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Molecular-dynamics simulation of two-dimensional thermophoresis
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A numerical technique is presented for the thermal force exerted on a solid particle by a gaseous medium
between two flat plates at different temperatures, in the free molecular or transition flow. This is a two-
dimensional molecular-dynamics simulation of hard disks in a inhomogeneous thermal environment. All
steady-state features exhibited by the compressible hard-disk gas are shown to be consistent with the expected
behaviors. Moreover the thermal force experienced by a large solid disk is investigated, and compared to the
analytical case of cylinders moving perpendicularly to the constant temperature gradient for an infinite Knud-
sen number and in an infinite medium. We show precise examples of how this technique can be used simply
to investigate more difficult practical problems, in particluar the influence of nonlinear gradients for large
applied differences of temperature, of proximity of the walls, and of smaller Knudsen numbers.

PACS number~s!: 51.10.1y, 65.70.1y, 51.30.1i, 05.10.2a
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I. INTRODUCTION

Over a century ago, Tyndall@1# observed that dust par
ticles suspended in a gas with inhomogeneous tempera
tend to move out of the hot regions. This constitutes
pioneering experimental study of thermophoresis in a g
Because of its large magnitude in rarefied medium, the
pearance of such a diffusion current in the gaseous fluid i
major importance in aerosol science as well as aerosol in
try. As a simple example, thermal precipitators are co
monly used to clean up dusty gas@2#, and quantitative com-
prehension of this phenomenon is essential in design
practical devices in which the behavior of such particles
well controlled. Potential or existing applications for stab
ity, movement and deposition of small particles in the inh
mogeneous medium are indeed numerous in various are
physics, engineering, and biology.

This particle migration is the result of a force~the thermal
force! experienced by the dust particle in a temperature g
dient. In a first approximation~of small spatial temperatur
variations! this thermal force should be just proportional
this gradient. Moreover, in an infinite dispersing mediu
this force is expected to depend essentially on two non
mensional parameters: Kn, the Knudsen number relate
the particle:~the ratio of the molecular mean-free pathl, and
the typical length size of the particle!, and the ratioL of the
thermal conductivities of the particlekp and the gaskg . Note
that the Knudsen number related to the whole finite sys
~as the ratio ofl and the typical size of the system! should
play a role@3#, but it is usually not taken into account fo
simplicity.

Since the unit of force on the particle of surfaceS is just
PS, with P the pressure of the gas~which is assumed to be
homogeneous throughout the system!, the thermal forceFth
is assumed to have the form

Fth5A~Kn,L!PS
l“T

T
, ~1!
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where“T is the gas temperature gradient ‘‘felt’’ by the pa
ticle, andT is the average temperature of the particle. T
nondimensional parameterA(Kn,L) should also depend on
the shape of the particle. The calculation of this parame
even for such a simple geometry as that of a sphere, is
from being complete for all values of Kn andL @4#. The free
molecular flow~i.e., the extreme rarefied gas Kn;`), was
well studied for spheres@5# and cylinders@6#. In effect, in
this case, one can make the approximation that the partic
so small as compared to the molecular mean free path th
does not affect the velocity distribution of the molecules h
ting the particle. The analytical problem is then split into tw
steps: first the velocity distribution of the gas molecules
calculated, then this distribution in the momentum transf
calculation method is applied on the particle. The influen
of the distancex to the hot wall was also investigated b
Williams @7#, and the constantA(Kn,L,x/l) seen indeed to
depend~slightly! on the distance to the wall. These resu
for an infinite Knudsen number were extended@8# to large
but finite values of Kn, calculating the first order perturb
tion ~in 1/Kn! of the linearized BGK model@9#, used here as
a correct approximation of the full steady-state Boltzma
equation. In this way, closed analytical expressions were
rived. This is no longer the case for the transition regim
(Kn ;1), where only numerical calculations of the solutio
of the linearized BGK model are available@10#. In the
present work we shall not discuss the other possible li
Kn ;0, which was investigated analytically with differen
tools @11#.

