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Molecular-dynamics simulation of two-dimensional thermophoresis
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A numerical technique is presented for the thermal force exerted on a solid particle by a gaseous medium
between two flat plates at different temperatures, in the free molecular or transition flow. This is a two-
dimensional molecular-dynamics simulation of hard disks in a inhomogeneous thermal environment. All
steady-state features exhibited by the compressible hard-disk gas are shown to be consistent with the expected
behaviors. Moreover the thermal force experienced by a large solid disk is investigated, and compared to the
analytical case of cylinders moving perpendicularly to the constant temperature gradient for an infinite Knud-
sen number and in an infinite medium. We show precise examples of how this technique can be used simply
to investigate more difficult practical problems, in particluar the influence of nonlinear gradients for large
applied differences of temperature, of proximity of the walls, and of smaller Knudsen numbers.

PACS numbdss): 51.10+y, 65.70+y, 51.30+i, 05.10—a

[. INTRODUCTION whereVT is the gas temperature gradient “felt” by the par-
ticle, andT is the average temperature of the particle. The
Over a century ago, Tyndalll] observed that dust par- nondimensional parameté(Kn,A) should also depend on
ticles suspended in a gas with inhomogeneous temperatugge shape of the particle. The calculation of this parameter,
tend to move out of the hot regions. This constitutes thesyen for such a simple geometry as that of a sphere, is far
pioneering experimental study of thermophoresis in a gagrom being complete for all values of Kn and[4]. The free
Because of its large magnitude in rarefied medium, the apmgjecular flow(.e., the extreme rarefied gas Kiw), was
pearance of such a diffusion current in the gaseous fluid is gﬁe” studied for spherefs] and cylinders[6]. In effect, in

major impor_tance in aerosol science as W.e". as aerosol indu?ﬁis case, one can make the approximation that the particle is
try. As a simple example, thermal precipitators are com-

monly used to clean up dusty gi&, and quantitative com- so small as compared to the molecular mean free path that it

prehension of this phenomenon is essential in designingoes not affect the velocity distribution of the molecules hit-
practical devices in which the behavior of such particles is ng the particle. The analytical problem is then split into two

well controlled. Potential or existing applications for stabil- steps: first the velc_)cny d|_str|t_>ut|qn of the gas molecules is
ity, movement and deposition of small particles in the inho_calculat_ed, then thl§ dlstrlputlon in the momentum .transfer-
mogeneous medium are indeed numerous in various areas gg/culation method is applied on the particle. The influence
physics, engineering, and biology. of the distancex to the hot wall was also investigated by
This particle migration is the result of a for¢te thermal ~ Williams [7], and the constar&(Kn,A,x/\) seen indeed to
force) experienced by the dust particle in a temperature gradepend(slightly) on the distance to the wall. These results
dient. In a first approximatioiof small spatial temperature for an infinite Knudsen number were extendé&d to large
variations this thermal force should be just proportional to but finite values of Kn, calculating the first order perturba-
this gradient. Moreover, in an infinite dispersing medium,tion (in 1/Kn) of the linearized BGK modd9], used here as
this force is expected to depend essentially on two nondia correct approximation of the full steady-state Boltzmann
mensional parameters: Kn, the Knudsen number related tequation. In this way, closed analytical expressions were de-
the particle(the ratio of the molecular mean-free pathand  rived. This is no longer the case for the transition regime
the typical length size of the partigleand the ratio\ of the ~ (Kn~1), where only numerical calculations of the solutions
thermal conductivities of the particle, and the gaky. Note ~ of the linearized BGK model are availab[@0]. In the
that the Knudsen number related to the whole finite systenpresent work we shall not discuss the other possible limit
(as the ratio of\ and the typical size of the systgrshould ~Kn~0, which was investigated analytically with different
play a role[3], but it is usually not taken into account for tools[11].
simplicity. In this paper, we are interested in the case where the
Since the unit of force on the particle of surfa®és just ~ Knudsen number is essentially finite, but large. This corre-
PS, with P the pressure of the gdwhich is assumed to be sponds to a rarefied gas with solid particles of typical size
homogeneous throughout the sysjethe thermal forcd,, smaller than, or of the same order, as, the molecular mean
is assumed to have the form free path. Instead of taking the viewpoint of the linearized
(approximate of theBoltzmann equation, we should like to
.= A(KN A)Psm 1) pose the question of whether these results can alsq be ob-
th ' T’ tained by means of a molecular-dynam{®4D) simulation
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of the gas flow around the particle considered as an obstacle. m mvi
There is presently a great deal of MD techniques incited by d(vy) = KT Ux exy{ T oKkaT )
the constant and inescapable growth of computer capacities. BIw BIw
Moreover, these techniques have proved to give quantitapr thex componenfwith v,=0 at the cold wall k=0), and
tively correct results even for a modest number of moleculeg <0 at the hot wall k=L,)], and a Maxwellian distribu-

