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Correlation between the Kolmogorov-Sinai entropy and the self-diffusion coefficient
in simple liquids
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Molecular dynamics simulations were performed for soft- and hard-sphere systems, for number densities
ranging from 0.5 to 1.0, and the Kolmogorov-Sinai entrgi entropy and self-diffusion coefficients were
calculated. It is found that the KS entropy, when expressed in terms of average collision frequency, is uniquely
related to the self-diffusion coefficient by a simple scaling law. The dependence of the KS entropy on average
collision frequency and number density was also explored. Numerical results show that the scaling laws
proposed by Dzugutov, and by Beijeren, Dorfman, Posch, and Dellago, can be applied to both soft- and
hard-sphere systems by changing to more generalized forms.

PACS numbsgps): 61.20.Ja, 05.45:a, 05.70.Ce

[. INTRODUCTION nomenon is characterized in terms of the set of Lyapunov
exponents\; (I1=1,...,8N), usually ordered from largest to
Studies by Hoover, Posch, and co-workéis-4] pio- smallest. KS entropy is a measurement of the time rate of
neered the numerical calculation of Lyapunov exponents foinformation loss as a chaotic phase-space trajectory evolves
molecular dynamics simulation. The Lyapunov spectrajn phase space. Since KS entropy has the dimensionality of
which provide useful information characterizing the degreeinverse time, its description requires a universal time scale.
of chaos present in dynamical systems, have been exteifhe most natural time scale in atomic dynamics is the aver-
sively investigated for simple fluids through numerical andage collision frequency, which can be defined in a system
theoretical studies. Progress has been made to the point thafthard spheres as
the second law of thermodynamics and macroscopic irrevers-
ibility can be explained with these quantiti€s]. Further-
more, their relations to the transport coefficients or the ther-
modynamic entropy in the condensed phase are now an
important issué6]. In an intriguing paper by Dzugutdw], = whereo the is effective atomic diameter apds the number
the self-diffusion coefficient in simple atomic condensed sysdensity defined ag=N/V [11]. For the case of a soft poten-
tems, expressed in terms of the frequency of atomic collitial we defineo as the position of the first maximum of the
sions, was shown to be related to thermodynamic entropy bgair correlation functiorg(r). In this study, we examine the
a universal scaling law. In later studies, Dzugutov, Aurell,relationship between the values of the KS entropy and the
and Vulpiani[8] numerically examined the connection be- self-diffusion coefficientD for soft- and hard-sphere fluids,
tween the Kolmogorov-SingKS) entropy and the thermo- respectively, for various number densitigsanging from 1.0
dynamic excess entropy obtained by the thermodynamic into 0.5; this essentially includes the entire liquid regime up to
tegration method; the authors found that there exists a linearear solidification. In Sec. Il we briefly describe the numeri-
relationship between these two quantities. However, the theical methods for the evaluation of the time evolution of
modynamic entropy obtained by Dzugutov in Réf], which  many-body systems in phase space and in tangent space. In
is restricted to the two-particle approximation, showed aSec. Ill we present our results and discuss the behavibr of
large deviation from that obtained by the thermodynamicwith respect tchyg, in addition to the relation betweédng
integration method. It should be noted that the values otind the average collision frequeney Our conclusions fol-
excess entropy restricted to the two-particle approximatioriow in Sec. IV.
are not reliable in dense fluids. Moreover, the numerical val-
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ues of th_e self-diffusion coefficients do not seem to be con- Il. DESCRIPTION OF THE MODEL
sistent with those proposed by Speé8y or Erpenbeck and
Wood[10]. Simulations were performed for three-dimensional classi-

Since the basic underlying dynamical processes of diffucal systems consisting &f identical particles with mass in
sion are collisions between particles with convex potentiap volumeV with periodic boundary conditions. Then, the
surfaces, the phase-space trajectory is highly unstable due @sjuations of motion for the state vectb(t) were conve-
its sensitive dependence on the initial conditions. This pheniently written as an autonomous system of first-order differ-

ential equations by

* Author to whom correspondence should be addressed. f‘(t)= G(I'(t)), 2
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where numerical computation of Lyapunov spectra of differentiable
dynamical systems, the method of Benettinal. [13,14] is
L(t)=(ry(t),ro(t), ... rn(t),pa(t),pa(t), ... pn(L)). standard. By linearizing the equations of motion the time

evolution of a complete set of tangent vectors can be ex-

For a system with continuous interaction potential, we used ﬁressed as

short-range purely repulsive soft potential with the form
a(=MT(1)FMH+O(& (1) (I=1,....8N), (5

