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Hydrodynamic fluctuations in the Kolmogorov flow: Nonlinear regime
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In a previous pap€dil. Bena, M. Malek Mansour, and F. Baras, Phys. Re69E5503(1999 | the statistical
properties of linearized Kolmogorov flow were studied, using the formalism of fluctuating hydrodynamics. In
this paper the nonlinear regime is considered, with emphasis on the statistical properties of the flow near the
first instability. The normal form amplitude equation is derived for the case of an incompressible fluid and the
velocity field is constructed explicitly abougut close t9 the instability. The relative simplicity of this flow
allows one to analyze the compressible case as well. Using a perturbative technique, it is shown that close to
the instability threshold the stochastic dynamics of the system is governed by two coupled nonlinear Langevin
equations in Fourier space. The solution of these equations can be cast into the exponential of a Landau-
Ginzburg functional, which proves to be identical to the one obtained for the case of an incompressible fluid.
The theoretical predictions are confirmed by numerical simulations of the nonlinear fluctuating hydrodynamic
equations.

PACS numbd(s): 47.20—k, 05.40—a, 05.90+m

[. INTRODUCTION drodynamic equations. Reducing these equations to a final

normal form amplitude equation near the instability would

A central issue in nonequilibrium statistical physics is thelead directly to the explicit form of the associated noise
role of fluctuations in the onset of hydrodynamic instabili- terms consistent with such requirements as the fluctuation-

ties. From a theoretical point of view one generally relies onglssmatlon theorem. Such a procedure, however, proves to

the Landau-Lifshitz fluctuating hydrodynami€g], mainly e quite difficult, mainly because of the boundary conditions.

because of its relative simplicity as compared to more fun-T0 our knowledge, the only attempt in this direction was

damental approachd8,4]. Fluctuating hydrodynamics has made by Schmitz and Cohen for the case of theaBe in-
pproac T g ny ynan stability [15]. Concentrating on the behavior of a small layer
been used by various authors to study the statistical prope

. : . . s OP€[J the bulk, these authors succeeded in deriving the linear-
ties of simple fluids subjected to nonequilibrium constraints;, e fiyctuating equations close to the convective instability.
such as temperature gradi€fi®,5,6] or shear[4,7] (for a

. ; 2 , Whether this technique can be generalized to derive the cor-
review, see Ref[8]). Light scattering results, obtained for responding normal form amplitude equation for the case of
systems under a temperature gradient, have shown quantitgre Benard instability is not clear at the present time.
tive agreement with theoretical predictioEQi. Quantitative Recent]y, we have considered the prob]em of hydrody-
agreement has also been demonstrated with results based gamic fluctuations in the case of a simple flow proposed
particle simulations, both for systems under temperature grasome 50 years ago by Kolmogorfi6]. Thanks to the peri-
dient[10,11] and sheaf12]. odic boundary conditions associated with this model, a de-
Ordinarily the macroscopic study of subsonic hydrody-tailed analysis of the linearized fluctuating hydrodynamic
namic instabilities is based on the incompressibility assumpequations, from near equilibrium up to the vicinity of the first
tion. However, as first pointed out by Zaitsev and Shliomisinstability, could be carried outl]. In particular, we have
[13], this assumption is essentially inconsistent with the verybeen able to show that in the long time limit the flow be-
foundations of the fluctuating hydrodynamics formalismhaves as if the fluid were incompressible, regardless of the
since it imposes fictitious correlations between the velocityalue of the Reynolds number. The situation was different
components of the fluid. On the other hand, the compresdor the short time behavior. We established that the incom-
ibility of the fluid affects mostly fast sound modes, whereaspressibility assumption leads here to a wrong form of the
the dynamics of the system near an instability is governed bgtatic correlation functions, in agreement with the prediction
slow dissipative modes. We may thus expect that the behawf Zaitsev and Shliomig13], except near the instability
ior of a fluid evolving near a subsonic instability threshold isthreshold, where our results strongly suggest that the incom-
not affected in practice by its compressibility. This intuitive pressibility assumption becomes valid again. On the other
argument has been used by many authors who have considand, the linearized fluctuating hydrodynamic equations are
ered fluctuating incompressible hydrodynamic equations, oclearly not valid close to or beyond the instability threshold.
even directly the corresponding normal form amplitudeAlthough extensive numerical simulations have confirmed
equations to which they added random noise teffidd. In  our predictions, a satisfactory answer to this important prob-
these approaches, the characteristics of the noise terms cdam requires a full nonlinear analysis of the fluctuating Kol-
not be related to equilibrium statistical properties of the fluidmogorov flow. The present article is devoted to this problem.
and thus remain arbitrary. A more satisfactory approach In the next section, the Kolmogorov flow is briefly re-
would be to start with the full compressible fluctuating hy- viewed. A nonlinear analysis is carried out for an incom-
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pressible fluid and the explicit form of the stream functionand density are uniform in spaceps=pg, Pst= Po)>
and the associated velocity field is derived above but close tarhereas the velocity profile is given by
the instability. Section Il is devoted to the analysis of a