(as compared to real experimen{d2]. In particular, MD  tjon at the temperature of the wall,

simulations were applied to study flows over simple objects

like flat planes and cylindersl3,14]. One can then imagine [ m mv§

that such tools could be used to recover theoretical results on $(vy)= 2mkg Ty exp — 2k T,/ &)

the thermophoresis of particles of simple shape in a gas,

when the approximations used to derive the analytical solufor the y component of the velocity. This nonequilibrium
tions are valid. However, in such MD simulations, there isideal accomodation was demonstrated to lead to the correct
not ana priori limitation by the necessary smallness of the Fourier's law[18,19, correct thermalization of the system
temperature gradient, the shape of the particle, or the valug0], and correct temperature and density profiles near the
of the Knudsen number, as long as the local equilibrium camhermal wallg21]. Inside the box, hard disks undergo elastic
be reached. A detailed investigation of this approach in theollisions between them.

simple case of two-dimensional simulations of compressible Here we deal only with a calculation of the thermal force.
hard-disk fluid motion around a disk particle is the mainThe solid particle is maintained motionless in a fixed posi-
objective of the present work, keeping in mind that the gention, and the force is calculated when the gas has reached its
eralization to a more complex three-dimensionsal fluidsteady state. This means that the particle diffusion coefficient
around a fractal aggregate in the gravitational figttt ex-  is assumed to be much smaller than the gas kinematic vis-
ample is straightforward from the point of view of numeri- cosity. The collision between a molecule and the particule is
cal implementatiorj15]. There are others simulation meth- submitted to the same rule as for the thermal \Wals. (2)

ods that can be used to study the thermophoresis effect. Orgd(3)], with T,, now the temperature of the particle. But the
of them is the direct simulation Monte Carlo methsee, for  particle is considered as finit¢hough much larger than the
example, Ref[16]). This method can be faster than MD, molecul§ and its thermal conductivity infinite, so its tem-
specially at low densitiegl7]; however, we chose MD be- perature must change according to

cause it can be generalized directly to any situation, as stated

above, without anyad hocapproximation. In Sec. Il, we give AE

details about the model of hard disks, the boundary condi- AT= C.’ 4

tions and the rules of interactions during molecular colli- :

sions. In Sec. I”, we describe the MD hard-disk SimulationS\NhereAE is the Opposite of the Change in energy of the
for a fluid enclosed in two plates at different temperaturesstriking molecule, before and after the collision, a@ is
(without any particle inside and discuss the problems of the the heat capacity of the particle at a constant pressure. For a
characteristic time required to reach local equilibrium, theyyo-dimensional solid at ordinary temperatures, this heat ca-
temperature jumps at the walls, and the dependence of theycity is of the order of magnitude okg per atom of solid.

temperature gradient obtained with the imposed difference géince there are about E’,ZEI )2 of such atoms in a disk of
g

wall temperatures. In Sec. 1V, a disk of various radius an = . :
infinite thermal conductivity is inserted in the fluid at a spe-adiusR, and the values ofly andkg have been fixed con-

cific position, and we show how the particle reaches its finaventionally to 1, one obtain€p, proportional toR* with a
temperature, and the nature of the net thermal force acting omultiplicative constant of order 1 in our units. We have then
it. The dependence of this force with the Knudsen numbertaken

its radius, and its distance to the walls is discussed.

