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Comparison of the bifurcation scenarios predicted by the single-mode
and multimode semiconductor laser rate equations

K. A. Corbett and M. W. Hamilton
Department of Physics and Mathematical Physics, University of Adelaide, Adelaide, South Australia, 5005, Australia

~Received 2 June 2000!

We present a detailed comparison of the bifurcation scenarios predicted by single-mode and multimode
semiconductor laser rate equation models under large amplitude injection current modulation. The influence of
the gain model on the predicted dynamics is investigated. Calculations of the dependence of the time averaged
longitudinal mode intensities on modulation frequency are compared with experiments performed on an
Al xGa12xAs Fabry-Pe´rot semiconductor laser.

PACS number~s!: 05.45.2a
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I. INTRODUCTION

Direct current modulation of semiconductors lasers
applications in optical fiber communication systems@1# and
short pulse generation@2#. Due to the inherently nonlinea
nature of these devices, the dynamical variation of the p
ton and carrier densities exhibit complicated behavior.
knowledge and understanding of this behavior is essentia
the implementation of these devices in practical applicatio
The study of semiconductor lasers is also of interest from
nonlinear dynamics viewpoint, and the wide variety of d
namical behaviors exhibited by these devices under diffe
operating conditions has received much attention in rec
years@1–32#.

As a physical system the semiconductor laser involves
interaction of the electromagnetic field with the electron a
hole populations of an inverted semiconductor crystal;
such it is a nonequilibrium, many-body system, and is v
difficult to model from first principles. However, by the ap
plication of several simplifying assumptions, the dynami
equations for the individual carriers and photons can be
duced to a set of rate equations describing the evolution
the total carrier and photon densities in the active reg
@33#. Nevertheless, it is important to realize that these eq
tions represent a considerable approximation to the ac
semiconductor laser system, a fact that has led to a dive
of models proposed to describe their operation. In this pa
we compare the bifurcation behavior under sinusoidal mo
lation predicted by several frequently used rate equa
models applicable to Fabry-Pe´rot ~FP! lasers. Emphasis is
placed on the implications that inclusion of multiple longit
dinal modes and choice of gain model have on the predic
dynamics. We also make comparisons with experiments
formed on AlxGa12xAs FP semiconductor lasers.

The nonlinear behavior of semiconductor laser devi
under current modulation has been principally modeled us
single-mode rate equations. These equations predict a
variety of behaviors such as period doubling routes to cha
period tripling, multiple spiking, and hysteresis@16–29#.
However, not all these behaviors are observed experim
tally. Only period doubling@16,17,21,29# and multiple spik-
ing @16,17# have been observed in current modulated FP
sers, whereas in distributed feedback~DFB! lasers period
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doubling @24,29,30#, period tripling @29,30#, and chaos@30#
have been observed. The discrepancy between single-m
rate equation predictions and experimental observations
been attributed to damping of the relaxation oscillatio
caused by gain saturation@14,15#, and the spontaneous emi
sion parameter@26,29#.

In contrast there are very few studies of the dynam
predicted by the multimode rate equations. To the best of
knowledge, a study of the bifurcation scenarios occurr
with a change in the modulation frequency and amplitu
has not been attempted, though there have been studie
the transient behavior@3,4,7# and spectral characteristic
@2,8–11#. That FP lasers become multimode under inject
current modulation is well known@8–10#. However, as
shown by Tarucha and Otsuka@2#, this is dependent not only
upon the amplitude but also the frequency of the modulati
modulating at frequencies close to the relaxation oscillat
frequency leads to a significant increase in the numbe
longitudinal modes, with the spectrum shifting towa
shorter wavelength modes. This effect was shown to re
from the spectral shift of the gain with carrier density;
increase in the carrier density results in the population
higher energy states~referred to as band filling@33,2#!, and
thus gives rise to a spectral shift of the gain. Since inject
current modulation results in dynamical carrier density var
tion, it is reasonable to expect the above consideration
affect the bifurcation phenomena as well as spectral beha
under large amplitude current modulation. Despite this, th
were very few studies of the bifurcation behavior, with i
jection current modulation, which include the effects of ba
filling @2#.

