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Planform selection in two-layer Bénard-Marangoni convection
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Bénard-Marangoni convection in a system of two superimposed liquids is investigated theoretically. Extend-
ing previous studies, the complete hydrodynamics of both layers is treated and buoyancy is consistently taken
into account. The planform selection problem between rolls, squares, and hexagons is investigated by explicitly
calculating the coefficients of an appropriate amplitude equation from the parameters of the fluids. The results
are compared with recent experiments on two-layer systems in which squares at onset have been reported.

PACS number~s!: 47.20.Dr, 47.20.Bp, 47.54.1r, 68.10.2m
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I. INTRODUCTION

The hexagonal convection cells discovered by Be´nard in
his famous experiments on thin oil layers heated from be
@1# have become the trademark of pattern formation in
drodynamic systems driven slightly out of equilibrium~see,
e.g., @2#!. The 100 years of research devoted to this sys
have revealed several important insights but also witnes
several misconceptions. Rayleigh’s original theoretical
scription @3# focusing on buoyancy-driven convection, a
though indicating a possible instability mechanism, failed
produce a threshold compatible with experiment. Not u
40 years later was it realized that the temperature dep
dence of the surface tension is the crucial driving force
thin layers@4#. The corresponding linear stability analysis@5#
gave stability thresholds consistent with the experimen
findings; moreover, a subsequent weakly nonlinear anal
@6,7# produced theoretical support for a subcritical transit
to a hexagonal flow pattern@8#.

Quite naturally the first theoretical investigations we
performed using simplified models of the experimental s
ation. The initial assumption of a flat surface of the liqu
was soon relaxed by Scriven and Sternling@9# and Smith
@10#, who were able to show that surface deflections give
to an additional instability appearing at very long wav
lengths. It was only very recently that this instability w
unambiguously demonstrated in an experiment@11#, where it
manifests itself as a distortion of the layer thickness with
characteristic length that is of the order of the lateral ext
sion of the fluid layer. Being observable only in very shallo
liquid layers, the instability usually results in the formatio
of dry spots.

Another common simplification is the restriction of th
instability mechanism to either buoyancy or thermocapill
ity @12–14,21#, although there seem to be rather few expe
ments@17,8,11# that have been performed in parameter
gions consistent with this assumption. Also, mo
investigations focused on a single-layer model in which
lower liquid layer is in contact with a gaseous upper lay
and only the hydrodynamics of the liquid is treated. T
convection in the gas layer is usually neglected and the
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exchange between the layers is often modeled in a phen
enological way using a Biot number; see, e.g.,@18#. Even if
a genuine two-layer model is considered the viscous stre
and the pressure variations in the gaseous layer are negle
in order to keep the analysis simple@13#.

On the other hand, it has been known for some ti
@12,19# that a system oftwo superimposed liquidsdisplays a
much richer behavior than the single-layer models. In p
ticular, the Marangoni instability can be induced by heati
from above, such that buoyancy and thermocapillarity com
pete rather than enhance each other, a situation whic
single-layer systems can be realized only using the rare
of liquids with anomalous thermocapillary effect in whic
the surface tensionincreaseswith increasing temperature
@20#. Many additional features such as oscillatory instab
ties @14,18# or transitions from up hexagons to down hex
gons may be found in systems with two liquid layers. T
rich variety of phenomena occurring in the theoretical ana
sis of two-layer liquid systems results in part from their hu
parameter space. A single-layer system is characterized
just three dimensionless parameters; namely, the Rayl
number, the Marangoni number, and the Prandtl numb
The last is irrelevant in a linear analysis and the first two
both proportional to the temperature difference across
layer. Two-layer systems on the other hand may easily n
ten or more dimensionless parameters for complete spe
cation. These numbers include the ratios of the hydro
namic parameters of the participating liquids.

For a long time Marangoni convection in two-liquid-laye
systems was an interesting theoretical problem but too d
cult to handle experimentally. Zeren and Reynolds have
ready @12# tried to experimentally realize the instability b
heating from above~which came out of their theoretica
analysis! but failed. Very recently, however, experimen
were performed in which the Marangoni instability in 1–
mm thick superimposed layers of immiscible liquids was o
served@22,23#. In particular, an instability by heating from
above and square patterns at onset were reported.

In the present paper we will investigate theoretica
Bénard-Marangoni convection in a system of two liquid la
ers. Building on the linear stability theory developed in@24#,
we perform a weakly nonlinear analysis in order to solve
planform selection problem slightly above the linear stabil
threshold. To this end the competition between rolls, squa
6540 ©2000 The American Physical Society
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PRE 62 6541PLANFORM SELECTION IN TWO-LAYER BÉNARD- . . .
and hexagons will be discussed. Only perfect patterns wil
considered, leaving the question of weakly modulated p
terns for future investigation. We will consistently includ
buoyancy effects and treat the full hydrodynamics of b
liquids, generalizing in this way various previous treatme
@6,13,16,25–27#. However, we will assume a flat interfac
between the two liquids. As will become clear below, inte
face distortions are crucial for the long wavelength insta
ity resulting in dry spots but can be safely neglected wh
dealing with the finite wavelength instability resulting in ce
lular patterns.

The paper is organized as follows. In Sec. II the ba
equations are collected and transformed into a form suita
for the weakly nonlinear analysis. Then the perturbat
scheme is set up and the necessary computational step
listed. Section III deals with the first order of perturbatio
theory, which is nothing but the linear stability analysis.
Sec. IV the main steps of the nonlinear analysis are outlin
The solution of the second-order problem is relegated to
pendix C and the solvability condition in third order is the
formulated to derive the desired amplitude equation cha
terizing the planform selection problem. Section V colle
the results obtained for several experimentally relevant c
binations of liquids. Finally, Sec. VI contains a discussion
the results together with a comparison with experimen
findings.

II. BASIC EQUATIONS

We investigate a system of two layers of immiscible a
incompressible liquids of thicknessh( i ) with densitiesr ( i ),
kinematic viscositiesn ( i ), coefficients of volume expansio
a ( i ), heat diffusivitiesx ( i ), and thermal conductivitiesk ( i )

where the superscripti 51(2) denotes the lower~upper!
fluid ~see Fig. 1!. The system is bounded in the vertical d
rection by two solid, perfectly heat conducting walls wi
fixed temperaturesTb andTt and is infinite in the horizonta
directions. The interface between the two fluids is assum
to be flat and to lie in thex-y plane of the coordinate system

The hydrodynamics of the two liquids will be describe
within the Boussinesq approximation, i.e., we assume tha
parameters are independent of the temperature, except fo
densitiesr ( i ) and the interface tensions. More precisely, we
use r ( i )(T)5r ( i )(Tb)@12a ( i )(T2Tb)# and “'s5ds/
dT“'T with constanta ( i ) andds/dT. Neglecting heat pro-

FIG. 1. Sketch of the system under consideration. One liq
layer is superposed on another between two horizontally infin
perfectly heat conducting plates. The interface between the liq
is assumed to be flat. Convection arises due to buoyancy and
temperature dependence of the surface tension.
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duction due to viscosity, the basic equations describing
system are the continuity equations

“•v~ i !50, ~2.1!

the Navier-Stokes equations

] tv
~ i !1~v~ i !