In this paper, we are interested in the case where
Knudsen number is essentially finite, but large. This cor
sponds to a rarefied gas with solid particles of typical s
smaller than, or of the same order, as, the molecular m
free path. Instead of taking the viewpoint of the lineariz
~approximate of the! Boltzmann equation, we should like t
pose the question of whether these results can also be
tained by means of a molecular-dynamics~MD! simulation
6608 ©2000 The American Physical Society
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PRE 62 6609MOLECULAR-DYNAMICS SIMULATION OF TWO- . . .
of the gas flow around the particle considered as an obsta
There is presently a great deal of MD techniques incited
the constant and inescapable growth of computer capac
Moreover, these techniques have proved to give quan
tively correct results even for a modest number of molecu
~as compared to real experiments! @12#. In particular, MD
simulations were applied to study flows over simple obje
like flat planes and cylinders@13,14#. One can then imagine
that such tools could be used to recover theoretical result
the thermophoresis of particles of simple shape in a g
when the approximations used to derive the analytical s
tions are valid. However, in such MD simulations, there
not ana priori limitation by the necessary smallness of t
temperature gradient, the shape of the particle, or the v
of the Knudsen number, as long as the local equilibrium
be reached. A detailed investigation of this approach in
simple case of two-dimensional simulations of compress
hard-disk fluid motion around a disk particle is the ma
objective of the present work, keeping in mind that the g
eralization to a more complex three-dimensionsal fl
around a fractal aggregate in the gravitational field~for ex-
ample! is straightforward from the point of view of numer
cal implementation@15#. There are others simulation meth
ods that can be used to study the thermophoresis effect.
of them is the direct simulation Monte Carlo method~see, for
example, Ref.@16#!. This method can be faster than MD
specially at low densities@17#; however, we chose MD be
cause it can be generalized directly to any situation, as st
above, without anyad hocapproximation. In Sec. II, we give
details about the model of hard disks, the boundary con
tions and the rules of interactions during molecular co
sions. In Sec. III, we describe the MD hard-disk simulatio
for a fluid enclosed in two plates at different temperatu
~without any particle inside!, and discuss the problems of th
characteristic time required to reach local equilibrium, t
temperature jumps at the walls, and the dependence o
temperature gradient obtained with the imposed differenc
wall temperatures. In Sec. IV, a disk of various radius a
infinite thermal conductivity is inserted in the fluid at a sp
cific position, and we show how the particle reaches its fi
temperature, and the nature of the net thermal force actin
it. The dependence of this force with the Knudsen numb
its radius, and its distance to the walls is discussed.

II. HARD-DISK MODEL

We consider a system of N hard disks~molecules! of
diameterd̃g51 and massm̃g51 ~the length unit and the
mass unit in the system, respectively!, allowed to move in a
rectangular area of sizeLx3Ly . There is no external field
and the Boltzmann constantkB is set equal to 1 in all our
simulations. The boundary conditions are periodic in
‘‘vertical’’ y direction (y50 andy5Ly), while in the ‘‘hori-
zontal’’ direction the system is limited by two thermal wal
at the positionsx50 andx5Lx . These walls are maintaine
at constant temperatures ofTw,c andTw,h ~both temperatures
may be similar!, respectively, and can be considered as t
perfect heat reservoirs. When a molecule hits a wall, i
thermalized in the sense that its velocity is sampled r
domly accordingly to the probability density
le.
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f~vx!5
m

kBTw
vx expS 2

mvx
2

2kBTw
D ~2!

for thex component@with vx>0 at the cold wall (x50), and
vx<0 at the hot wall (x5Lx)#, and a Maxwellian distribu-
tion at the temperature of the wall,

f~vy!5A m

2pkBTw
expS 2

mvy
2

2kBTw
D , ~3!

for the y component of the velocity. This nonequilibrium
ideal accomodation was demonstrated to lead to the cor
Fourier’s law @18,19#, correct thermalization of the system
@20#, and correct temperature and density profiles near
thermal walls@21#. Inside the box, hard disks undergo elas
collisions between them.

