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Phase synchronization and noise-induced resonance in systems of coupled oscillators
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We study synchronization and noise-induced resonance phenomena in systems of globally coupled oscilla-
tors, each possessing finite inertia. The behavior of the order parameter, which measures the collective syn-
chronization of the system, is investigated as the noise level and the coupling strength are varied, and hysteretic
behavior is manifested. The power spectrum of the phase velocity is also examined and the quality factor as
well as the response function is obtained to reveal noise-induced resonance behavior.

PACS numbgs): 05.45.Xt, 05.10.Gg

[. INTRODUCTION erage of the phase velocity, measures the probability that the
system, kicked by noise, eventually escapes out of a
In recent years the networks of coupled nonlinear oscillapotential-well minimum. Namely, it describes the interwell
tors have attracted much attention: They serve as a prototyggansition. On the other hand, the ac component describes the
model for a variety of self-organizing systems in physics,intrawell oscillation behavior, which does not induce an es-
chemistry, biology, and social sciences, and exhibit the recape out of the potential-well minimum. The order parameter
markable phenomena of synchronizatfdn?]. Among those is observed to decrease with noise, manifesting suppression
the system with global coupling has been mostly studied®f the synchronization, and to display hysteretic behavior
both analytically and numerically, owing to analytical sim- With the noise level as well as with the coupling strength.
plicity and some physical as well as biological applicationsSuppression of the synchronization is also reflected by the
[3-5]. In such a system of globally coupled oscillators, thegrowth of the dc component of the power spectrum, corre-
effects of nonzero inertia and of noise as well as the effect§Ponding to the dispersion of the mean phase velocity, with
of periodic driving on synchronization have been examinedoise. On the other hand, it is found that the generalized
[6,7]. Of particular interest in the presence of noise is thesusceptibility, related to the power spectrum via the
possible amplification of the response of the system, arisinfluctuation-dissipation theorem, increases first as the noise
from the interplay between the noise and drivigd. Such ~ grows from zero, reaches its maximum at a finite noise level,
stochastic resonance phenomena, having various potentiad eventually decreases as the noise level is increased fur-
applications, have received much attentiér12). Recently, ther. Such noise-induced effects are also observed in the
the interesting possibility of stochastic resonance in system@uality factor at appropriate nonzero frequencies, suggesting
without external periodic driving has been pointed fig—  the presence of intrawell resonance.
15]. For example, noise-controlled resonance behavior in a This paper consists of five sections: Section Il introduces
periodic potential with constant driving has been discussedhe system of coupled oscillators, each possessing finite in-
and in the limit of low damping the inertia has been shown toertia, subject to random noise and constant driving force. The
p|ay the role of a Surrogate of external periodic dr|V[ﬂg_] Self'ConSiStency equation for the order parameter, which
While such noise-induced resonance behavior has been ifeasures the collective synchronization in the system, is de-
vestigated in oscillator systems with relatively few degreesscribed. In Sec. llI, the behavior of the order parameter with
of freedom, typically single-oscillator systems, or in systemgthe coupling strength and the noise level is investigated,
of excitable element§16], the possibility of detecting the which manifests hysteretic behavior at low noise levels. Sec-
resonance behavior in a system of couplednexcitablg tion 1V is devoted to the investigation of the response of the
oscillators has not been properly addressed. phase velocity to the external driving force, focusing on the
The purpose of this paper is to examine whether sucfterplay between noise and driving. The power spectrum of
noise-induced resonance behavior can appear in a coupldde phase velocity is revealed to exhibit noise-induced reso-
oscillator system with many degrees of freedom. We thugi@ance in appropriate regimes. Finally, a brief summary is
consider the system of globally coupled stochastic oscillagiven in Sec. V.
tors, each possessing finite inertia, subject to constant driving
force, and investigate the behavior of the order parameter,
which measures the synchronization of the system, as the Il. SYSTEM OF COUPLED OSCILLATORS

noise level and the coupling strength are varied. To under- We begin with the set of equations of motion governing

stand the interplay of noise and driving force, giving rise Ohe dynamics olN coupled oscillators, théth of which is
the possibility of noise-induced resonance behavior in th%escribed by its phasé, (i =1,2 N),'
i 2, ... N):

absence of periodic driving, we further consider the power
spectrum of the phase velocity as the response to the driving

force, and investigate both the zero-frequeiidg) compo- K N
nent and the nonzero—frequen@c) one. The dc compqnent wbi+ i+ — 2 Sin( b — ;) = w; + (1), 1)
of the power spectrum, proportional to the squared time av- N =1
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where u represents the magnitude of tfretationa) inertia The self-consistency equation for the order parameter in
relative to the damping. The third term on the left-hand sidethe presence of noise, particularly at such high temperatures
of Eqg. (1) denotes the global coupling with strengtiN, thatKA/T<1, has also been considered, yield[Tg

whereas the first and the second on the right-hand side rep-

resent the constant driving force and the randaherma) VeK(aK—1)
noise, respectively. The driving forae; is distributed over A=A, T
the whole oscillators according to the distributigfw),

which is assumed to be smooth and symmetric aloa0.  \yith the coefficients given by the integrals
The term;(t) represents independent white noise with zero

