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Toy model for the mean-field theory of hard-sphere liquids
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We investigate a toy model of liquid, based on simplified hypernetted chain equations in very large spatial
dimensionD. The model does not exhibit a phase transition, but several regimes of behaviobDwhencan
be observed in different intervals of the density.

PACS numbds): 61.20.Gy; 05.20.J;

[. INTRODUCTION m-particle complexes and second the entropy of a single par-
ticle moving in the field of the others.

The theory of classical liquidgL,2] recently received an The variational formulation is provided by the hypernet-
important stimulus from the theory of structural glassested chain(HNC) approximation, which leads naturally to an
[3_111 In the pioneering series of papers by Kirkpatrick andeffective free energy functional. That is Why we also focus
Thirumalai[12,13 the possible connection of the structural- On the HNC approach in this paper. The two-particle corre-
glass transition with the spin-glass transitionpispin mod-  lation function is found by solving the HNC equatiofep-
els was put forward. The analogy was then developed, e_ggrpprlately modified in the reph_ca treatmézrlﬂnfortunatelyz
in the problem of minimally correlated sequences, whichthis step must be done numerically, because no analytic re-
were shown to possess a glassy behavior without quenchégllt is available for the HNC equations. .
randomnes§l4,15. Other examples of systems without dis- It would be desirable to obtain an analytical solution for

order that nevertheless exhibit glassy behavior were alsie static properties of a “mean-field” liquid. Then the need
found [16—19. for numerical solution of the HNC equations would be

However, it would be desirable to take the analogy withavoided. However, no results for a mean-field, static, struc-
true structural glasses further. One of the difficulties occuriural glass are known, as far as we know. It even sounds not
ring in structural glasses, when compared to spin glasse¥e'y reasonable to speak about a mean-field liquid, because
comes from the absence of any kind of analytically solvabldhe relevant high-density phase is characterized by strong
mean-field model involving particles interacting through asShort-range correlations, which can hardly be replaced by an
two-particle potential. In the case of a spin glass, the role i§ffective medium. So the meaning of the mean field should
played by the fully connected Ising model, which is solvablePe better specified. In our investigation, we will understand
very easily. The disordered version is the well-knownby “mean field” the situation that occurs in very high di-
Sherrington-Kirkpatrick mode[20], of which the under- Mension,D—o. The purpose of the present work is to in-
standing is now very close to compldtl]. troduce a simple model of a liquid that is analytically solv-

There are many mean-field results concerning dye  able in .the limit of infinite .dllmensmn, at least in a certain
namic glass transition, mainly using mode-coupling equa-Well-defined range of densities.
tions for the p-spin model, which offer exact results ~\We do not pretend to be able to fully solve the glass
[12,13,22. For spin models, an approach was developed t@roperties of the hard-sphere liquid. We present here a partial
connect the dynamic and static properties of the glassy phaséeP only, consisting in providing an analytical solution for
of spin Hamiltoniang23,24). As for the general picture that the two-particle correlation function. To complete the pic-
arises from the one-step replica breaking scheme, it is bdlre, it would be necessary to find the entropy of a single
lieved that these spin glasses behave in the same way B&rd sphere in the effective-component liquid. This is a
structural glasses. quite different task, requiring other methods. We will not

Indeed, the approximations fatatic glass transitions in COver the latter problem here.
structural glassel8—11] confirm this conjecture. The statics
of a str_uctura_l glass is inv_estigated ess_entially as fo_IIov_vs._As II. SIMPLIFIED HNC EQUATIONS
a starting point, a variational formulation for the liquid is
found and the replica trick is used in order to anticipate the We consider a liquid composed of hard spheres with the
possible multiplicity of pure states. This leads to a formula-diameter 1. There is only one independent state variable,
tion in terms of a liquid composed effectively ofparticle ~ which is the spatial density of particlgs
bound states, whem is the number of replicas. In the varia-  The configuration of the liquid is described by the radial
tional formulation,m is an additional parameter to be opti- pair distribution functiorg(r)=h(r)+ 1. In the hypernetted
mized. The optimization involves finding first the two- chain approximatio25] we have a closed set of equations
particle correlation function for the centers of mass of thefor the correlation functiorn(r),
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FIG. 2. Fourier transform of the correlation function for a three-
2 dimensional liquid, at the densigy=1.2.
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in density would be a signal of a phase transition. This is not
r found in the present calculations, however.
In three dimensiong3D) we can compute the function
' FIG.. 1. Pair distri_butjon functiong_(_r)=h(r)+1 of the three- h(r) numerically by increasing slowly the densjtyand ad-
dimensional model liquid, for densitie§rom top to botfom p  jing iteratively the functiom(r) so that the conditions)