•“ !v~ i !52
1

r~ i ! “p~ i !2g@12a~ i !~T~ i !2Tb!#ez

1n~ i !Dv~ i !, ~2.2!

and the equations of heat conduction

] tT
~ i !1~v~ i !

•“ !T~ i !5x~ i !DT~ i !. ~2.3!

Hereez denotes the unit vector in the vertical direction andg
is the acceleration due to gravity.

The equations are completed by the boundary conditio

v~1!50, T~1!5Tb at z52h~1! ~2.4!

and

v~2!50, T~2!5Tt at z5h~2!, ~2.5!

at the bottom and top, respectively, and

v~1!5v~2!, T~1!5T~2!, k~1!]zT
~1!5k~2!]zT

~2!,

@~s~2!2s~1!!ez#'52
ds

dT
“'T, vz

~1!5vz
~2!50 at z50,

~2.6!

expressing the continuity of the velocities, temperatures,
heat fluxes, respectively as well as the balance of tange
stresses at the interface. Thes ( i ) denote the stress tensors
the liquids and the subscript' describes the projection o
the x-y plane. In accordance with our assumption of a fl
interface between the liquids the condition for the continu
of the normal stress at the interface is replaced by the
quirement that the perpendicular components of the flow
locities must vanish. This is expressed by the last equatio
~2.6!.

Introducing h(1), (h(1))2/x (1), x (1)/h(1), and
r (1)n (1)x (1)/(h(1))2 as units for length, time, velocity, an
pressure, respectively, we find for the velocitiesv
5(u,v,w) @V5(U,V,W)# and the appropriately normalize
deviationsu ~U! of the temperatures from their static profile
in the lower~upper! liquid the equations

1

Pr
@] tv1~v•“ !v#52“ p̃1Ruez1Dv, ~2.7!

] tu1~v•“ !u5w1Du, ~2.8!

1

Pr
@] tV1~V•“ !V#52“ P̃1aRQez1nDV, ~2.9!

] tQ1~V•“ !Q5
1

k
W1xDQ, ~2.10!

d
,

ds
he
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6542 PRE 62A. ENGEL AND J. B. SWIFT
where the pressure fieldsp̃ andP̃ in the lower and the uppe
liquid differ from p(1) and p(2) respectively only by trivial
contributions stemming from the buoyancy terms. T
boundary conditions acquire the form

v50, u50 at z521, ~2.11!

V50, Q50 at z5a, ~2.12!

and

v'5V' , w5W50, u5Q, ]zu5k]zQ,
~2.13!

]z
2w2h]z

2W5MD'u at z50,

where in the last equation the continuity equation was us
Moreover, the following parameters have been introduce

a5
h~2!

h~1! , a5
a~2!

a~1! , n5
n~2!

n~1! , h5n
r~2!

r~1! ,

~2.14!

k5
k~2!

k~1! , x5
x~2!

x~1! ,

as well as the Prandt number Pr5n (1)/x (1), the Rayleigh
number

R5
a~1!g~h~1!!3

n~1!x~1!

k

a1k
~Tb2Tt!, ~2.15!

and the Marangoni number

M52
ds

dT

h~1!

n~1!r~1!x~1!

k

a1k
~Tb2Tt!. ~2.16!

For the Rayleigh and Marangoni numbers we have cho
the standard expressions corresponding to the lower liq
The numbers for the upper liquid are then given by

R~2!5
aa4

nxk
R and M ~2!5

a2

xhk
M , ~2.17!

respectively.
The ratio between the Rayleigh and Marangoni numb

determines whether the occurring instability is predom
nantly driven by buoyancy or by surface tension. Experim
tally, both parameters are varied simultaneously since t
are both proportional to the temperature differenceTb2Tt.
We will therefore replaceR by cM with the temperature in-
dependent constant

c5
R

M
52

a~1!gr~1!~h~1!!2

ds/dT
~2.18!

specifying the experimental setup. In this way both buoya
and surface tension are included in a consistent way.
assume thatds/dT,0 as is the case for most systems of tw
liquids such thatc.0. Note that both the situations of hea
ing from below and heating from above are described, w
the latter case corresponding toM,0.

The set of equations may be simplified by standard m
nipulations. Taking twice the curl of the Navier-Stokes equ
e

d.

n
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rs
-
-
y

y
e

h

-
-

tions, using the continuity equations, and projecting ontoez ,
we get the following basic set of equations for thez compo-
nents of the velocities and the temperature fields:

D2w1cMD'u5
1

Pr
$] tDw2]z@“'•~v•“ !v'#

1D'~v•“ !w%, ~2.19!

w1Du5] tu1~v•“ !u, ~2.20!

nD2W1acMD'Q5
1

Pr
$] tDW2]z@“'•~V•“ !V'#

1D'~V•“ !W%, ~2.21!

1

k
W1xDQ5] tQ1~V•“ !Q, ~2.22!

together with the boundary conditions

w5]zw5u50 at z521, ~2.23!

w5W50,]zw5]zW,u5Q,]zu5k]zQ,

]z
2w2h]z

2W5MD'u at z50, ~2.24!

W5]zW5Q50 at z5a. ~2.25!

In order to investigate the planform selection problem
will derive third-order amplitude equations for the slow tim
variation of the amplitudes of different unstable mode
Similar to the case of the Rayleigh-Be´nard instability@2#, the
no-slip boundary conditions at top and bottom suppress
vertical vorticity, i.e., (“3v)•ez5(“3V)•ez50, and there-
fore we do not expect problems due to coupling to a slow
varying mean flow@28# up to this order. From the solution o
Eqs. ~2.19!–~2.22! we hence obtainw, u, W, andQ. Using
the continuity equations and the absence of vertical vortic
allows us to determineu, v, andU, V, and finally the pres-
sure fields follow from the Navier-Stokes equations.

It is convenient to write the above equations in the for

Lw5T~w!1N~w,w! ~2.26!

with the state vector

w5S w
u
W
Q

D , ~2.27!

the linear operatorL defined by

L5S D2 cMD' 0 0

1 D 0 0

0 0 nD2 acMD'

0 0 1/k xD

D , ~2.28!

and the boundary conditions~2.23!–~2.25!. T(w) denotes the
time dependent terms andN(w,w) describes the quadrati
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PRE 62 6543PLANFORM SELECTION IN TWO-LAYER BÉNARD- . . .
nonlinearity in Eqs.~2.19!–~2.22!. We will solve Eq.~2.26!
perturbatively using theAnsätze

w5«w01«2w11«3w21¯ , ~2.29!

