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Planform selection in two-layer Banard-Marangoni convection
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Benard-Marangoni convection in a system of two superimposed liquids is investigated theoretically. Extend-
ing previous studies, the complete hydrodynamics of both layers is treated and buoyancy is consistently taken
into account. The planform selection problem between rolls, squares, and hexagons is investigated by explicitly
calculating the coefficients of an appropriate amplitude equation from the parameters of the fluids. The results
are compared with recent experiments on two-layer systems in which squares at onset have been reported.

PACS numbd(s): 47.20.Dr, 47.20.Bp, 47.54r, 68.10—m

[. INTRODUCTION exchange between the layers is often modeled in a phenom-
enological way using a Biot number; see, e[@8]. Even if
The hexagonal convection cells discovered by'&e in  a genuine two-layer model is considered the viscous stresses
his famous experiments on thin oil layers heated from belowand the pressure variations in the gaseous layer are neglected
[1] have become the trademark of pattern formation in hy-4n order to keep the analysis simgl&3].
drodynamic systems driven slightly out of equilibriuisee, On the other hand, it has been known for some time
e.g.,[2]). The 100 years of research devoted to this systenil2,19 that a system ofwo superimposed liquiddisplays a
have revealed several important insights but also witnessegiuch richer behavior than the single-layer models. In par-
several misconceptions. Rayleigh’s original theoretical deticular, the Marangoni instability can be induced by heating
scription [3] focusing on buoyancy-driven convection, al- from above such that buoyancy and thermocapillarity com-
though indicating a possible instability mechanism, failed topete rather than enhance each other, a situation which in
produce a threshold compatible with experiment. Not untilsingle-layer systems can be realized only using the rare case
40 years later was it realized that the temperature depemf liquids with anomalous thermocapillary effect in which
dence of the surface tension is the crucial driving force inthe surface tensiolincreaseswith increasing temperature
thin layers[4]. The corresponding linear stability analysl§ ~ [20]. Many additional features such as oscillatory instabili-
gave stability thresholds consistent with the experimentaties[14,18 or transitions from up hexagons to down hexa-
findings; moreover, a subsequent weakly nonlinear analysigons may be found in systems with two liquid layers. The
[6,7] produced theoretical support for a subcritical transitionrich variety of phenomena occurring in the theoretical analy-
to a hexagonal flow patten8]. sis of two-layer liquid systems results in part from their huge
Quite naturally the first theoretical investigations wereparameter space. A single-layer system is characterized by
performed using simplified models of the experimental situjust three dimensionless parameters; namely, the Rayleigh
ation. The initial assumption of a flat surface of the liquid number, the Marangoni number, and the Prandtl number.
was soon relaxed by Scriven and Sternliitsd and Smith  The last is irrelevant in a linear analysis and the first two are
[10], who were able to show that surface deflections give riséoth proportional to the temperature difference across the
to an additional instability appearing at very long wave-layer. Two-layer systems on the other hand may easily need
lengths. It was only very recently that this instability wasten or more dimensionless parameters for complete specifi-
unambiguously demonstrated in an experinj@di, where it  cation. These numbers include the ratios of the hydrody-
manifests itself as a distortion of the layer thickness with anamic parameters of the participating liquids.
characteristic length that is of the order of the lateral exten- For a long time Marangoni convection in two-liquid-layer
sion of the fluid layer. Being observable only in very shallow systems was an interesting theoretical problem but too diffi-
liquid layers, the instability usually results in the formation cult to handle experimentally. Zeren and Reynolds have al-
of dry spots. ready[12] tried to experimentally realize the instability by
Another common simplification is the restriction of the heating from abovewhich came out of their theoretical
instability mechanism to either buoyancy or thermocapillar-analysi$ but failed. Very recently, however, experiments
ity [12—14,21, although there seem to be rather few experi-were performed in which the Marangoni instability in 1-2
ments[17,8,1] that have been performed in parameter re-mm thick superimposed layers of immiscible liquids was ob-
gions consistent with this assumption. Also, mostserved[22,23. In particular, an instability by heating from
investigations focused on a single-layer model in which aabove and square patterns at onset were reported.
lower liquid layer is in contact with a gaseous upper layer In the present paper we will investigate theoretically
and only the hydrodynamics of the liquid is treated. TheBenard-Marangoni convection in a system of two liquid lay-
convection in the gas layer is usually neglected and the heafrs. Building on the linear stability theory developed 24],
we perform a weakly nonlinear analysis in order to solve the
planform selection problem slightly above the linear stability
*Email address: andreas.engel@physik.uni-magdeburg.de threshold. To this end the competition between rolls, squares,
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z duction due to viscosity, the basic equations describing the
T' system are the continuity equations
Liquid 2 V- w=0, (2.1
Vo
0 X the Navier-Stokes equations
Liquid 1 ~
d op e, ) ) ) 1 ) . . b
1 g+ (W V)v = — =V p—g[1—aV(TV-T") e,
P
T ) )
+ WAV, (2.2

FIG. 1. Sketch of the system under consideration. One liquid
layer is superposed on another between two horizontally infiniteand the equations of heat conduction
perfectly heat conducting plates. The interface between the liquids
is assumed to be flat. Convection arises due to buoyancy and the T+ (. V) TO = OATH, (2.3
temperature dependence of the surface tension.

Heree, denotes the unit vector in the vertical direction and

and hexagons will be discussed. Only perfect patterns will bés the acceleration due to gravity.
considered, leaving the question of weakly modulated pat- The equations are completed by the boundary conditions
terns for future investigation. We will consistently include
buoyancy effects and treat the full hydrodynamics of both vW=0, TW=T* at z=-h® (2.4
liquids, generalizing in this way various previous treatments
[6,13,16,25-2] However, we will assume a flat interface and
between the two liquids. As will become clear below, inter- 2 @)t @
face distortions are crucial for the long wavelength instabil- V=0, T@=T" at z=h®?, (2.9
ity resulting in dry spots but can be safely neglected when )
dealing with the finite wavelength instability resulting in cel- &t the bottom and top, respectively, and
lular patterns.