, 6

mean and correlationsy;(t) »;(t"))=2T&; 8(t—t"), where w T— pw?
the noise levell (>0) plays the role of the “effective tem- a—f dwg(w)ﬁ,
perature” of the system. The set of equations of motion in - 2(TH %)

Eqg. (1) describes a superconducting wire netwik] and

may also be regarded as the mean-field version of an array of ° T+ u(T?— 0?)— n?w’T
resistively and capacitively shunted junctions, which serves b= f_ dwg(w) 2(T2+ 0?)2
as a common model for describing the dynamics of super- ( ®®)
conducting array$18]. In these cases, the constant driving 3 2 2
. X mrt2u°T
force w; corresponds to the direct current bias. —
Collective behavior of such aN-oscillator system is con- 8(T*+ w9)

veniently described by the complex order parameter
Y y P P 6T+ u(8T?— w?)+ u’T(8T2— w?)

8(T?+ w?)(4T?+ w?)

N4

Z| -

N
_}_)1 eiti=Ae’, 2
: In this case collective behavior of the system has been ob-

where nonvanishing magnitude ¢ 0) indicates the emer- tained as follows: WheiK <K =1/a, only the null solution
gence of collective synchronization addgives the average (A=0) is possible. AtK=K_, on the other hand, the null
phase. Note that the synchronized state corresponds to tig@lution loses its stability and the nontrivial solutidn, ,
superconducting state with global phase coherence in th@gether with the unphysical solutich_=—A. , emerges
case of superconducting networks or arrfy@. The order Via a pitchfork bifurcation. Subsequently, it grows in a con-
parameter defined in ER) allows us to reduce Eql) toa  tinuous mannerd?/\c)(K—Kg)*?asK is increased beyond
singledecoupled equation Kc [6,7].

i+ di+ KA sin(gi— 0) = w;+ 7i(1), ©) 1. PHASE SYNCHRONIZATION

where A and @ are to be determined by imposing self- In this section we present in detail the behavior of the
consistency. Namely, the order parameter, defined in term@rder parameter with the coupling strength and the noise
of the phase via Eq2), in turn determines the behavior of level. We have performed extensive numerical simulations
the phase via Eq(3), which depends explicitly o ands.  on the equations of motion given by Ed) at various noise
We then seek a stationary solution withbeing constant, levels and coupling strengths. The order paramétenas
which is possible due to the symmetry of the distribution ofbeen computed from the definition given by Ef), and its

w; about zero. Redefining; — 6 as ¢; and suppressing indi- Pehavior depending on the coupling strength and the noise

ces, we write the reduced equation of motion in the form level has been examined. In simulations E#). has been
integrated with discrete time steps&if=0.001, and for con-

wp+ ¢+ KA sing=w+ 5(t), (4)  venience, a semicircle distribution of radius 0.5 has been
chosen forg(w). (We have also considered other types of

which depends explicitly on the magnitude of the order ~ distributions such as Gaussian, only to find no qualitative

parameter. change. In computing the order parameteX,=10 time
In the absence of nois@ & 0), the self-consistency equa- Steps have been used while the data from the first.6'
tion for the order parameter reads steps are discarded at each run. Béthand N, have been

varied to confirm that the stationary state has been achieved.
T ® 4 , T 5 We have then computed the order parameter in the system of
5~ 5] 9(0)KA+ Zug(0)(KA)™+ 759" (0)(KA) N=2000 oscillators, each having inertie=0.8.
The obtained behaviors of the order parameter with the
+O(KA)A. (5) coupling strength and the noise level are displayed in Figs. 1
and 2. Figure (a) shows the behavior as the coupling
If the distributiong(w) is given, the collective behavior of strengthK is varied with the noise level kept fixed: Circles
the system can thus be obtained by solving &4 In gen-  and squares describe the behavior of the order parameter as
eral the quadratic term of ordeK@)? is known to induce the coupling strength is increased and decreased, respec-
hysteresis in the bifurcation diagrd]. Accordingly, it has tively. At zero noise T=0), 20 independent runs have been
been concluded that the nonzero inertia tends to induce hygerformed with different initial configurations, over which
teresis in the bifurcation diagram of the systEm averages are taken. The corresponding error bars have been