The purpose of this paper is to compare the bifurcat
behavior for single-mode and multimode models~with and
without band filling! with experimental measurements of th
dependence of the time averaged longitudinal mode inte
ties on modulation frequency, to demonstrate that the mu
mode model with band filling provides the most accura
description of FP semiconductor laser operation. This pa
is organized as follows. The rate equations are introduce
Sec. II. In Sec. III, numerical results for the both single-mo
and multimode rate equations are presented, using typ
literature values for the laser parameters. Bifurcation d
grams, the time averaged longitudinal mode intensities v
sus modulation frequency, and the global behavior in
6487 ©2000 The American Physical Society
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modulation frequency and amplitude parameter space
discussed. In Sec. IV, experimental results of the time av
aged longitudinal mode intensities versus modulation
quency are presented and compared with the numerical
dictions of the multimode rate equations using expe
mentally determined parameter values. Experimental res
for period doubling are also presented. Finally, conclud
remarks are made in Sec. V.

II. RATE EQUATIONS

The multimode rate equations for the carrier densityn and
the longitudinal mode photon densitiessj and phasesF j in
the active region of a semiconductor laser can be written
@2,10,32#

dn

dt
5

I ~ t !

eV
2

n

te
2 (

j 52(M21)/2

(M21)/2

Gjsj , ~2.1!

dsj

dt
5S Gj2

1

tp
D sj1

b jn

te
, ~2.2!

dF j

dt
5

a

2 S Gj2
1

tp
D ~2.3!

wheree is the electronic charge,V is the active region vol-
ume,te andtp are the carrier and photon lifetimes, respe
tively, a is the linewidth enhancement factor,Gj is the gain
of the j th mode, andM is the total number of modes. Unde
sinusoidal modulation the injection current has the fo
I (t)5I DC1I AC sin(2pft) where f is the modulation fre-
quency. These equations are appropriate for a FP semi
ductor laser, and assume single transverse mode operat

The parameterb j is the fraction of the total average spo
taneous emission coupled into thej th mode. It contains two
parts: a geometrical factor, given by the ratio of the mo
solid angle to 4p, and a spectral component resulting fro
the fact that the spontaneous emission spectrum is m
broader than the mode spectral width@34,35#. To a very
good approximation, the geometrical factor is the same
all longitudinal modes whereas the spectral component
vary slightly for different modes since they lie in differe
regions of the spontaneous emission spectrum. However
modes lying near the gain peak the variation inb between
different longitudinal modes is small. Since it is principal
these modes that participate in the dynamics, we make
simplifying approximationb j5b.

The semiconductor gain is assumed to saturate hom
neously, and is approximated by a quadratic for which b
the peak gain and its position in wavelength are linear fu
tions of the carrier density@2#. These approximations ar
consistent with the predictions of the free carrier theory@33#.
We write the gainGj as @2,13,36#

Gj5AnF12H 2~l~n!2l j !

Dlg
J 2G2Ano , ~2.4!

l~n!5lo1kFnth2n

nth
G , ~2.5!
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where j runs from2(M21)/2 to (M21)/2. The constants
nth andno are, respectively, the threshold carrier density a
the carrier density required to reach transparency,A is the
gain coefficient,Dlg is the spectral width of the gain, an
l(n) is the center wavelength of the spectral gain curve. T
constantk defines the spectral shift of the gain with carri
density due to the band-filling effect. The longitudinal mo
wavelengthsl j are given by

l j5lo1 j dl1dL j , ~2.6!

where dl5lo
2/(2L) is the approximate longitudinal mod

spacing. HereL is the optical length of the diode cavity. Th
quantitydL j describes the time variation of the modal wav
lengths arising as a consequence of Eq.~2.3!, and is written
as

dL j52
1

2p S dF j

dt D ~lo1 j dl!2

c
. ~2.7!