Th% paper is organized as follows. In Sec. Il the basic vH=v2 o TH=TE), Wg, T = 29,12,
equations are collected and transformed into a form suitable q
for the weakly nonlinear analysis. Then the perturbatio 2 1 _ o 1) (2)_ _
scheme is set up and the necessary computational steps Fé’( '—otel =- arveh vy'=vy=0 at z=0,
listed. Section Il deals with the first order of perturbation (2.6)
theory, which is nothing but the linear stability analysis. In
Sec. IV the main steps of the nonlinear analysis are outlinedXpressing the continuity of the velocities, temperatures, and
The solution of the second-order problem is relegated to Apheat fluxes, respectively as well as the balance of tangential
pendix C and the solvability condition in third order is then stresses at the interface. Thé) denote the stress tensors in
formulated to derive the desired amplitude equation charaghe liquids and the subscript describes the projection on
terizing the planform selection problem. Section V collectsthe x-y plane. In accordance with our assumption of a flat
the results obtained for several experimentally relevant cominterface between the liquids the condition for the continuity
binations of liquids. Finally, Sec. VI contains a discussion ofof the normal stress at the interface is replaced by the re-
the results together with a comparison with experimentafuirement that the perpendicular components of the flow ve-

findings. locities must vanish. This is expressed by the last equation in
(2.6).
Il. BASIC EQUATIONS Introducing  h™®,  (h®)2/® WM, and

pM M M(h(1)2 as units for length, time, velocity, and
We inVestigate a SyStem Of two |ayel’s Of |mm|SC|b|e andpressure7 respective'y, we f|nd for the Ve|ocities
incompressible liquids of thickness" with densitiesp"), = (y,»,w) [V=(U,V,W)] and the appropriately normalized
kinematic viscosities), coefficients of volume expansion deviationsé () of the temperatures from their static profiles
o, heat diffusivitiesy", and thermal conductivitieg!) in the lower(uppe) liquid the equations
where the superscript=1(2) denotes the loweKuppe)

fluid (see Fig. 1L The system is bounded in the vertical di- 1 _

rection by two solid, perfectly heat conducting walls with prl vt (v-V)v]=—Vp+Roe,+Av, 2.7
fixed temperature3® and T! and is infinite in the horizontal

directions. The interface between the two fluids is assumed 9,0+ (v-V)0=w+A0, 2.9

to be flat and to lie in the-y plane of the coordinate system.
The hydrodynamics of the two liquids will be described 1

within the Boussinesq approximation, i.e., we assume that all —[9V+(V-V)V]=—VP+aROe,+vAV, (2.9

parameters are independent of the temperature, except for the Pr

densitiesp and the interface tension More precisely, we

use p(M)=p(T)[1-a(T-T")] and V,o=do/

1
dTV, T with constantz) anddo/d T. Neglecting heat pro- KO+ (V-V)O=WHxA0O, (210
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where the pressure fielgisandP in the lower and the upper tions, using the continuity equations, and projecting @to
liquid differ from p®) and p® respectively only by trivial we get the following basic set of equations for theompo-
contributions stemming from the buoyancy terms. Thenents of the velocities and the temperature fields:
boundary conditions acquire the form

1
2 [ _

v=0, 6=0 at z=—1, .11 A“w+cMA, 0= Pr{c?tAw ALV, - (v-V)v,]
V=0, ®=0 at z=a, (2.12 +A, (v-V)w}, (219
and W+Af#=0,0+(v-V)8, (2.20

VL:VL! W:W:O, 0:, 320:K0—'Z®, 1
(2.13 vA2W+aCMAl®=Er{&AW—aZ[VL(V'V)VL]
P2w—na?W=MA, 0 at z=0,

+A,(V-V)W}, (2.21)

where in the last equation the continuity equation was used.

Moreover, the following parameters have been introduced: 1
—W+xA0=9,0+(V-V)0, (2.22

h(® e (2 p2 K

a=—, A= —my, V= —"17, =V—1,
ht) o s 7 p' together with the boundary conditions
(2.19
x? x'? w=dw=6=0 at z=-1, 2.23
K="amr X~ YD

w=W=03d,w=3d,W,0=0,3,0= kd,0,
as well as the Prandt numberPr()/y(1) the Rayleigh

number P2w—pd®W=MA, 6 at z=0, (2.24
e a“)(%(h((ll)’)3 Ko, 215 W=9,W=0=0 at z=a. (2.29
vy a+k
In order to investigate the planform selection problem we
and the Marangoni number will derive third-order amplitude equations for the slow time
variation of the amplitudes of different unstable modes.
do  h® K Similar to the case of the Rayleigh-Bard instability{ 2], the

M=

b_ Tt
(T°=T. (2.19 no-slip boundary conditions at top and bottom suppress the

vertical vorticity, i.e., ¥ XVv)-e,=(V XV)-e,=0, and there-
For the Rayleigh and Marangoni numbers we have chosefore we do not expect problems due to coupling to a slowly
the standard expressions corresponding to the lower liquidiarying mean flow 28] up to this order. From the solution of

-~ dT V(l)p(l)x(l) a+k

The numbers for the upper liquid are then given by Egs.(2.19—-(2.22 we hence obtainv, 6, W, and®. Using
4 ) the continuity equations and the absence of vertical vorticity
R<2)=£R and M(2)=a—M 2.17 aIIows_ us to determine, v, and_U, V, and flnally_the pres-
VXK xnk sure fields follow from the Navier-Stokes equations.
It is convenient to write the above equations in the form
respectively.
The ratio between the Rayleigh and Marangoni humbers Le=T(@)+MNe,0) (2.26

determines whether the occurring instability is predomi-

nantly driven by buoyancy or by surface tension. Experimenwith the state vector

tally, both parameters are varied simultaneously since they

are both proportional to the temperature differefiCe- Tt. W

We will therefore replac& by cM with the temperature in- N

dependent constant =l wl (2.27
0

R a(l)gp(l)(h(l))Z

"M~ do/dT 218 ihe finear operatot defined by
specifying the experimental setup. In this way both buoyancy A%? cMA, O 0
and surface tension are included in a consistent way. We 1 A 0 0
assume thado/dT<<0 as is the case for most systems of two L= ) , (2.28
liquids such that>0. Note that both the situations of heat- 0 0 vA© acMA,
ing from below and heating from above are described, with 0 0 1/ XA

the latter case corresponding Ko<O.
The set of equations may be simplified by standard maand the boundary conditiori2.23—(2.25. 7(¢) denotes the
nipulations. Taking twice the curl of the Navier-Stokes equatime dependent terms anti{¢,¢) describes the quadratic
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nonlinearity in Eqs(2.19-(2.22. We will solve Eq.(2.26
perturbatively using thénsaze

¢:8@0+82§01+83€02+"‘a (2-29)
M=Ms+eM;+e?My+--+, (2.30
d=iw+e?d + (2.31)

with a small parametet. In the case of a static instability we
havew=0. For an oscillatory instabilityw# 0 gives the fre-
quency of oscillation of the unstable mode. Using the pertur- FIG. 2. Relative orientation of the two-dimensional wave vec-
bgtion expansion specified above we ponsidgr a §i_tuatiog)IrS appearing in thé\nsatz(2.37. The two triadsk, ,k,,ks and
slightly above the threshold/; of the linear instability, |\ k. of wave vectors wittks perpendicular tck, allow us to
where the amplitude of the unstable modes can still be congescribe rolls as well as squares and hexagons by different values
sidered to be small. Putting Eq$2.29—(2.3) into EQ.  for the amplitudesA,, in Eq. (2.37).