compressible fluid. After setting up a perturbation scheme, Vs=UgSin(2 wy/Ly) 1,

we show that the solution of the problem is essentially the

same as the one derived in Sec. Il for the incompressible Fo L§

fluid, at least close to the instability threshold. We then con- Uozm- @)

centrate on the statistical properties of the flow and show

that, close to the instability threshold, the dynamics of therg, small enouglF,, this stationary flow is stable. As we
system is governed by a set of two nonlinear coupled Lang€creaser ,, however, the flow eventually becomes unstable,
vin equations. Here again, the equivalence with the incomy;ying rise to rotating convective patterns. Other instabilities
pressible case is established. Concluding remarks and pegs increasing complexity may occur for larger valuesrof

spectives are summarized in Sec. IV. culminating in a chaoticlike behavior similar to what is ob-
served in turbulent flow$18—20. In this paper we shall
Il. INCOMPRESSIBLE KOLMOGOROV FLOW limit ourselves to the analysis of the system near its first
instability.

Consider an isothermal flow in a rectangular tox<L., We still have to supply the momentum conservation equa
oriented along the main axes, thatfe=<x<L,,0<y<L,}. . . ) . -
g { OSY<Ly} on (4) with an equation of state relating the pressure to the

Periodic boundary conditions are assumed in both direction‘% ity ( Il that th tem is isotherraln thi "
and the flow is maintained through an external force field o ensitytrecall that the system 1S 1sotherry IS section,
we shall simply assume that the flow is incompressible, i.e.,

the form

Fexi=Fosin2 nyiL,) 1,, 1) VoM ? g ®)
ax " ay

where 1, is the unit vector in thex direction. This model

represents the so-callétblmogorov flowand it belongs to Whereu andv represent thex andy components of the ve-
the wider class of two-dimensional negative eddy viscositjocity, respectively, i.,ey=ul,+v1l,. Relation(8) implies a
flows[17]. It is entirely characterized through the strength ofuniform densityp, throughout the system for all time, if
the force fieldF,, the parameten, which controls the wave initially so, as well as the existence of a scalar function
number of the forcing, and the aspect ragig defined as  #(X,y), known as thestream functiondefined by the rela-

tions
a,=Ly/L,. 2
ap ap
In the following, we will mainly concentrate on the case u= ay VT T X ©
=1.
The fluctuating hydrodynamic equations for this modelScaling lengths by, velocity by u,, and time byl /u,
read: the dimensionless equation for the stream function reads
Ip V) oy a(VEY)  ay AV )
—=-V. V), 3 = — — —_— -1ly2 2
T (pV) 3 P FYR +— Y +R71V2(V2y)
Py +8m* R lcog2 wy), (10
p=—==—pV-V)Vv=V p—V.0+Fs, (4)

It whereR is the Reynolds number,

wherep is the mass density the hydrostatic pressure awd poloL
oYoty

the two dimensionafluctuating stress tensor, R= "2 (12)
Y
17 Ui J Uj ) ) ]
Tii= | ot ox G VYL, VvES . The stationary solution of Eq10) is
i i
(5) 1

. . =—5—cog2 . 12

S is a random tensor whose elemef& ;} are Gaussian Vst 2@ s2my) (12

white noises with zero mean and covariances given by _ _ o
Setting = i+ 8¢ and linearizing Eq.(10) around i;,

(S, (r.0) S (r',t))=2kgTo 8(t—t") S(r—r")[ n(5 1 one gets

a8y

+O (L= (B V2 sy) A(V2 5¢) 5y
X

o =—-sin2wy) r —47%sin(2wy)
For simplicity, we shall assume that the shear and bulk vis-
cosity coefficientsy and { are state independent.e., they +RIV2(V26y). (13
are constant.

Let us first concentrate on thgeterministicbehavior. It  Owing to periodic boundary condition®(x,y,t) can be

can easily be checked that in the stationary state the pressuegpanded in Fourier series:
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S(X,y, t)= kz_ exp— 2 wikyy)
x 1 Ky=—%
Xexp— 2mik,x/a,) o, ky(t),

(14
1 ) 1 (ar
5¢//kx,ky(t)=fodyexp(27r|kyy)a—r fo dx

Xexp2 wikyx/a,) Sg(Xx,y,t).

Equation(13) can then be transformed to
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where we have set

ke=ky/a, . (16)

In its general form, the analysis of this equation proves to
be quite difficul{21]. On the other hand, i#, is stable, then
in the long time limit the evolution of the system will be
mainly governed by long wavelength modes. Accordingly,
we start our analysis by considering only the mo&gs 0,
+1, i.e., we assume thaty(k, kyt)~0 for |k =2 [22].