2

Cp=R? (5)

Il. HARD-DISK MODEL for the particle heat capacity in our simulations below. This
completes the set of interaction rule@nolecule-wall,
We consider a system of N hard disksiolecule$ of  molecule-molecule, and molecule-particlaised in the
diameterd,=1 and massng=1 (the length unit and the Ppresent two-dimensional MD simulatiofi2].
mass unit in the system, respectivelgllowed to move in a In principle, the time evolution can be studied as well,
rectangular area of size,xL,. There is no external field, even if this is not the central problem of the present work.
and the Boltzmann constakg is set equal to 1 in all our Our MD simulation runs just a sequence of collisional events

simulations. The boundary conditions are periodic in the(MD steps. To transform these steps into time information,
“vertical” y direction (y=0 andy=L,), while in the “hori- ~ We need to quote the relation between the time that we can
zontal” direction the system is limited by two thermal walls compute with our units, and the physical time. To achieve
at the positionsc=0 andx=L,. These walls are maintained this point, we need to define our system of four fundamental
at constant temperatures B, . andT,, , (both temperatures Units (length, mass, time, and temperafupeoperly accord-
may be simila), respectively, and can be considered as twang to the choicesly=1, mg=1, andkg=1, and to fix one
perfect heat reservoirs. When a molecule hits a wall, it isemperature in the system; for instance, the cold wall is set at
thermalized in the sense that its velocity is sampled rantemperature: 1Qthis is our choice for all the simulations
domly accordingly to the probability density presented hejeSchematically(if needed, precise values for
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the radius, mass of the gas molecules, and temperature
should be usedduring one step, a molecule with Boltzmann

temperaturél moves on a distanck at velocityv all with

our units of temperature, length, and time. These distance,
velocity, and temperature are related to the physical ohes (
v, andT, respectively through

T=1/dg, (6)
v=0/kgTy,/10m, 7
~ l | 1
T=10T/T, ., (8) % 3000 . 6000 9000

with T,, . the real temperature of the cold wall in K, adg

andm, the real diameter and mass of one gas molecule. Note FIG. 1. Example of gas temperaturés and T, respectively,
that the real temperatur® must be in a reasonable range near the hot wallX~L,) and near the cold wallx~0) as a func-
where radiative forces are negligilfénis is indeed the gen- tion of MD time for a system of density=0.0005 corresponding
eral case for ordinary applicationdhis means that the time to 10800 particles in a box_(=23800,L,=5700). The mean-free

incrementst computed by considering théto is related to  path of the gas moleculesks=1160. The hot wall is maintained to

the physical time increment through a fixed temperaturd,, ,=70, and the cold wall to a temperature
- - '~I'W,C=1O. Despite the fluctuations, the average values are clear
ot=cét=dgyyv10my/KgT,, Ot. (9)  (they are plotted as horizontal line§he middle curve with small

fluctuations is the average value of the gas tempertf[gg@c 31
If one knows the values afy andmy for real gas molecules, iy oughout the system. Time averages shown in the figure were

and the real temperature of the cold wall, the scaling coefﬁtaken after the system reached steady styically 1°<T<1.5
cientc can be readily calculated. For argon at room temperas, X 10P).

tures dy=3x10"*"m and my;=6.710?°kg), one finds
that 6t is a fraction of nanoseconds for the MD increment of

fime ot=1. . . . , -~ between the wall and adjacent fluid, are well known experi-
In our simulations, the typical system size W&S  mentally, and were discussed in detail for Lennard-Jones nu-

~ 3800 (the distance between wallandL,~5700. We in-  merical simulation§19]. A plot of the temperature profile is

vestigated gas densities from 0.0008500 moleculesto  shown in Fig. 2. It shows the difference between the imposed

0.004(87000 molecules We ran simulations over timdsof  difference of the wall temperatures and the obtained gradient

order 16 (t~0.1 ms) for the lowest density case and over in three cases: the gradient in FigapRis for a case of larger

of order 10 (t~1 us) for the highest density case. Thesedensity {p=0.004), the same temperature difference be-

are long times for systems whose typical lengths are severaeen walls AT=60) as for the case shown in Fig(b?

pmm.

perature of the gas i?aug=31. These temperature jumps,

L U ()]