(0.1 2ng (0_/

' ' whereM (T'(t))=aG(I'(t))/dT(t) is the stability matrix and
which has no second derivative at the cutoff distance?®(t) is the infinitesimal tangent vector between the reference
21Ng' The Weeks-Chandler-AndersofWCA) potential tr_ajectory a_md the perturbed trajectoryN @& (t) vectors con-
corresponds ta,=6. Throughout this paper we have used S'St of basis vectors of the tangent space. _

the usual reduced units: distance made dimensionless by di- "€ time evolution of the hard-sphere system in tangent
viding by o', energy and temperature made dimensionlesSPace involves hard elastic collisions of particles. To take

P Cfi ; : hese collisions into account, a generalization of Benettin's
by dividing by the characteristic interaction energgefined t : . : ' . .
in Eq. (3), and time made dimensionless by dividing by method is required. Briefly, the hybrid method of ordinary

(ma?/€)Y2. The equations of motion are integrated with g differential equations and discrete maps was developed by
fourth-order Runge-Kutta algorithm with a time steyt DeIIa_go and quclﬁlS] to describe hard-sphere dynamics.
—0.001. The initial temperature was set sufficiently high toThe time evolution of the complete set of tangent vectors for

obtain a random configuration; then velocities were repeathard—sphere systems is

edly scaled to adjust to the required temperature within a 1% e JF

deviation. Once the required temperature was obtained, itera- & =—= 8+| == G(I') —G(F () | 677, (6)

tions over 2< 10° time steps were performed to reach equi- ar ar

librium. After equilibrium was obtained, we iterated for 1

x 10P time steps corresponding to ®lBme units to evaluate Where St is the time delay between collisions in the refer-

static and dynamic properties. Energy was conserved with a@nce system and in a satellite system displaced byF/oI"

accuracy of one part in 20over an entire run of typically is the matrix of the derivative df. For a detailed description

10° time units. of the model and the computational techniques, we refer the
On the other hand, for hard-sphere systems the equatiorigader to Ref[15] for hard spheres and Refd,2] for soft

of motion are no longer written as a continuous form. Be-spheres.

tween collisions, the particles move in a straight line; when- The Lyapunov exponents are obtained from

ever two particles collide, the smooth streaming is inter-

rupted by elastic collisions which are discontinuous events. N EI |&(1)]

This can be represented by the following discrete map: 1= imen |&(0)]

Ng

V(r)=4e +¢, 3

r ) (I=1,...,6N). (7)

t—oo

f_ i
=Fa, @ According to the Pesin formulgl6], KS entropyhgs is de-

where the superscripisand f indicate the initial and final fined as the sum of all positive Lyapunov exponents in a
states of magF specifying the action of instantaneous eventsclosed system,
on phase vectol'. F is differentiable with respect to the
phase-space coordinates. _ hys= E A ®)

To calculate the Lyapunov spectra, we consider a bundle Xi>0
of trajectories that start at infinitesimally nearby points in
phase space, with each trajectory in the bundle denoted bihe calculation of the Lyapunov exponents is the most time-
I'(0)+ &(0) for some infinitesimalg(0) (I=1,... N). consuming step, so we considered a system of 32 atoms
The time rate of separation for this trajectory bundle in vari-moving in a rectangular periodic box for this calculation.
ous directions perpendicular to the direction flow, if expo-The question of particle-number dependence of KS entropy
nential, is characterized by a set of nonzero Lyapunov expoper particle still remains to be answered. However, our cal-
nents that are positive in expanding directions and negativeulations for the soft-potential case show that the differences
in contracting ones. According to Oseledd@], there are in the values ohyg/N are negligible between a system with
6N orthogonal initial vectors yielding a set of exponents re-N=32 and one withN=64. For example, afp=0.92,
ferred to as the Lyapunov spectrum of the system. Theshys/N=5.08 for bothN=32 andN=64. The computations
exponents are independent of metric and initial conditions. Irfor the hard-sphere system are much more efficient, so we
a Hamiltonian system, phase volume is conserved, and ceadoptedN =64 for the calculation of the Lyapunov expo-
tain directions must be exactly compensated for by contracrents. We also confirmed that for hard spheres the value of
tion in other directions. Furthermore, due to the symplectichys/N shows no difference between the results for the sys-
nature of the equations of motion, the Lyapunov exponentsems withN=64 andN =108, as observed by van Beijeren
appear in pairs of equal magnitude and opposite signs. In et al.[17].
system of & dimensions, the conservations of total energy, To obtain the self-diffusion coefficielt, the Green-Kubo
total momentum, center of mass, and natural behavior in théermulation[18—2(, expressed as the integrated velocity au-
flow direction cause eight exponents to disappear. For theocorrelation functionVACF), was used