Here we deal only with a calculation of the thermal forc
The solid particle is maintained motionless in a fixed po
tion, and the force is calculated when the gas has reache
steady state. This means that the particle diffusion coeffic
is assumed to be much smaller than the gas kinematic
cosity. The collision between a molecule and the particule
submitted to the same rule as for the thermal wall@Eqs.~2!
and~3!#, with Tw now the temperature of the particle. But th
particle is considered as finite~though much larger than th
molecule! and its thermal conductivity infinite, so its tem
perature must change according to

DT5
DE

CP
, ~4!

where DE is the opposite of the change in energy of t
striking molecule, before and after the collision, andCP is
the heat capacity of the particle at a constant pressure. F
two-dimensional solid at ordinary temperatures, this heat
pacity is of the order of magnitude or 2kB per atom of solid.
Since there are about (2R̃/d̃g)2 of such atoms in a disk o
radiusR̃, and the values ofd̃g andkB have been fixed con
ventionally to 1, one obtainsCP , proportional toR̃2 with a
multiplicative constant of order 1 in our units. We have th
taken

CP5R̃2 ~5!

for the particle heat capacity in our simulations below. Th
completes the set of interaction rules~molecule-wall,
molecule-molecule, and molecule-particle! used in the
present two-dimensional MD simulations@22#.

In principle, the time evolution can be studied as we
even if this is not the central problem of the present wo
Our MD simulation runs just a sequence of collisional eve
~MD steps!. To transform these steps into time informatio
we need to quote the relation between the time that we
compute with our units, and the physical time. To achie
this point, we need to define our system of four fundamen
units ~length, mass, time, and temperature! properly accord-
ing to the choicesd̃g51, m̃g51, andkB51, and to fix one
temperature in the system; for instance, the cold wall is se
temperature: 10~this is our choice for all the simulation
presented here!. Schematically~if needed, precise values fo
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6610 PRE 62PAREDES V., IDLER, HASMY, CASTELLS, AND BOTET
the radius, mass of the gas molecules, and tempera
should be used!, during one step, a molecule with Boltzman
temperatureT̃ moves on a distancel̃ at velocity ṽ all with
our units of temperature, length, and time. These dista
velocity, and temperature are related to the physical onesl ,
v, andT, respectively! through

l̃ 5 l /dg , ~6!

ṽ5v/AkBTw,c/10mg, ~7!

T̃510T/Tw,c , ~8!

with Tw,c the real temperature of the cold wall in K, anddg
andmg the real diameter and mass of one gas molecule. N
that the real temperatureT must be in a reasonable rang
where radiative forces are negligible~this is indeed the gen
eral case for ordinary applications!. This means that the time
incrementd t̃ computed by considering thatl̃ / ṽ is related to
the physical time increment through

dt5cd t̃ 5dgA10mg /kBTw,cd t̃ . ~9!

If one knows the values ofdg andmg for real gas molecules
and the real temperature of the cold wall, the scaling coe
cientc can be readily calculated. For argon at room tempe
tures (dg.3310210 m and mg.6.710226 kg), one finds
thatdt is a fraction of nanoseconds for the MD increment
time d t̃ 51.

In our simulations, the typical system size wasL̃x

;3800 ~the distance between walls! and L̃y;5700. We in-
vestigated gas densities from 0.0003~6500 molecules! to
0.004~87000 molecules!. We ran simulations over timest̃ of
order 106 (t;0.1 ms) for the lowest density case and ovet̃
of order 104 (t;1 ms) for the highest density case. The
are long times for systems whose typical lengths are sev
mm.