=0.6, 0.7, 0.8, 0.9, 1.00, 1.1, 1.2, 1.23, 1.26, 1.29, 1.32, 1.35 ‘e . gt g .
138, 1.41, 1.44, 1.47, 1.5. Theh curve from the bottom is shifed ¢ Sausiied: The resulting pair distribution functig(r)
=h(r)+1 is shown in Fig. 1. The Fourier transforn{p)

upward byn.
for p=1.2 is shown in Fig. 2.
_ _ We can see that for densities up to abput1l the pair
h(r)+1=exqW(r)=BU(n], distribution function agrees qualitatively with the well-
(1) known results of the HNC approximation or numerical simu-
ph2(p) lations (see[1]). However, at aboup=1.2 the behavior
W(p)= ————. changes. A gap opens between the principal peakat and
1+ ph(p) the secondary peak et=2. The gap broadens with increased
o density and at aboyi=1.5 a second gap occurs around
The potential isU(r)=0 for r>1 andU(r)= for r<1. ~ ~22 we observed, that further compression leads to the
These equations can be interpreted as conditions for minimigccurrence of a third gap separating the peaks=2t.6 and
zation of the free energy functionfg] r=2. We expect that continued increase of the density will
result in an increased number of gaps.
j_-[h]:pzf drr® =L h(r)+1{In[h(r)+1]—1+U(r)} _ The presence of the gaps is an artifact o_f the approxima-
tion. In reality the values af(r) will not be strictly zero, but
1 small.
+1)+ (ZW)DJ dp p°tLs(ph(p)) 2) From the value of the radial distribution function at

=1 the pressure can be compufédiand the resulting equa-
tion of state is shown in Fig. 3, together with the results
obtained by solving the HNC equatiofiy) and the formula
computed in the Percus-Yevi¢RY) approximation1]. We

can see that our model behaves qualitatively in the same way
as the other approximations, even though quantitative agree-
ment is poor. On the other hand, the equation of state of our

with L5(x) = — In(1+x)+x—x%2. The functionL 3(x) has the
following behavior: Lg(x)—o for x——1 and Lj(x)
=—x3/3 for x<1.

Our main approximation will consist in replacing the
function L3(x) by L..(x), whereL,=« for x<—1 andL.,
=0 otherwise. The motivation for this approximation is that
we suppose that the main effect b(x) is to forbid the T T T T T I T

region where—ph(p)>1. Then minimization of the free 100 ' :
energy functional amounts to satisfying the conditions .
ph(p)=-1, s '

m‘g 10 -

h(r)=-1, 3 :

h(r)y=-1 forr<1, i - 7

1 =1 1 1 I I I 1

which are in fact the minimum physical requirements for any 0 02 04 06 08 1 12 14

correlation functionh(r). In this sense we are building a
“minimum” model of a liquid. In addition to the constraints ~ FIG. 3. Equation of state for a three-dimensional liquid. Our
(3) we require that the functioh(r) depends continuously model: full line. HNC approximation: dashed line. Percus-Yevick
on the density. The absence of a solution that is continuouspproximation: dash-dotted line.
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model does not differ from either the HNC or PY approxi-  For p>1 we should use the decompositibfr)=h(r)

gnzaglﬁgrmore than these two approximations differ from one, ) " However, there is a nuisance consisting in the dis-

We can see from these results that the present approach §gntinuity ofh(r) atr=1. So we modify the decomposition

3D gives at least qualitatively sensible results. However, ou

aim is to provide not a new approximation for real three- —

dimensional liquids, but a model that describes reasonably h(r)=hg (r)+h*(r), (6)
well the qualitative features of a liquid and is soluble in the o .

limit of infinite spatial dimension. This will be done in the where stillh*=h(r) for r>1, buth*(r) is continuous for

next section. all r. Hence, forr>1 we haveh§ (r)=hg(r)=0.
To find the Fourier transform dfi we proceed first with
Ill. SOLUTION OF THE MODEL IN HIGH DIMENSION Fourier-transforming the functiohg . At this moment we