ISP« 3 Defining the vector oYy =(5¢x 0,0k 1.0%k -1), EQ.
Ty =—4mR MK+ ky2)5i//kx, K (15) can be written in the following matrix form:
+ 7Ky 8 -6 _
KL S, 11— O k1] 250 (1)
+2 Kby [5y + 8 ] I v
77. n-— — L
k)2(+k)2/ Ky s ky+l Ky s ky 1
(15  with
|
—47°R™ 1T()2( 7Ky — 7Ky
A=| 7wk (1-K2)/(1+K2) —4m’R Y(1+kd) 0 (19
— 7k (1-k2)/(1+K2) 0 —4m? R Y (1+K)
|
We first note that the matriA is diagonal fork,=0 so 38di(t) _
that the solution of Eq(17) simply reduces to G Niodi(D), =123, (22
Stho, A(t) ~ Stho_ 1 (1) ~exp(— 47 R™1t). (19
' ' where
Furthermore, by definition of the stream function EH),
o o(t)=0,¥t. We thus concentrate on the cage-0, look- oDb=T - ou. (23

ing for a similarity transformatio-A-T ! that diagonal-
izes the matrixA. After some algebra, one finds

(M—N)lmke 1 -1
T= ()\2_)\3)/7712)( 1 -1 ’ (20)
0 1 1
where{\;} are the eigenvalues @:
M=—-2m2R 1(1+2K2)
+ 2K (1-K))/(1+K2) +4 72 R 2,
(21)

N=—2m R 1 (1+2%)

— 2R (1-K))/(1+K) +4 w2 R 2,
Az=—4 7R L(1+KD).

Equation(17) then becomes

It follows from Eq.(21) that\, and\5 are always nega-
tive, whereas there exists a critical value of the Reynolds
number

1+Kk2
T2
, 0<ki<1,
1-Kk2

Ru(k)=2\2m

(24)

for which \; vanishes, thus indicating the limit of stability of
the corresponding modg23]. Clearly R. is an increasing
function of |k,|, so that the first modes to become unstable
correspond tdk,|=1, provided the aspect ratia, >1. As
a,—1, R.—», indicating that no instability can develop for
perturbations of the same spatial periodicity as the applied
force [24]. In the following, we shall therefore concentrate
mainly on the case,>1.

Fora, =2, relation(24) predicts a critical Reynolds num-
ber of R,~12.8255. Analytical calculations can still be
handled when the moddg = +2 are taken into account as
well, and lead to
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K (K2+3) Sz where
RO(ky) =Re(k,) | 1+ ~2X( S , 0<kZ<1.
2 (ky+4)°(ki—1) 5 A=\q(ke=1)
. iy 5 47 al+1 R
For a,=2, one finds a critical Reynolds number Bf> = [ 1- 2| +O(IRIR-1]) (29
~12.8738, so that the discrepancy remains below 0.4%. Nu- R af(aj+2)

merical evaluation ofR. performed with a total of 103

modes shows no further significant discrepancy. We thuand y is a positive constant whose expression, to dominant

conclude that one can rely reasonably well on a three-moderder in|R/R; — 1|, is given by

approximation theorythat is, o . ky(t)wo for [k,| =2]. It

remains to check whether this approximation leads to the ,(@+17a7+16a7—32) (af+1)?

correct velocity field beyond the instability. To this end we y=8 V2 3. 2 32,2 3 .2 >

need to work out the explicit form of the stream function. ar(ar—1)™(ar+2)" (a; +4)
The calculations are tedious and quite lengthy, so that

here we report only the basic steps. We start with the full Above the bifurcation poinR>R; (A>0), the amplitude
nonlinear evolution equation fafy= y— i, equation(28) admits two stable stationary solutions, corre-

sponding to the rotation sense of the streamlines in the fluid:

(30

aV2y)
a

(V25 36
_Sn(ZWy)%—47TZSin(27Ty)a—;/j N
Sy ==+ \[;exp(i 6o), (31

2
+RTIVH(V26y) — o0 AV 00

% X where 6, is a constant whose value depends on the initial

sy I(V254) conditions. The fact that the stationary solution still depends
Rl — (26)  on the initial conditions simply reflects the Galilean invari-
ance in thex direction that results from the periodic bound-
As for the linear case, we take the Fourier transform of thisafy conditions imposed on the system. Using relaiidb),
equation, limiting ourselves to the first three modgs-0, ~ Oneé can compute the explicit form of the fast modespr
+1. Applying then the transformatiod to the resulting =0.=1,=2. Applying the inverse transfornt~"(k,) [cf.

X ay

equation[cf. Eq. (23)], one obtains Eq. (20)], to the vectordep™ (ky)=(5¢1 ,8¢; ,8¢3) ob-
tained and taking its inverse Fourier transform, one gets the
do¢i(t) . explicit expression of the stream function in real space. Up to
st Mo+ D, 1=1.23, 27 orderO(R/R,—1), one obtains

where the ®;’s are nonlinear polynomial functions of

8¢y, 8¢y, and Sz and their complex-conjugates. Close to (X, y)=— icosz(z wy)iRc—?|5¢>1l
the bifurcation point R~R., ky=1), the modes¢, exhib- 2m 2m(a;+2)

its acritical slowing downsince\ (k,=1)~0. On this slow 4

time scale, i.e.twO()\l’l), the fast mode$ ¢, andd¢5 can X | cog2mxla, — 6p) — sin(2mx/a,
be considered as stationary, their time dependence arising a R

mainly throughd¢,(t). Settingd ¢,/ dt~dd¢p3/dt~0, one R2

can express the fast modég, and §¢; in terms of the slow — Bp)sin(2my) |+ ——————| 8¢,/
mode 8¢, and its complex conjugated¢} . If now one 27 (af+2)?