III. THERMAL STATIONARY STATE „HARD-DISK GAS …

We begin with a discussion of the appearance of the th
mal gas stationary state in a system without any solid part
inside. At the beginning of each such simulation, the veloc
of each molecule is taken from a Maxwell distribution at
temperature equal to an intermediate value, the most u
being (T̃w,h1T̃w,c)/2. Moreover, as explained previousl
T̃w,c has been set equal to 10. In such a way we are allo
to fix one temperature in the system to an arbitrary posi
value, since change:T→aT in the entire system simply im
plies a rescaling of all the forces defined as change of
mentum per unit of time:F→aF. A transient stage devel
ops, reaching the steady state after some time. This is sh
in Fig. 1 for the time evolution of the gas temperature n
the two walls. After some short characteristic time~which is
nothing butLxLy /l v̄, with v̄ the average velocity of ga
molecules!, the gas temperature near the two walls fluctua
around definite values which are different from the wall te
peratures. In this example, these valuesT̃c518 instead of
T̃w,c510, andT̃h546 instead ofT̃w,h570. The average tem
re
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perature of the gas isT̃avg531. These temperature jump
between the wall and adjacent fluid, are well known expe
mentally, and were discussed in detail for Lennard-Jones
merical simulations@19#. A plot of the temperature profile is
shown in Fig. 2. It shows the difference between the impo
difference of the wall temperatures and the obtained grad
in three cases: the gradient in Fig. 2~a! is for a case of larger
density (r̃50.004), the same temperature difference b
tween walls (DT̃560) as for the case shown in Fig. 2~b!

FIG. 1. Example of gas temperaturesT̃h and T̃c , respectively,
near the hot wall (x;Lx) and near the cold wall (x;0) as a func-

tion of MD time for a system of densityr̃50.0005 corresponding

to 10 800 particles in a box (L̃x53800,L̃y55700). The mean-free

path of the gas molecules isl̃51160. The hot wall is maintained to

a fixed temperatureT̃w,h570, and the cold wall to a temperatur

T̃w,c510. Despite the fluctuations, the average values are c
~they are plotted as horizontal lines!. The middle curve with small

fluctuations is the average value of the gas temperatureT̃avg531
throughout the system. Time averages shown in the figure w

taken after the system reached steady state~typically 105, t̃ ,1.5
3106).

FIG. 2. Three examples of temperature profiles~squares!. Sys-

tem size: (L̃x53800,L̃y55700). Thin lines are analytical fits, an
dotted lines are linear functions if there is no temperature jumps~a!

The low-density case:r̃50.004 and the temperatures of the co

and hot walls areT̃w,c510 and T̃w,h570, respectively. The gas

mean free path isl̃5128. ~b! r̃50.0005,l̃51160, T̃w,c510, and

T̃w,h570. ~c! r̃50.0005,l̃51160, T̃w,c510, andT̃w,h520.



-
al

x
o
nl
t

o

a
cit

o

s

o
x

he
as
r

a

he
tz

al
d

se
ll
la

de
re
e
t

w
hi
ti
ra

the
be

e 5

ce
um
e.

g

n of
ri-

he
ce

ol-
ra-
the

ure
ient.

near

wall
ient.
near
s in

PRE 62 6611MOLECULAR-DYNAMICS SIMULATION OF TWO- . . .
( r̃50.0005). The case shown in Fig. 2~c! has the same den
sity and a smaller temperature difference between w
(DT̃510) then in Fig. 2~b!. Finally, Fig. 2~c! shows a small
gradient for which the linearized Boltzmann equation is e
pected to describe the thermodynamics of the system. F
larger gradient and density one notes a pronounced no
earity of the temperature profile: the temperature gradien
no longer constant throughout the system.

A simple argument leads to a good fit of this sort of pr
file: writing the Fourier law for the heat current as

JQ52kg“T, ~10!

and supposing that“JQ is vanishing because the system h
reached its steady state and the macroscopic gas velo
are supposed to be small, we obtain the equation

“~kg“T!50. ~11!

The state-dependent gas thermal conductivity for a tw
dimensional compressible gas of hard disks at densityr and
temperatureT is @23#

kg5ko~r!AT, ~12!

with ko(r) a known function of the density, which remain
about constant for small values ofr. We deduce that the
profile temperature must behave like

T~x!5@Th
3/2x/L1Tc

3/2~12x/L !#2/3, ~13!

with Th andTc the gas temperature in the vicinities of the h
and cold walls, respectively. This is indeed a rough appro
mation, but here we do not need a better one@24#, since it
perfectly fits the results of the simulations, which give t
correct result~apart from the fluctuations and possible bi
very close to the hot wall!. These fits are shown in Fig. 2 fo
comparison.

For practical applications, large temperature gradients
required to obtain the largest effects possible@25# ~for ex-
ample, to produce large thermophoresis!. This problem can
be accessed here naturally—unlike analytical approac
which cannot be performed when linearization of the Bol
mann equation breaks down.