M5Mc1«M11«2M21¯ , ~2.30!

] t5 iv1«2]t1¯ ~2.31!

with a small parameter«. In the case of a static instability w
havev50. For an oscillatory instabilityvÞ0 gives the fre-
quency of oscillation of the unstable mode. Using the per
bation expansion specified above we consider a situa
slightly above the thresholdMc of the linear instability,
where the amplitude of the unstable modes can still be c
sidered to be small. Putting Eqs.~2.29!–~2.31! into Eq.
~2.26!, taking into account that Eq.~2.30! implies an expan-
sion

L5L01«L11«2L21¯ ~2.32!

for the linear operator, and matching powers of«, the non-
linear problem transforms into a sequence of linear equat
of the form

L0w050, ~2.33!

L0w152L1w01N~w0 ,w0!, ~2.34!

L0w252L2w02L1w11T~w0!1N~w1 ,w0!1N~w0 ,w1!.

~2.35!

The first line is just the linear stability problem. The cond
tion for nontrivial solutionsw0 of this equation makesL0
singular and yields the critical valueMc of the bifurcation
parameterM. From the translation invariance in thex-y plane
we know thatw0 is of the form

w05w0~z!exp~ ik•r2 ivt !, ~2.36!

wherer5(x,y) andk5(kx ,ky) are two-dimensional vectors
There is a critical valueMc(k) of the bifurcation paramete
for all values ofuku5k and minimizingMc(k) in k gives the
wave numberkc of the first unstable mode together with th
critical Marangoni numberMc5Mc(kc).

The remaining equations in the hierarchy starting with E
~2.34! all involve thevery samesingular operatorL0 but are
inhomogeneous. Consequently, the perturbation expansi
makes sense only if the inhomogeneities are perpendicul
the zero eigenfunction of the adjoint operatorL0

1 of L0 .
In order to address the planform selection problem wit

the perturbation approach sketched above the form ofw0
must be sufficiently general and in particular must inclu
the different planforms observed in experiment. We will d
cuss the planform selection problem only for the case of
static instability, leaving the investigation of the oscillato
instability to future work. It is then sufficient to use forw0
the form

w05w0~z!F (
n51

6

An~t!eikn•r1c.c.G ~2.37!
r-
n

n-

ns

.

to

n

e
-
e

with the six two-dimensional vectorskn obeying uknu5kc
andk11k21k350, k41k51k650, as well ask1•k550 ~see
Fig. 2!. Depending on the values of the amplitudesAn , this
form describes rolls~e.g., A15A, An50 for all n.1),
squares~e.g.,A15A55A, An50 else!, and hexagons~e.g.,
A15A25A35A, An50 for n.3).

Using this form we find from the solvability conditions o
Eqs. ~2.34! and ~2.35! an equation describing the time evo
lution of the scaled amplitudesÃn5«An . As is well known
@2# the generalform of this amplitude equation already fo
lows from the symmetries of the problem. For the pres
situation it is given by

] tÃ15eÃ11gÃ2* Ã3* 2@ uÃ1u21gh~ uÃ2u21uÃ3u2!

1gt~ uÃ4u21uÃ6u2!1gnuÃ5u2#Ã1 ~2.38!

with the supercriticality parameter

e5
M2Mc

Mc
. ~2.39!

Similar equations for the other amplitudes follow from pe
mutation and complex conjugation. The terms included
these equations are the only ones up to third order that
invariant under the transformationAn°An exp(ikn•r0) cor-
responding to a translation byr0 in the x-y plane. Moreover,
due to the isotropy in thex-y plane the coupling coefficient
between the different terms in Eq.~2.37! may only depend
on the angle between the corresponding wave vectors.

The amplitude equation~2.38! is of potential type and can
be written in the form

] tÃi52
]F~Ã1 ,...Ã6* !

]Ãi*
. ~2.40!

A well known linear stability analysis of the various fixe
points of Eq.~2.38! corresponding to the extrema ofF yields
the stability regions of the different planforms as functions
the parameterse,g,gh ,gt ,gn @29#. The remaining problem is
thus to use the perturbation expansion described abov
express these coefficients of the amplitude equation in te

FIG. 2. Relative orientation of the two-dimensional wave ve
tors appearing in theAnsatz~2.37!. The two triadsk1 ,k2 ,k3 and
k4 ,k5 ,k6 of wave vectors withk5 perpendicular tok1 allow us to
describe rolls as well as squares and hexagons by different va
for the amplitudesAn in Eq. ~2.37!.
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6544 PRE 62A. ENGEL AND J. B. SWIFT
of the hydrodynamic parameters of the problem. To this e
the following well-known program has to be carried throug

~1! CalculateMc(k) from the linear problem and dete
mine kc5argminMc(k) andMc5Mc(kc).

~2! Determine the adjoint operatorL0
1 of L0 and its zero

eigenfunctionw̄0 .
~3! Calculate the inhomogeneity of theO(«2) equation

~2.34! and apply the solvability condition to this order.
~4! Solve theO(«2) equation~2.34! to determinew1 .
~5! Calculate the inhomogeneity of theO(«3) equation

~2.35! @only terms proportional to expi(k1•r) are necessary#.
~6! Combine the solvability conditions at orderO(«2) and

O(«3) to derive Eq.~2.38! and extract the expressions fo
the parametersg,gh ,gt ,gn .

III. LINEAR PROBLEM

We first solve theO(«) problem~2.33!, which is equiva-
lent to the linear stability analysis. Puttingw0
5w0(z)exp(ik•r2 ivt) and using theAnsätze

w0~z!,u0~z!;exp~lz!, W0~z!,Q0~z!;exp~Lz!,
~3.1!

we find

~l22kc
2!S l22kc

21
iv

PrD ~l22kc
21 iv!52cMkc

2,

~L22kc
2!S L22kc

21
iv

nPrD S L22kc
2 iv

x D
52

a

nkx
cMkc

2. ~3.2!

We therefore obtain six different values forl i andL i . It is
convenient to definel i5L i 26 for i 57,...,12 and to write

w0~z!5(
i 51

6

w0ie
l i z, u0~z!52(

i 51

6
w0i

l i
22kc

21 iv
el i z,

~3.3!

W0~z!5(
i 57

12

w0ie
l i z,

Q0~z!52
1

kx (
i 57

12
w0i

l i
22kc

21 iv/x
el i z. ~3.4!

The boundary conditions~2.23!–~2.25! then give rise to a
homogeneous system of linear equations for the 12
knownsw0i . In order to get a nontrivial solution the dete
minant of the coefficient matrixA must vanish. The condi
tions for the real and imaginary parts of detA yield the
desired functionsMc(k;par) and vc(k,par) where par
5(a,a,k,x,n,h,c,Pr) stands for the vector of parameters
the problem.

