr axis (left),
along 45° ¢ =2z) radial line (centey, alongz axis (right).
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3.5
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1.5f

S(0)
5(0)

3 HEDGEHOG

HEDGEHOG

SPLIT CORE SPLIT CORE

12 10 -8 -6 -4 -2 0 2 0 1 2 3 4 5 6
t R

FIG. 7. Bifurcation diagram of discretized model for radial ~ FIG. 8. Bifurcation diagram of discretized model for radial
hedgehog, ring-disclination, and split-core solutions. Scalar ordehedgehog, ring-disclination, and split-core solutions. Scalar order
parameter at the origirS(0)] vs reduced temperatu(®. Bold line  parameter at the origifS(0)] vs droplet radiugR in units of &p).
indicates stable equilibriurtminimum free energy solid line indi-  Bold line indicates stable equilibriugminimum free energy solid
cates metastabldocally stablg; dashed line indicates not meta- line indicates metastabigocally stable; dashed line indicates not
stable (not locally stablg Parameters: =0, R=25. Transition  metastablgnot locally stablg Parameters: =0, t=—12. Tran-
value: t=0.583. Ring limit/turning point: t=0.947. sition value: R=1.206. Ring limit/turning point: R=1.193.

continues to exist as a locally unstable equilibrium solut|on.Iess form) temperature,, droplet radiusR, and elastic con-

Off this point bifurcates the branch that contains the other, ; . :
two solutions. The upper part of this branch corresponds tstantsn. This dependence is explored numerically &) for

the ring solution, which is locally unstable until its radius the case of equal elastic constafts=0, Fig. 7 of that pa-

becomes sufficiently large. The lower part is the split core pen. Here we have constructed similar phase diagrams, Figs.
y 1arge. P P 9 and 10, that in addition take into account the effect of

e on o oot 3 g een s consianta(<0) and lso ndiate e et
fairly.strong with a coexistence region of almos<t s_tab|I|ty limits of the solutions. Th_e solid I|n_e_s in these two
<1 The sirﬁple bifurcation poirfand branch crossindhas figures demafk the hedgehog-to-ring transition. For our ref-

’ . . - . grence material MBBA, we should have £6=1.5, which
separated slightly under our discretization. This example o

X o would produce a transition line slightly above the one for
|mp_erfect blfurc_apon is probably caused here by the fact =0, which line can be thought of as representative of a
that in such a finite-element model as ours, the symmetr ’

boundary conditions that are “natural(l.e., those that in- ow-molecular-weight material with roughly equal elastic

volve derivativeg are only weakly imposed and only ap-

proximately satisfied by the calculated fields; thus the dis- 2 j ™ Isotropic | g
crete model adheres to the level of discretization error to this [Hedgehog | ..o mmmm s EEETEEEEEIASAE
aspect only of the symmetry of the continuous problem. Mo- O o ™ ]
tivated by these numerical results, we have constructed else- Ve : :
where an analytical argument proving that for such a model =2 /e T T
the hedgehog must become locally unstable at a sufficiently P n=-035 ;
low temperature in a SUfﬁCientIy Iarge drop[GJS] b PO .................. ]
The bifurcation can be similarly viewed as a transition }
with respect toR (for fixed t). This is done in Fig. 8, at a | N ]
rather low temperature= — 12, where the branching has be- v ; :
come very steep. It reveals similar features, with the hedge- -8 jf  idwmimmimeivssn s
hog becoming locally unstable above a very small critical : 5 :
value ofR. The bulk value of the scalar order parameter for =19}~ n==055"" o ]
this temperature is givefmgain using Eq(4), with t=—12] : Ring
by % 10 . 15 20 25
So(—12)= @23.312, FIG. 9. Phase diagram with upper coexistence limits for solu-
4 tions of discretized model for three different values of elastic-

constant ratiop=0,—0.35,-0.55. Reduced temperatufte vs drop-
and this value can be seen to be very quickly approached @t radius (R in units of &). Above the solid line, the radial
the center of the droplet for the ring configuration. hedgehog is stableninimum free energy Below this line, the ring
Which configuration is stabléglobal free-energy mini- configuration is the global free-energy minimizer. Above the dash-
mizer depends on the model parametérsre in dimension-  dotted line, the ring solution ceases to exist.
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| lowopic [
Hedgehog | o -iiom o TIEETESEIETISEE
2} ---Ceexzistence-----}-- e o
abo S SPRS SR _
ol G ]
_8t- Ring:- - .
10} - -
% 10 15 20 25
R X X .
] ] ] -3 -2 -1 0 1
FIG. 10. Coexistence region faj=0 solutions of discretized (@ t
model. Reduced temperatuit¢ vs droplet radiugR in units of &).
Above the solid line, the radial hedgehog is stafléenimum free 12 i i i i
energy. Below this line, the ring configuration is the global free- fo 1
energy minimizer. Above the higher dash-dotted line, the ring so- t: 0
lution ceases to exist. Below the lower dash-dotted line, the hedge 10r| __ _ t; -3 1
hog ceases to be metastalllecally stable.

constants—in such a case, the droplet rRdihould be taken
in units of 0.1um or so, and the temperaturei °C below -
the pseudocritical temperature. The transition lines wjth = 6f
<0 would correspond to materials witky,>K ;=K.