A:
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FIG. 1. (@) The order parameter as a function of the coupling FIG. 2 (a) The order parame_ter asa functi_on of the noise level
strengthK for various values of the noise levdl Circles and | [0 various values of the coupling strength Circles and squares
squares represent the data for increasing and decreasing the cdgPresent the data for increasing and decreasing the noise level,
pling strength, respectively, and the solid and dashed curves a(gspectlvely, and _the solid and dashed curve§ are mer_ely guides to
merely guides to the eye. Hysteresis is manifested at zero noise afide €Ye-(b) Behavior of the order parameter with the noise level at
observed to weaken with the nois@) Critical coupling strength, ~ COUPIing strengtfK =0.7, with the same notation as ig). Mani-
beyond which synchronization sets in, is shown to increase Tvith fested is the hysteretic behavior as the noise level is varied.

Notation is the same as that (@), with the error bars estimated by

the standard deviation. It is observed that noise in general sugeré@sindl, respectively, and the typical error bars, estimated
presses both synchronization and hysteresis. by the standard deviation obtained from 20 independent runs

with different initial configurations, are shown on the data

oints atk=0.7. Figure displays the detailed behavior
estimated by the standard deviations whereas those d h the noise strgngthﬂf)gr thg goupling strengdth=0.7

points without explicit error bars have errors smaller than theagain manifesting the hysteresis. Note that the hysteresis is
size of the symbol. Note the hysteresis manifested at zerg,,q; conspicuous for the coupling strength around this

noise and weakening as the noise strength is increased fTofy e, decreasing as the coupling strength is increased. At
zero. These ch_aracterlsnc featureskas v_aned for a given \,aqk coupling strengths, the system is not synchronized (

T agree well with the results of Reff7]. Figure b) shows  _q) ' giving no hysteresis. It is thus concluded that the sys-

that the critical coupling strengtK., beyond which syn- o) exhibits quite generally hysteretic behavior as either the

chronization sets ir_1, increases mon_otonically with _the_nois%oup“ng strength or the noise level is varied, which has its
level T, demonstrating the suppression of synchronization b36rigin in the nonvanishing inertia.

noise. HereK, has been estimated by the value of the cou-
pling strength at which the order paramefefirst becomes
nonzero to a precision of 18. The circles and squares,

again corresponding to the data for increasing and decreasing |n this section we examine the phase velocity and its
K, respectively, have been obtained from averages taken ovgbwer spectrum, and investigate the possibility of the noise-

ten independent runs with different initial configurations andinduced resonance. The power spectrum of the phase veloc-
the error bars estimated by the standard deviation. Thus, unx

Yy ¢; is given b
like the excitable systeffil6], noise-induced synchronization y ¢ Is given by

IV. NOISE-INDUCED RESONANCE

does not emerge here. Further, the hysteretic behavior, re- 1 N
flected by the difference in the critical coupling strength be- S(f)=— 2 |§i(f)|25<(|;i(f)|2>>, (7)
tween the two cases, is revealed to diminish conspicuously N =1

as the noise level is increased. _ o

In Fig. 2(@) the behavior of the order parameter with the wherev;(f)=fdte?™ ' ¢, is the Fourier component of the
noise levelT for fixed coupling strengtlK is displayed. Here phase velocity at frequendyand the average over different
circles and squares represent the data for increasing and dasise realizations is also to be taken. TK{s - )) stands for
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the average over the noise realizations as well as over thghere({w?)) corresponds to the variance of the distribution
whole oscillators. It is related to the response function of thesf «;, i.e., ((w?))=/dwg(w)w? For example, in the

system via the fluctuation-dissipation theorgt8]: simple case of thes-function distribution g(w)=(1/2)
B X[ 8(w— wg) + 8(w+ wp)], the variance is given b w?))

S(f)=2T Rex(f), ®) = wy?, whereas for the semicircle distribution with radius

2\\ _ 2 L L

where Re denotes the real part and the generalized susceph€ Nave((w;%))=r*/2. Note that in this weak-coupling limit

bility x(f) is defined to be the Fourier transform of the ap-(((¢:)?)) as well as(((¢;))) does not depend on the noise
propriate linear-response function. When the system is digevel T, indicating the absence of noise-induced effects.

turbed by (time-dependentexternal driving, the resulting  In the limit of strong coupling strength, the oscillators
change in the average phase velocity takes the form tend to oscillate in a coherent manner, displaying synchroni-
zation (A~1). Since the order parametdrin Eq. (3) de-
5<<Zi(f)>>:X(f)5| (f), 9) pends explicitly on the noise, decreasing with the noise level

T, it is expected that unlike in the weak-coupling limit
where dl (f) is the Fourier component of thi@niform) ex-  (((¢,)2)) varies with the noise level. When the noise level is
ternal driving at frequencf In particular, the dc component syfficiently low (T~0) in this strong-coupling limit, the sys-
of the power spectrum, describing the dc response, reads tem is fully synchronized and described by the stationary
N solution