The relation between the temperature jumps at the w
and the imposed wall temperature differences is expecte
be linear at least for small enough gradients@19#. This is
shown in our numerical experiments in Fig. 3, and we
that, as is generally the case, the jump near the hot wa
larger than that near the cold one. But these linearity re
tions here seem to be only approximately verified, and
viations from linearity are clear for the large temperatu
differences. There is presently no available analytical inv
tigation of this phenomenon when nonlinearities begin
occur.

IV. THERMAL FORCE ACTING ON THE PARTICLE

When a circular particle is placed inside the system,
have to check first that it reaches its final temperature wit
a reasonable time; that is to say, comparable to the relaxa
time for the gas. This is shown in Fig. 4 where its tempe
ls
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ture is plotted as a function of the physical time. Since
thermal conductivity of the particle here is supposed to
infinite, its temperature is indeed homogeneous. Figur
also shows the temperature pattern in the system.

In our simulation we can now compute the thermal for
Fth acting on the particle as a result of the total moment
transfer from the gas molecules per unit of physical tim
The time intervald t̃ is here equal to 5 for simulations goin
from 10 000 to 2 000 000, with the chosen units~correspond-
ing to some nanoseconds compared to a total simulatio
1–100ms). This is the same technique as for analytical de
vations, but we dispose of the difficult task of obtaining t
proper velocity distribution of the incoming particles, sin
this distribution is built by the numerical simulation itself.

In Fig. 6~a! we plot some examples ofF̃ th vs the tempera-
ture gradient“T̃ for the same system geometry, same m
ecule density, and various radii of the particle. The tempe
ture gradient has been estimated as the best linear fit in
particle region. The local~time-averaged! pressure was

FIG. 3. ~a! Temperature jump between the hot-wall temperat
and the gas temperature close to it vs the real temperature grad
Crossover between the low-gradient linear regime and the nonli
high-gradient effect is seen here for gradients of order 1022. ~b!
Temperature jump between the gas temperature near the cold
and the cold-wall temperature vs the real temperature grad
Crossover between the low-gradient linear regime and the nonli
high-gradient effect is seen for the same value of the gradients a
the ~a!.
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checked to be approximately constant inside the whole
tem. Except for the largest radius used, formula~1! is then
well recovered, withS52pR since the system is two
dimensional. The thermal force can be written in the form

Fth52pA~Kn,`!lPR
“T

T
, ~14!

with P/T almost constant~this is the average gas density!,
andA(Kn,`) a constant. The linearity ofFth with the radius
R is checked in Fig. 6~b!. Not surprisingly, we find the sam
resulting R dependence as for three-dimensional cylind
perpendicular to the constant temperature gradient@6#

F8th52
3

4
AplPR

~“T!`

T
, ~15!

FIG. 4. Plot of the temporal evolution of the particle tempe
ture. Inset: the very beginning of this evolution showing the f
thermalization of the temperature.s is the standard deviation of th

data. In this case, the system size is (L̃x53800,L̃y55700), the gas

density isr̃50.0003, and the temperatures of the hot and cold w

are T̃w,c510 andT̃w,h520.

FIG. 5. Temperature pattern for a system withr̃50.0005, R̃

5162, T̃w,c510, andT̃w,h520. Darker colors mean lower temper
tures. In the figure we also schematically show the particle and
cold ~left! and hot~right! walls.
s-

s

where (“T)` is the temperature gradient inside the syst
far from any ~wall! boundary, andFth8 is the force per unit
length of the cylinder. The average molecular mean free p
l is constant in all the data of the Fig. 6, as the average
density.

The deviations seen in Fig. 6~b! from the expected law
@Eq. ~14!# are due to the finite size effects of the box, t
ratio R/L characterizing these effects which become la
enough~0.17 for the last point!. Treatment of this problem is
known to be one of the most important challenges in
context of applications when considering the design of th
mal filters @3#.

To analyze the problem in the vicinity of the walls i
more detail, we performed numerical simulations with t
particle of a given radius at different positionsx0 from the
walls. The results are presented in Fig. 7. In Fig. 7~b!, we see
small deviations of the thermal forces due to the proximity
the walls. This effect was previously investigated analy
cally in the limit of the infinite Knudsen number@7#.

