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Effect of natural convection in a horizontally oriented cylinder on NMR imaging
of the distribution of diffusivity
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This paper describes the influence of natural convection on NMR measurement of a self-diffusion constant
of fluid in the earth’s magnetic field. To get an estimation of the effect, the Lorenz model of natural convection
in a horizontally oriented cylinder, heated from below, is derived. Since the Lorenz model of natural convec-
tion is derived for the free boundary condition, its validity is of a limited value for the natural no-slip boundary
condition. We point out that even a slight temperature gradient can cause significant misinterpretation of
measurements. The chaotic nature of convection enhances the apparent self-diffusion constant of the liquid.

PACS numbds): 44.25+f, 47.27.Te, 92.60.Ek, 87.61c

[. INTRODUCTION for motion by refocusing any spin phase shift of nonmoving
spins. The change of the signal phase at the time of the spin
Nuclear magnetic resonan¢dMR) pulsed-gradient spin echo 7 due to the molecular displacements in the effective
echo (PGSH has long been used to investigate correlatednagnetic field gradient G(r,t) for a spin j,
and uncorrelated motion in a number of systems. The effectghose trajectory is given with ri(t), is ®(rj,7)
of self-diffusion on the NMR signal of liquids have been — 17G(r. )1 dt=[IF(r,t)-vi(r,t)dt. Here F(r,t)

. L . j
known since the beginnings of NM@Refs.[1-6]) and since  _ Y/ G(r,t')dt’ is zero at the time of refocusing v, is the

then, spin-echo measurement of a self-diffusion constant hag|qsiry of the spin-bearing particle. The magnetic field gra-
been a common practm(e[_?,l]) and also e>§ten§|yely used in dient can be written a&(r,t) = g,(t)g, (r). The scalar func-
our lab[8]. Some experiments where diffusivity measure- . ’ A

ment has been combined with magnetic resonance imagin}%on 9t desc'rlbes the gradient time variation and the vector
(MRI) to study the distribution of diffusivity have also been Tdnctiond, , its spatial dependend&|B(r)|. The word effec-
performed[9-11]. The effect of natural convection on the five signifies the change in sign gf whenever ar rf pulse
measurements is well-knowfi2,13 and improvements of IS applied to the system. The effective time dependepcé
measurements have been propogbti15. Natural convec- the gradient field for a typical PGSE experiment is shown in
tion has recently been investigated with magnetic resonandeld. 1. Since the detected signal arises from
imaging[16,17. the induction of an immense number of spins10°), one

In the following paper, natural convection inside a hori- does not detect the frequency fluctuations of an individual
zontally oriented cylinder, heated from below, is inspectedspin but rather a coherent superposition of signals induced by
and its effect is evaluated. Natural convection has been thoe large number of spins. The detected spin-echo signal of a
oughly studied in certain geometries such as plane geometpjicture element positioned atin an MR image can be writ-
[18-2Q and vertically oriented cylindef21,22. Horizon-  ten as
tally oriented cylinder is used as a probe for measurements of
self-diffusion constant distribution in the earth’s magnetic () B(r.7) (1) - B(T)
field on a homemade device as describe@8ii0]. E(r,r)=2 e®01M=n(e®"7)=Eqe , ()

First we describe the signal of a PGSE experiment. Then .
we simplify fluid-dynamics equations to get the Lorenz
model [23] of convection. The derivation closely follows
Saltzman’s procedurf24] for plane geometry. The natural I

where the sum encloses thespins of the fluid parcel within

no-slip boundary condition is not fully regarded and the re- g

sulting model is only an approximation of the system. Since

the boundary temperature is not controlled, the resulting !

model is approximate. It only serves as a tool to estimate the ‘ t+A t+A+D

order of the temperature gradient and velocity fluctuations. ‘ t 145 2 T t
1

In the last section, we show the experimental results anc
evaluate the conditions and the effect.