As observed i3], for the equal-elastic-constants case,
one obtains stable hedgehogs only for very small droplets
(R=2-3) or for high temperatures%0.5). Here now we
can observe other features. First, the anisotropy in the elasti 2
constants can significantly increase the stability region for .
the hedgehogespecially as the ratigg=_L,/L; approaches , , , ,
its limiting value of —2, as given in Eq{(1)], thus giving 85 0 0.5 1 1.5 2
stable hedgehogs at much lower temperatures and in muc, n
larger droplets. Second, the coexistence region of the phases
is rather large, of the order of five times the width of the FIG. 11. Equilibrium radius of the ring configuration v<re-
coexistence region of the ordered and isotropic phases in thiiced temperatuydor three different values of the elastic-constant
bulk. The split-core solution is always metastable; howeverfatio # (top), and vs » for three different values of (bottom.
the ring solution(with the same parameteralways has Droplet radiusR=20.
lower free energy.

The lower limit of the coexistence region is given by the tion ring. Their model differs from ours in two respects: they
bifurcation point, the critical or R value at which the hedge- use a ball of infinite radius, and they impose the pointwise
hog solution loses its metastability. It is difficult to locate constraint(5) on the eigenvalues of the tensor order param-
these points with high accuracy in our numerical model, beeter. Their analysis is based on comparing the free energies
cause of the imperfect bifurcation. We have approximatedor a certain ansatz for a hedgehog versus a ring. After mini-
them by the horizontal-axis intercept of the line connectingmizing with respect to the parameter controlling the radius of
the nearest points on the twoarrowly separatecbranches. the disclination loop, they obtain a formylgg. (33) in their

Figure 7 corresponds to traversing in the vertical directiorpapel for the equilibrium value, which in our units takes the
the =0 phase-boundary line in the upper right corner ofform
Fig. 10 (or Fig. 9; while Fig. 8 traverses this line in the
horizontal direction in the lower left corner. The phase dia- 0.65+0.477
gram in Fig. 9 also indicates how the bifurcation diagr@m No= T- (6)

Fig. 7) will change asy is changed: the whole picture shifts
to lower temperatures agis made more negative.

4_

Figure 11 contains plots of the radius of the ring in our
computed results versus(for fixed 7, top) and versusy
(for fixed t, bottom). The trends and qualitative features are

In [2] Penzenstadler and Trebin perform a qualitativeconsistent with Eq(6). We observe a very gradual decay in
analysis to determine the equilibrium radius of the disclina-A, ast is reduced and a fractional-power growth relative

C. Equilibrium radius of ring configuration
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Regarding the consideration of such a constraint in gen-
eral, one can ask to what extent our calculated fields conform
1 to (or deviate from tr(Q?) =S(2). A convenient parameter to
gauge this is given by

tr(Q?
a’:=1— (gg ), (7
_ which varies between 0 and 1, taking the value 0 when the
order condition is exactly satisfidds is the case in our outer
boundary conditions, for exampland the value 1 whe® is

Sol . zero (isotropig and deviates maximally from the condition.
plit Core - : .. . .
T Hedgehog We have plotted this in Figs. 13 and 14 for representative
1 : ] solutions of our three kinds, and we can see in these the
12 10 = o ") > 0 2 localization of this quantity.
t As well as coercing this degree of order, the bulk poten-

tial f, penalizes configurations for departing from uniaxiality

in general. Sometimes configurations do, however, “escape”
to biaxiality, as we have seen above and has been demon-
strated elsewhere. For such a model as ours, these regions of
biaxiality are again localized to the vicinity of disclinations
and such highly strained regions. To quantify and visualize
this, we utilize the parameter

FIG. 12. Radius of ring f,g) and half length of split-core line
disclination segmentz(,;) vs reduced temperatur@). Bold line
indicates stable equilibriuriminimum free energy solid line indi-
cates metastabléocally stable; dashed line indicates not meta-
stable (not locally stable Parameters: =0, R=25. Transition
value: t=0.583. Ring limit/turning point: t=0.947.