Ill. THERMAL STATIONARY STATE (HARD-DISK GAS) 60 - T, ,=70. ,=:=';EZ'= 94?1
W0 ==
We begin with a discussion of the appearance of the ther- B 257 p =0.004

mal gas stationary state in a system without any solid particle 00=2"") 1 1y i
inside. At the beginning of each such simulation, the velocity 0~ e = (b)
of each molecule is taken from a Maxwell distribution at a =0 |- Top=?0 ozz==T
temperature equal to an intermediate value, the most used - o= =5 =TS 0.0005
being (T, n+Twc)/2. Moreover, as explained previously, Y ot T R
Tw.c has been set equal to 10. In such a way we are allowed BT . Egi ¢
to fix one temperature in the system to an arbitrary positive 15 ko - BT
value, since chang&@— T in the entire system simply im- L EREEEEE p = 0.0005
plies a rescaling of all the forces defined as change of mo- . 2] 10|00 1 20|00 1 3()'00 1
mentum per unit of timeF— aF. A transient stage devel- ~

ops, reaching the steady state after some time. This is shown X

in Fig. 1 for the time evolution of the gas temperature near F|G. 2. Three examples of temperature profilsguares Sys-
the two walls. After some short characteristic tifwehich is  (em size: {,=3800,T ,=5700). Thin lines are analytical fits, and
nothing butL Ly/)\v with v the average velocity of gas dotted lines are linear functlons if there is no temperature juiiaps.
molecule$, the gas temperature near the two walls fluctuateghe low-density casep=0.004 and the temperatures of the cold
around definite values which are different from the wall tem-znd hot walls aréf,, .= 10 andTwh—7O respectively. The gas
peratures. In this example, these vallies= 18 instead of mean free pa'[h ia =128. (b) p=0.0005,x=1160, T,, .= 10, and
Tw.c=10, andT =46 instead off,, ,= 70. The average tem- T,,,=70.(c) p=0.0005,X =1160, T,, .= 10, andT,, ,=20.
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(p=0.0005). The case shown in Figc2has the same den- BT T T T ]
sity and a smaller temperature difference between walls 30_; g:g:g%g -
(AT=10) then in Fig. Pb). Finally, Fig. Zc) shows a small - o 5=0.001 -
gradient for which the linearized Boltzmann equation is ex- 25: © Efg'ggi a 7]
pected to describe the thermodynamics of the system. For a e 20_‘ p=0t0% m _
larger gradient and density one notes a pronounced nonlin- =} = PRad J
earity of the temperature profile: the temperature gradient is 1= 15[ - o ¥ o -
no longer constant throughout the system. i 0 X <A> A .
A simple argument leads to a good fit of this sort of pro- 10__ ,«/‘; 7]
file: writing the Fourier law for the heat current as S " 378 .
5 i’/ 4
— I I 1
Jo=—kVT, (10 %00 0005 0010 0015 0020
and supposing tha¥ Jq, is vanishing because the system has (TW’,,-TW,C)/LX
reached its steady state and the macroscopic gas velocities (a)
are supposed to be small, we obtain the equation
14 1 | 1 | I 1 1
V(k4VT)=0. (11 - = p=0.0003 ]
12[- o $=0.0005 -
The state-dependent gas thermal conductivity for a two- [ ¢ g=0.001 ]
. ; . ) . 10F o p=0.002 a —
dimensional compressible gas of hard disks at depsiynd L A p=0.004 » J
temperatureT is [23] | o -
e L . o . i
kg=ko(p)\T, (12 1= O 5o oo ]
* o A ]
with K,(p) a known function of the density, which remains 4_ = 7 o ek ]
about constant for small values pf We deduce that the o 3 %% -
profile temperature must behave like - §/I | | -
0 1 1 1 1
0.000 0005 0.010 0015 0020
TO=[TIA/L+T¥(1-x/L)]?3, 13 ~ A~
(x)=[Ty ¢ ( )] (13 &,,-T I,
with Ty, andT, the gas temperature in the vicinities of the hot (0)

and cold walls, respectively. This is indeed a rough approxi-

mation, but here we do not need a better ¢4, since it FIG. 3. (a) Temperature jump between the hot-wall temperature

erfectly fits the results of the simulations. which dive theand the gas temperature close to it vs the real temperature gradient.
P y ’ 9 Crossover between the low-gradient linear regime and the nonlinear

correct result(apart from the qucFuations and possjble biashigh-gradient effect is seen here for gradients of order?10b)

very close to the hot wall These fits are shown in Fig. 2 for tomperature jump between the gas temperature near the cold wall

comparison. o _ and the cold-wall temperature vs the real temperature gradient.
For practical applications, large temperature gradients argrossover between the low-gradient linear regime and the nonlinear

required to obtain the largest effects pOS_Simé] (for ex-  nigh-gradient effect is seen for the same value of the gradients as in
ample, to produce large thermophorgsiBhis problem can the (a).