II. NMR SPIN ECHO
FIG. 1. The time dependencg(t) of the magnetic field gradi-

With the spin echo NMR, a nonuniform magnetic field ent in a typical PGSE experiment. The gradient pulsesdaieng
(magnetic field gradienis used to encode the magnetization andA apart. Spin-echo forms at time
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the picture element. The sum can be evaluated with an enAhenever one can neglect the mutual correlation between
semble averagé - -) over the trajectories of different spins the flow and the molecular motion, the contribution of both
contributing to the picture elemeri, is the normalized am- to the spin-echo attenuation can be divided. For Brownian
plitude. The phase shift due to the net flow is diffusion the velocity correlation time is short compared to
the interval of acquisitiorr,,.< 7, allowing us to assume the
T velocity fluctuation along the applied magnetic field gradient
$(r,7)= Jo F(r,t)-(v(r,n)dt, 2 as(Vmg(t) Vmg(0))=2D 8(t). This provides the spin-echo
attenuation from Eq(3) as

while the signal attenuation is

. ,L%m(r,a-):DJTFz(r,t)dt ®)
ﬁ(r,T):fo fo F(I’,tl)-(6’V(r,tl)o"v(r,t2)>F(I’,t2)dtldt2, 0

@ with D being the self-diffusion constant. The attenuatigp
if the velocity fluctuationgv=v—(v) is considered a vari- does not depend on the position of the pikelf a uniform
able of the Gaussian stochastic process. This allows the trugradient is applied to a homogeneous sample. For slow ve-
cation of the cumulant expansion to the second order whelfCity variations of nonstationary convection with respect to
used for the phase averagifig]. Therefore the process is t_he duration of the acquisition: > T th_e resulting attenua-
defined only by the varianc@v(t)av(0)), i.e., the velocity tion follows from Eq.(4) and the definition of the phase Eg.
correlation function. In the case of the molecular thermal(?):
motion an immense number of spins, each experiencing
weak phase fluctuations, adds to the induction in the detec- 1 ;e
tion coil. This assures that the spin-echo phase fluctuatiog.(r)= — > > f f F(r,mat+ty)ove(r,mat+t,)
can be treated as a Gaussian process. But for the velocity Ne m n JoJo
variation of a nonstationary or turbulent flow, the associated
spin phase fluctuations may in general not justify the trunca-
tion of higher terms in the cumulant expansion. With an
appropriate selection of timing and intervals of the signaldt is the time between two successive acquisitions. SHice
acquisition with respect to the speed and pace of the flowis periodic[F(mdt+t)=F(t)] with the perioddt and the
one can enhance the Gaussian assumption to allow the usedfange of the velocityv during the time of the acquisition
Eq. (3) for the flow fluctuation as well. Namely, in the case is small we can further express the attenuation as
of thermal convection, slow flow. is superposed on fast
molecular Brownian motionv,,. The average velocity of

X ave(r,ndt+t,)F(r,ndt+t,)dt dt,. )

Brownian motion is(vy,)=0 and this motion does not con- B _t > D dvg(mat)avy(nat) fTF(t)dt}2
tribute to the phase of the signal. Almost stationary flow ¢ 2NZ2 W g g 0

v effects only the signal phase but not the amplitude in Eq. )

(1) during the short interval of motion encoding and echo :E<ﬁvz> fTF(t)dt @)
acquisition. With the NMR in the earth’s magnetic field, the 2°779C o '

signal averaging for noise reduction is performed. The dura-
tion of each gradient sequencas limited by the spin relax-
ation and can rarely be longer than a few seconds. Thus

change of the convection flow velocity, that can occur . . . . .
g e the gradient is denoted with the subscrgoHerewué)C is

within each signal acquisition, is small but the velocity canth d velocity fluctuati f the iected
be different for every frame of acquisition and so can the € mean squared velocily fluctuation of he flow projecte

phase shifts¢. Subsequent addition of different frames on the direction of the magnetic field gradient at the location
needed to reduce the noise, weakens the signal from eveRI the picture element and is defined as

parcel of fluid and thus the intensity of a corresponding pic-

ture element by a facta™ #c, where 1

<8vg>c=ﬁ§ En) v o(Mdt) dvg(nat)