(2.26), taking into account that Eq2.30 implies an expan-

sion with the six two-dimensional vectork, obeying |k,| =k
andk;+k,+ k=0, ks +ks+ks=0, as well ak; - ks=0 (see

Fig. 2). Depending on the values of the amplitudes, this

for the I ; d matchi th form describes rolls(e.g., A;=A, A,=0 for all n>1),
l_or € mglar oFerafor, an tmac 'ng powe:csl(_eo € non-t_ squarese.g.,A;=A;=A, A,=0 elsg, and hexagonsge.g.,
inear problem transforms into a sequence of linear equa '°n§1:A2=A3=A, A,=0 for n>3).

of the form

L=Lot+el+e2ly+--- (2.32

Using this form we find from the solvability conditions of
Egs.(2.34 and(2.35 an equation describing the time evo-

Lo®o=0, (2.33 ; = :
lution of the scaled amplitudes,=<A,,. As is well known
Lao:=—L+ont 00). 23 [2] the generalform of this amplitude equation already fol-
0% 100+ Meo,¢o) 239 lows from the symmetries of the problem. For the present

situation it is given b
Lowa=—Logo—L1¢1+ T 90) + M1, 00) + Mg, ¢1). given by

2.3 R S 7T P ~ ~
(2:39 0By = Ryt YRS AL~ [[Rg)+ gl [Bol 2+ [Rgf?)
The first line is just the linear stability problem. The condi- o % 1o = o
tion for nontrivial solutionsg, of this equation makes +0u([Agl*+[Agl*) + gn|As|*]A1 (2.39

singular and yields the critical valugl . of the bifurcation
parameteM. From the translation invariance in tkeyplane ~ With the supercriticality parameter
we know thate, is of the form
M—M,
©o=0o(z)EXpik-T—iwt), (2.39 =M, (239

wherer=(x,y) andk= (ky,k) are two-dimensional vectors. gimjlar equations for the other amplitudes follow from per-
There is a critical valu (k) of the bifurcation parameter ytation and complex conjugation. The terms included in
for all values offk| =k and minimizingM (k) in k gives the  hase equations are the only ones up to third order that are
wave numbek, of_ the first unstable mode together with the jnyariant under the transformatiok,— A, exp(k,- o) Cor-
critical Marangoni numbeM =M (k). _ _ responding to a translation lny in the x-y plane. Moreover,
The remaining equations in the hierarchy starting with EQqye to the isotropy in the-y plane the coupling coefficients
(2.34 all involve thevery samesingular operatot o but are  petween the different terms in E¢.37) may only depend
inhomogeneousConsequently, the perturbation expansiongn, the angle between the corresponding wave vectors.
makes sense only if the inhomogeneities are perpendicular 1o The amplitude equatiof®.38) is of potential type and can
the zero eigenfunction of the adjoint operatgy of L. be written in the form
In order to address the planform selection problem within
the perturbation approach sketched above the formpgpf ~ =
must be sufficiently general and in particular must include R =— IF(A1,.-Ag) (2.40
the different planforms observed in experiment. We will dis- v gA* ' '
cuss the planform selection problem only for the case of the !
static instability, leaving the investigation of the oscillatory
instability to future work. It is then sufficient to use far,
the form

A well known linear stability analysis of the various fixed
points of Eq.(2.38 corresponding to the extrema Bfyields
the stability regions of the different planforms as functions of
6 the parameters, v,9;,,0:.9, [29]. The remaining problem is
— on(z A (Peikn 1o 23 thus to use the pertqrbatlon expansion descrlbgd a}bove to
¢0= ¢o(2) nZl n(7) (2.39 express these coefficients of the amplitude equation in terms
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of the hydrodynamic parameters of the problem. To this end 5000 ' . -
the following well-known program has to be carried through.
(1) CalculateM (k) from the linear problem and deter-
mine k,=argmirM (k) andM =M (k). 3000 - 1
(2) Determine the adjoint operatty; of L, and its zero
eigenfunctiongy.
(3) Calculate the inhomogeneity of th@(e2) equation
(2.34) and apply the solvability condition to this order. s’
(4) Solve theO(e?) equation(2.34 to determineyp; .
(5) Calculate the inhomogeneity of th@(s®) equation
(2.35 [only terms proportional to exik, - r) are necessaty
(6) Combine the solvability conditions at ord®(e2) and
0O(&®) to derive Eq.(2.39 and extract the expressions for
the parametery, gy, ,09:,9, -

1000 1

-1000 | b

-3000 1

-5000 - -

0 2
k
We first solve theD(s) problem(2.33, which is equiva- FIG. 3. Dispersion relatioM (k) as resulting from the linear

lent to the linear stability analysis. Puttingpo  stapiiity analysis for the hydrodynamic parameters of setup 5 listed
= ¢o(2)exp(k-r—iwt) and using theAnsaze in Appendix A. The system shows an instability when heated from

Wo(2), o(2)~expNz),  Wy(2),0o(2)~exp(AZ), below (M>0) as well as one when heated from abot<(0).

@D below (M>0) as well as when heating from abové (
we find <0). When comparing the dispersion relations with those
resulting from the full linear stability analysis including sur-

Ill. LINEAR PROBLEM

N T L A PR 5 face deflections as considered[@4], one finds that in the
(A=ke)| A _kc+ﬁ (M —ketio)=—cMk;, region of the pattern-forming instabilitg=1-3.5 the two
curves are indistinguishable in a plot like Fig. 3. Differences
i w ) show up only for small wave numbeks< 1. Within the lin-
(A2—k§)<A2—k§+ V—Pr)(/\z—k§7) ear theory surface deflections for short wavelength modes