to 7, although the divergence of, occurs as approaches tr(Q3)2
2, the superheating limit of the ordered phase in the patk ,82==1—6ﬁ (8
opposed td—0, in Eq. (6) abovd. Given the assumptions tr(Q%)

and approximations of the analysis @], we expect the

quantitative agreement to be better for more negative valudsom [16] (yvhic? has been utilized for a similar purpose in
of t. For MBBA, with 1.0< <1.5, the lower part of Fig. 11 [17))- AS with a” above, this parameter takes value$0r],

indicates a ring radius of roughly 3~1.3um near the equals 0 if and only if is uniaxial, and 1 when it is “maxi-
clearing point. mally biaxial.” We plot this for representative ring and split-
In comparison, the length of the line disclination of the ©©'® solutions n _F|gs. 13 and 14—the radial hedgehog is
split-core solution is shortgthan the radius of the ringor ~ €Verywhere uniaxial. o _
moderate temperatures. It also appears to approach a Iimiting We see that the departure from uniaxiality is very highly

value of the order of a single unit @, or less. See Fig. 12. Iocalized. Also, comparing the variations 8f with those of
«?, for both the ring and the split-core solutions, we can see

the slightly shorter length scale of the escape to biaxiality
D. Degree of order and biaxiality (compared to the scale of variations of the degree of grder
as this is determined by a “biaxial coherence lengflsée
[2], Eq.(14)]. Deeper in the nematic phase, we expect to see
this situation reversed, since the biaxial coherence length
t scales like /—t (in our unity; whereas the nematic corre-
tr(Q%) =~ X lation length(coherence lengihscales like 1y—t.

The pointwise constraints) utilized in the analysis of
[2,4] in our units corresponds to

o o V. CONCLUSIONS AND DISCUSSION
Except for the vicinity of defects and disclinations, the tensor

fields we compute are essentially uniaxial with degree of We summarize the main observations that have been
order equal to the bulk equilibrium value for that tempera-made. The transition from the radial hedgehog configuration
ture: to the ring is first order and in fact rather strongly(ableast
relative to the first-order nematic-isotropic transition in the
bulk). The dependence of certain features on the elastic con-
) , |3+V9-8t 2 t stants can be pronounced, and in particular the expanding of
rQI~S=|—— | =~ §+O(\/__t) the stability and metastability regions of the hedgehog as the
ratio L,/L; becomes more negative is consistent widh
The equilibrium radius of the ring follow&t least qualita-
ast— —o. These values agree asymptoticaltieep in the tively) the prediction of[2]; the ranges where we expect
nematic phase although they are not particularly close over better quantitative agreement are for more negative values of
the parameter ranges where we have done most of ourand are beyond the reach of our code. With respect to the
computing—the rationale for Eq.(5) relies on B? constraint used if2,4], we have found no instance where
<—24AC, or §<—t in our units. significant qualitative differences were caused by this; al-
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FIG. 13. Order condition parametf#?, Eq. (7)] for hedgehog
(top) and ring(middle, inner regionh Degree of biaxiality parameter
[82, Eq.(8)] for ring (bottom, enlargement of local regiprParam-
eters: »=0,t=0.75,R=25.
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FIG. 14. Order condition parametp#?, Eq. (7), top] and de-
gree of biaxiality paramet¢3?, Eq.(8), bottoni for split-core(line
disclination segmentsolution (enlargement of inner regipnPa-
rameters: 7=0,t=—12,R=25.

posed. There are some factors working against it. First, from
an elastic point of view, the 360° disclination is an unfavor-
able configuration, usually stable only for very small capil-
laries and such3,18]. Second, from the point of view of the
bulk potential, we know that the negatiBpotential well of
fp (in which the scalar order parameter @fapproximately
lies for those points along the disclination line segmést
metastable in the bulk only under the restriction tabe
uniaxial (which is forced upon us here along thexis by
symmetry; the negatives equilibrium is unstable in the bulk
with respect to biaxial perturbations. It is possible that, once
unshackled from the constraints of symmetry, the disclina-
tion line segment of the split-core configuration would
broaden itself to d@vertically oriented ring, as has been sug-
gested to u$19].