be accessed here naturally—unlike analytical approaches,

which cannot be performed when linearization of the Boltz-yre js plotted as a function of the physical time. Since the

mann equation breaks down. thermal conductivity of the particle here is supposed to be
The relation between the temperature jumps at the wallgfinite, its temperature is indeed homogeneous. Figure 5

and the imposed wall temperature differences is expected t9so shows the temperature pattern in the system.

be linear at least for small enough gradieftS]. This is In our simulation we can now compute the thermal force

shown in our numerical experiments in Fig. 3, and we se§ acting on the particle as a result of the total momentum

that, as is generally the case, the jump near the hot wall ifansfer from the gas molecules per unit of physical time.

ltieggsrh?raens?:rtnnt(ca)atr)éhc?nfmg OPC()E);ir?::etlhe\fgrilfligzargz dr?jlgfl'he time intervaldt is here equal to 5 for simulations going
viations from linearit areyclegp: for the |)ilil’ e tem’ eraturefrom 10000 to 2000000, with the chosen urittsrrespond-

. nty : 9 nper: ing to some nanoseconds compared to a total simulation of
differences. There is presently no available analytical invess

tigation of this phenomenon when nonlinearities begin tol—lOO,uS). This is the same technique as for analytical deri-
o?:cur P 9 vations, but we dispose of the difficult task of obtaining the

proper velocity distribution of the incoming particles, since
this distribution is built by the numerical simulation itself.
In Fig. 6(a) we plot some examples &, vs the tempera-
When a circular particle is placed inside the system, weure gradientVT for the same system geometry, same mol-
have to check first that it reaches its final temperature withirecule density, and various radii of the particle. The tempera-
a reasonable time; that is to say, comparable to the relaxaticmre gradient has been estimated as the best linear fit in the
time for the gas. This is shown in Fig. 4 where its tempera-particle region. The local(time-averaged pressure was

IV. THERMAL FORCE ACTING ON THE PARTICLE



6612 PAREDES V.,

IDLER, HASMY, CASTELLS, AND BOTET

PRE 62

1% .
2 e R=405 N
O R=81
- = R=162 1
o R=324
5 A R=648 1
- 0 2)(104 4><104 -1 ] ] ] ] 1 | 1
10 1 ] 1 | 1 | 1 0.000  0.002 0.024 0.006 0.008
0 510" g0’ 2xa0°  2x10° VT
t (@

FIG. 4. Plot of the temporal evolution of the particle tempera- 0 1 Tt 1 T T 1
ture. Inset: the very beginning of this evolution showing the fast L® e
thermalization of the temperature.is the standard deviation of the -100}- \\ -
data. In this case, the system sizelig% 3800,L,=5700), the gas | % i
density isp=0.0003, and the temperatures of the hot and cold walls —200- \ ]
areT,, =10 andT,, ,=20. § i AN s i

- \
[
checked to be approximately constant inside the whole sys- =300 \\ 7]
tem. Except for the largest radius used, form{ais then i \\ 7
well recovered, withS=2#R since the system is two- -400— \ —
dimensional. The thermal force can be written in the form - \\ :
-500 1 | 1 ] L M 1
VT 0.00 0.05 0.10 0.15 0.20
Fth=2wA(Kn,w))\PR?, (14 R/L
X

with P/T almost constantthis is the average gas dengijty
andA(Kn,») a constant. The linearity d¥,, with the radius

(b)

FIG. 6. (a) Plot of the thermophoretic forde,, vs the tempera-

Ris checked in Fig. ). Not surprisingly, we find the same ture gradientVT for the same system geometry,&3800,L,

resulting R dependence as for three-dimensional cylinders=5700), the same gas densify=0.0005), and various radii of the
perpendicular to the constant temperature gradignt

m———foR

(19

X

FIG. 5. Temperature pattern for a system wjth 0.0005, R

=162,T,,.=10, andT,, ,= 20. Darker colors mean lower tempera- cally in the limit of the infinite Knudsen numbé7]. _
tures. In the figure we also schematically show the particle and the Another point is that, when the nondimensional coeffi-

cold (left) and hot(right) walls.

particleR. The temperature gradient has been estimated as the best
linear fit in the particle region. Except for the largest radius used,
the linear dependence of the force with radius is well recovered, as
shown in(b).

where (VT),, is the temperature gradient inside the system
far from any(wall) boundary, and~, is the force per unit
length of the cylinder. The average molecular mean free path
\ is constant in all the data of the Fig. 6, as the average gas
density.