involved in the planform selection problem may therefore
) safely be neglected. We expect that this holds true also in the
= mCMkc- 3.2 weakly nonlinear regime.
Having obtained the dispersion relation we calculatby
We therefore obtain six different values foy and A;. It is minimizing M .(k) and determine the critical Marangoni and
convenient to defina;=A;_¢ fori=7,...,12 and to write Rayleigh numbers of both fluids as well as the temperature
. difference across both layers at the instability. The results for
Wo; the setups under consideration are summarized in the upper
Wo(2)=2:l Woieh?,  6o(2)= —21 mekiz, part of Table | in Sec. V below.
boe (3.3 Of all the parameters of the system the depth raii®the
only one that may easily be varied in experiments. For the
12 parameters of setup 9 and a total depth of 4.5 mm we have
Wo(2) =D, wgeM?, calculated the critical Marangoni number and the critical
=7 wave number modulus as a function of the thickneg$s of
1 the bottom layer, restricting ourselves to the case of heating
0 :_iz Woi Nz 34 from below but including the possibility of an oscillatory
o(2) KX =7 NP —KS+i w/Xe ' 34 instability. The results are displayed in Fig. 4. For values of
h() between 1.5 and 2.5 an oscillatory instability precedes
The boundary condition§2.23—(2.25 then give rise to a the static one, which would occur at unusually large Ma-
homogeneous system of linear equations for the 12 unrangoni numbers only. A similar oscillatory instability was
knownswy; . In order to get a nontrivial solution the deter- also found for a two-layer system in which the Marangoni
minant of the coefficient matrid must vanish. The condi- effect was neglected and pure buoyancy-driven convection
tions for the real and imaginary parts of détyield the was considered, and an intuitive interpretation as a periodic
desired functionsM(k;par) and w.(k,par) where par change between viscous and thermal coupling of the flow
=(a,a,k,x,v,7n,C,Pr) stands for the vector of parameters infields at the interface was givg4].
the problem. Knowing the critical value oM we can now also deter-

A typical result for a static instability is shown in Fig. 3 mine the coefficients of the eigenvector corresponding to the
displaying the dispersion curve resulting from the numericakero eigenvalue. This fixes the functiong(z), 6y(2),
analysis of ded=0 for =0 using the parameters of setup Wy(z), and®y(z) up to an overall constant and completes
5 listed in Appendix A. As can be seen from the figure, inthe determination of.
this system one may have an instability by heating from Finally, we have to consider the adjoint problem and to
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' ' not have to solve this equation, but only need to know the
solvability condition at this order. Due to they integrals in
2000 | 1 Eqg. (B9) and ther dependence of,, only terms propor-
tional to expftik,-r) give rise to nontrivial contributions to
the solvability condition. In fact, it is sufficient to focus on
terms proportional to exf; - r) since these finally give rise
to an amplitude equation of the for(@2.38 for A;. Equiva-
© lent equations for the other amplitudes of thesatz(2.37)
21000 | then follow from permutation and complex conjugation.
In order to collect the relevant terms we first realize that
there are contributions
cM,k26,
0
ATl acMKi0, |,
0 . s
0 3 4 0
h® (mm) —M2kZ o]0
FIG. 4. Critical Marangoni number for a statitull line) and cM.k20
oscillatory(dashed linginstability when heating from below a sys- 1hem1
tem with parameters as specified in setup 9 of Appendix A and total ) 0
depth 4.5 mm, as a function of the bottom layer thickri€s Note AsArelkTl acMkiO; |,
that bothM andk are scaled witth™® [cf. Egs.(2.14 and (2.16)]. 0
. . g . . _M1k§01|z:0
calculate its zero eigenfunctiopy where we again restrict
ourselves to the stationary instability. The adjoint operator 1
L* is determined in Appendix B. The calculation of its _(Wg_kgwo)
eigenfunction to the eigenvalue zero is very similar to the Pr
determination ofpy described above. We find that it is of the 0o
I/SrrirtTt]er(f%(:XMkn r) where the components af, may be o AT i(W"_kZW) 4.2)
Pr 0 c V0
6 _ 6 W ®
Wo(2)=2, WoieM?,  Oo(2)=cMKZ D, %exizz, 0
= i=1 N — kg 0
(3.9
B 12 B weMIR 2 W origingtirlwg from the terms-L,oq, —Lqoq, and?‘(g:]O), rel-
W (Z)ZE W N7, (2)= c z 0 iz spectwe y, in Eq.(2.35). Here 6, and ®, denote the solu-
0 i 0 X =7 Aiz— kg tions obtained in Appendix C for the resonant term.
(3.6) The contributions proportional to exg(-r) from the last

. ) ] two terms in EqQ.(2.35 arise from combinations between
with the same parametexs as determined by Eq3.2 with  ,,  —exp(q-r) and ¢,~exp(p-r) with g+ p=k,. From the

w=0. The boundary conditions again give rise to &1l2  continuity equatiorV - v=0 and the absence of vertical vor-
system of linear homogeneous equations for the coefficientgity (v xv)-e,=0, we find

wg; . As before the condition for a nontrivial solution is a

vanishing determinant of the corresponding matrix. Note, _iq ip

however, that there is now no parameter to adjust. The de- Vo, =€ = d Wy, vy, =€P'Zaw,, (4.2
viation of the smallest eigenvalue of the matrix found in the q P

numerical calculation from zero therefore gives a valuablewhich gives rise to

hint of the accuracy of the numerical procedure employed.

=0V (Vo VIV 1+A (Vo V)W =3[V - (v1- V) vy, ]

+A (v, -V)wg

IV. NONLINEAR ANALYSIS

The solution of the planform selection problem requires
treatment of the nonlinear interaction between different un- ikl_r[ ki-.q (kl'q a-p
stable modes. We restrict the nonlinear analysis to the case & VoW1 T 202
of a static bifurcation. To include nonlinear terms up to the
third order in the amplituded,, introduced in Eq(2.37) we ki-p qp
have first to solve Eq2.34). The general procedure is stan-
dard; some intermediate steps are sketched in Appendix C.

Using this solution we are in the position to calculate the 112
terms appearing on the right hand side of Ej35. We do ¢
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and

(Vo V) 01+ (vy- V)b

=€
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TABLE |. Results for the critical temperature differenad over both liquids AT>0 for heating from
below, AT<0 for heating from abovethe critical wave numbek., the Marangoni and Rayleigh numbers
of both liquids at onset, the parameters of the amplitude equéRiB8), the subcritical thresholé,, for the
hexagon pattern, its amplitudi®, at onset, the values; at which squares become stable anpdat which
hexagons become unstable, and the Maxwell valyg; at which the potentia(2.40 is the same for the
square and hexagon patterns for setups 1-8 as specified in Appendix A.