For numerical purposes it is convenient to normalize
variables n and sj by defining N5n/nth and Pj5sj / s̃0
where nth5no11/Atp is the threshold carrier density an
s̃05nthtp /te @23#. Equations~2.1!, ~2.2!, and~2.3! become

dN

dt
5

1

te
F I 8~ t !2N2 (

j 52(M21)/2

(M21)/2
Nd j2d

12d
Pj G , ~2.8!

dPj

dt
5

1

tp
F S Nd j2d

12d D Pj2Pj1bNG , ~2.9!

dF j

dt
5

a

2tp
FNd j2d

12d G , ~2.10!

whered5no /nth , I 8(t)5I (t)/I th , andI th5eVnth /te is the
threshold current. We also define the quantitiesI b5I DC /I th
andm5I AC /I th which will be referred to as the modulatio
index. The gain spectral dependence is embodied by

d j5124S k~12N!2 j dl2dL j

Dlg
D 2

. ~2.11!

In Sec. III, comparisons will be made between the solutio
of the single-mode rate equations with those of the mu
mode rate equations. In single-mode models, a freque
used approximation for the gain versus carrier density is

G5A~n2no!, ~2.12!

which we employ in all single-mode calculations presen
here. The single-mode rate equations may be obtained f
Eqs. ~2.8! and ~2.9! by setting the band-filling parameterk
50 ~i.e., neglect band filling! and considering only the cen
tral mode,l0; this leads to the rate equations used in Re
@14–21,23# except for the omission of the gain saturatio
term. The phase equation~2.10! is not used in the single
mode analysis presented here in order to retain consiste
with previous studies.

We have not considered the effects of gain saturation
this study, though we acknowledge their importance. Si
we are concerned with the dynamical variations of the mo
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PRE 62 6489COMPARISON OF THE BIFURCATION SCENARIOS . . .
photon densities, rather than the steady state operatio
semiconductor laser devices, the inclusion of gain satura
leads to a significant increase in the complexity of the pr
lem. Analysis of gain saturation effects requires taking in
account dynamical changes in the gain spectra, such as s
tral hole burning, with variation in the longitudinal intens
ties @1#. Since such variations imply a departure from qua
equilibrium, the dynamics of the individual carriers must
considered rather than the dynamics of the carrier densit
a whole@33#; this leads to a rapid escalation in the comp
ing time required to analyze this problem. So, for simplici
such effects have been omitted.

Parameter values used in numerical calculations are g
in Table I. The first column, labeled ‘‘Sec. III,’’ contains th
parameter values used in the numerical simulations of S
III. These are typical literature values for an AlxGa12xAs
semiconductor laser. For the sake of comparison with ex
ing studies, parameter values which apply to both the sin
mode and multimode are identical to those used in R
@14,19,22,23#. The column labeled ‘‘Sec. IV’’ in Table I
contains our experimentally measured parameter values
Sec. IV these parameter values are used for comparison
tween experimental data and the numerical predictions
Eqs.~2.8!–~2.10!. A discussion of the measurements used
obtain these parameter values is given in Sec. IV.

For small perturbations from the steady state, the r
equations predict behavior similar to that of a linear osci
tor with a characteristic resonant frequencyf RO referred to as
the relaxation oscillation frequency. To a good approxim
tion, f RO is given by@3,23#

f RO5
1

2p
A I b21

tetp~12d!
~2.13!

for both the single-mode and multimode models. With lar
amplitude modulation, Eq.~2.13! no longer applies@23,26#.
However, f RO is a useful quantity when searching for th
various transitions in the (f ,m) parameter space@27,37#.

III. NUMERICAL RESULTS

In this section, the results of numerical simulations
Eqs.~2.8!–~2.10! are presented. The valueI b51.7 is used in
all calculations, and corresponds to a small signal relaxa
oscillation frequency of 1.788 GHz. The other parameter v
ues are given in the column labeled ‘‘Sec. III’’ in Table

TABLE I. Parameter values for the rate equations.