The deviations seen in Fig.(l® from the expected law
[Eq. (14)] are due to the finite size effects of the box, the
ratio R/L characterizing these effects which become large
enough(0.17 for the last point Treatment of this problem is
known to be one of the most important challenges in the
context of applications when considering the design of ther-
mal filters[3].

To analyze the problem in the vicinity of the walls in
more detail, we performed numerical simulations with the
particle of a given radius at different positiorg from the
walls. The results are presented in Fig. 7. In Figp)7we see
small deviations of the thermal forces due to the proximity of
the walls. This effect was previously investigated analyti-

cient A(Kn,») does not vary(which is expected for very
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FIG. 7. (a) Plot of the thermophoretic fordé,, vs the tempera- FIG. 8. (a) Plot of the thermophoretic fordé,, vs the tempera-

ture gradientVT for the same system geometry =3800,L,  ture gradientVT for the same system geometry&3800,L,
=5700), the same particle radiuR€ 162), the same gas density =5700), the same particle radiuB+ 162), and various gas densi-
(p=0.0005), and various locations of the particle inside the kgx. ties. The system for lowest densjiy=0.0003 has been investigated
denotes the abscissa of the center of the partitleThe largest  for two different system lengths to see the effect of the rafib,
thermophoretic effect occurs when the particle is located at then the thermophoretic forcé.,= 3800, which is of same order as
center of the system. the gas mean free path € 2620), and_,=7600.(b) As expected,
the force is independent gf when the density is small, and the
large Knudsen numbergormula (14) [or Eqg. (15) as well ratio /L, large enough. Whep becomes larger than 16, the
predicts the independence of the thermophoretic coefficierfhermophoretic force tends to decrease, as the system goes out of
vs the gas density, sindeP/T is on average independent of the free molecular flow regime.
the gas density. This is shown in Fig. 8, in which deviations
are seenfFig. 8b)] when the density is so large that coeffi- V. SUMMARY AND CONCLUSIONS

cient A(Kn,») cannot be considered as a constant. . L
) ) ~, In this work we have presented molecular dynamics simu-

Finally, ~Eq. (15 can be wrtten as Fp=  |ations of system of hard disks in a nonequilibrium thermal
—%mpR(VT)m. Using the corresponding average gasenvironment. Though simple, they capture the main features
density {p=0.0005) and the mean free path, estimated fronxpected in such a system: temperature jumps at interfaces
simulations at equilibrium X=1160), the coefficient with heat reservoirs, and sta_tble temperature prof|les_. This
3 [7X7 obtained is about 18% below the slope of thecompleme_nts previous quantltanve agreement found in hy-
aNTAp O 0 op drodynamicganalytical and numericghnalysis of the com-
straight line in Fig. @). On the other hand, usingp~0.6,  pressible hard-disk fluifi26]. Thermal effects on a particle
from simulations at equilibrium, and the corresponding parof infinite heat conductivity, placed anywhere between the
ticle radius R=162), the coefficienf mApR is 15% be- two plates, has been studied. However, on a higher level, we
low that the constant value obtained in the low density limithave seen how this technique could be useful to investigate
in our simulations of the thermophoresis effg€ig. 8b)]. In problems which are quite difficult to handle analytically:
both cases, agreement is excellent, in spite of simulationsonlinear effects for high enough temperature differences
being performed for two-dimensional systems, and that wdiave been reported, as well as the effects of proximity of the
are comparing with a similar three-dimensional case. wall for various Knudsen numbers. This shows the power of



6614 PAREDES V., IDLER, HASMY, CASTELLS, AND BOTET PRE 62

the method. Even if analytical resulfsr numerical results ACKNOWLEDGMENTS

on analytical solutionsare necessary to obtain a precise un-

derstanding of the problem of thermophoresis, these MD CNRS-CONICIT Nos. 5789 and 7195, exchange re-
simulations provide a complementary alternative to study unsearchers program, and computer facilities offered by Cecal-

explored areas, in particular thermal forces on particles otula (Venezuela and CNUSC(France, are gratefully ac-
non-simple shapes, which is in fact very interesting for thexknowledged.
industry and not possible to deal with analytically.