inserts the expressions thus obtained for the fast modes into 4
the evolution equation of the slow mode, one obtains a & cogAmx/a,—20,)
closed nonlinear equation for the latt@diabatic elimina- (a2+4)2 A G 0
tion [25,26]). In practice, however, such a calculation is pos- '

sible only close to the bifurcation point, where the amplitude (32

of 8¢ is supposed to approach zeroRs R, . In fact, there

exist other types of transitions, such as the one arising in thehere we have setd¢|=|5¢;|. Using the relationg9),
Vanderpol equation, where the amplitude of the solutiornthe velocity profiles can now be obtained straightforwardly:
above the instability does not vanish as one approaches the
critical point[27]. Detailed analysis shows that this is not the

cog2y),

. . 4 .
case herdi.e., |64,/ —0 asR—R), so that we can limit  ug(x,y)=sin2my)+—; | 8¢p1| sin(2mx/a, — 6,)
ourselves to lowest orders j@¢,|, obtaining finally the so- (ar+2)
callednormal formor amplitude equatiofior the slow mode: R2 a4
xcog2my) — ———— 8¢ |?| 1- ———
d6P(1) 2 2 2 2
=\ 81(t) = | 6ba(D)]? 51 (1) (ar+2) (@r+4)

at
X[1+0(8¢,(1)[D)], (29) X cos(47rx/ar—200)lsin(27ry), (33
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0.057 Fsr (X, y=3/4)
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FIG. 3. Horizontal profile of the stationary state stream function,
with y=3/4, as a function of the coordinatdor R=13,a,=2, and
#,=0. The full and dashed lines represent theoretical predictions
obtained by using an estimation of the critical Reynolds number
based on five-modgEq. 25] and three-modgEq. 24] approxima-

FIG. 1. Density plot of the stream function E2) for R
=15,a,=2, andf,=0. For the sake of clarity, a vector plot of the
velocity field is also included.

. R¢ tion theories, respectively. The diamonds correspond to numerical
Vsi(X, Y) =% ———[8¢| | sin(2mx/a, — bo) results.
(a2 +2)
Reynolds numbef30]. This is shown in Fig. 3, where both
+ 4m coq 27X/ a, — By)sin( 2 )} the numerical and the theoretical horizontal profiles of the
a, R, roo y stream function with a fixed value of the vertical coordinate
y=23/4 are depicted for the Reynolds numiee13. The
2R?a? ) discrepancy now exceeds 10%.
N (a2+2)2 (a2+4)2 |64 To understand the origin of this unexpected behavior, we
r " note that the value of the critical Reynolds number that we
X sin(4mx/a, —265)cog 2Yy). (34) have used to evaluate the stream funcfigg. (32)] is based

on the three-mode approximation thedigf. Eq. (24)]. As
A density plot of the stream functiof82) is represented in Shown before, the accuracy of the latter valu&gfis about
Fig. 1 for R=15, a,=2, and6,=0, where, for the sake of 0.4%, which is fine as long as the distance from the critical
clarity, a vector plot of the velocity field is also included. We point (R/R;—1) remains much larger than 0.4%. Now, for
note that the flow has an ABC-like topolod8], with ~ R=13, the distance from the critical point is about 1%,
closed streamlinegeddies, open ones, and separatrices be-which is of the same order as the accuracyRpfand ex-
tween them. plains the relatively important discrepancy we observe in

We recall that the above results rest on the three-modEig. 3. -

approximation theory. To check the validity of this basic ~ To overcome this difficulty, one has to compute a more
assumption, we have solved numerically the incompressibl@ccurate value of the critical Reynolds number, based, for
nonlinear hydrodynamic equations far=2, using standard instance, on the five-mode approximation the¢cy. Eq.
techniques[29]. Figure 2 compares contour plots of the (29)]. As is well known[26], this correction concerns only
stream function obtained numerically with its correspondingthe value ofR;, and in no way compromises the validity of
theoretical counterpart E432) for R=15. Given the rela- the amplitude equatiof28) and its corresponding solution
tive|y |arge distance from the critical pointR(RC_ 1 Eq (32) This is illustrated in Flg 3, where excellent agree-
~17%), the agreement is much better than expected, th@ent with the numerical result is demonstrated, whenever we
discrepancy remaining below 5%. Surprisingly, the agreeUSGREF) as the critical Reynolds number. For smaller values
ment does not improve as we consider smaller values of thef R, one can compute the value Bf numerically with the

desired precision and use it as an input to the amplitude

1.0 7 equation(28).
So far, we have limited ourselves to the analysis of the
, deterministic equations only, i.e., we have discarded the

noise terms. In principle, there is no difficulty in taking into
account the noise contributions as well, except that the am-
plitudes of the field variablesd,,d¢,,50¢3) are now di-
rectly related to the amplitudB of the noise, which is typi-
cally a small parameter. For example, the fast variables
(8¢,,6¢3)~0(B Y2, whereas the slow variabledg,
~O(B Y4 (a detailed discussion of this problem is given in
[31]). Keeping this restriction in mind, one can repeat all the
above calculations in the presence of noise terms. To the
FIG. 2. Stationary state contour plot of the stream function fordominant order irj ¢,|, one finds
R=15, a,=2, and6,=0. The full and dashed lines correspond to
theoretical predictiofiEg. (32)] and numerical results, respectively. d8¢4(1)