Symbol Sec. III Sec. IV Model

te 3 ns 0.7860.05 ns both
tp 6 ps 2.260.1 ps both
d 0.692 0.1560.07 both
b 1024 231025 both
a 5 5 both
Dlg 20 nm 30 nm multimode
dl 0.4 nm 0.3760.02 nm multimode
k 35 nm 1963 nm multimode
lo 830 nm 83764 nm multimode
M 25 25 multimode
of
n
-

o
ec-

i-

as
-
,

en

c.

t-
le
s.

In
e-

of
o

te
-

-

e

f

n
l-

For the single-mode system, the parametersk andM are set
to 0 and 1, respectively.

A. Comparative study of bifurcations

In the following, the solutions for the single-mode an
multimode rate equations, with and without band filling, a
compared. Results are presented in the form of bifurca
diagrams, obtained by stroboscopically sampling the v
ables at the period of the driving currentT51/f as a control
parameter, usually modulation index or frequency, is vari
Diagrams are calculated for both increasing and decrea
values of the control parameter. For the sake of comparis
bifurcation diagrams of the variableN are presented for both
the single-mode and multimode cases.

In Fig. 1 we present bifurcation diagrams calculated w
varying modulation frequency,f. Figures 1~a! and 1~b! cor-
respond to single-mode calculations with modulation indic
of 0.5 and 0.75 respectively; Figs. 1~c! and 1~d! are the cor-
responding multimode calculations for the same modulat
indices.

We observe marked differences in the bifurcation s
narios predicted in each case. As shown in previous stud
both a period doubling cascade to chaos@18,19,22# and re-
gions of hysteresis (HS1 andHS2) @18,26# are predicted by
the single-mode rate equations@Figs. 1~a! and 1~b!#. Both
these features are absent in the multimode system@Figs. 1~c!
and 1~d!# under similar operating conditions. However, bo
single-mode and multimode rate equations predict per
doubling to occur for modulation frequencies near 2f RO .

The differences between the predicted behavior for
single-mode and multimode models, shown in Figs. 1~a!–
1~d!, are the result of both the inclusion of multiple longitu
dinal modes and the nonzero value of the band-filling para
eter k. In order to illustrate this point, Figs. 1~e! and 1~f!
show bifurcation diagrams for the same parameter value
in Figs. 1~c! and 1~d!, but with the band-filling parameterk
equal to zero. We remark thatk50 is consistent with the
gain model used in Refs.@7–13,1#. However, Refs.@7–9#
used a Lorentzian rather than a quadratic approximation
the gain curve. The results of the multimode calculati
without band-filling resemble the single mode solutio
@Figs. 1~a! and 1~b!# more closely than the multimode solu
tions with band-filling@Figs. 1~c! and 1~d!#. Figures 1~a! and
1~e! are similar except that the period doubling region
narrower in Fig. 1~e! and only the hysteresis regionHS1
occurs. In Fig. 1~f!, we observe that the period doublin
cascade to chaos and the hysteresis region,HS2 of Fig. 1~b!,
is absent but the period doubling regions nearf RO/2 and
2 f RO and hysteresis regionHS1 persist. Therefore, the be
havior shown in Figs. 1~e! and 1~f! lies somewhere betwee
that depicted in Figs. 1~a! and 1~b! and 1~c! and 1~d!. This
highlights the fact that the dynamical behavior is sensitive
the choice of gain function used.

It is evident from Fig. 1 that the inclusion of multipl
longitudinal modes acts to reduce the number of bifurcati
that occur. Multiple longitudinal mode oscillation results
an increased damping of the relaxation oscillations, as d
onstrated in Refs.@8,10,13#. Since the relaxation oscillation
resonance is intimately connected with the occurrence of
furcations@38,37#, the larger the damping the more difficu
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FIG. 1. Bifurcation diagram: parts~a! and ~b! correspond to the single-mode equations for modulation indices ofm50.5 and 0.75,
respectively. An expanded view of the period doubling cascade to chaos is shown in the inset in~b!. Parts~c! and~d! are the diagrams for
the multimode system form50.5 and 0.75, respectively, andk535 nm. Parts~e! and ~f! are the diagrams for the multimode system f
m50.5 and 0.75, respectively, andk50. HS refers to regions of hysteresis.
e
ula
b
th
on
t