Another point is that, when the nondimensional coe
cient A(Kn,`) does not vary~which is expected for very

-
t

ls

e

FIG. 6. ~a! Plot of the thermophoretic forceF̃ th vs the tempera-

ture gradient“T̃ for the same system geometry (L̃x53800,L̃y

55700), the same gas density (r̃50.0005), and various radii of the

particleR̃. The temperature gradient has been estimated as the
linear fit in the particle region. Except for the largest radius us
the linear dependence of the force with radius is well recovered
shown in~b!.
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PRE 62 6613MOLECULAR-DYNAMICS SIMULATION OF TWO- . . .
large Knudsen numbers! formula ~14! @or Eq. ~15! as well#
predicts the independence of the thermophoretic coeffic
vs the gas density, sincelP/T is on average independent o
the gas density. This is shown in Fig. 8, in which deviatio
are seen@Fig. 8~b!# when the density is so large that coef
cient A(Kn,`) cannot be considered as a constant.

Finally, Eq. ~15! can be written as F̃th8 5

2 3
4 Apl̃r̃R̃(“T̃)` . Using the corresponding average g

density (r̃50.0005) and the mean free path, estimated fr
simulations at equilibrium (l̃51160), the coefficient
3
4 Apl̃r̃ obtained is about 18% below the slope of t
straight line in Fig. 6~b!. On the other hand, usingl̃ r̃;0.6,
from simulations at equilibrium, and the corresponding p
ticle radius (R̃5162), the coefficient34 Apl̃r̃R̃ is 15% be-
low that the constant value obtained in the low density lim
in our simulations of the thermophoresis effect@Fig. 8~b!#. In
both cases, agreement is excellent, in spite of simulat
being performed for two-dimensional systems, and that
are comparing with a similar three-dimensional case.

FIG. 7. ~a! Plot of the thermophoretic forceF̃ th vs the tempera-

ture gradient“T̃ for the same system geometry (L̃x53800,L̃y

55700), the same particle radius (R̃5162), the same gas densit

( r̃50.0005), and various locations of the particle inside the boxx̃0

denotes the abscissa of the center of the particle.~b! The largest
thermophoretic effect occurs when the particle is located at
center of the system.
nt

s

-

t

s
e

V. SUMMARY AND CONCLUSIONS

In this work we have presented molecular dynamics sim
lations of system of hard disks in a nonequilibrium therm
environment. Though simple, they capture the main featu
expected in such a system: temperature jumps at interf
with heat reservoirs, and stable temperature profiles. T
complements previous quantitative agreement found in
drodynamics~analytical and numerical! analysis of the com-
pressible hard-disk fluid@26#. Thermal effects on a particle
of infinite heat conductivity, placed anywhere between
two plates, has been studied. However, on a higher level
have seen how this technique could be useful to investig
problems which are quite difficult to handle analyticall
nonlinear effects for high enough temperature differen
have been reported, as well as the effects of proximity of
wall for various Knudsen numbers. This shows the power

e

FIG. 8. ~a! Plot of the thermophoretic forceF̃ th vs the tempera-

ture gradient“T̃ for the same system geometry (L̃x53800,L̃y

55700), the same particle radius (R̃5162), and various gas dens

ties. The system for lowest densityr̃50.0003 has been investigate
for two different system lengths to see the effect of the ratiol/Lx

on the thermophoretic force.L̃x53800, which is of same order a

the gas mean free path (l̃52620), andL̃x57600.~b! As expected,
the force is independent ofr when the density is small, and th

ratio l/Lx large enough. Whenr̃ becomes larger than 1023, the
thermophoretic force tends to decrease, as the system goes o
the free molecular flow regime.
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the method. Even if analytical results~or numerical results
on analytical solutions! are necessary to obtain a precise u
derstanding of the problem of thermophoresis, these
simulations provide a complementary alternative to study
explored areas, in particular thermal forces on particles
non-simple shapes, which is in fact very interesting for
industry and not possible to deal with analytically.
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