—— =N 81 (t) =8¢ (1)|? Sa (1) + £(1),

The discrepancy remains below 5%. ot




PRE 62 HYDRODYNAMIC FLUCTUATIONS IN THE KOLMOGOROV . .. 6565

9647 (1) doug i (1)
T:K 51 (1) — 7|5¢1(t)|2 Sy (1) +E*(1). Tyz —Te R(5ka, ky+1+ 5ka, ky,l)
(35 B
_ _ _ tame Rk (SU i 170Uk k1)
The function &(t) and its complex conjugaté™ (t) are
Gaussian white noises with zero means and correlations —4 72 8(~k§+ ki) Uy«
given by o
—4 7% a e k(K Suy kT Ky ovg k)
(&) €(1))=0, ) o o
(36) + 2 7T| kX 5‘Dkxv ky+ Fkxv ky(t)’ (42)
(§(t) & (t"))=Ba(t—t"),
ddvy ky(t)

ot

with mE R~kx(5vkx,ky+1_5vkx, k1)

4ksTya? 2 T2, 12
B:%[HOGR/RC—M, (37) —amelktky) dvi i
uO ~
_4772a3ky(kx&'kx,ky"'ky&)kx,ky)

M being the total mass of the system:

+2miky Spi i+ Gic, k(1) (43)
M= arpol_?/ . (38) X . .
whereR is the Reynolds number, defined in Edl),
The results derived in this section were based explicitly
on the incompressibility assumption. However, as discussed - 7 (44)
in the Introduction, this assumption is inconsistent with the poCsly’

very foundation of the fluctuating hydrodynamic formalism.

On the other hand, we have presentedlihnumerical evi- and

dence that in the vicinity of the bifurcation point the system

behaves essentially as an incompressible fluid. We therefore a=/{l7. (45)
expect that the Langevin equati¢85) should remain valid

for R close enough t&. . We shall clarify this major issue in  1he functionsFy . andGy  are Fourier components of

the next section. the noise terms; their covariances follow directly from Egs.

(5) and(6):

ll. FLUCTUATIONS IN THE COMPRESSIBLE FLOW ~

(Fi. k(0 Fi () =87 Al(a+ 1)k}

Let us now consider the compressible hydrodynamic Y

equationg3)—(5), for which we need to specify an equation + ki] 5l'fik, L S(t—t"),
of state. Since the system is isothermal, we simply set '

o=, 39 (Fi1,(1) Gy (1)) =8 72 e Aakky 8Ly o S(t—1"),

wherec is the isothermal speed of sound. As in the previous  (Gx, k(1) Gy k(1)) =8 e A[KG+ (at1) k7]
section, we start with the linearized hydrodynamic equations

around the reference stdtgy, Vs, Wherevg, is given by Eq. X 5,&,(/,0 a(t—t"), (46)
(7). Setting
wherek=(k,, k,) and
p=pot op,
(40 kg To
V=Vg+ 8V, A=——, (47)
st M C52

and scaling lengths by, , time byL, /cs, 5p by po, andév. p peing the total mass of the systdof. Eq. (39)].
by the speed of sounct, the dimensionless linear fluctuat-  Fqr the sake of clarity, we first focus on tteterministic

ing equations in Fourier space readcall thatk,=k,/a,) behavior, i.e., we discard for the moment the noise contribu-
tions from the evolution equationg@1)—(43). Furthermore,

05ka,ky(t) s we shall limit ourselves to the three-mode approximation
o 2mi(kedUy i Ty dvi k) theory, i.e., we shall neglect the modes wjiki| =2, for the

very same reasons that we have discussed for the incom-

+e R7T~kx(5pk 1= Pk 1), pressible case. With these assumptions, E4¥—(43) re-
Xy Xy

(41 checked that the change of variables

duce to a system of nine coupled equations. It can then be
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3pic (1)=0pi,, 1= py (1),
5ul_(:x(t):5ukx’ 1(t)i5ukx,—l(t)v (48)

5Ukix(t) =dvg  1(t) = vk —1(1)
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tive, regardless of the value of the Reynolds numReso
that they are not determinant for the onset of convective
instability. We therefore focus on the remaining four vari-
ables{ép;’x,ﬁu:x,5v|:x,5vkx‘0}. Defining the vectorshy (t)

E{&pk*X, 5uk+x, b, buy of one readily finds

leads to a “partial diagonalization” of the evolution equa- d
tions, i.e., the equations for the variablgspy o, Spy , 71 Ok (1) =C(ky) - Sy (1), (49)
OUy 0, OUy . 5vk*x} decouple from the rest. Furthermore,
their associated eigenvalues prove to remain strictly negavhere the matri>xC is given by
|
0 ZwiRX 2i 0
2mik, —4mle(1+ aPi-i—Ri) —47%s aky —2meR
Clko=| , - , =, N (50
i —4meak, —4rme(l+tatky) —2mekR
0 0 mekyR —47728~k)2(
|
The analysis can be simplified somewhat by noticing that 1+K2
. . . . X ~
the parametes must remain small if one wishes to remain Re(ky) =2 \/577 0<k3<1, (54)

within the limit of validity of the hydrodynamic regimie32].