Setup
Results 1 2 3 4 5 6 7 8
AT, 0.749 1.030 0.485 —1.474 2.901 —1.241 1.469 0.989
Ke 2.481 2.048 2.352 0.692 2.790 0.572 2.395 2.380
M 779 685 647 —872 2370 —450 1352 848
R 726 182 761 -137 530 —42 623 710
M@ 182 183 81 —416 692 —424 205 170
R® 171 20 20 —277 401 —330 62 56
Y 0.340 0.494 0.340 -0.543 0.4203  —0.579 0.494 0.433
O 1.212 1.275 1.232 1.386 1.194 1.353 1.173 1.182
O 1.351 1.324 1.418 1.4436 1.467 1.323 1.110 1.149
On 0.417 -0.383 0.443  —0.039 0.2379 -0.612 —0.693 —0.4159
€sub —0.008 -0.017 -0.008 —0.020 -0.013 -0.023 -0.018 -0.014
A 0.100 0.139 0.098 0.144 0.124 0.156 0.148 0.129
€5 0.125 0.038 0.114 0.081 0.108 0.024 0.0192 0.036
€n 3.850 0.334 6.892 0.984 12.05 0.240 0.112 0.161
€hms 0.277 0.074 0.281 0.162 0.272 0.050 0.036 0.060

In order to finally address the planform selection problem
we first note that squares are consistently described by a
third-order amplitude equation only if1g,>0. Otherwise,
the third-order term is not saturating and higher orders have
to be included, which appears to be quite involved. Conse-
quently the present approach can describe only square pat-
terns bifurcatingsupercriticallyfrom the basic state.

kg1 @W(’)Gl— (1;—2pW160+W001+W10(’, .

With the help of these relations it is now easy to determine  Sjmjlarly, one must have +2g,>0 in order to have the
the remaining terms proportional to exp(-r) from all the  hexagon pattern stabilized by the third-order term. Unlike the
possible combinations foq and p and the corresponding square and roll patterns, however, hexagons apgeaeriti-

results forep, calculated in Appendix C.

cally at eq, ;= — y?/4(1+ 2g;,). The small amplitude solution

Using the scalar produc¢B9) and the result fokpy, the s always unstable.

solvability condition at ordeO(e?) can be formulated. It

A detailed linear stability analysis of the roll, square, and

contains a term proportional t,A3 A3 which, by elimi-  hexagon solutions of the amplitude equati@38 reveals
nating M, using the solvability condition(C11) at order the following [29,16. Rolls are stable iig,>1, g:>1, g,
O(&?), is transformed into terms proportional|,|?A; and  >1, and e> e,=v?/(1—g,)?. Squares are stable ifg,
|A3|?A;. We then multiply the solvability condition at order <g,+g,, g,<1, and e>e=+%(1+g.)/(1+9g,—gn
O(e?) by £ and the one at ordé(®) by £* and add them —g,)2. Hexagons are stable for a> e, if g,<1 and 1
together. Observing thatM;+&?M,=M—M,, returning +29n,<0n+20;. If g,>1 they become unstable fo¢
to the original time by using?d.=¢,, and introducing the >12(2+9,)/(1—g,)% if 1+29,>0,+2g, this happens
scaled amplitude®,,=&A,,, we eventually end up with an for €>y?(g,+29,)/(1+2g9,—9g,—29,). The value ofe at
amplitude equation of the forrn2.38 with explicit expres-  which hexagons lose their stability will be denoteddpy As

sions for the parameterg g;,, g;, andg,.

is seen from these conditions, squares and rolls are mutually
exclusive whereas hexagons may coexist with either squares
or rolls. To locate the transition between patterns that are
both locally stable the Maxwell value efat which the po-

V. RESULTS

The expressions foy, g, g;, andg, are rather long and tential F defined in Eq(2.40 has the same value for the two
will not be displayed. Moreover, due to the large number ofplanforms under consideration is of inter¢80]. For the
parameters in the two-liquid system it is more appropriate tesetups considered in this paper only the Maxwell value for
analyze some experimentally relevant parameter combinghe transition between hexagons and squares is relevant,
tions rather than to display cross sections along various diwhich we denote by, .. The special values of defined
rections of the parameter space. For the experimental setupdove together with the amplitudg, of the hexagon pattern
1-8 specified in Appendix A the results of the nonlinearat onset for setups 1-8 are collected in the lower part of
analysis are summarized in the middle part of Table I. Table 1.
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FIG. 5. The parameters, (full), g, (dashed, g, (dotted and y

(dashed-dottedof the amplitude equatiof®.38 as functions of the FIG. 6. The values of;, at which hexagons become unstable
thicknessh® of the bottom layer for setup 9 with a total layer and €5, at which hexagons appear subcritically as functions of the

depth of 45 mm and heating from below. For 1.5mhi® thicknessh®™ of the bottom layer for setup 9 with a total layer
<2.5mm the oscillatory instability precedes the static one. depth of 4.5 mm and heating from below. Note the different scales

for positive and negative values at the vertical axis. For 1.5 mm

<h®<2.5mm the oscillatory instability precedes the static one.
For the parameters of setup 9 and a total depth of 4.5 mm m y yP

we have again scanned the dependence of the results of thestigated experimentally. Since the system is, on the one
nonlinear analysis on the thickness of the bottom layer fohand, characterized by nine dimensionless parameters
the case of heating from below. Figure 5 shows the coeffiwhereas it is, on the other hand, very hard to find two really
cients of the amplitude equatiq@.38 as functions oh®™.  immiscible fluids to perform the experiments, this seems to
The most apparent feature is the strong sensitivity of théye the most sensible way to theoretically investigate the pe-
coefficients to variations of the depth ratio. In experimentsculiarities of a system that may also be seen in experiments.
the depth must therefore be controlled very accurately in  For all setups considered we found 2g,,>0, which im-
order to allow sensible comparison with the theory. The sysplies that for hexagons the cubic term is able to stabilize the
tem under consideration shows a transition from up to downinear instability. The hexagon pattern occurs subcritically at
hexagons when varying the depth ratio, as can be seen frogy, <0. Strictly speaking, a backward bifurcation leading to
the change of sign of. a finite amplitude immediately at onset invalidates our per-
Finally in Fig. 6 the dependence ef andeg,,onh® is  turbation Ansatz(2.29 [31]. However, the size of the sub-
displayed. Again a strong sensitivity to the depth ratio iscritical region as well as the amplitude of the hexagon pat-
observed. Note that since they are the result of a perturbatioern at onset were found to be rather small for all setups
expansion ire values ofe,, substantially larger than 1 are not investigated. This is in accordance with experiment in which
reliable. it is usually impossible to see the subcritical hysteresis at all
[23]. Hence, with the amplitude of the pattern at onset being
small, our perturbatioAnsatzshould still be a good approxi-
mation for what really happens and the results obtained
In the present paper a weakly nonlinear analysis foishould be rather accurate.
Benard-Marangoni convection in systems of two superim- For all setups we foundj,>1 and 1+2g,>g,+29;,
posed liquids has been developed. A consistent treatment @hplying that the hexagon pattern does not remain stable for
the full hydrodynamics and heat conduction in both layersarbitrarily largee. The valuee;, at which hexagons become
was performed. As a crucial simplifying ingredient of our unstable as obtained within our perturbative analysis is reli-
approach we have used the assumption of an undisturbeable only if it is not too large. Common experience suggests
interface between the liquids. Comparison with the completé¢hat the values are trustworthy if they are smaller than 1.
linear stability analysis including interface deflections re- Another general result for all setups studied is tbhat
veals that this approximation is extremely good for a pattern<1, excluding rolls as stable planforms at threshold. We find
forming instability occurring at not too long wavelengths. for all setupses<ey,, indicating that hexagons and squares
We have considered the planform selection problem by decoexist for a given interval ok. The general situation is
termining the relative stabilities of roll, square, and hexagorhence as shown for setup 7 in Fig. 7.
patterns. To this end the coefficients of an appropriate am- All values for ¢, and e found arestrictly positive imply-
plitude equation were calculated as functions of the hydroing that exactly at onset our analysis always predicts hexa-
dynamic parameters by a perturbation theory in the ampligons as the only stable planform. This is in accordance with
tude of the unstable mode. Explicit results have beerwhat was found experimentally for setups 1-6. For setups 7
obtained for nine specific setups that have recently been irand 8 squares at onset were seen in the experiment. These