A typical result for a static instability is shown in Fig.
displaying the dispersion curve resulting from the numeri
analysis of detA50 for v50 using the parameters of setu
5 listed in Appendix A. As can be seen from the figure,
this system one may have an instability by heating fr
d
.

n-

l

below (M.0) as well as when heating from above (M
,0). When comparing the dispersion relations with tho
resulting from the full linear stability analysis including su
face deflections as considered in@24#, one finds that in the
region of the pattern-forming instabilityk>1 – 3.5 the two
curves are indistinguishable in a plot like Fig. 3. Differenc
show up only for small wave numbersk!1. Within the lin-
ear theory surface deflections for short wavelength mo
involved in the planform selection problem may therefo
safely be neglected. We expect that this holds true also in
weakly nonlinear regime.

Having obtained the dispersion relation we calculatekc by
minimizing Mc(k) and determine the critical Marangoni an
Rayleigh numbers of both fluids as well as the temperat
difference across both layers at the instability. The results
the setups under consideration are summarized in the u
part of Table I in Sec. V below.

Of all the parameters of the system the depth ratioa is the
only one that may easily be varied in experiments. For
parameters of setup 9 and a total depth of 4.5 mm we h
calculated the critical Marangoni number and the critic
wave number modulus as a function of the thicknessh(1) of
the bottom layer, restricting ourselves to the case of hea
from below but including the possibility of an oscillator
instability. The results are displayed in Fig. 4. For values
h(1) between 1.5 and 2.5 an oscillatory instability preced
the static one, which would occur at unusually large M
rangoni numbers only. A similar oscillatory instability wa
also found for a two-layer system in which the Marango
effect was neglected and pure buoyancy-driven convec
was considered, and an intuitive interpretation as a perio
change between viscous and thermal coupling of the fl
fields at the interface was given@14#.

Knowing the critical value ofM we can now also deter
mine the coefficients of the eigenvector corresponding to
zero eigenvalue. This fixes the functionsw0(z), u0(z),
W0(z), andQ0(z) up to an overall constant and complet
the determination ofw0 .

Finally, we have to consider the adjoint problem and

FIG. 3. Dispersion relationMc(k) as resulting from the linear
stability analysis for the hydrodynamic parameters of setup 5 lis
in Appendix A. The system shows an instability when heated fr
below (M.0) as well as one when heated from above (M,0).
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calculate its zero eigenfunctionw̄0 where we again restric
ourselves to the stationary instability. The adjoint opera
L1 is determined in Appendix B. The calculation of i
eigenfunction to the eigenvalue zero is very similar to
determination ofw0 described above. We find that it is of th
form w̄0 exp(ikn•r) where the components ofw̄0 may be
written as

w̄0~z!5(
i 51

6

w̄0ie
l i z, ū0~z!5cMkc

2(
i 51

6
w̄0i

l i
22kc

2 el izz,

~3.5!

W̄0~z!5(
i 57

12

w̄0ie
l i z, Q̄0~z!5

acMkc
2

x (
i 57

12
w̄0i

l i
22kc

2 el i z

~3.6!

with the same parametersl i as determined by Eq.~3.2! with
v50. The boundary conditions again give rise to a 12312
system of linear homogeneous equations for the coeffici
v̄0i . As before the condition for a nontrivial solution is
vanishing determinant of the corresponding matrix. No
however, that there is now no parameter to adjust. The
viation of the smallest eigenvalue of the matrix found in t
numerical calculation from zero therefore gives a valua
hint of the accuracy of the numerical procedure employe

IV. NONLINEAR ANALYSIS

The solution of the planform selection problem requir
treatment of the nonlinear interaction between different
stable modes. We restrict the nonlinear analysis to the c
of a static bifurcation. To include nonlinear terms up to t
third order in the amplitudesAn introduced in Eq.~2.37! we
have first to solve Eq.~2.34!. The general procedure is sta
dard; some intermediate steps are sketched in Appendi
Using this solution we are in the position to calculate t
terms appearing on the right hand side of Eq.~2.35!. We do

FIG. 4. Critical Marangoni number for a static~full line! and
oscillatory~dashed line! instability when heating from below a sys
tem with parameters as specified in setup 9 of Appendix A and t
depth 4.5 mm, as a function of the bottom layer thicknessh(1). Note
that bothM andk are scaled withh(1) @cf. Eqs.~2.14! and ~2.16!#.
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not have to solve this equation, but only need to know
solvability condition at this order. Due to thex-y integrals in
Eq. ~B9! and ther dependence ofw̄0 , only terms propor-
tional to exp(6ikn•r) give rise to nontrivial contributions to
the solvability condition. In fact, it is sufficient to focus o
terms proportional to exp(ik1•r) since these finally give rise
to an amplitude equation of the form~2.38! for A1 . Equiva-
lent equations for the other amplitudes of theAnsatz~2.37!
then follow from permutation and complex conjugation.

In order to collect the relevant terms we first realize th
there are contributions

A1eik1•rS cM2kc
2u0

0
acM2kc

2Q0

0
2M2kc

2u0uz50

D ,

A2* A3* eik1•rS cM1kc
2u1

0
acM1kc

2Q1

0
2M1kc

2u1uz50

D ,

]tA1eik1•rS 1

Pr
~w092kc

2w0!

u0

1

Pr
~W092kc

2W0!

Q0

0

D ~4.1!

originating from the terms2L2w0 , 2L1w1 , andT(w0), re-
spectively, in Eq.~2.35!. Here u1 and Q1 denote the solu-
tions obtained in Appendix C for the resonant term.

The contributions proportional to exp(ik1•r) from the last
two terms in Eq.~2.35! arise from combinations betwee
w0;exp(iq•r) andw1;exp(ip•r) with q1p5k1 . From the
continuity equation“•v50 and the absence of vertical vo
ticity (“3v)•ez50, we find

v0'5eiq•r
iq

q2 ]zw0 , v1'5eip•r
ip

p2 ]zw1 , ~4.2!

which gives rise to

2]z@“'•~v0•“ !v1'#1D'~v0•“ !w12]z@“'•~v1•“ !v0'#

1D'~v'•“ !w0

5eik1•rFk1•q

q2 w0-w11S k1•q

q2 2
q•p

q2p2 kc
2Dw09w18

1S k1•p

p2 2
q•p

q2p2 kc
2Dw08w191

k1•p

p2 w0w1-

1kc
2H S q•p

q2 21Dw08w11S q•p

p2 21Dw0w18J G ~4.3!
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TABLE I. Results for the critical temperature differenceDT over both liquids (DT.0 for heating from
below,DT,0 for heating from above!, the critical wave numberkc , the Marangoni and Rayleigh numbe
of both liquids at onset, the parameters of the amplitude equation~2.38!, the subcritical thresholdesub for the
hexagon pattern, its amplitudeAh at onset, the valueses at which squares become stable andeh at which
hexagons become unstable, and the Maxwell valueehms at which the potential~2.40! is the same for the
square and hexagon patterns for setups 1–8 as specified in Appendix A.