in

r
-

rd

d
p
it

y-
e
e

sity,

de
he
ults
the
ena
se

a-
lar
ted
e
fre-
en-

ton
to

ply
it is to drive the system to an instability. In Refs.@14,16# it
was postulated that instabilities would only occur if the d
cay time of the relaxation oscillations exceeded the mod
tion period, since in this case strong interferences occur
tween successive periods. The disparity between
nonlinear behavior predicted by the single-mode equati
and experimental observations received much attention in
literature. It was previously demonstrated that damp
terms in the rate equations due to the parameterb will re-
duce the nonlinear behavior@10,13,26,29#. Other physical
causes of damping in semiconductor lasers are gain comp
sion @14,15#, carrier diffusion@9,13#, and carrier density de
pendent spontaneous lifetime@31#. It was also shown that the
presence of intrinsic laser noise acts to obscure higher o
period doublings in experiments@21#. Our calculations show
that for FP lasers, the multimode nature of the device un
modulation also plays a role in suppressing higher order
riod doubling and other nonlinear behavior, consistent w
experimental observations.

The inclusion of band-filling effects clearly alters the d
namical behavior, as shown in Fig. 1. This may be und
stood through consideration of the gain each mode exp
ences as the carrier density is varied. Equations~2.4! and
-
-
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ri-

~2.5! show that the inclusion of band filling (k5” 0) leads to a
quadratic dependence of the modal gain on carrier den
whereas when band-filling is neglected (k50) the depen-
dence is linear. Since the value ofk is usually of the order of
the gain width and much larger than the longitudinal mo
spacing, band-filling effects lead to a significant shift in t
gain peak even for moderate modulation depths. This res
in different modes being closest to the gain peak over
course of a modulation period, and therefore this phenom
is extremely important in the dynamical description of the
devices.

B. Modal behavior

In terms of the bifurcation behavior, the bifurcation di
grams for each longitudinal mode show qualitatively simi
behavior to those for the carrier density, and are omit
here. It is illustrative to consider, however, how the tim
averaged modal photon densities vary as the modulation
quency is tuned. To calculate the time averaged photon d
sities for a periodic solution, we average the modal pho
densities over the period of the cycle. In order to be able
summarize this data on a three-dimensional plot, we multi
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FIG. 2. The time averaged longitudinal mode spectra as a function of modulation frequency withm50.5. Data plotted as surface an
grayscale plots. In these the darkest gray corresponds to the maximum intensity. In parts~a! and ~b! k535 nm and 0, respectively.
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the photon density for each longitudinal mode by t
~Lorentzian! spectral resolution function of the spectrome
used in the experiments presented in Sec. IV; this also fa
tates comparisons with the experimental data.

Figure 2~a! shows the time averaged longitudinal mo
photon density variation with modulation frequency for t
same parameters as Fig. 1~c!. For modulation frequencie
nearf RO the spectrum becomes strongly multimode with t
spectrum shifting toward the shorter wavelength modes;
phenomenon has been predicted theoretically, and obse
experimentally@2#. We also observe multimode operatio
when the higher harmonics off are nearf RO ; most notable
are the regions nearf '0.85 and 0.55 GHz which correspon
to the second and third harmonic of the driving frequen
near f RO , respectively. Figure 2~b! corresponds to the sam
situation as Fig. 2~a!, except the band-filling parameterk is
zero. Modal photon densities are calculated for increas
modulation frequency only; hence the hysteresis region
Fig. 1~e! is not apparent. Again we observe multimode b
havior for modulation frequencies nearf RO , f RO/2, f RO/3,
etc. However, now the spectra are symmetric about the
tral mode.