6518 PANG, SHIN, IHM, LEE, AND KUM PRE 62

D= lim lim ftC(T; N)dr, 9
0

N—o t—o
whereC(7;N)=3N ,(v;(0)-v;(7))/3N, with v;(t) a veloc-
ity of a given particle. Due to the periodic boundary condi-
tions imposed in the simulation, the size dependence of the
VACF over the finite range of dynamical time accessible in
the calculations was rather strong. The relatively small num-
ber of particlesN does not allow the coexistence of the two

phases, and the system is in either the solid or liquid phase. 00 L . L 1 1
Furthermore, the periodic boundary conditions enhance the 0.6 0.7 0-5 0.9 1.0
formation of the solid phase. If each simulation starts from a p

regular configuration with the particles arranged on a fcc

lattice (simulation A), the formation of the solid phase is FIG. 1. Self-diffusion coefficienD, normalized with respect to
more likely to occur in the two-phase region. On the otherthe Enskog-theory diffusion coefficiefite, as a function of den-
hand, if the simulation starts with an initial configuration Sity. Squares correspond to a soft-sphere system with WCA poten-
obtained by cooling the fluid state of higher temperaturdidl; diamonds correspond to a hard-sphere systdS); the solid
(simulation B, an extension of the fluid branch toward line is the empirical expression of the EW formul@*(=0.7).

higher density would be expected. We performed both simu- . . .

lations A and B withN=500. The self-diffusion coefficients __1he value ofD is sensitive to both the size and phase of
obtained from simulation A suddenly dropped to essentiall)fhe sys_;t'em, whereas the KS entropy per partlc!e seems to be
zero fromp=0.92, because of the early formation of a Solidmsensmve to both factors. Our num.erlcal studies shqw that
structure enhanced by the periodic boundary conditions. ogimulation B cannot generate the fluid phasedor0.9 with

the other hand, those obtained from simulation B changed) — 32 due to the periodic boundary conditions. Instead, the
smoothly asp increased beyond 0.92, showing that the Sys_|naI stru_ctures alw_ays _result in p_e_rlodlc solid structures; cor-
tem was still in a fluid state. Thus, simulation B is more responding self-diffusion coefﬂqents become gssentlally
suitable to reduce possible size effects, especially near thero dge to the small system Size. However, witk:64,
phase boundary when the simulation is performed with g mulation B can generate the liquid phase fer0.92, and
relatively small number of particles. As expected, the nu-N€ corresponding value @ is 0.0201, which can be con-
merical values oD (obtained from simulation Bfor hard ~ Sidered that of the liquid phase. Stifixs/N (=5.08) for
spheres showed a perfect match with those found by Aldef\=64 is essentially identical to the value fd{=32
Gass, and WainwrightAGW) [21], since both are based on (hks/N=5.08; see Table)l

molecular dynamic§MD) calculations for systems of 500

particles. But the values @ for the soft-sphere system with [ll. RESULTS AND DISCUSSION

the WCA interaction potential were consistently above the
estimates by AGW; this seems to be attributable to the facg
that the effective diameter for the soft sphere defined as thﬁp
first maximum of theg(o) was overestimated. Recent work _X
by Erpenbeck and WoodEW) [10] extended the AGW
study with respect to system-size dependence and the lon
time tail effect of VACF, and presented an improved formula
for the self-diffusion coefficient. In Fig. 1, the calculated 1,5 £ | Numerical results for the KS entropy and the self-
sglf—diffusion qoefﬁCient.s for har.d spheres. and S.Oft Sphereﬁiﬁ‘usion coéfficients for the WCA potential and hard sphé&i¢S),
with the WCA |nteratom|c_ potgntlal, no_rrr_1al|zed with respect jpiained through simulation B.

to the Enskog-theory diffusion coefficient, are compared

with the EW expression. The formula by Erpenbeck and WCA HS

Wood can be written as

For the system with WCA interaction potential corre-
onding tony=6 in Eq. (3), the KS entropy per particle

s/N shows a single maximum at=0.625, and vanishes

at very low or high density, whereas the KS entropy per
article divided by the average collision frequency shows a
teady decrease as density increases. These results are con-

P thlN D P thlN D

D/Dg=1+0.003 828 013* +3.381 828 p*? (N=32) (N=500) (N=64) (N=500)