One can contemplate ways to enhance the stability of the
split-core solution. One possibility would be to apply a mag-

though quantitative agreement can be poor for the highenetic field using a material with a negative magnetic

temperatures.

anisotropy—a positive anisotropy would likely only further

The split-core solution serves to complete the bifurcationdiscourage it. Another possibility would be to use elongated

picture. It is metastable in our symmetry class. We questioriellipsoida) droplets. In particular, if these droplets were
whether or not it will remain metastable in a full three- very small(submicrometer sigethen one would approach a
dimensional calculatiofin which axial symmetry is not im-  situation similar to the(small cylindrical capillary case,
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mentioned above, where planar radial structures do indeedroplets that have been observed experimentally, as well as
become stable. In fact, such configurations have been founahalyzed theoretically and calculated numericiii¢—29.
in Monte Carlo simulations of such droplets, which are ofThese are different structures, with a much larger radius ring
interest in HPDLCs(holographically formed polymer dis- (and overall droplet size and sydan those explored here.
persed liquid crystajd20]. The effect of electric or magnetic Some of these other systems also involve other aspaoth
fields on hedgehogs would also seem to depend on whethas external fields, weak surface anchoring, chirality, or nega-
the material has a positive or negative dielectric or magnetitive dielectric anisotropy and the analysis of them is usually
anisotropy. In the positive case, we would expect the field tan terms of thelmacroscopitOseen-Frank elastic continuum
encourage the ring configuration and broaden its radiugheory. Because of the ill conditioning discussed above, we
while we would anticipate the opposite to be true for a liquidwere unable to expand our domain to a size sufficient to
crystal with a negative anisotropy. capture one of these other, larger configurations. Much of the
We make two points of a more general nature. First, wenvork reported here has been adapted ff@@], where other
advocate the type of full numerical bifurcation analysis doneaspects of this problem are also addressed.
here, for investigations of this type in general. The more

direct approach of numerically minimizing discretized free ACKNOWLEDGMENTS
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Second, phenomenologicalorder-parametgr models CYLINDRICAL COORDINATES
such as these Landau models are mesoscopic in nature. They

are appropriate for the type of fine-scale analysis done here; For our appllc_anon, we require the free-ene_rgy den3|ty_|n
they are not of use for truly macroscopic modeling, for ex_cyllndrlcal coordinates and subject to the additional restric-

ample, of display devices. When they are nondimensionalgon. thgt_Q takg the form(2f). Thetneedeg expresst;]ons can_bet
ized, one obtains a generic coupling of the form erived in various ways, for instance, by using the covarian

tensor calculus. Alternatively, one can proceed directly from

£)2 the Cartesian representation

=] X(elastig + (bulk), T T

d Q(r,0,2)=01(r,2)R(O)E1R(0) " +d2(r,2)R(O)E;R(6)
where¢ is an intrinsic(moleculay length scale and a geo- +03(r,2)R(OE3R(H)T,

metric one. Thus fod> ¢ the problem is badly singularly

perturbed. Moreover, in the “outer limit{as £&/d—0), the whereR(6) Is the rotation matrix

reduced problem is ill posed: only the bulk terms rem&in, cosd —sind 0O
is coerced to be uniaxial with the appropriate bulk equilib- .

rium degree of order, but the orientation of the director is R(§)=| sin¢ cosd 0.
completely free. Thus fod> ¢ significantly different tensor 0 0 1

fields can have nearly indistinguishable free energ@etow

discretization, numerical-resolution levelsThis intrinsic A computer algebra system is very helpful, and for this we

mathematical ill conditioning severely challenges bothhave utilized thevAaPLE package. The following expressions

asymptotic approachéwhich require the piecing together of are obtainedfor generalL,, L,, A, B, andC):

well-defined inner and outer solutionand numerical ap-

proachegbased upon graded meshes and guch L,
As a final point, we emphasize that all of the structures fe:?

we have explored here are very small in size, of the order

of the core of the radial hedgehogvhich scales like L,

V(1+2%/3)/(—1) in our units, se¢l1,15]]. For typical low- + >

molecular-weight liquid crystals, it is not clear if these could

ever be detected experimentally; for other materatdymer

e L . 1
liguid crystals, for example it might be possible. There are + (= — +2 +3
other ringlike (and some ling structures in liquid-crystal 1/3( Aas G2~ Qa3 SGuer Gasar)

1
qir + qg,r + q%,r + qiz"’ q%,z'l' q%,z+ I'_z (4q§+ qg)

1
g (qir + 3q§,r + ng,r + 4qiz+ 3q§,z)
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APPENDIX B: OUTER BOUNDARY CONDITIONS

The radial strong-anchoring conditidi8) can be trans-
formed into the following boundary conditions on the un-
known scalar fields};, g,, andqs:

2

1 3r
2R?

3 2
So, Q2(r12):ﬁ2‘50:

ql(rrz):(

and

V3rz
q3(r,z)=—2—R Sy on r’+z?=R?,
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