Vi-ke

Furthermore, as already mentioned in the introduction, in

this article we limit ourselves to strictly subsonic flows, so

that we shall restrict the analysis to a parameter domaifor which'x ; vanishes, thus indicating the limit of stability of

where
e<1,eR=ug/ce<1. (51

Accordingly, we evaluate the eigenvalues of the ma@ix
perturbatively:

Ak =N O(k) +e ND(k)+ .. .. (52

After some algebra, one finds, up to ord@fe?),

Ni(k)=e[ —2 72(1+2k2)

+m N4 w2+ 2 REK2 (1-KD)/(1+K2)],

No(ky)=e[ —2 w2(1+2k2)

— 4 7+ 2 R7Z (1-KD)/(1+KD)], (53)

Na(ko=2mi V1+k2—2 7%(a +1) e(1+K?),

Nak)=—27i VI+Kki—2 72(a+1) e(1+K2).

The eigenvalues.; and\, correspond to dissipativévis-
cous modes, whilex ; andX , are related to the propagation

of (damped sound waves. It can then be easily checked tha

the real parts ok ,, X3, and\, are always negative, whereas
there exists a critical value of the Reynolds number

the corresponding mode.

Remarkably, the above expression for the critical Rey-
nolds number is identical to the one obtained in the incom-
pressible casgcf. Eq. (24)]. In fact, detailed analysis shows
that the relation(54) is exact, i.e., it is independent ef at
least within the framework of the three-mode approximation
theory. On the other hand, if the modeg= +2 are taken
into account as well, tedious calculations lead to

Kke+3) |

RO (k) =Re(ky) | 1+ —= -

+0((ug/ce)?), 0<ki<1, (55)

which is again equivalent to the corresponding result ob-
tained for the incompressible case, ER5), the correction
being of the order oD(&?). In particular, the first mode to
become unstable correspondslig =1, provideda,>1.

We note that the matrig is singular fork, = 0, i.e., one
of its eigenvalues vanishes. A close inspection shows that
this zero eigenvalue corresponds to the médg,, which is
identically zero because of linear momentum conservation.
Accordingly, in what follows we shall concentrate on the
casek, # 0, looking for a similarity transformatiors-C
-S™1 that diagonalizes the matri€. For consistency, here
again we perform the calculations perturbatively, i.e., we ex-
pandS in powers ofe:

S(ky) = So(ky) +& Syky) + - - - (56)
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Note that this method constitutes an alternative to the time
scale perturbation theory33] that was generalized by
Schmitz and Cohefil5] in order to study the Beard insta-
bility in a compressible fluid.

Since the explicit form of the eigenvalues is known up to
O(&?), we need to evaluats (and its inverses™1) only up
to the same order. Despite this simplification, the general
expression folS is quite awkward and will not be presented
here. The rest of the calculations are quite straightforward, Vg (y=1/4)
but remain tedious and lengthy, so we give only a brief '0-381 064 087 0.9
sketch of the basic steppsee the discussion below EQ7)]. ) ' ' ’

We start by taking the Fourier transform of the fluctuating  FIG. 4. Horizontal versus vertical components of the stationary
hydrodynamic equation&)—(5). Using the change of vari- state velocity field withy=1/4. The full line corresponds to theo-
ables(40) and(48), we next derive the nonlinear fluctuating retical predictions, as given by Eqé3) and (34), whereas the
equations foréhkx. We then apply the transformati@to the dashed line is obtaingd by sqlving numerically the compressible
latter, obtaining a set of four nonlinear equations for thehenlinear hydrodynamic equations. The parametersrards, a,

) ~ ~ o~ o~ ~ =2, #,=0, ande=10"2. The discrepancy is about 5%.
variables {5+, 565, 6, 554} = 5b(t)=S- oh, . Close to 0 ° pancy °

the bifurcation point R~Rc, ky=1), the moded¢, exhib-\ parep and 4 are given by Eqs(37) and(47), respectively.

its a critical slowing down, since by constructian~0. We Although the form of the Langevin equatiof5s7) is the

can thereNforeProcSed to an adiabatic elimination of the fastzme as that obtained for the incompressible case,(B5s.
modes{d,, 5z, 64}, limiting ourselves to dominant or- they are nevertheless not equivalent since their coefficients
ders in|5¢,| [see the paragraph preceding Eg§5)]. The are clearly different, even to dominant ordersinThe main

final result is a set of two coupled Langevin equations for theaeason for this apparent discrepancy is related to the fact that,
slow mode&}&l and its complex conjugaté}}*l* : for the incompressible case, the analysis has been carried out
by scaling the velocities by, whereas for the compressible
case we used a different scaling, i.e., we scaled the velocities

0.5 st 0 =1/4)

ISPi(t) ~ ~ 2 S ~ by the velocity of sound. If now we switch back to the
= —_ + S
ot A 0610~y |961(D]7 86u(D +E(V), former scaling, i.e., we perform the change of varialles
N (57)  —tcslug, {u,v}—ug/cgfu,v}, then Eqs(57) lead to
ﬁﬁ(f)f(t) N S 2 <% Fx
- NPT (1) =y [6d1(D)]? 67 (1) +E* (1),
with ~ Ug
8¢1(t)= da(H)[1+0O(ug/c?) 1. (62)
S
Y Yo 2,2
A=N(ky=1)=)\ C—[1+O(Uo/05)]
S

) 5 Remarkably, this result shows that, to dominant ordes,in
, a+tl Re the evolution of fluctuating compressible and incompressible

~Ame 52 T 58 hydrodynami tions i d by th |
a%(a2+2) R2 ydrodynamic equations is governed by the very same slow
mode, at least for values of Reynolds number close to its

and critical value.