+3.868772*3, (100 05 6.74 0.202 05 7.88 0.203

_ N 06 7.15 0.142 0.5982 9.83 0.140
whereDg is the Enskog-theory transport coefficient, defined g 7 7.00 0.0920 0.6998  12.2 0.0901
as 0.8 6.33 0.0543  0.8028  15.0 0.0537
0.9 5.25 0.0273  0.8496  16.4 0.0389
__os&ly (11 092 508 00227 08002 183 0.0253
= p*mmBg(o) 094 480 00189 09478 19.1 0.0172

0.96 4,51 0.0157
Here p* is the reduced density defined as°. The two 0.98 4.19 0.0119
results are not in exact accord, but they show the same trendy o 3.85 0.00906
as seen in Fig. 1.
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FIG. 2. The dimensionless self-diffusion coefficient defined as  FIG. 3. hyg/Nv\; as a function of average collision frequency
D*=(D/Dg)/(v/v;) as a function ofhys/N(v/v1)\;. Diamonds  ». Diamonds represent data for the hard-sphere system; squares,
and squares denote MD results for the hard-spkid® and soft-  triangles, and circles correspond to those for systems interacting via
spherg WCA potentia) systems, respectively; circles den@teval- the soft potentials defined in E) with ng=6, 10, and 16, respec-
ues obtained from the EW formuld{=0.7). tively.

. : systems at low density. They showed that the KS entropy per
sistent with those presented by Dellago and PqgghOn particle and per collision, when expanded with respect to

the other handhys/N for the hard-sphere system increases . : . : S
steadily except at the point where the fluid-solid phase trangensny' becomes linear for a dilute gas in equilibrium,
sition occurs, as shown i]. o hes/(Nv')=a[ —In(v'/v1) +b]+O(v'?), (12)

The Lyapunov exponents are local quantities in the sense
that they depend on the dynamical events taking place in thesherea is equal to 1 for the hard-sphere system. Notice that
system—namely, collisions—for which the velocities the definition ofy’ in Ref.[17] is 4pa?(mkgT/m)¥? which
change. So it is reasonable to expect that there exists a gediffers from the average collision rateby the factorg(o).
eral relationship between the Lyapunov exponents and th@ur numerical results for the hard-sphere system show that
self-diffusion coefficients. In Fig. 2, we present the relation-the above linear relationship does not hold in densities cor-
ship between the self-diffusion coefficients and KS entropyesponding to a liquid regime (G5 <0.8). However, if we
for various densities. The diamonds and squares denote MBse v, which includes the average collision numlegio),
results for the hard- and soft-sphere systems, respectiveljhistead ofy’ in Eq. (12), thenhys/Nv vs Inv shows a linear
circles denote th® values obtained from the EW formula. relationship witha=0.407, even in the liquid regime (0.5
To facilitate the comparison of the behavior for the systems< <0.8). This suggests that the rate of information loss per
of hard and soft spheres, we use the following dimensionlessollision is still uniquely related to the average collision rate
form for the self-diffusion coefficient and KS entropp* with the same scaling law in a more generalized form, in
=(D/Dg)/(vlvy), hgs=hks/N(v/v1)N1, whereDg is the  which v’ is substituted fow, even in the high density region.
Enskog-theory transport coefficient, is the average colli- The relation becomes nonlinear in the region<9#8<1.0,
sion frequencyy; is defined asy;=4(kgT/mmo?)Y?, and  corresponding to the regime that precedes the formation of
N4 Is the largest Lyapunov exponent. This figure demon-+the solid. We extended the numerical study to systems with
strates convincingly that there exists a universal relationshigontinuous interaction potentials and found that in<0c6
betweenD* and hig that is valid for systems of both soft <0.8—which corresponds to the liquid regime—the linear
and hard spheres. This observation implies that atomic difrelationship also holds, even though sl@pbecomes differ-
fusion is a geometric phenomenon which can be uniquelgnt from that of the hard-sphere system. For the potential
accounted for by the frequency of binary collisions and KSdefined in Eq.(3), we obtained the slopa=0.708, 0.597,
entropy, representing a measure for the time rate of informaand 0.479, in the liquid regime fory=6, 10, and 16, respec-
tion loss and structural uncertainty. Specifically, throughoutively, at T* =0.7. Thus, the slope approaches that of the
the range of density that corresponds to the liquid domairhard-sphere system ag increases. This study shows that
(0.5=p=0.8), the diffusion adheres to an Arrhenius-like be-the linear relationship between the KS entropy and average
havior, which can be described by a simple scaling lawcollision rate still holds even for a system of soft spheres.
Table | shows the KS entropy per particlegg/N) and the  This tells us that the rate of information loss can be uniquely
self-diffusion coefficients for systems of hard spheres andiccounted for by collision frequency in the region where the
soft spheres with WCA interaction potential, obtaineddiffusion shows an Arrhenius-like behavior. If we further
through simulation B for 0.5 p=<1.0. It is worth mentioning scalehxs/Nv by A4, the largest Lyapunov exponent, and
that the KS entropy values obtained from simulation A andplot hys/NvX; vs Inv, we find that the same linear relation-
those obtained from simulation B show no noticeable differ-ship can be applied to systems with different interaction po-
ence, even in the regime where the linear relationship breakentials throughout the density range corresponding to the
down. liquid domain, as shown in Fig. 3.