At a resonance, the excursion of the carrier density fr
its steady state value is largest. This gives rise to stron
multimode oscillation as shown in Fig. 2. The obvious asy
r
li-

is
ed

y

g
f

-

n-

ly
-

metry in Fig. 2~a! is a result of band-filling effects. We re
mark that the dynamical spectral behavior under modula
is also dependent upon the modulation amplitude@8#. Sepa-
rate calculations show that the number of oscillating mo
is reduced for lower modulation indices, when the modu
tion frequency~or a harmonic! is close tof RO . For higher
modulation indices, the number of oscillating modes
creases even for modulation frequencies not close to a r
nance; thus the frequency dependence of the modulation
havior is not as readily resolved as in the case conside
here.

C. Global behavior

To summarize the global behaviors, in Fig. 3 the tran
tion boundaries between period 1 and 2 and period 2 an
solutions are plotted as functions of the modulation ind
and frequency on a two-dimensional state diagram. We a
show the boundaries for Hopf bifurcations. The data in Fig
were calculated numerically by checking for period 1 and
solutions of the rate equations for a square grid of modu
tion frequencies and amplitudes. Regions of hysteresis
tween period 1 cycles are not shown, as they could not
determined using our method of calculation; however,
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gions of hysteresis between period 1 and 2 solutions are
cluded. The resolution of these diagrams is 0.032 inm and
0.038 GHz inf.

In Fig. 3~a! we present the single-mode solutions. Th
figure is similar to that shown in Ref.@22# for I b51.5. We
observe regions of period doubling that become smaller
more closely spaced as the modulation frequency decrea
This behavior is typical of many nonlinear oscillators@39#.
The period 4 region nearf '1 GHz contains chaotic solu
tions @compare with Fig. 1~b!#. Figure 3~b! shows multimode
solutions without band-filling effects. This diagram is simil
to the single-mode case except that period doubling reg
are smaller and only two are present. There are no perio
~or higher! solutions, for f , f RO , in this case. Figure 3~c!
shows the multimode solutions, including band-filling e
fects. The large region of period doubling forf . f RO ~which

FIG. 3. Period doubling and Hopf bifurcation boundaries in t
parameter space of modulation frequency and modulation in
Part ~a! is for the single mode model, and parts~b! and ~c! are for
the multimode model withk50 and 35 nm, respectively. The soli
lines labeled byPD indicate boundaries between period-1 and
solutions. Solid lines labeled byHS indicate the boundaries be
tween period -1 and -2 solutions in which hysteresis is involv
Dashed lines labeled byPF indicate the boundaries between peri
-2 and -4 solutions, and dashed lines labeled byH indicate bound-
aries for Hopf bifurcations.
n-

d
es.

ns
4

includes the boundaries for bifurcation to period 4 and Ho
bifurcations! is present. However, there is no period do
bling for modulation frequencies less than the relaxation
cillation frequency in this case. It is interesting to note th
the minimum modulation index required for period doublin
which occurs for modulation frequencies close to 2f RO , is
lower in the multimode system with band filling than th
other models.

IV. EXPERIMENTAL RESULTS

In this section, a comparison of the results of experime
performed on an AlxGa12xAs semiconductor laser with th
numerical predictions of the multimode model with band fi
ing is presented. Before discussing the experimental res
we first describe the measurements used for the experime
determination of the laser parameters. The values obta
from these measurements are summarized in the colum
beled ‘‘Sec. IV’’ in Table I, and are used in all numeric
calculations discussed in this section.

A. Laser parameters

The experimental arrangement, shown in Fig. 4, allo
measurement of the power spectrum of the total intensity
the longitudinal mode spectra. A Fabry-Perot laser with
Al xGa12xAs active region~wavelength approximately 830
nm, maximum power 5 mW! was used in the experimen
The combination of a Glan-type polarizer and a Fres
rhomb was used to isolate the laser from back reflectio
The temperature of the laser was stabilized to 25 °C usin
Peltier cell and a temperature control unit. The thresh
current at this temperature is 21 mA.

The power spectrum of the total intensity was measu
by focusing the laser output into a photodiode~bandwidth 6
GHz! connected to a spectrum analyzer. Time averaged
gitudinal mode spectra were measured using a grating s
trometer with a linear photodiode array in place of the e
slit. The output of the spectrometer was connected to a d
tal oscilloscope. Injection current modulation at frequenc
up to 3 GHz was provided by a rf signal generator.