[1] J. Tyndall, Proc. R. Inst, 3 (1870. (AIAA, New York, 1977), p. 417, and references therein.

[2] B. H. Kaye,Direct Characterization of Fine Particle@Viley- [12] M. P. Allen and D. J. TildesleyComputer Simulation of Lig-
Interscience, New York, 1981 uids (Oxford Science Publications, Oxford, 199@nd refer-

[3] W. F. Phillips, Phys. Fluid45, 999(1972. ences thereinnderstanding Molecular Simulation: From Al-

[4] L. Talbot, in Rarefied Gas Dynamic®dited by S. S. Fisher, gorithms to Applicationsedited by D. Frenkel and B. Smit
Progress in Astronautics and Aeronautics Vol (ZHAA, New (Academic Press, New York, 1986and references therein.
York, 1981, Pt. I, p. 487. [13] M. Vergeles, P. Keblinski, J. Koplik, and J. R. Banavar, Phys.

[5] B. V. Deryagin and S. P. Bakanov, Dokl. Akad. Nauk. SSSR Rev. E_53' 4852(1996. )
117, 959 (1957 [Sov. Phys. Dokl117, 563(1957]; L. Wald- [14] J. A. Given and E. Clementi, J. Chem. Ph96, 7376(1989.

mann, Z. Naturforsch. A4, 589(1959; B. V. Deryagin and [15] M. Pete.rs, Phys. Rev. &D, 4609(1994" . .
S. P. Bakanov, Kolloidn Zh21, 377 (1959: S. P. Bakanov [16] G. A. Bird, Molecular Gas Dynamics and the Direct Simula-

and B. V. Derjaguin, Discuss. Faraday S86, 130(1960; L. tion of Gas FlowqOxford University Press, Oxford, 1994A.

. : . ) L. Garca, Numerical Methods for Physic$Prentice-Hall,
Waldmann, inRarefied Gas Dynamic®dited by L. Talbot, Englewood Cliffs, NJ, 1994

Advances in Applied Mechanics Series, SupplAtademic, [17] F. J. Alexander, A. L. Garey and B. J. Alder, Phys. Rev. Lett.

New York, 1963, p. 323. 74, 5212(1995.

[6] K. Yamamoto, Y. Ishihara, and K. Fujise, J. Phys. Soc. Jpn{18] J. L. Lebowitz and H. Spohn, J. Stat. Phg$, 633 (1978.
57, 2386(1988. [19] A. Tenenbaum, G. Ciccotti, and R. Gallico, Phys. Rev23

[7] M. M. R. Williams, J. Colloid Interface Scil17, 193(1987). 2778(1982.

[8] J. R. Brock, J. Colloid Interface S3, 448 (1967). [20] S. Goldstein, J. L. Lebowitz, and E. Presi{tthpublishedl

[9] P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. R&.  [21] R. Tehver, F. Toigo, J. Koplik, and J. R. Banavar, Phys. Rev.
511(1954. E 57, R17(1998.

[10] S. L. Gorelov, Fluid Dyn.11, 800 (1977; Y. Sone and K. [22] D.C. Rapaport,The Art of Molecular Dynamics Simulation
Aoki, J. Mec. Theor. Appl.2, 3 (1983; W. S. Law, Ph.D. (Cambridge University Press, Cambridge, 1995

thesis, University of Missouri, 1985; S. K. Loyalka, ar- [23] D. M. Gass, J. Chem. Phy54, 1898(1971.
efied Gas Dynamigsedited by V. Boffi and C. Cercignani [24] L. Lees(unpublishegl
(Teubner, Stuttgart, 1986p. 177; K. Yamamoto and Y. Ishi- [25] F. A. Williams, Combustion TheoryAddison-Wesley, Read-
hara, Phys. Fluid81, 3618(1988. ing, MA, 1985.

[11] Y. Sone and K. Aoki, inRarefied Gas Dynamicedited by J.  [26] A. Puhl, M. Malek Mansour, and M. Mareschal, Phys. Rev. E
L. Potter, Progress in Astronautics and Aeronautics Series 40, 1999(1989.