VI. DISCUSSION



6548 A. ENGEL AND J. B. SWIFT PRE 62

o periment gives hexagons &=0.136 and theory predicts
squares to be metastable upe=0.27. For the two setups
with heating from above, namely, setups 4 ar{éFigjs. 12a)
and 13, respectively, if23]], the experimentally found hexa-
gon planform is at variance with theory. At the relevant val-
ues e=1.56 ande=1.8, respectively, hexagons should al-
ready be unstable. Again the discrepancy between theory and
experiment occurs for rather large Also, patterns with
heating from above were very difficult to obtain experimen-
tally and the values o€ given for the experiments may not
be very accuratg33].

For setup 9 the dependence of the several parameters de-
termining the planform on the depth ratio was the main focus
of the investigation. As shown in Figs. 5 and 6 the param-
eters of the amplitude equation and the special values of

e resulting from them may depend very sensitively on the
002 0 082 004 006 008 01 012 014 016 018 depth ratio. Since the latter cannot be controlled with arbi-
& trary precision in experiments, comparison with theory al-

FIG. 7. Amplitudes of the hexagofiull line), square(dashed ~Ways needs some care. As for setups 7 and 8, one finds for
line), and roll (dash-dottel patterns as functions of the criticality setup 9 that for soma™® the values ofe,, can be so small
parametere for the planform selection problem corresponding to (cf. Fig. 6 that it is again easily conceivable to miss the
setup 7 as specified in Appendix A. The dotted parts of the curvefiexagonal pattern completely in the experiment and to ob-
denote unstable solutions; the roll pattern is always unstable. Theerve squares as the first pattern after the instability in accor-
square on the axis gives the value,nsfor which the hexagon and  dance with the experimental findings. Note in this connection
square planforms realize the same value of the poteRti@gfined  that together withe, the absolute value of,,, characteriz-
in Eq. (2.40. ing the subcritical stability region of the hexagon planform

. also gets very small, such that hexagons exist only in an
setups are characterized by rather small valueg,oénd extremely small window around criticality.
extremely small values aof;. Note in this connection that in The oscillatory instability found for setup 9 was also de-
[32] the_ transi'gion from hexagons to squares in an experiracied in the experimeri23] for hY=1.8mm, in accor-
ment with a single fluid layer was reported to occureat gance with Fig. 4. The experimental values for the critical
=4.2 with the theoretical value resulting from a numer'calMarangoni number and the wavelength and frequency of the

integration of the Navier-Stokes equation being even highelygiliatory mode are in satisfactory agreement with the linear
For setups 7 and 8 we would hence predict theoretically thaﬁweory as already discussed[28].

immediately above onset squares become stable and that for e sign ofy is related to the detailed convection pattern
somewhat largee the hexagon pattern loses stability. It is ¢ the hexagon planform. Fop>0 the hexagons in the
then quite conceivable to _observ_e experimentally @ mixturgyver fluid are up hexagon@iquid rises in the centgrand
of squares and hexagons immediately at onset. Note that oyt jhes in the upper layer are down hexagons .o the
theoretical analysis treats only perfect patterns, hardly 0cCUlgjation is reversed. We do not know of experimental results
ring in the experiment, and that due to boundaries and impUs,cerning this feature for the two-liquid Marangoni prob-
rities a nucleation of square patches may set in well beforg, .,
€, is reached. This is also plausible from the small yalues of  The remaining discrepancies between theoretical and ex-
the Maxwell valuee,ns. Altogether, we therefore claim that perimental findings might be due to the perturbative charac-
our results for setups 7 and 8 are in good agreement with the, of our derivation. In particular, there is the possibility of
experimental fln_d_lng of squares at onset. For both setups &_called asymmetric squares in pattern-forming hydrody-
secondary transition fr_om squares to rolls was found experipamic system§34], which, bifurcatingdiscontinuoushfrom
mentally, which we fail to reproduce theoretically. The rea-i,qo quiescent state, do not show up in a perturbative
son for this discrepancy may be that the transition occurgpnroacH. At the moment it is not clear whether these pat-
outside the validity of our perturbation approach. terns can already be expected at the small values of the pa-
The detailed comparison between our theoretical and thg, metere used in the experiments. Since the flow pattern of
corresponding experimental results for _the other setups is aBymmetric squares is rather different from that of conven-
follows. For setp 1 a hexagon pattern is found experimen-iona| squares it might be possible to clarify experimentally

tally ate=0.28[Fig. 7(a) in [23]], consistent with the theory, \yhich form of squares has been observed.
which finds both hexagons and squares stable for this value

of . In setyp 2 a mixture of hexagons and squares is found at ACKNOWLEDGMENTS

e=1.72 [Fig. 7(b) in [23]], whereas the theory excludes . i ) )
hexagons and predicts squares as the only stable planform. We have very much benefited from discussions with Anne
This difference may be related to the rather large value of Juél and Harry Swinney. A.E. would also like to thank F.
For setup 3 the experiment finds hexagons fer«3<0.27

(Fig. 8 in[23]), again consistent with theory, which predicts

squares to be only metastable fox e,,,=0.28. The same  we would like to thank F. Busse for pointing out this possibility
holds true for setup BFig. 12b) in [23]], in which the ex- to us.
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TABLE Il. Substances, depths, and interface tensions for the nine setups analyzed in this paper. For the
characterization of the liquids used see Table Il below.