. . - . _ ) use an important property of the Fourier transform in very
. In this section we W'” [lvesugate E)-d|men5|0ngl VeI high dimensior(see again Appendix Aif a function is zero
sion of the model, withD=2N+3 andN—-. While o i5ide a specific interval and approaches linearly to the up-
analytical treatment is available for the HNC approximation,ne; eqge of the interval, then its Fourier transform depends
we will see that our scheme yields an analytic result in hlg|’bn|y on the behavior near the upper edge. That is, if the
d|men3|on_. . . . i i function approaches a nonzero limit at the edge, the Fourier
_ The main quantity of interest is again the correlation func'transform depends only on that value. If, on the contrary, the
tion h(r)=g(r)—1. The hard-sphere potentid(r) = for jinjt is zero, the Fourier transform is determined by the first

r<1 andV=0 for r>1 implies thath(r)=—1 for r<1,  gerjyative at the edge. The former case applies to the present
irrespective of the density. Therefore, we can decompose thg,ation.

correlation function in the formh(r)=hy(r) +h(r) where Indeed, we haven? (r)=0 for r>1 andh*(17)=-1
ho(r)=—6(1-r) andh(r)=0 forr<1. —A, whereA=h(1*)=h*(1). Then

The pressure is directly related to_the valueh¢f) atr
=1, more precisely to lim,,+h(r)=h(1%). The formula ﬁg(ﬁ):_(lJrA) Vp ‘Po(b)- 7

for pressure in arbitrary dimension rea@ee[1])

1 1 B We will derive an equation determining the value/fofater
FP=p+5Vop [1+h(1h)]. 4 on _
When going from the decompositidi(r) =hg(r)+h(r)

In the course of the calculations we find that pressure an& h(r)=hg (r)+h*(r), we did not fix the functiorhg (r)
density occur in combination with the volume of the uniquely: the only thing we required up to now was the
D-dimensional unit spherd . This leads to the introduction continuity ofh* (r). Another restriction comes now from the
of the rescaled quantity= pVy, for the density, while for the  conditions(3), namely, from the inequalith(p)=1/p. This
pressure we usB=\VpP/KT. inequality will surely be satisfied, if we set

The conditiong3) involve both the functiorh(r) and its
Fourier transform. To find the behavior bfr) in high di-
mensionD we investigated first the properties of the Fourier
transform in the limitD—«. A detailed account can be
found in Appendix A. The most important formula used [We denotef;(x)=x for x>0, 6,(x)=0 for x<0.] This
througho'ut this paper is the Fourier transform of t.he radiallyrneans thaﬁ;
symmetric function f(r)=6(1-r)/Vp. Denoting N
=(D—3)/2 and rescaling the momentum é? p/N we
find that the Fourier transform id(p)=V(p), V(p) p(A+1) ¥o(po)=1. (9)
=Wo(p)=e NP for p<1l and f(p)=V,(p) - -
=e‘N¢1(p)cosN¢2(f)) for p>1. Note that|\1f(;3)|s\lf(0) Clearly, p.=0 for p<1. For p>1 we found it useful to
=1. The functions¢,, ¢;, and ¢, do not depend oM.  introduce the quantity
They are listed explicitly in Appendix AEgs. (A9) to
(A11)]. Inp

In the zeroth approximation we take into account only the P1=7N (10)
hard-sphere potential and not the correlations between par-
ticles. Then h(r)=ho(r) and h(p)=—-VpW¥(p), which  Indeed, one particle occupies space’¥y,, so an absolute
obeys Eq(3) as long ap<1. Therefore, fop<1 we have upper bound for the density js; <In 4.
h(r)=0 and, using Eq(4), the pressure is given by the first ~ Let us suppose thgs.<<1. This condition restricts the

—_ ~ 1
h*(p)= 64 (A+1)VD‘I’o(p)—; : ®

(p)=0 for p>p., where the value of. can
be obtained by solving the equation

virial correction, range of densities investigated to a certain interval, which
will be found in what follows. The reason for this restriction
P=p+ l—z (5) consists in the observation that only in the intepak 1 can
PP we ensure, the solution of E¢P).
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For p<1 the function¥ o(p)=exgd —Ndy(p)] is mono- 1 I l l l l
tonically decreasing and we have the following equation for 08 k- |
Pc:
0.6 |- -
,\ In(A+1) &
$o(Pc) =p1— N (11) oal _
As we explained above, when computing the inverse Fourier 02 -
transform ofﬁ*(f)) we need only the behavior close to the 0 I ( I | I I
point p,, which is 0 005 01 015 02 025 03
p1
PR TR E’ FIG. 4. Dependence of the momentyy on the rescaled den-
h*(p)=—-Vp ¥ 1-— 12 -
(P) o VolPc) pc( pc> (12 sity in the regimep.<1.
and gives, using EqA15), = =
g 9 EdALS) pr=I(1+V1-pD)—V1-p2+1-lh2. (18
. N\ V3 pe [~ Wo(Pp)J(A+1) _ _ _ _ o
hy(r)= o D+1 Wo(per). The solution of this equation can be easily obtained in the