Let us first consider the macroscopic behavior. Using Egs.
_ Cs - Y (58), (59), and(62), one can go backward step by step and
Y=v u—0[1+ O(ug/cs) I~ —x. (59 derive as well the evolution equations of the hydrodynamic

velocities near the instability threshold. It can then be easily

where andy are given by Eqs(29) and(30), respectively. c_hecked thatz to dor_ninant ord_er in the co_m_pressible sta-
The function&(t) and its complex conjugat@* (t) are tionary yeIOC|ty profiles are given by thel_r |_ncompreSS|bIe
. : . . . _expressions, Eq$33) and (34). To check this important re-
Gaussian white noises with zero means and correlations . .
. b Sult, we have solved .numenc.ally the full nonlinear com-
given by pressible hydrodynamic equations and compared the result
~ o~ with analytical expressions obtained for the incompressible
(€(t) &) =0, case. A typical result is shown in Fig. 4, wheutg(x,y
-~ - (60) =1/4) as a function ofvg(x,y=1/4) is depicted forR
(&(t) &*(t"))=Ba(t—t), =15, £=10 2, anda,=2. Given the relatively large values
of the Reynolds numbeR/R;—1~17%) ande, the agree-
ment is very good, the discrepancy remaining below 5%.
RE We now concentrate on the behavior of fluctuations, as
’B:(_O) B[1+0O(ud/c?)|~4 & a? A, (61  described by the Langevin equatioff7). The associated
Cs Fokker-Planck equation reads

with
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IP(8hy,8% 1) mi(@?+1)
—_— Ny OV_ ) —2A= —————(|5¢4|?
ot ( k k> af(ar2+2)2<| ¢l| >
d - o~ B P 2
= — (N 8¢, —ydd2 5¢%) P+§—5(555*) X[1+0((uo/ce)?)], (69
! _ ! where the second term on the left hand side is the equilib-
d c oy~ B aP rium contribution and|8¢4|?) is given by Eq.(66).
_ _ 2 - 1
+ a(5P*) (X 091 =761 6¢1%) P+ 2 964y It is instructive to study the Gaussian linRi<R., where

the linearized Langevin equations, Edd41)—(43), remain
(63 valid. As was shown inl], they lead to the following ex-

. . ression for the static velocity autocorrelation function:
At the stationary state, one finds P y

~ AR?a?
) ] (70)

- o~ 2~ ~ ~ oA
Pst<5¢1,5¢>f)=Nlexr{g(xlaqbllz—%lé@l“ (e V02 A= e e a2 o)

64 ~
(64 Now, inserting into Eq(69) the Gaussian form of| 6é4|2),

with as given by Eq(67), leads precisely to the very same result.
We thus conclude that our general expression ([&§) re-

1 == — -~ == mains valid in the Gaussian reginke<R., despite the fact
N=7, N Blyexp\?/ yB) erfd =M \yB), (65  that it was derived in the close vicinity of the bifurcation

point R=R;.
where erfc( . ) stands for the Comp|ementary error func- To check the Va||d|ty of our theoretical results, we have
tion. Thanks to this result, one readily gets simulated the nonlinear fluctuating hydrodynamic equations

(3)—(5) for different values oR, settinga, =2, =102, and
L A=10"3/256~3.9x10 °. The estimated statistical errors
(N+BIAN). (66)  remain below 5% folR<10, but grow rapidly as we con-
sider higher values oR, reaching about 13% foR~R..
Above the bifurcation pointR>R_., the stationary distribu-

tion has two maxima, located &b, ==+ \'\/'y, which cor-
respond(up to a phase factpto the deterministic stationary
solutions of the amplitude equatiof31). Because of the

4,2 presence of noise terms, the system visits these states in a
AR?al (af+2) . > >) . _

rAer _ (67) rather random fashion, resulting in a huge dispersion of data.
2 P?(R2—R?)(a’+1) This is especially true foR close toR., which is precisely

the situation where our theoretical predictions are expected

The fluctuations thus behave a%h,| ~ O(AY?. Recall that o be applicable. Under this circumstance, obtaining reliable
the parametetA is inversely proportional to the system’s Statistics requires prohibitively large computing times, so
total number of particles so that<1 [cf. Eq.(47)]. As one  that we have been forced to limit the numerical simulations
approaches the bifurcation point, the Gaussian character & values of Reynolds numbeRs<R;.