Bottom layer Top layer
Depth Depth do/dT
Setup Substance (mm) Substance (mm) (N/mK) Heating from
1 HT 135 1.91  silicon oil 5¢S 2.69 —7.3x10°° below
2 HT 135 1.02  silicon oil 2¢cS 0.87 —7.3x10°° below
3 HT 135 2.14  silicon oil 5¢S 2.21 -7.3x107° below
4 HT 70 0.80  silicon oil 5¢S 2.26 -7.3x107° above
5 HT 70 0.95 silicon oil 5¢S 2.11 -7.3x10°° below
6 HT 70 0.61  silicon oil 5¢S 2.45 -7.3x10°° above
7 HT 70 1.02  water 2.22 —-4.1x10°° below
8 FC 75 1.28 water 2.78 —4.73x10°° below
9 Acetonitrile h®  n-hexane 4.5-h® —1x1074 below

Busse, S. W. Morris, and W. Pesch for interesting discuseause the bifurcation paramet®t occurs not only in the
sions and Jean Bragard and Wayne Tokaruk for very usefuinear operator but also in the corresponding boundary con-
correspondence. Part of the work was done during a visit bylitions. A transparent way to deal with the situation is to
A.E. at the Center for Nonlinear Dynamics at the Universityinclude the boundary condition involvirlg into the operator

of Texas at Austin. He would like to thank all members of |_ [7], which is then written in the form

the Center for their kind hospitality and the Volkswagenstif-

tung for financial support. The work of J.B.S. was supported

by the NASA Office of Life and and Microgravity Sciences A%?  cMA, 0 0 0
Grant No. NAG3-1839. 1 A 0 0 0
APPENDIX A: PARAMETER VALUES L= 0 0 vA2 aCMA,| 0 ’
This Appendix provides the values of the hydrodynamic 0 0 1/k XA 0
parameters used in the explicit calculations of the present o7§|z:o 0 -~ 77t9§|z:o 0 ~MA,

paper(Table 1l). All nine setups correspond to experimen-

tally relevant combinations. Experiments with setups 1-7 are (B1)

discussed if23]; setup 8 was used in the experiments re- )

ported in[22]. The dependence of the instability and the @cting now on the correspondingly augmented state vector

planform on the depth ratio was experimentally studied by

Juel [33] using setup 9. Note that the value d&/dT is

difficult to determine experimentally; the values given are w

therefore rough estimates or fitted from the linear analysis. 0
Table Il contains the hydrodynamic parameters for the o= W

different liquids used. More details are to be found in the (C]

original experimental papef&3] and[22]. 6],-0

(B2)

APPENDIX B: OPERATOR EXPANSION AND ADJOINT . .
PROBLEM The operator is completed by the boundary conditions

The decomposition(2.32) of the linear operator is not
completely straightforward for the Marangoni problem be- w=d,w=60=0 at z=-1, (B3)

TABLE lll. Hydrodynamic parameters for the different liquids investigated.

p v K Cp a

Substrate (kg/m®) (108 m%s) (Ims K (I/kg K) (10°8K)
HT 70 1680 0.5 0.07 962 1.10
HT 135 1730 1.0 0.07 962 1.10
Silicon oil 5¢S 920 5.0 0.117 1590 1.05
Silicon oil 2¢cS 873 2.0 0.109 1713 1.17
FC 75 1760 0.945 0.0635 1046 1.40
Water 998 1.0 0.60 4182 0.207
Acetonitrile 776 0.476 0.188 2230 1.41

n-hexane 655 0.458 0.120 2270 1.41
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w=W=0, dJw=49,W, 6=0, 4,0=kd,® at z=0, (B4)

W=9,W=0=0 at z=a, (B5)

which differ from Egs.(2.23—(2.25 just by the omission of the boundary condition involvikg We now easily find

A% cMA, 0 0 0
1 A 0 0 0
Lo= 0 0 vA? aCMA | 0 , (B6)
0 0 1/k XA 0
(9§|Z=0 0 - 77a§|z=0 0 —MA,
0 cM;A, O 0 0
0 0 0 0 0
Ll: 0 O O C(CM]_AL 0 s (B?)
0 0 0 0 0
0 0 0 0 -M;A,
and
0 cM,A, O 0 0
0 0 0 0 0
L,=| O 0 0 acM,A, 0 , (B8)
0 0 0 0 0
0 0 0 0 —MLA,|
|
where all three operators are completed by the boundary con- m
ditions (B3)—(B5). )
The adjoint operator is defined bip|Le)={(L " ¢|¢). _ —
Introducing the scalar product - V_V (B1D)
()
§Zm2=0
1 (L2 L/2 J'o T g
= lim— +
(ele) LTLLZ ,L,gdx 7L/2dy 7le(W w+66) and completed by the boundary conditions
a . L
+J dz(\N*W+®*®)+aZW*|Z=00|Z=0}, (B9) w=gJ,w=60=0 at z=-1, (B12)
0
. o _ o W=W=0, d,W=—d,W, *W=rd?W,
we find after some partial integration that is given by
2 T X —
A 1 0 0 0 0= ;@ at z=0, (B13)
cMA, A 0 0 0
2 — —
L= 0 0 vA Uk 0 W=d,W=0=0 at z=a. (B14)
0 0 acMA | XA 0
0 — 4l 2=0 0 X9%l,—0 —MA, It is, of course, possible to transform back the last liné 6f

(B10) into a bouidary condition and this is indeed advantageous to
determineg, explicitly; however, for use in the solvability
conditions the above augmented form is the most appropriate

acting on the augmented vector one.
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APPENDIX C: THE O(¢?) PROBLEM

In this appendix we solve Eq2.34) for the case of a
static instability. From the term\V{¢q, o) and the structure
(2.37 of ¢q it is clear that the right hand side of this equa-
tion will contain several terms with different exponential fac-
tors of the form exfi(=k,*k,,) - r]. Because of the linearity

PLANFORM SELECTION IN TWO-LAYER BENARD- . . .

of the equation we may solve it separately for all these terms

in the inhomogeneity.