(13) form of a power series. We show here only the first several
terms(the expansion up to order 16 is given in Appendix B
Now we can close the equation for the still unknownand the graph is shown in Fig):4
quantity A,

A [N|° N 52:4,,1_2,)5_3,)3_5,)1_0(,)5) (19
) N2/ DF1 2,0 c 3 6 .
A+ 1 (277. D + 1VD pc ¢0( pc) \IIO( pc) (14)
The coupled pair of equationd1) and (14) constitute the From the solution of Eq(18) we can compute the pres-

X w172 ;
basis of our approach. Moreover, we will show that for ~ Sure. We writeP=p+3p°+ P and rescale the correction as
<1 we can neglech in the limit N—. Then only a single Pc=&XpNPy). We obtain
equation forf)C is necessary. A more precise analysis shows R
thatA<1 if p.<1—O(1/N), so if we are closer than a value P,=2-2In2+In pg . (20
of order O(1/N) to the pointp.=1 both Egs(11) and (14)
should be solved in parallel. We will omit the investigation We can see that the densiy;;= ¢¢(2/€)=0.1465 . ..
of this extremely narrow interval here. We should only bearseparates two regimes. Fpy<py; the correctionP, to the
in mind that by writing, for examplep.<1 we mean in fact lowest virial becomes negligible for largd, while for p,
IE)c<1—O(1/N)- >pq; the correction diverges fol—o. The graph of the
function P4(p4) is shown in Fig. 5.

For the correlation function in the intervak 1/p, we
0 haveh(r)=exgdNhy(r)], where

R Pc
$o(Po) = —F—

In the intervalp,<1 we have

<Pe. (15)
2 - ~
1+V1l-p; hy(r)=1—21In2+Inp2—p;+\1—p2r?
Hence, if we suppose that a solution such thatl exists, —In(1+ 1—52r2) (21)
v o).

we have

D
As(%) VBPe AW E(po) =ex —2NK(p)],  (16)

where
R - - . n

K(p)=In(1+V1-p?—V1-p?=Inp. (17)
We haveK(1)=0 andK’(p)=—+/1—p? /p<0, soK(p)
>0 for p<1. For fixedp,<1 andN— o we haveA<1 and 4 1 1 1 I 1 1
therefore we can negleétin Eqgs.(11) and(14). 0 005 01 015 02 025 03

The Conditionf)c<1 is equivalent to working in the range f

of densitiesp1<pq1.= Po(1)=1—-1In(2)=0.308 . .. . Inthis FIG. 5. Equation of state for our model in the limit of infinite

region the following equation fof)c holds: dimension, in the range of densities whexe<1.
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hy(r)=1—2In2+Inp.—py—Inr, (22)
APPENDIX A
hy(r)= \/Elﬁrz—l—arctan\/f)grz— 1. (23 Here we derive the formula for the Fourier transform in

high dimension. The Fourier transformin=2N+ 3 dimen-

sions is &k andk are D-dimensional vectops
We can also see thdh,(r)|<1 for p;<p;., so thatg(r)

>0 for r>1 and the gaps irg(r), discussed in the last - ,

section, do not occur. However, when approache$., fD(k):J d®x e p(x), (A1)
the absolute value df;(r) can be of orde©(1) and a gap
can appear at the densip.. The detailed investigation of
this process and the behavior of the model g p,. re-
mains an open question.

fD(x)=(2w)‘Df d®k e K5 (k). (A2)

We suppose that the functions depend only on the radial
coordinate,f(r)=fp(x) for r=|x| and f(p)=Fp(k) for p
=|k|. After rescalingp=p/N we finally have