Results

Setup

1 2 3 4 5 6 7 8

DTc 0.749 1.030 0.485 21.474 2.901 21.241 1.469 0.989
kc 2.481 2.048 2.352 0.692 2.790 0.572 2.395 2.38
M 779 685 647 2872 2370 2450 1352 848
R 726 182 761 2137 530 242 623 710
M (2) 182 183 81 2416 692 2424 205 170
R(2) 171 20 20 2277 401 2330 62 56
g 0.340 0.494 0.340 20.543 0.4203 20.579 0.494 0.433
gh 1.212 1.275 1.232 1.386 1.194 1.353 1.173 1.18
gt 1.351 1.324 1.418 1.4436 1.467 1.323 1.110 1.14
gn 0.417 20.383 0.443 20.039 0.2379 20.612 20.693 20.4159
esub 20.008 20.017 20.008 20.020 20.013 20.023 20.018 20.014
Ah 0.100 0.139 0.098 0.144 0.124 0.156 0.148 0.12
es 0.125 0.038 0.114 0.081 0.108 0.024 0.0192 0.03
eh 3.850 0.334 6.892 0.984 12.05 0.240 0.112 0.16
ehms 0.277 0.074 0.281 0.162 0.272 0.050 0.036 0.06
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~v0•“ !u11~v1•“ !u0

5eik1•rFq•p

q2 w08u12
q•p

p2 w18u01w0u181w1u08G .
With the help of these relations it is now easy to determ
the remaining terms proportional to exp(ik1•r) from all the
possible combinations forq and p and the corresponding
results forw1 calculated in Appendix C.

Using the scalar product~B9! and the result forw̄0 , the
solvability condition at orderO(«3) can be formulated. It
contains a term proportional toM1A2* A3* which, by elimi-
nating M1 using the solvability condition~C11! at order
O(«2), is transformed into terms proportional touA2u2A1 and
uA3u2A1 . We then multiply the solvability condition at orde
O(«2) by «2 and the one at orderO(«3) by «3 and add them
together. Observing that«M11«2M25M2Mc , returning
to the original time by using«2]t5] t , and introducing the
scaled amplitudesÃn5«An , we eventually end up with an
amplitude equation of the form~2.38! with explicit expres-
sions for the parametersg, gh , gt , andgn .

V. RESULTS

The expressions forg, gh , gt , andgn are rather long and
will not be displayed. Moreover, due to the large number
parameters in the two-liquid system it is more appropriate
analyze some experimentally relevant parameter comb
tions rather than to display cross sections along various
rections of the parameter space. For the experimental se
1–8 specified in Appendix A the results of the nonline
analysis are summarized in the middle part of Table I.
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In order to finally address the planform selection proble
we first note that squares are consistently described b
third-order amplitude equation only if 11gn.0. Otherwise,
the third-order term is not saturating and higher orders h
to be included, which appears to be quite involved. Con
quently the present approach can describe only square
terns bifurcatingsupercritically from the basic state.

Similarly, one must have 112gh.0 in order to have the
hexagon pattern stabilized by the third-order term. Unlike
square and roll patterns, however, hexagons appearsubcriti-
cally at esub52g2/4(112gh). The small amplitude solution
is always unstable.

A detailed linear stability analysis of the roll, square, a
hexagon solutions of the amplitude equation~2.38! reveals
the following @29,16#. Rolls are stable ifgh.1, gt.1, gn
.1, ande.e r5g2/(12gh)2. Squares are stable if 11gn
,gh1gt , gn,1, and e.es5g2(11gn)/(11gn2gh
2gt)

2. Hexagons are stable for alle.esub if gh,1 and 1
12gh,gn12gt . If gh.1 they become unstable fore
.g2(21gh)/(12gh)2; if 1 12gh.gn12gt this happens
for e.g2(gn12gt)/(112gh2gn22gt)

2. The value ofe at
which hexagons lose their stability will be denoted byeh . As
is seen from these conditions, squares and rolls are mutu
exclusive whereas hexagons may coexist with either squ
or rolls. To locate the transition between patterns that
both locally stable the Maxwell value ofe at which the po-
tentialF defined in Eq.~2.40! has the same value for the tw
planforms under consideration is of interest@30#. For the
setups considered in this paper only the Maxwell value
the transition between hexagons and squares is relev
which we denote byehms. The special values ofe defined
above together with the amplitudeAh of the hexagon pattern
at onset for setups 1–8 are collected in the lower part
Table I.
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For the parameters of setup 9 and a total depth of 4.5
we have again scanned the dependence of the results o
nonlinear analysis on the thickness of the bottom layer
the case of heating from below. Figure 5 shows the coe
cients of the amplitude equation~2.38! as functions ofh(1).
The most apparent feature is the strong sensitivity of
coefficients to variations of the depth ratio. In experime
the depth must therefore be controlled very accurately
order to allow sensible comparison with the theory. The s
tem under consideration shows a transition from up to do
hexagons when varying the depth ratio, as can be seen
the change of sign ofg.

Finally in Fig. 6 the dependence ofeh andesub on h(1) is
displayed. Again a strong sensitivity to the depth ratio
observed. Note that since they are the result of a perturba
expansion ine values ofeh substantially larger than 1 are no
reliable.

VI. DISCUSSION

In the present paper a weakly nonlinear analysis
Bénard-Marangoni convection in systems of two superi
posed liquids has been developed. A consistent treatme
the full hydrodynamics and heat conduction in both lay
was performed. As a crucial simplifying ingredient of o
approach we have used the assumption of an undistu
interface between the liquids. Comparison with the comp
linear stability analysis including interface deflections
veals that this approximation is extremely good for a patte
forming instability occurring at not too long wavelength
We have considered the planform selection problem by
termining the relative stabilities of roll, square, and hexag
patterns. To this end the coefficients of an appropriate
plitude equation were calculated as functions of the hyd
dynamic parameters by a perturbation theory in the am
tude of the unstable mode. Explicit results have be
obtained for nine specific setups that have recently been

FIG. 5. The parametersgh ~full !, gt ~dashed!, gn ~dotted! andg
~dashed-dotted! of the amplitude equation~2.38! as functions of the
thicknessh(1) of the bottom layer for setup 9 with a total laye
depth of 4.5 mm and heating from below. For 1.5 mm&h(1)

&2.5 mm the oscillatory instability precedes the static one.
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vestigated experimentally. Since the system is, on the
hand, characterized by nine dimensionless parame
whereas it is, on the other hand, very hard to find two rea
immiscible fluids to perform the experiments, this seems
be the most sensible way to theoretically investigate the
culiarities of a system that may also be seen in experime

For all setups considered we found 112gh.0, which im-
plies that for hexagons the cubic term is able to stabilize
linear instability. The hexagon pattern occurs subcritically
esub,0. Strictly speaking, a backward bifurcation leading
a finite amplitude immediately at onset invalidates our p
turbationAnsatz~2.29! @31#. However, the size of the sub
critical region as well as the amplitude of the hexagon p
tern at onset were found to be rather small for all setu
investigated. This is in accordance with experiment in wh
it is usually impossible to see the subcritical hysteresis at
@23#. Hence, with the amplitude of the pattern at onset be
small, our perturbationAnsatzshould still be a good approxi
mation for what really happens and the results obtain
should be rather accurate.