In the last step we have replaced the sum with an integral
— [dt/at. The projection of the velocity on the direction of

1o, 1
Be(N=55 2 | D=5 2, ¢nNen() | @) .
=2/, jo dug(t)dvg(t")dt'dt”, (9)
Here N is the number of frames added in the averaging
process, andp, is the phase accumulated in théh frame.
In the limit of many accumulations3: gets the form of where the time of the measurementjs= Ndt. Note that the
Eq. (3), where the velocity variation of the pixel embracesaverage is taken over a much longer titpe(several min-
both the molecular motion and the convection flow fluctua-uteg in (- - - )¢ then in(- - -) (less then a secohdverage for
tions, a single acquisition.

For a usual PGSE sequence with the gradient pulse width

ANV(r)=dVpy(r)+ave(r). (5) 6 and the interspacing, the total attenuation of the pixel is
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B(r)=Bm(r)+ Be(r)
130°
) s 1 i To
=(yG(&°D(r)| A-3 +§('yG(I’)5A) (dvg(N)c. B,
(10 ?
If the convective velocity field/c can be separated into gl z R T"
a dimensionless time-dependent pad(t) and a
space-dependent part ag(r,t)=a(t)v,(r) and if we
consider the gradient as the product of its spagjaland

temporalg; part, then the convective attenuati@g Eq. (7)

T,+ AT
becomes
FIG. 2. The geometry of the sampleaxis is perpendicular to
yz T (7 (mit+ty the plane of the paper and coincides with the symmetry axis of the
Be(r)=—-— > 2> f f f gi(t")dt’ cylinder. The vertical axix (unit vectorn) is antiparallel to gravi-
2N®m n Jo Jo Jo tational acceleration. The temperature at the bottom of the circum-
ference iSAT higher than the temperatufg, at the top and is
XGr(r)- ve(r)da(mat+ty)sa(not+1p) assumed to fall linearly from the bottom to the tdpy denotes
not+t, earth’s magnetic field, which is on site inclined by 30° from the
xw(-a0 [ aavatdt. 4D vercal
Thls Iengthy expression simplifies for a PGSE experiment £+V~VT=XV2T, (13b)
(Fig. 1) into at

1 V.v=0. (130
Be(n =5 (yAd)*aa%)c(a(r) v ()% (12
Herev, g, p, T, p, v, andy are, respectively, velocity profile,
gravitational acceleration, pressure, temperature, density,
kinematic-viscosity, and thermometric-conductivityr ther-
mal diffusivity) of the liquid.

Equation (12) shows explicitly the spatial dependence of
the attenuation factor. It is given with a projection of the

velocity on the magnetic gradient field. The strength of In what follows, the fluid is assumed incompressible and

the attenuation, for fixed parametefs A, 7, and gradient we will make the Boussinesq approximatif2sl—the onl
strength, is related to the time variation of the convective, d app L E y
; ) : temperature-dependent quantity is density:

velocity. In this way, one can see that the spatial dependence
of the attenuation factopBc is determined by the spatial p=po(1—BT'). (14)

velocity profile (or vice versa and the magnitude g8 re-

veals the time fluctuations of nonstationary macroscopiqyere po is the density of the liquid at the point where the
flows. temperature ST, B is thermal-expansion coefficiefg=

The attenuation of the gradient spin-echo, in addition to—(l/p)ap/aT andT' is the temperature deviation froffy.
the molecular self-diffusion, may comprise the informationype pressurqe,) is

about fluctuations in nonstationary macroscopic flows. Thus
the preparation of measurements and the interpretation of p=pog-r+p’ +const (15)
data requires all due precaution.

The approach to the evaluation of the effect of a nonstaandp’ is considered small. The first term on the right side of
tionary flow on the spin-echo is equivalent to the one used ifEq. (138 can be written to the first order as
the study of granular flow made by Seymaairal. [9].