The majority of the parameter values were determin
from the measurement of the gain spectra, according to
method of Hakki and Paoli@40#, for several different bias
currents below threshold. The longitudinal mode spacingdl
was determined directly from the emission spectrum of
laser biased below threshold. To determine the remain
parameters, the total cavity lossac , which includes mirror
losses, is required. This was determined from the gain sp
tra measurements using the following observations: at
threshold current the gain equals the loss and therefore
peak gain is zero, whereas for wavelengths just below

x.

.

FIG. 4. The experimental arrangement.
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FIG. 5. The longitudinal mode spectra vs modulation frequency for modulation indices of 0.17@parts~a! and~c!# and 0.25@parts~b! and
~d!#. Parts~a! and ~b! correspond to the numerical simulations, and parts~c! and ~d! are the experimentally measured spectra.
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band gap~the transparency region! the semiconductor me
dium contributes neither net gain or loss. Thus the differe
in these levels corresponds to the total cavity lossac . The
parameterd was determined from a plot of the peak ga
versus injection current. It is given byI o /I th whereI o is the
injection current for which the peak gain equalsac . The
photon lifetimetp is determined from

tp5
nL

cacL
5

lo
2

2dlacL
, ~4.1!

where L is the cavity length andn is the refractive index
@41#. A plot of the wavelength of the maximum gain vers
injection current allows us to determinek according to Eq.
~2.5!. Finally, by fitting a quadratic to the gain curve for th
laser biased at the threshold current, the gain widthDlg and
positionl0 were determined.

The carrier lifetime,te , was determined by measuring th
frequency response of the laser biased below threshold@42#.
The threshold currentI th was determined from the point o
inflection of the measured power versus injection curr
curve plotted on a log-log plot. To determineb, we com-
pared the measured power with the predicted power in
highest power mode versus injection current above thre
old. The predicted mode power was calculated using the
perimentally determined parameter values, from steady s
solutions of Eqs.~2.8! and ~2.9!, for different values ofb.
The mode powers, in both experimental and theoretical d
were normalized such that the total power was equal t
e

t

e
h-
x-
te

a,
1

when the laser was biased at twice the threshold curren
value ofb5231025 gave the closest agreement to the e
perimental data.

We have not measured the value ofa but instead use a
typical value ofa55 @43#. However, we note that settin
a50 does not significantly alter the results of the calcu
tions presented in this paper for the carrier and photon d
sities and the time averaged longitudinal mode frequenc
It does, however, affect the instantaneous mode frequen
and is essential for the description of semiconductor laser
the presence of external feedback@32#.

B. Modal behavior

Figures 5~a! and 5~b! show the predicted longitudina
mode spectra versus modulation frequency for modula
indices of 0.17 and 0.25, respectively, and a fixed bias
I b51.31. Figures 5~c! and 5~d! show the corresponding ex
perimentally measured longitudinal mode spectra ver
modulation frequency for the same modulation indices a
I b51.31. The numerical results were obtained using
method outlined in Sec. III B. The experimental results we
obtained by recording time averaged longitudinal mode sp
tra as the modulation frequency is varied in steps of 0
GHz from 0.1 to 3.0 GHz. The injection current was 27
mA.

Figure 5 shows good agreement between the nume
simulations and experiment. Despite differences in the re
tive intensities between different longitudinal modes, sho
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in the experimental and numerical data of Fig. 5, the gen
form of the longitudinal mode behavior in each case is si
lar. In particular, the widths and positions of the multimo
regions as a function of the modulation frequency are c
sistent. Moreover, the multimode regions generally have
proximately the same number of longitudinal modes in b
the numerical and experimental data.

To demonstrate that the multimode behavior is indee
resonance phenomenon, we have included the experim
power spectra of the total intensity and the correspond
time averaged longitudinal mode spectra forf near f RO and
2 f near f RO ~Fig. 6!. For comparison, we also show th
longitudinal mode spectrum and the intensity power sp
trum without modulation. We observe, in Figs. 6~b! and 6~c!,
that the relaxation oscillation resonance has shifted t
lower frequency relative to the unmodulated laser resona
This phenomena is also observed in numerical simulatio
regions of multimode operation are accompanied by
quency pulling of the relaxation oscillations, indicating th
this is essentially a nonlinear phenomena.