For all setups we foundgh.1 and 112gh.gn12gt ,
implying that the hexagon pattern does not remain stable
arbitrarily largee. The valueeh at which hexagons becom
unstable as obtained within our perturbative analysis is r
able only if it is not too large. Common experience sugge
that the values are trustworthy if they are smaller than 1

Another general result for all setups studied is thatgn
,1, excluding rolls as stable planforms at threshold. We fi
for all setupses,eh , indicating that hexagons and squar
coexist for a given interval ofe. The general situation is
hence as shown for setup 7 in Fig. 7.

All values foreh andes found arestrictly positive, imply-
ing that exactly at onset our analysis always predicts he
gons as the only stable planform. This is in accordance w
what was found experimentally for setups 1–6. For setup
and 8 squares at onset were seen in the experiment. T

FIG. 6. The values ofeh at which hexagons become unstab
andesub at which hexagons appear subcritically as functions of
thicknessh(1) of the bottom layer for setup 9 with a total laye
depth of 4.5 mm and heating from below. Note the different sca
for positive and negative values at the vertical axis. For 1.5 m
&h(1)&2.5 mm the oscillatory instability precedes the static one
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setups are characterized by rather small values ofeh and
extremely small values ofes . Note in this connection that in
@32# the transition from hexagons to squares in an exp
ment with a single fluid layer was reported to occur ate
>4.2 with the theoretical value resulting from a numeric
integration of the Navier-Stokes equation being even high
For setups 7 and 8 we would hence predict theoretically
immediately above onset squares become stable and tha
somewhat largere the hexagon pattern loses stability. It
then quite conceivable to observe experimentally a mixt
of squares and hexagons immediately at onset. Note tha
theoretical analysis treats only perfect patterns, hardly oc
ring in the experiment, and that due to boundaries and im
rities a nucleation of square patches may set in well be
eh is reached. This is also plausible from the small values
the Maxwell valueehms. Altogether, we therefore claim tha
our results for setups 7 and 8 are in good agreement with
experimental finding of squares at onset. For both setup
secondary transition from squares to rolls was found exp
mentally, which we fail to reproduce theoretically. The re
son for this discrepancy may be that the transition occ
outside the validity of our perturbation approach.

The detailed comparison between our theoretical and
corresponding experimental results for the other setups i
follows. For setup 1 a hexagon pattern is found experime
tally at e>0.28@Fig. 7~a! in @23##, consistent with the theory
which finds both hexagons and squares stable for this v
of e. In setup 2 a mixture of hexagons and squares is found
e>1.72 @Fig. 7~b! in @23##, whereas the theory exclude
hexagons and predicts squares as the only stable planf
This difference may be related to the rather large value oe.
For setup 3 the experiment finds hexagons for 0,e,0.27
~Fig. 8 in @23#!, again consistent with theory, which predic
squares to be only metastable fore,ehms>0.28. The same
holds true for setup 5@Fig. 12~b! in @23##, in which the ex-

FIG. 7. Amplitudes of the hexagon~full line!, square~dashed
line!, and roll ~dash-dotted! patterns as functions of the criticalit
parametere for the planform selection problem corresponding
setup 7 as specified in Appendix A. The dotted parts of the cur
denote unstable solutions; the roll pattern is always unstable.
square on thee axis gives the valueehms for which the hexagon and
square planforms realize the same value of the potentialF defined
in Eq. ~2.40!.
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periment gives hexagons ate>0.136 and theory predicts
squares to be metastable up toe>0.27. For the two setups
with heating from above, namely, setups 4 and 6@Figs. 12~a!
and 13, respectively, in@23##, the experimentally found hexa
gon planform is at variance with theory. At the relevant v
ues e>1.56 ande>1.8, respectively, hexagons should a
ready be unstable. Again the discrepancy between theory
experiment occurs for rather largee. Also, patterns with
heating from above were very difficult to obtain experime
tally and the values ofe given for the experiments may no
be very accurate@33#.

For setup 9 the dependence of the several parameter
termining the planform on the depth ratio was the main foc
of the investigation. As shown in Figs. 5 and 6 the para
eters of the amplitude equation and the special valuese
resulting from them may depend very sensitively on t
depth ratio. Since the latter cannot be controlled with ar
trary precision in experiments, comparison with theory
ways needs some care. As for setups 7 and 8, one finds
setup 9 that for someh(1) the values ofeh can be so small
~cf. Fig. 6! that it is again easily conceivable to miss th
hexagonal pattern completely in the experiment and to
serve squares as the first pattern after the instability in ac
dance with the experimental findings. Note in this connect
that together witheh the absolute value ofesub characteriz-
ing the subcritical stability region of the hexagon planfor
also gets very small, such that hexagons exist only in
extremely small window around criticality.

The oscillatory instability found for setup 9 was also d
tected in the experiment@23# for h(1)>1.8 mm, in accor-
dance with Fig. 4. The experimental values for the critic
Marangoni number and the wavelength and frequency of
oscillatory mode are in satisfactory agreement with the lin
theory as already discussed in@23#.

The sign ofg is related to the detailed convection patte
of the hexagon planform. Forg.0 the hexagons in the
lower fluid are up hexagons~liquid rises in the center! and
the ones in the upper layer are down hexagons. Forg,0 the
situation is reversed. We do not know of experimental res
concerning this feature for the two-liquid Marangoni pro
lem.

The remaining discrepancies between theoretical and
perimental findings might be due to the perturbative char
ter of our derivation. In particular, there is the possibility
so-called asymmetric squares in pattern-forming hydro
namic systems@34#, which, bifurcatingdiscontinuouslyfrom
the quiescent state, do not show up in a perturba
approach.1 At the moment it is not clear whether these pa
terns can already be expected at the small values of the
rametere used in the experiments. Since the flow pattern
asymmetric squares is rather different from that of conv
tional squares it might be possible to clarify experimenta
which form of squares has been observed.
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TABLE II. Substances, depths, and interface tensions for the nine setups analyzed in this paper.
characterization of the liquids used see Table III below.

Setup

Bottom layer Top layer

ds/dT
~N/mK! Heating fromSubstance

Depth
~mm! Substance

Depth
~mm!