Now our goal is to find the velocity profile and the time Vp Vp’ )
variation of its magnitude for the natural convection in a 729+E+QT B (16)
horizontal cylinder in order to estimate its effect on the spin-
echo attenuation. To do so, we have to solve a nonlineagnd thus Eq(13a becomes
system of equations and simplify it to the lowest possible
terms to get the Lorenz system of equations.

!

+vV2v—pBT'g. (17)

v p
o +(v-V)v= V( P
lll. FREE CONVECTION
) o ) .. We will describe the convection in a horizontally oriented
The three equations describing incompressible fluid INcylinder with the diameted = 2R. The geometry is shown in
gravity force fieldg, are Navier-Stokes equation, heat con-rgig 2 |n accordance with Lorenz derivation and to simplify
duction equation, and continuity equatif0]: the calculations, it is assumed that the system is translation-
ally invariant along the symmetry axis of the cylindele-
(133 noted in Fig. 2 byz), so that convection rolls extend to

ov 1
—_— . = — — 2
ot +(v-V)v pr+VV v*o infinity. The temperature at the edge of the cylinder is as-
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sumed to fall linearly from the bottom to the top of the Equations(21) and(22), with boundary conditions Eq$23)

circumference and, written in cylindrical coordinates, is

. (19

1 r
T(r,p,t)=Ty+ EAT( 1- ﬁco&p

AT is the temperature difference between the bottom and the

top of the cylinder(Fig. 2).
The continuity equatioril3¢) is automatically fulfilled, if
we introduce a stream functiof such that

19y o
VT T 90 Ve

r do’ (19

In the next step we introduce the deviatiéfr, ¢,t) from
the linear temperature profile via

+6(r,,t). (20

Tre=Totr —at(1- ="
(he)=Tot 34T\ 17 &

Here n denotes a unit vector antiparallel to the direction of
gravitational acceleration and signifies the axis from which

the polar anglep is measured.

We get rid of the pressure term in the Navier-Stokes equa-

and (24) can be solved with a series expansion in a suitable
orthonormal system—in this case the product of cylindrical
Bessel and harmonical functions:

(1@, 0)=x> anm(DIn(Ennl/R)SINNE, (25

where ¢, is the mth zero of thenth Bessel function
J,. Likewise, we can write down the temperature deviation
as

AT
0(r.@.)= 5 2 ban(n(énnr/R)cOSNE.  (26)
y nm

The coefficients in the series expansion are

aym(t)=————
(v XIA(Enm)

T R
xf ngJ drrip(r,e,t) I, (& /R)SINNg
- 0

(27)

tion by applying the curl to both sides of the equation. Fur-
ther, we replace the velocity and the temperature field byng

Egs.(19) and(20), and we get the equations

a0 1 4(y,6) )
R T e AV
AT ¢ 19y
+ﬁ(—WSIn@—F£COS(,D , (21
aViy 19, V2) s
T are VW
. a0 196 -
aB ﬁ—rsmgo F%COS(’D’ (22
with  the notation d(a,b)/d(r,¢)=(daldr)(dblde)

—(9aldg)(dblar).

b (U—L
M AT 7 )

T R
xf d(pf drro(r,e,t)J,(é,mr/R)COSN Q.
—r 0

(28)

Since we are interested only in the first approximation of
motion, we choose to keep only the first terms in the series
expansion:

P(r,e,t)=xa(1)J1(é11r/R)sing, (29

R
= O(r,@,t) =box(t)Jo( €0l /R) +015(1) I1(&11r/R)COSE.