We investigated a simple model for a hard-sphere liquid. " 1 i
By numerical solution in three dimensions, we found a quali- f(ﬁ):CNJ er dz r2(F N (1 — 72)eiPrz)Nf (),
tatively realistic behavior. The results for the equation of 0 -1
state are compatible with the hypernetted chain and Percus- (A3)
Yevick approximations. While in three dimensions the dif- - -
ference of the present approach from the HNC and PY apWhere the constanCy IS fixed by -the condition that for
proximations is comparable to the difference between HNG (1) =06(1—r) we havef(0)=Vp with Vp the volume of
and PY themselves, and therefore our approach does not d@€ D-dimensional sphere,

IV. CONCLUSIONS

any better than previous schemes, we consider it clearly su- 2 D12 N

. . . . . . . . T em
perior in high dimension. Indeed, it provides an analytical VDZ—:(_ (A4)
result, while none is known for the HNC. The PY approxi- DI'(D/2) N

mation, solvable exactly in 3D, could perhaps yield an exac
result in arbitrary dimension, but, in view of future applica-
tion in the static glass transition of hard spheres, the PY o 1 .
approach is inconvenient, because it lacks a suitable varia- f(r)=éNf dbf dz p2+ N (1 —722)eP2NE (p)
tional formulation. 0 -1

Eimilarly, for the inverse Fourier transform we have

We solved the model analytically in the limit of large (AS)
spatial dimension. We found that two scales of density and,iih coefficient
pressure appear, which correspond to two regimes of density.
For ;<1 the equation of state is given by the first virial . N \P
correction(5), while for p>1 the quantity relevant to further Cn= CN(E) ' (A6)

virial corrections iSpl=InHN and the pressure correction h lculati ¢ the Four ¢ b ; db
itself scales a®,=In Pc/N [Eq (20)]. We have found the € Cad%llj ation of t eh 3””Tehr transform Ican leperr?rrrllze Y
solution in the interval &0p;<p,.=0.308 ... . Two re- the saddle-point method. The essential result is the Fourier

gimes are present within this interval. Fop;<py transform of the surface of a unit spheie)=5(r—1). We

=0.146B . .. thecorrectionP, vanishes for larg&, while ~ obtainf(p)=¥(p) where
for p;<py it diverges for largeN. It is expected that the . . R
presence of gaps ig(r) will lead to qualitatively different W(p)=Yo(p)=exd —Ngo(p)] (A7)
behavior for densities higher than. . -
In order that the present result be useful to the investigafor P<1 and
tion of the static glassy transition, it needs to be accompanied - . - -
by the analysis of the entropy of a hard sphere surrounded by Y (P)=¥1(p)=exd —N¢1(p)JcogNH»(p)] (A8)
other hard spheres, distributed according to the correlation .
function obtained in this work. This second task differs com-for p>1. _ _
pletely in methods used, so we considered it reasonable to The explicit form of the functiongpo, ¢, ¢, is

treat the two problems separately. . - -
Summarizing, even though we have not completed the $o(p)=1—IN2+In(1+V1-p*)—V1-p? (A9)

analysis of the glass transition in a hard-sphere system, we A .

have achieved a partial step toward the solution. ¢1(p)=1—In2+Inp, (A10)



PRE 62

é-(p)=\p?—1—arctanyp?—1.

Note that¥(0)=1.

(A11)

From here we can deduce the following Fourier trans-

forms[6(x)=1 for x>0 and §(x)=0 for x<<0]. For f(r)
=A0(ro—r),

f(p)=AVp g W(pro). (A12)
Forf(r)=A (1—r/rg)0(ro—r),

~ ~  AVp r0

f(p)= D+l ———Vo(pro). (A13)
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N\PAVpp2 .
f(r)—(ﬂ) D1 W (per)- (A15)
APPENDIX B

Using MAPLE Vv we get the following expansion for the
solution of Eq.(18):

Because the inverse Fourier transform has the same form

and differs only in the factoéN instead ofCy, we can also
immediately write forf (p)=A6(p.— p)
NP L
f(n=|5_| AVoPZ¥(per) (AL4)

and for,f(ﬁ):A(l_ h/ﬁc) 0(60_ E))

gy a s e s Y 469 . 6889 .
pc P1— pl pl pl 30p1 180pl 1260p1
24721 , 2620169 , 64074901
2016 P17 "90720 1 "907200 1

1775623081 1571135527 ,
9979200 1~ 3421440 M
70552399533589

1882140936521 ,
" 1556755200 pat-

| 2874543652787 689,
326918592000 © 1

25 296960472510609
1046139494400 pr'"

21794572800 ” i
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