1 HT 135 1.91 silicon oil 5cS 2.69 27.331025 below
2 HT 135 1.02 silicon oil 2cS 0.87 27.331025 below
3 HT 135 2.14 silicon oil 5cS 2.21 27.331025 below
4 HT 70 0.80 silicon oil 5cS 2.26 27.331025 above
5 HT 70 0.95 silicon oil 5cS 2.11 27.331025 below
6 HT 70 0.61 silicon oil 5cS 2.45 27.331025 above
7 HT 70 1.02 water 2.22 24.131025 below
8 FC 75 1.28 water 2.78 24.7331025 below
9 Acetonitrile h(1) n-hexane 4.52h(1) 2131024 below
us
ef
t b
ity
o
tif
te
s

ic
e
n-
a
re
he
b

re
is
th
he

t
e

on-
to

or
Busse, S. W. Morris, and W. Pesch for interesting disc
sions and Jean Bragard and Wayne Tokaruk for very us
correspondence. Part of the work was done during a visi
A.E. at the Center for Nonlinear Dynamics at the Univers
of Texas at Austin. He would like to thank all members
the Center for their kind hospitality and the Volkswagens
tung for financial support. The work of J.B.S. was suppor
by the NASA Office of Life and and Microgravity Science
Grant No. NAG3-1839.

APPENDIX A: PARAMETER VALUES

This Appendix provides the values of the hydrodynam
parameters used in the explicit calculations of the pres
paper~Table II!. All nine setups correspond to experime
tally relevant combinations. Experiments with setups 1–7
discussed in@23#; setup 8 was used in the experiments
ported in @22#. The dependence of the instability and t
planform on the depth ratio was experimentally studied
Juel @33# using setup 9. Note that the value ofds/dT is
difficult to determine experimentally; the values given a
therefore rough estimates or fitted from the linear analys

Table III contains the hydrodynamic parameters for
different liquids used. More details are to be found in t
original experimental papers@23# and @22#.

APPENDIX B: OPERATOR EXPANSION AND ADJOINT
PROBLEM

The decomposition~2.32! of the linear operator is no
completely straightforward for the Marangoni problem b
-
ul
y

f
-
d

nt

re
-

y

.
e

-

cause the bifurcation parameterM occurs not only in the
linear operator but also in the corresponding boundary c
ditions. A transparent way to deal with the situation is
include the boundary condition involvingM into the operator
L @7#, which is then written in the form

L5S D2 cMD' 0 0 0

1 D 0 0 0

0 0 nD2 acMD' 0

0 0 1/k xD 0

]z
2uz50 0 2h]z

2uz50 0 2MD'

D ,

~B1!

acting now on the correspondingly augmented state vect

w5S w
u
W
Q

uuz50

D . ~B2!

The operator is completed by the boundary conditions

w5]zw5u50 at z521, ~B3!
TABLE III. Hydrodynamic parameters for the different liquids investigated.

Substrate
r

~kg/m3!
n

(1026 m2/s)
k

~J/ms K!
cp

~J/kg K!
a

(1028 K)

HT 70 1680 0.5 0.07 962 1.10
HT 135 1730 1.0 0.07 962 1.10
Silicon oil 5cS 920 5.0 0.117 1590 1.05
Silicon oil 2cS 873 2.0 0.109 1713 1.17
FC 75 1760 0.945 0.0635 1046 1.40
Water 998 1.0 0.60 4182 0.207
Acetonitrile 776 0.476 0.188 2230 1.41
n-hexane 655 0.458 0.120 2270 1.41
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w5W50, ]zw5]zW, u5Q, ]xu5k]zQ at z50, ~B4!

W5]zW5Q50 at z5a, ~B5!

which differ from Eqs.~2.23!–~2.25! just by the omission of the boundary condition involvingM. We now easily find

L05S D2 cMcD' 0 0 0

1 D 0 0 0

0 0 nD2 acMcD' 0

0 0 1/k xD 0

]z
2uz50 0 2h]z

2uz50 0 2McD'

D , ~B6!

L15S 0 cM1D' 0 0 0

0 0 0 0 0

0 0 0 acM1D' 0

0 0 0 0 0

0 0 0 0 2M1D'

D , ~B7!

and

L25S 0 cM2D' 0 0 0

0 0 0 0 0

0 0 0 acM2D' 0

0 0 0 0 0

0 0 0 0 2M2D'

D , ~B8!
co

s to

iate
where all three operators are completed by the boundary
ditions ~B3!–~B5!.

The adjoint operator is defined bŷw̄uLw&5^L1w̄uw&.
Introducing the scalar product

^w̄uw&5 lim
L→`

1

L2 E
2L/2

L/2

dxE
2L/2

L/2

dyF E
21

0

dz~w̄* w1 ū* u!

1E
0

a

dz~W̄* W1Q̄* Q!1]zw̄* uz50uuz50G , ~B9!

we find after some partial integration thatL1 is given by

L15S D2 1 0 0 0

cMD' D 0 0 0

0 0 nD2 1/k 0

0 0 acMD' xD 0

0 2]zuz50 0 x]zuz50 2MD'

D
~B10!

acting on the augmented vector
n-

w̄5S w̄

ū

W̄

Q̄
]zw̄uz50

D ~B11!

and completed by the boundary conditions

w̄5]zw̄5 ū50 at z521, ~B12!

w̄5W̄50, ]zw̄5
1

r
]zW̄, ]z

2w̄5n]z
2W̄,

ū5
x

k
Q̄ at z50, ~B13!

W̄5]zW̄5Q̄50 at z5a. ~B14!

It is, of course, possible to transform back the last line ofL1

into a boundary condition and this is indeed advantageou
determinew̄0 explicitly; however, for use in the solvability
conditions the above augmented form is the most appropr
one.
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APPENDIX C: THE O(«2) PROBLEM

In this appendix we solve Eq.~2.34! for the case of a
static instability. From the termN(w0 ,w0) and the structure
~2.37! of w0 it is clear that the right hand side of this equ
tion will contain several terms with different exponential fa
tors of the form exp@i(6kn6km)•r#. Because of the linearity
of the equation we may solve it separately for all these te
in the inhomogeneity.

Let us start with the so-callednonresonantterms in which
the anglef between6kn and6km is different from 2p/3. It
is clear then from thex, y integrals in Eq.~B9! that for these
terms^w̄0uN(w0 ,w0)&50. In view of Eq.~B7! the solvabil-
ity condition boils down toM150 and hence removes th
L1w0 term from the inhomogeneity of Eq.~2.34!. Using the
form ~2.37! of w0 we therefore find as equations forw1

D2w11cMcD'u15AnAmei ~6kn6km!•r
2

Pr
„@11cos~f!#

3$w0-w01@122 cos~f!#w08w09%

22kc
2 sin2~f!w0w08…,

w11Du15AnAmei ~6kn6km!•r2@w0u082cos~f!w08u0#,

nD2W11acMD'Q15AnAmei ~6kn6km!•r
2

Pr
(@11cos~f!#

3$W0-W01@122 cos~f!#W08W09%

22kc
2 sin2~f!W0W08),

1

k
W11xDQ15AnAmei ~6kn6km!•r2@W0Q082cos~f!W08Q0#,

where the prime denotes differentiation with respect toz.
SinceM150 the boundary conditions completing this set
equations are given by Eqs.~2.23!–~2.25! with M5Mc .