In order to simplify this system of equations, we impose a AT

free boundary condition for the velocity and assume a left-

right symmetry for the velocity profile

Z—Z:o, Y(r<R)<oo,
W —e)=—¢(e), yY(etintegex2m)=i(¢). (23

(30)
Ry is a control parameter known as the Rayleigh number:

BgATd®
vy

y (31

The term withJy(&o1r/R) is omitted because of the defini-

By assuming a free boundary condition, we limit ourselvestion of temperature deviatiofthe average should be zgro

to the space outside some boundary 142€1. The thickness

of the layer is approximately given by~ yvl/vy, wherev

is the velocity outside the layer ahds its length. Following

If we would choose to keep more terms in the expansion
of ¢, a realistic no-slip boundary condition could be satis-
fied, but the solution is then too complicated to be physically

the definition ofé, the quantity is zero at the boundary and tractable and even the approximations mattegitudinal
the angle symmetry is obvious for the presumed velocitySyMmmetry, Bousinesq approximation, and boundary tempera-

symmetry:

O(R,p,1)=0, O(r<R)<o,
(24)

0(—)=0(¢), O(p+integex2m)=0(p).

ture profile are then questionable. By numerically solving
the equations and comparing the solutions it was observed
that the solution for the no-slip boundary condition requires
more than two terms to be equivalent to the one term
free boundary solution with the no-slip boundary condition
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accounted for with a boundary layer. So complicated

- ‘ -
« v 4 o7 - solutions are outside the scope of this work especially be-
~ % b, “ cause the first-order approximation gives the solution of a
~ v b7, correct order.
v A T f 4 A With the expressions for the stream function and tempera-
v f p ture deviatior{ Egs.(29) and(30)] we get a nonlinear Lorenz
t t T system of equations:
4 T LN ,
! ; y : Y-y bgo= 2811011~ £5002— RyCra1s, (329
’ >
v
SR LI TR e biy= — C3a1100p— E51011, (32b
O I Wy
aj,= — 0éi1a1,— 0Cqboy, (329

\J

where the prime denotes the derivative with respect to the
normalized timed=(x/R?)t. Dimensionless parameter

FIG. 3. Velocity profile in the first approximation in a horizon- )
=l y, and numerical constants are

tally oriented cylinder heated from below. In this particular image,
fluid is rising in the middle and descending at the edge. With a free

boundary condition, the velocity at the boundary remains finite ¢ flJ (£100) Jo( £0X) XX
whereas in a real case it vanishes. 1 0 OV S 1P/ 01502

c= - ~0.80,
4f J3(EoX)xdx
0
(a) (b)
R, = 20000 R = 130000
Vv [pm/s] v [pm/s]
02 : 0.6 08 19 05 1 15 29
-0.0002 5t
-10[
oooos WY,
15[
-0.0006 20k
-0.0008 -25[
(e) (d)
R, = 320000 R = 14x108
v [um/s] v [um/s]

O

0
40 -100
-150
-60

FIG. 4. Amplitude of velocitya;; as a function of normalized time for some arbitrary initial conditior(in this casea;;=0)b;;
=0,bp,=1) and for different values of control parame®y. The valuea,;;=1 corresponds to the velocity=1X 10" % m/s at the center
of the cylinder andd=1 corresponds to 3:610* s. (a) Small R, corresponds to small temperature differedce. The liquid is stable and
no convection occurs. The only heat transfer is through heat condugijdror values oR, larger than 2.% 10%, natural convection arises.
The flow becomes stationary after a few oscillatiofs. With R, approaching the value 34110°, the oscillations become less and less
dampened until they finally escalate and the motion becomes chadti€haotic natural convection. For control parameter shown, the
changes ira; are on the order of £0in normalized time span of the order 10 The temperature difference in this case\if=0.01 K.
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1 parametef R, = 3.1X 10°, Fig. 4(c)] the convection becomes
§11f0 J1(£11%)31(£12X) Jo(€ox) dX chaotic, yet the period is somewnhat fixed and varies Rith
Cp= - ~2.6, A deeper understanding of the nature of bifurcations can be
zf 3 £op)xdlx found in Ref.[27].
0
IV. EXPERIMENT
JlJl(fozx)Jl(§11X)Jl(§1lx)dx T_he experiment_is describe_d in de_tails i_n P[éjO]._It is a
0 basic PGSE experiment combined with spin-warp imaging to
C3= &0z 1 ~3.8, reveal the space distribution of the self-diffusion constant of
fo J5(E1)xdx water in a 0.2-m-diameter tube. The scheme for magnetic

fields of a single frame in the experiment is shown in Fig. 5.
The acquisition in one frame of the measurement takes ap-
1 . . .
fon J1(£0pX) J1( E1¥)xAX proximately 0.5 s and is repeated after 6 s. The magnetiza-
0 tion field is needed because the experiment is performed in a
= ) 5 ~0.019. relatively weak earth’s magnetic field. The magnetization is
8514 J1(€12x)xdX turned on fo 3 s toallow a sufficient relaxation time. The
0 idle time of 3.5 s in the frame is required because of the duty