FIG. 6. Experimental intensity power spectra and correspond
time averaged longitudinal mode spectra. Part~a! corresponds to the
laser without modulation, part~b! corresponds to modulation at th
relaxation oscillation frequency for modulation frequencyf
52 GHz, and part~c! corresponds to modulation at half the rela
ation oscillation frequency for modulation frequencyf 51.1 GHz.
The laser bias isI DC527 mA, and the ac modulation is 4.5 m
~rms!.
al
i-

-
p-
h

a
tal
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-

a
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-
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C. Period doubling

Figure 7 shows a comparison of the experimental data
numerical prediction for the occurrence of period doubli
as a function of the modulation frequency for a bias ofI b
51.095 and modulation indexm50.28. Experimental deter
mination of the occurrence of period doubling is acco
plished by measuring the rf power, in the intensity pow
spectrum, at a frequency equal to half the modulation f
quency. Numerically the occurrence of period doubling
demonstrated by means of a bifurcation diagram calcula
using the method described in Sec. III A. Data in Fig. 7 a
shown for modulation frequencies in the range 1–3 GH
However, it has been confirmed separately that no furt
bifurcation occur either experimentally or are predicted n
merically for modulation frequencies below 1 GHz.

Figure 7 shows good agreement between theory and
periment. Experimentally the period doubling region appe
wider than the numerical prediction. However, it should
noted that a precise determination of the onset of a pe
doubling bifurcation is difficult to determine experimental
due the presence of noise in the real laser. This arises f
the fact that, close to period doubling, there is an enhan
ment of the noise atf /2 which acts to obscure the actu
bifurcation point@23,38#.

V. DISCUSSION

In this paper we have presented a comparative stud
the bifurcation scenarios under sinusoidal current modula
predicted by several rate equation models of varying co
plexity. Considerable variation in the predicted behavior w
found to occur for different models. Due to the complicat
nature of the semiconductor system, any description will r
resent, of necessity, a significant approximation to the ac
device.

It was shown that the inclusion of multiple modes acts
reduce the extent of the bifurcation phenomena. Such pre

g

FIG. 7. Period doubling as a function of the modulation fr
quency for the parametersI b51.095 andm50.28. The dot-dashed
line corresponds to the experimental data, and depicts the meas
power at half the modulation frequency in the intensity power sp
trum. The dotted curve is a calculated bifurcation diagram show
a period doubling bifurcation.
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tions are consistent with the bifurcations~or lack thereof!
observed experimentally in FP semiconductor lasers.
importance of band filling was also investigated. It w
shown that the inclusion of band filling results in changes
both the bifurcation behavior predictions and the time av
aged longitudinal mode behavior. Moreover, the predictio
of the multimode model with band-filling are most closely
agreement with experiment. A distinguishing feature of
experiments was that when a harmonic of the driving f
quency, was coincident with the relaxation oscillation fr
quency an increase in the number of operating modes
curred. Such behavior was predicted by both multimo
models investigated. However, the inclusion of band filli
led to a spectral shift of the mode spectra toward sho
wavelengths, in agreement with experimental observatio
thus demonstrating the importance of this effect.

Despite the simplicity of the multimode rate equati
te

.
le

t.

c-

rs

um
e

n
r-
s

e
-
-
c-
e

r
s,

model used in the simulations, good agreement was obta
between the numerical simulations and experimental res
In particular, gain saturation effects were neglected in
model. Though known to have important consequences
the behavior of semiconductor laser devices, we appeal to
consistency of our experimental data and numerical pre
tions, that the neglect of these effects was not serious for
particular experiments considered in this study. However
a consistent multimode description the inclusion of ga
saturation is essential. In particular, we expect these eff
to be more important for higher bias currents@1#.
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