The solution of these equations is of the formw1
5AnAmw1(z)exp@i(6kn6km)•r#. We first determine a solu
tion of the inhomogeneous equations using theAnsätze

w1
inh~z!5 (

i , j 51

6

w1i j e
~l i1l j !z, u1

inh~z!5 (
i , j 51

6

u1i j e
~l i1l j !z,

~C1!

W1
inh~z!5 (

i , j 57

12

w1i j e
~l i1l j !z, Q1

inh~z!5 (
i , j 57

12

u1i j e
~l i1l j !z,

~C2!

which give rise to algebraic equations for the coefficie
w1i j , u1i j , W1i j , and Q1i j in terms of w0i and l i . This
solution does not yet satisfy the boundary conditions.
therefore add an appropriate solution of the homogene
equation, which is written in the form
s

f

s

e
us

w1
hom~z!5(

i 51

6

w1i
homel̃ i z,

u1
hom~z!52(

i 51

6 w1i
hom

l̃ i
222kc

2@11cos~f!#
el̃ i z, ~C3!

W1
hom~z!5(

i 57

12

w1i
homel̃ i z,

Q1
hom~z!52

1

kx
(
i 57

12 w1i
hom

l̃ i
222kc

2@11cos~f!#
el̃ i z, ~C4!

with l̃ i satisfying

$l̃ i
222kc

2@11cos~f!#%3

5H 22cMckc
2@11cos~f!# for i 51,...,6

22
a

knx
cMckc

2@11cos~f!# for i 57,...,12.

~C5!

Note thatl̃ iÞl i . Therefore the determinant of the matrix
the inhomogeneous set of linear equations forw1i

hom is differ-
ent from zero and the solution is unique. Note also that
f5p the procedure can be simplified sincew1(z)5W1(z)
50.

As for the resonantterms arising from the interaction o
modes with an anglef52p/3 between their respective6k
vectors, let us focus on the one proportional to exp(ik1•r). It
is has one contribution proportional toA1 stemming from
2L1w0 and another one proportional toA2* A3* originating
from N(w0 ,w0) in Eq. ~2.34!. Using L1 as defined by Eq.
~B7!, the resulting equations are of the form

D2w11cMcD'u15eik1•r
A2* A3*

Pr
~w0-w012w08w09

23kc
2w0w08!1A1cM1kc

2u0 , ~C6!

w11Du15eik1•rA2* A3* ~2w0u081w08u0!, ~C7!

nD2W11acMD'Q15eik1•r
A2* A3*

Pr
~W0-W012W08W09

23kc
2W0W08!1A1acM1kc

2Q0 ,

~C8!

1

k
W11xDQ15eik1•rA2* A3* ~2W0Q081W08Q0!. ~C9!

The boundary conditions are again given by Eqs.~2.23!–
~2.25! except for the one containing the Marangoni numb
which is modified to@cf. Eq. ~B7!#
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]z
2w12h]z

2W12McD'u152A1eik1•rM1kc
2u0 at z50.

~C10!

Due to the resonant factoreik1•r the terms arising from
N(w0 ,w0) are not automatically perpendicular tow̄0 , and
using Eq.~B9! the solvability condition acquires the non
trivial form

05A2* A3* F E
21

0

dzS w̄0*

Pr
~w0-w012w08w0923kc

2w0w08!

1 ū0* ~2w0u081w08u0! D 1E
0

a

dzS W̄0*

Pr
~W0-W012W08W09

23kc
2W0W08!1Q̄0* ~2W0Q081W08Q0! D G

1A1cM1kc
2F E

21

0

dzw̄0* u01aE
0

a

dzW̄0* Q0

2
1

c
]zw̄0* uz50u0uz50G . ~C11!

We use this equation to replace the terms involvingM1 in
Eqs. ~C6!–~C9! and in the boundary condition~C10!. The
solutions to these equations can then be written in the f
A2* A3* w1(z)eik1•r. Again, we first determine a particular so
lution of the inhomogeneous equations by using theAnsätze

w1
inh~z!5 (

i , j 51

6

w1i j e
~l i1l j !z1(

i 51

6

w1izel i z,

u1
inh~z!5 (

i , j 51

6

u1i j e
~l i1l j !z1(

i 51

6

~u1iz1 ũ1i !e
l i z,

W1
inh~z!5 (

i , j 57

12

w1i j e
~l i1l j !z1(

i 57

12

w1izel i z,

Q1
inh~z!5 (

i , j 57

12

u1i j e
~l i1l j !z1(

i 57

12

~u1iz1 ũ1i !e
l i z.

To satisfy the boundary conditions we add a solution of
homogeneous equations which must be of the form@cf. Eqs.
~3.3!, ~3.4!#
ft,
m

e

w1
hom~z!5(

i 51

6

w1i
homel i z, u1

hom~z!52(
i 51

6 w1i
hom

l i
22kc

2 el i z,

~C12!

W1
hom~z!5(

i 57

12

w1i
homel i z,

Q1
hom~z!52

1

kx (
i 57

12 w1i
hom

l i
22kc

2 el i z. ~C13!

The boundary conditions give rise to aninhomogeneoussys-
tem of linear equations for the coefficientsw1i

hom with the
same singular matrixA that appeared in the linear stabilit
analysis. Due to the solvability condition~C11!, however,
the inhomogeneity of this set of linear equations is perp
dicular to the zero eigenvector of the adjoint problem a
therefore the system admits solutions. Their numerical de
mination is most conveniently done by using the singu
value decomposition of the matrixA @35#. This method
yields an approximate solution even if the solvability con
tion is not fulfilled exactly, which will always be the cas
due to numerical errors. Moreover, the so-called resid
quantifying the deviation from the exactly solvable ca
gives another check on the numerical accuracy of the wh
procedure.

Finally, the solution forw1i
hom obtained in this way is not

unique since one can always add a solution of the homo
neous equations. We will enforce the additional constrain

05~w0uw1!ª lim
L→`

1

L2 E
2L/2

L/2

dxE
2L/2

L/2

dyF E
21

0

dz~w0* w1

1u0* u1!1E
0

a

dz~W0* W11Q0* Q1!G ~C14!

to remove this ambiguity. The rationale behind this requi
ment is as follows. Assume that we knew the exact solut
w of the full nonlinear problem. According to Eqs.~2.29! and
~2.37! we wantAn to be the amplitude of the contribution t
w proportional to exp(ikn•r), i.e., (exp(ikn•r)w0(z)uw)
5«An . Using the expansion~2.39! for w, this results in
(w0uw l)50 for all l>1. Note the use of different scala
products in Eqs.~C14! and ~B9!.

This completes the solution of theO(«2) equations. The
results are specified by the various matricesw1i j , w1i ,
w1i

hom, u1i j , u1i , ũ1i , andu1i
hom.
t,
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