The quantity of interest is the velocity associated withcyde .Of the_ma_gn(_etiza_tion amplifier. The prabe is inside a
a,;. The liquid studied here is water at 20 °C with=6.3 receiving coil with its diameter 1 cm larger than the sample
1_11 4107 m2/s. v=9x10-7 m?/s. andg=2.2x 10_4/’ cylinder. The symmetry axes of the probe and the receiver
x= . ' p=2. coil are parallel and perpendicular to the magnetic field. The
cylinder is touching the coil at the bottom with an air gap on
the top. The probe is neither isolated nor thermally stabi-

X ) e 0L lized. The magnetization coil can heat up to 50 °C, depend-
(32)] was solved numerically with a nonstiff implicit Adams . I
. . . ing on the external conditiofair temperature, drgftAs our
algorithm with order between 1 and 12 or stiff Gear back- odel and the following discussion show, even a small tem-
ward difference formula method with order between 1 and én 9 ’

depending on the convergence of the solutif&l. The ve- perature variation can induce thermal convection. The con-
IocFi)ty pro?ile is shown ingFig 3 and the ampli.tude of the dition that the convection be absent for water is about one

velocity in the center of the cylinder, for different values of degree ber 6.7 kif20). As mgn'uoned befor(_e,. velocity fluc—.

. - - ~—.~ tuations induced by convection cause additional attenuation
control parameteR, , is shown in Fig. 4. One can see in Fig. of the signal from each picture element comprising the im-
4(a) that for small values oR, the liquid is stable and no 9 P pnsing

convection occurs. For Rayleigh numbers larger than 2. ge. The magnetic field gradient used in the experiment was

X 10* the convection appears that becomes stationary after af the form

Cy=

K. In this case it follows that the valwe ;=1 corresponds to
the velocityv =1x10"° m/s at the center of the cylinder.
The valued=1 gives timet=3.5x 10" s. The systenfiEqs.

while [Fig. 4(b)]. Only at even greater values of the control g.=V|((Gz+By)cos 30°(Gz+ Bg)sin 30°,
magnetizatiol
1f coil | ™2 mn signal

3' | |
it | ‘G \ [ \
attenuation gradient: f U 5

frequency (readout) fgrat;ﬁent —|_|—|
T

phase gradient

time

0 t t+8 12 t+A
FIG. 5. Magnetic fields in PGSE measurement of self-diffusion. The distribution of diffusivity is examined with a spin-warp 2D imaging
technique. The magnetization field magnitizes the sample, thus enhancing the signal. The rf field first excites spm&vthsa and then
inverts their phase at timg/2 as is customary in PGSk pulse is also a part of the spin-warp imaging sequence. The attenuation gradient
causes the attenuation of the spin echo and is in our case perpendicular to the phase and read gradients of the spin-warp imaging sequence
The phase and read gradients produce a 2D image of a projection of distribution of spins on a plane perpendicular to the cylinder symmetry

axis. The time axis indicates the time of the spin echtength of gradient pulses, and their separatioA. Times are shown in appropriate
ratio. The times used in our measurements was varied between 0 and 300 ms.
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G=1.8x10°T/m 0.07
G=0 $=200 ms 0.06

005 T—————
\/\/

E 0.04
-

<l 0.03

0.02

0.01

(b) ° - - ' -
0 20 40 60 80 100
FIG. 6. PGSE MR image of a cross section of a cylinder, show- tis

ing the space distribution of self-diffusion constafd) Image of . . .
spin density withG set to zero(b) Image of diffusivity with gra- b FIG. 8'h Tlge time d:;slgrr]am of ;hﬁ temlp%ratur_e dlff;aremk:'é
dient pulses ofs length and strength o6=1.8x10"3 T/m. The etween the bottom and the top of the cylinder circumierence.