Let us start with the so-calleatbnresonanterms in which
the angleg between* k, and =k, is different from 27/3. It
is clear then from the, yintegrals in Eq(B9) that for these
terms(@o| M ¢o,®0))=0. In view of Eq.(B7) the solvabil-
ity condition boils down toM ;=0 and hence removes the
L, ¢, term from the inhomogeneity of E§2.34). Using the
form (2.37) of ¢ we therefore find as equations foi

2 _ i(+k ikm)~r3
A‘w;+CcMA | 0,=A A€ Pr([1+cos{¢)]

X{wgwg+[1—2 cog ¢)wowg
— 2K sinf( ) wowp),
AnAmei (£kn*kp)

wit+A6O = ""2[wobp— cos p)Wq o],

. 2
vAPW, +aCMA, 01 =ApAne!“Hntnl T ([1+ cog ¢)]

X {W”W0+ [1—2cog q&)]W{,W[)’
— 2K2 Sirf( ) WoWp),

1 .
— Wi+ xAO=AgAne!Ha=kn 12T W@ o — cos ) Wo® o],

where the prime denotes differentiation with respectzto
SinceM ;=0 the boundary conditions completing this set of
equations are given by Eq.23—(2.25 with M=M..

The solution of these equations is of the forgy
=ArAne1(2)exdi(=k, = k) - r]. We first determine a solu-
tion of the inhomogeneous equations using Amsaze

6

|nh(z)_ 2 wyjje e\ +>\j)z, 0ilnh(z):_zl elije(}\ﬁ}\j)z,
i,j=

(CY
12 12

Wmh(Z 2: Wl”e()\ itz , ®I1nh(z):ij2:7 alije()\i+)\j)z1

(C2

which give rise to algebraic equations for the coefficients

Wyjj, 645, Wy, and ©4;; in terms ofwy and \;. This

6551
6
hom 2 hom >\ z
6 hom
W ~
aiiom(z):_E = - 1i exiz' (CS)
=1\ =2k 1+cog¢)]
12 B
W?Om(z)zz ngome)\z
i=7
12 hom
1 w ~
@hom(z)___z 1i e)\iz, (C4)
KXT=7X2— 2k 1+cod ¢)]
with \; satisfying
{Af—2Ki[1+cod ¢)]}°
—2cMk2[1+cod )] for i=1,...,6
I T 2 for i=7,..,12
ZKVXcMCkC[1+cos(¢)] or i=7,.,12.
(CH

Note thath;#\ . Therefore the determinant of the matrix in
the inhomogeneous set of linear equationsﬂ@?m is differ-
ent from zero and the solution is unique. Note also that for
¢ = the procedure can be simplified sinag(z) =W,(z)
=0.

As for theresonantterms arising from the interaction of
modes with an angles=2m/3 between their respectivek
vectors, let us focus on the one proportional to &xp(). It
is has one contribution proportional #, stemming from
—L,¢o and another one proportional #5 A3 originating
from Mg, 90) in EQ. (2.34. UsingL, as defined by Eq.
(B7), the resulting equations are of the form

* Ak

3(W

"

0 Wo+2wWiwg

A2W1+CMCAL 01=eik1'r

—3k2wow) + ArcM; k26, (CH)

W1+ A6 =e TUTAS A% (2wo 05+ W4 6,), (C7)

* Ak

r—;r S (WY W+ 2WAW

vA’W;+ acMA | 0, =gk
— 3K2WW)) + AjacM k20,

(C8)

M1 TAS AT (2WO 0+ W;0o).

1
—Wy+ A0, = (C9

solution does not yet satisfy the boundary conditions. WeThe boundary conditions are again given by E@23—
therefore add an appropriate solution of the homogeneoug.25 except for the one containing the Marangoni number,

equation, which is written in the form

which is modified tgcf. Eq. (B7)]
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&;Wl_ 77(9§W1— MCAL 01: _Alei kl-rM 1k§00 a.t 7= 0 6 W?om
c1o  w@)= E Wit oMz = =3, e,
- I C
Due to the resonant factag't" the terms arising from (C12
Mg, ¢o) are not automatically perpendicular {g,, and 12
using Eq.(B9) the solvability condition acquires the non- Wgom(Z)ZE ngomehz
trivial form i=7
0 W 1 12 hom
h 1i .
0=A}A} f dz(F‘;(wg'w0+2w5wg—3k§wow5) 0 Om(Z)——E; e)\,z. (C13
-1

The boundary conditions give rise to ahomogeneousys-
tem of linear equations for the coefficients®™ with the
same singular matri¥d that appeared in the linear stability
analysis. Due to the solvability conditiof€11), however,
the inhomogeneity of this set of linear equations is perpen-
dicular to the zero eigenvector of the adjoint problem and
therefore the system admits solutions. Their numerical deter-
mination is most conveniently done by using the singular
value decomposition of the matrixd [35]. This method
yields an approximate solution even if the solvability condi-
tion is not fulfilled exactly, which will always be the case
(C1) : :
due to numerical errors. Moreover, the so-called residual
quantifying the deviation from the exactly solvable case
We use this equation to replace the terms involviig in  gives another check on the numerical accuracy of the whole
Egs. (C6)—(CY and in the boundary conditioC10. The  procedure.
solutions to these equations can then be written in the form Finally, the solution forvvhom obtained in this way is not
A A% o,(2)e'". Again, we first determine a particular so- unique since one can always add a solution of the homoge-
lution of the inhomogeneous equations by usingAlmsaze  neous equations. We will enforce the additional constraint

L/2 L/2
0=(goley):=lim sz dxf
Lo L/2 L2

_ W}
+ 65 (2Wq 04+ W4 600) +f dz( (W5 Wo+ 2W Wy

—3K2WW) + OF (2w0@g,+w5®o)) }

0 a
-1 0

1
- E(?ZWS |z=000|z=0 .

|nh (z)= E Wy e()\ +)\)z+2 Wllze)\,

0
dy| J’ dz(wgw,
-1

6 6

. - (C14
oy (z>=iiE:1 01i,»e“i“ﬂ2+i:21 (O2+ 0y)€M?,

a
+ 65 61) + J dz(WEW,+0F50,)
0

to remove this ambiguity. The rationale behind this require-
ment is as follows. Assume that we knew the exact solution
¢ of the full nonlinear problem. According to Eq2.29 and
(2.37 we wantA, to be the amplitude of the contribution to
@ proportional to expk,-r), i.e., (explkn-r)eo(2)|e)
=¢gA,. Using the expansiori2.39 for ¢, this results in
(¢ol@))=0 for all I=1. Note the use of different scalar
products in Eqs(C14) and (B9).

To satisfy the boundary conditions we add a solution of the This completes the solution of th@(s?) equations. The
homogeneous equations which must be of the fizinEqs. ~ results are specified by the various matriceg;, wy;,
(3.3, (3.9] wiP™, 6y, 6y, 045, and 670"

12 12
Wilnh(z)=.z7 Wlije<"i+"J)Z+E7 wy;zeN?,
ij= =

12 12
@lnh 2 0y e“‘ +1) z+2 (01,z+61,)e"'2
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