Recently, van Beijeren and his colleagugk/] have It is also instructive to view the dynamics of the tangent
shown both theoretically and analytically that a linear rela-vectors in the subspaces associated with special degrees of
tionship holds betweehygs/Nv’ and Iny' for hard-sphere freedom. In the present case, the tangent space is a simple
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product of configuration spadeand corresponding momen- (a) 1.0 .

tum spaceP. Then the projection of the tangent vectar

onto X space isdy ;=P(X) &, whereX=R or P. The pro- 08T

jection operatorP(X) can be represented as a diagonal ma- i

trix with elementP,,(X) equal to unity, if thea axis of § S 06 r |
belongs toX, and equal to zero otherwise. We examined the o o4l |

behavior of the mean-squar&dcomponents oy asp var-
ies, which is defined a§>2<,|=<6xyl-5x,|>. Figures 4a) and
4(b) show 5§<1,(X=PorR) as functions ofl for the hard-
sphere and the soft-sphe@CA potentia) systems, respec-

tively. Eight of the Lyapunov exponents vanish for reasons 1 48 96 144 192
given in Sec. Il (93<1=<100); the correspondin@fu com- l

ponents have no meaning, since Gram-Schmidt reorthonor-

malization has no ordering effect on the directions of their b)

tangent vectors. On average, 96.2% of the squared length of
6, for hard spheres and 97.4% of that&f for soft spheres

are contributed from the momentum subspace der0.5;
these numbers rise to 99.0% and 99.4%, respectivelyp for
=1.0. This means that the instability of the phase-space tra- %o
jectory is mostly accumulated in the momentum subspace in

high density regions. For the same number density, the
mean-square® component off; for the soft-sphere system

is higher than that of the hard-sphere system. We suggest

that this is because the soft sphere has a larger effective
diameter than the hard sphere. We also examined the struc- l

tures of the pair correlation functiorgy(r) obtained from )
simulation B for a wide range of densities. In the case of FIG. 4. Mean-squareX componentss  as a function of the
dilute gases 4<0.5), local structural correlation expressed Lyapunov exponent indeifor a hard-sphere fluid with 64 particles
in terms ofg(r) is confined to the first-neighbor shell. As (& and for a soft-sphere fluid with 32 particléb), for various
density increases, the range of the structural correlation b&lensities rarl;gung fromzl_(c)j.Sl_to L. LhehSUbSp"?“.:a(gare ghe mo-
comes longer. It is interesting to note that the linear relatior}rzzr;:]uerg l;ue)SSpaC@ (solid fines and the position subspace
described by Eq(12) breaks down when the structural cor-

relation extends to the third-neighbor shell, which can be . . .
considered as the signature of ?he formation of the solidi®™™ [D* =(D/Dg)/(v/v1)] has a unique relation with the
Giaquinta and Giunta have shown that the liquidlike regimedlmensmnless KS entr*opy per particle scaled by the largest
(0.5<p=<1.0) can be divided into two regimes, depending-YaPunov eXponen{h*KszhKS/N(V/Vl))‘%] by a simple

on whether structural locking develofig2]. Our studies scaling law:D* xexp(is). Next we examined the relation-
show that, in the liquidlike regime characterized by strongShiP between the KS entropy and average collision frequency
cooperativity (0.5p=<0.8), diffusion adheres to an for bqth systgms of har_d spheres and systems with continu-
Arrhenius-like behavior. A nonlinear type of relation holds OUS interaction potentials. The results demonstrate that
in the regime (0.8 p<1.0) where structural locking devel- hks/Nv\; shows the same linear relationship withireven

ops, which corresponds to the regime that prepares the foiq systems with different types of pair potential. From analy-
mation of a solid. sis of the mean-squareticomponents of the tangent vectors,

we also found that the major contributions to the instability
of the phase-space trajectory come from the momentum vari-
ables for high density regions.

In this paper, we studied the instability properties of
phase-space trajectories for simple fluids in relation to self- ACKNOWLEDGMENTS
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