patches at the top and the bottom of the cross section are caused by

natural convection. image predicted with this velocity fielth&1 cm) and with
the same parameters as were used in the experiment.
G(x cos 30y sin 309)|, (33) According to Eq.(4), we infer from the attenuation of

pixels on the MR imagédFig. 6) that the velocity changes
between different frames should be on the order of
with the amplitudeG=1.8x10"2 T/m. At a first glimpse,
the expression for the gradient field may appear a bit com-
plicated. This is because the field is of quadrupolar form and duc
aligned along the direction of earth’s magnetic field, which is
inclined by 30° from the vertical axis. The direction of the _
earth’s magnetic field also defines the vertical axis of MRWNere two adjacent frames are separatedibyThe factor
images shown here. Q.5 is the product of rr_lammal value di(f_llx) and cos 30°;
A series of images was taken for different length®f in our case the rgpetmon timét = 6s. Thls4 correspond; to
gradient pulseFig. 6). One can observe that, aside from the "€ normalized time span of9=1x10"". The velocity
uniform attenuation brought about by self-diffusion, there isfluctuations of 0.1 mm/s signify the variation ¢f;,=1
also additional attenuation in the form of dark patches. We* 1_02- Such velocity fluctuations are represented in Fig) 4
can explain these patches with the convection pattern givefynich corresponds to a Rayleigh number of 14
by Eq. (19), evaluated with the stream function of EQ9) In our case this means a temperature differeAde=0.02
and a boundary layer accounted with-{&~ (1~ "/RMR) gng  *+0.01 K. _
the attenuation form of Eq10). The boundary layer thick- The temperature difference between the bqttom and the
ness ish and the velocity near the wall falls to zero linearly top of the circumference was also measured with an array of
with the distance from the wall. Figure 7 shows the MR thermocouples. The time diagram &f is shown in Fig. 8.

The temperature difference fluctuates by 0.01 K around the
average of 0.05 K on a time scale of a few seconds with
occasional jumps that are not correlated with the measure-
ment but should be contributed to the external disturbances.
The temperature is measured on the outer side of the cylinder
walls. We estimate that the temperature inside the cylinder is
only slightly smaller(a few percentsince the walls are thin
(less than 1 mm

V. CONCLUSION

The measurements of the self-diffusion constant with
NMR PGSE, although well-established, still need to be
evaluated cautiously. If we would not make an image of the
sample we would not be able to see the effect of natural
convection and we would misleadingly overestimate the self-
diffusion constant of the liquid. However, the effect, under
the conditions described herein, is not very strong and
is observable only in the limit of strong and long gradient
FIG. 7. Attenuation caused by convection. Shown is the expoPulses. In fact, the flow is so slow that the measurement

nent of the square of the scalar product of gradient field and velocOf the velocity with NMR is virtually impossible. To get a
ity field [given in Eq.(12)] for variance of velocity fluctuation Measurable signal dephasing from the convective flow, a
given by Eq.(34). The velocity field of Eq(19) is modified in such ~ strong gradient needs to be applied for a long time
a way that velocity vanishes at the boundary. (compared to relaxation The signal of such measurement
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is so noisy that averaging is needed. But, when the flovhere to be. The fact that the measured temperature difference
is not steady, the averaging additionally attenuates thé somewhat higher than predicted is understandable since
signal, which could be misinterpreted as an enhanced selfhe prediction is based on the convection with the free
diffusion. boundary conditions. This work should not be understood as

Of course the above given calculations are only the cruda new technique of measuring the Rayleigh number but as a
est estimation of what takes place in the probe. Also, thermalemonstration of the influence of a nonsteady flow on the
takenboundary conditions are not as well-defined as weraveraging of the spin-echo signal.
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