the distribution is gradually lost. Right at the bifurcation ~ The results are presented in Fig. 5, together with both the
pointX =0, one has complete and the linearized solutions, E¢89) and (70),

respectively. The linear theofyaussian limit shows quan-

12 titative agreement for values &/R; up to about 86%, but
, (68) significant discrepancies start to show upRas R, where
the theory leads to a diverging correlation functi@h Eg.
(70)]. This is not the case for the complete solution E&$),

by | which exhibits perfect quantitative agreementRIR.. up to
~O(A™). The enhancement of fluctuations and the chang@so, A relatively small discrepancy of about 8% is ob-

of th_e probability Iavv_ at the bifurcation _point are a direc_t served, however, for higher values &f Although this dis-
manifestation of spatial symmetry breaking associated withyenancy remains within the limit of the estimated statistical
the emergence of convective patternf. - - errors, its systematic aspect nevertheless requires some clari-
On the other hand, the fast modep,, 53,544} prove  fications. In this respect, it is important to recall that the
to remain Gaussian, regardless of the value of the Reynoldgsults derived in this section were valid up @{u3/c?).
number. Detailed analysis shows that their contribution tayow, by definitionuy/cs=Re [cf. Eq. (51)], and, since we
nonequilibrium statistical properties of the fluid remain of haye sets =102, R.e~0.13 at the bifurcation point. This
the order ofO(ug/c?). In other words, the fluctuation spec- relatively large value oR.e might well be at the origin of
trum of hydrodynamic variables is mainly determined by thethe observed discrepancy. To check the validity of this argu-
statistical properties 0f¢,. For instance, the static velocity ment, it is tempting to perform the simulations all over again
autocorrelation function is found to obey for a smaller value of. However, since the relaxation time

(168417 =

XN

Away from the bifurcation pointX<0) the quartic term
in Eq. (64) is negligible so that the distribution is Gaussian
and

(| 5;51|2>G“

C

<|5’$1|2>}::0:2 €ay

which shows that the fluctuations now behave | &g, |
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<OV V4>, | <O >, the system in the vicinity of the instability threshold, we
r performed an adiabatic elimination of the fast modes to ob-
tain a set of two nonlinear Langevin equations for the slow
modes. We then succeeded in deriving the explicit form of
the stationary stream function, as well as the corresponding
velocity profiles, in real space. Numerical studies of the non-
linear hydrodynamical equations allowed us to confirm our
theoretical predictions.

We next considered the case of compressible Kolmogorov
. . . . . flow. The analysis can be simplified somewhat by noticing
0.8 0.85 0.9 0.95 1 that the evolution of a compressible fluid is generally char-
acterized by two different time scales: a slow one, related to

FIG. 5. Fourier transform of the nonequilibrium part of the static oY . .
velocity autocorrelation function, normalized by the correspondingN€ dissipative viscous modes, and a fast one, expressing the

equilibrium part, as a function oR/R,. The solid and dashed Propagation of(damped sound modes. The ratio of these
curves represent the complete and linearized solutions, Bgs.  time scales, denoted ky[cf. Eq. 44], can be considered as
and(70), respectively, whereas the diamonds correspond to numer@ Small parameter, since otherwise the very validity of the
cal results obtained by the simulation of nonlinear compressibldlydrodynamics can no longer be guarantg@?]. We thus
fluctuating hydrodynamic equations. The parametersaare2, ¢ have at our disposal a natural small parameter that can be
=102, and.A=10 3%/256. The estimated statistical error is about used to set up a perturbative technique. As already men-
13% for the last data point. tioned, this method constitutes an alternative to the time
scale perturbation theory that was generalized by Schmitz
of hydrodynamic modes grows as !, reaching the same and Cohen in order to study the ®Bard instability in a com-
degree of statistical accuracy as for the previous cases rgressible fluid 15,33.
quires much longer running times. For this reason we de- Using this perturbation technique, we first showed that the
cided to perform only one more simulation right at the criti- macroscopic behavior of the fluid is not affected, up to
cal pointR=R¢, settinge =10 3. The theoretical prediction O(u3/cZ), by the compressibility, in agreement with the in-
for the nonequilibrium part of the velocity correlation func- tuitive arguments presented in the Introduction. We then suc-
tion is 2.31x 10" °. The simulation leads to 2.2410" % with  ceeded in establishing that, close to the instability threshold,
an estimated statistical error of about 15%. The discrepancthe stochastic dynamics of the system is governed by two

3.2

24t

1.6

08t

is now about 3%, much better than for the case10 2. coupled nonlinear Langevin equations in Fourier space. The
solution of these equations can be cast into the exponential
IV. CONCLUDING REMARKS of a Landau-Ginzburg functional which, to dominant order in

g, proves to be identical to the one obtained for the case of

Recently, we studied the statistical properties of linearizedhe incompressible fluid. The theoretical predictions were
Kolmogorov flow, from near equilibrium up to the vicinity confirmed by numerical simulations of the nonlinear fluctu-
of the first instability leading to the formation of vorticgs. ating hydrodynamic equations.
In particular, we established that the incompressibility as-
sumption leads to a wrong form of the static correlation ACKNOWLEDGMENTS
functions, except near the instability threshold where nu-
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