S(f=0)=%2 |}5i(0)|2=%2 U dtei | <(((B)?),
(10

=1 =1 ¢-=sinl<ﬂ) (15
: KA/’

where(- - -) denotes the time average. In the case of a suwhich yields(({¢;)))=0 and({(¢;)?))=0. At high noise
perconducting wire network or array, the phase velocity canevels (T— ), on the other hand, the system is not synchro-
be identified with the voltage via the Josephson relation, and;ed (A ~0), and we obtail(( ¢;)2))=({w?)), similarly to
the system is driven appropriately bytame-dependentex- 1o case of the weak-coupling limit. Accordingly, in the

ternal current. Accordingly, Ed8) connects the generalized L C o .
resistance with the voltage power spectrLf]. strpng—couplmg limit,(({$;)*)) is expected to behave with

To investigate the dc component of the power spectrumoise as follows: At low noise levelg((¢;)?)) increases
we begin with Eq.(3) and consider two types of solutions, from zero with the noise. As the noise level is raised further,
depending on the coupling strength: In the limit of weakit Saturates eventually toward its asymptotic valiger)).
coupling strength, each oscillator in the system favors oscilNote that{(((¢;)?)) just corresponds to the dispersion or
lating with its own frequency and the system is not synchro-mean-square displacement of the oscillator frequencies over
nized, yieldingA~0. The solution of Eq(3) is then given  the system sinc&((#;)))=0. Its monotonic growth thus in-
by dicates suppression of the frequency synchronization, which
1 . accompanies that of the phase synchronization measured by
¢i:wi+(vi0_wi)e7tlﬂ+ _eft/#f dt,et'/ﬂm(t,), the order parameter in Sec. Ill. The_ dc susceptibility, given
I 0 by xo=Rex(f=0)=S(f=0)/2T={{({$;)?))/T, then grows
(1) as the noise leveT is increased from zero and diminishes
. ] o . ) with T at high noise levels; in between it is expected to reach
wherev;o= ¢i(t=0) is the initial phase velocity. Taking the jts maximum. Therefore, in contrast with synchronization,
time average of Eq(11) in the stationary statet{~>), we  which is suppressed by noise, the response of the phase ve-
obtain the mean phase velocity or the frequency ofithe |ocity to the (uniform) external driving can be enhanced by
oscillator, adding an appropriate amount of noise.
) To confirm the analytical argument presented above, we
(Pi)=w;. (12) have performed numerical simulations on the set of equa-
tions of motion in Eq(1). For convenience, we have consid-

We now take the average over tNeoscillators; this reduces gad the semicircle distribution fg(w), and integrated Eq.

Eq. (12 to (1) with discrete time steps oft=0.01. In computing the
1 N 1N phase velocityN,=10° time steps have been used at each

AN — SN =0, 13 run, with the data from the first:810* steps discarded. We

({D=y 21 (0=x ;1 i (13 have again varied botbt andN, to verify that the stationary

o _ state has been achieved, and performed ten independent runs
where the symmetry of the distributig{w) aboutw=0 in  with different initial configurations, over which averages

the thermodynamic limit—) has been used. have been taken. In this manner we have comp{(éd)2))
On the other hand, the average of the square of the osCilf, he system ol oscillators, forN up to 4096, and con-

lator frequency, corresponding to the dc component of thgj ey that there are no appreciable finite-size effects\for
power spectrum, does not vanish: =1000.

1 N Figure 3 presents the obtained behavior of the dc suscep-
SN2\ N2y 2 tibility or the dc component of the noise-divided power spec-
= =(wi)), 14 . . : :
(™) N 21 (" =(aid) (14 trum with the noise leveTl in the system ofN=2000 oscil-
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FIG. 3. Behavior of the dc susceptibility, (in arbitrary unit$ FIG. 4. Power spectrum of the phase velog¢ityarbitrary unitg
with the noise leveT, in the case of the semicircle distribution with at various noise levelst=0 (solid circleg, T=0.1 (open circle§
radiusr =0.5, revealing the noise-enhanced response of the phase=0.3 (solid squargs T=0.5 (open squargs T=0.7 (solid tri-
velocity. Error bars have been estimated by the standard deviatioangles, T=0.9 (open triangles T=1.1 (asterisky and T=1.3
and the solid curve is merely a guide to the eye. (plus signs.

lators, each having inertiaxu=0.8. The semicircle trawell oscillation is expected to grow, lowering its fre-
distribution of radiusr =0.5 has been chosen fg{w) and  quency. Indeed the frequency at which the peak appears in
the coupling strengtiK =3 adopted. In particular we have Fig. 4 shifts toward lower values, demonstrating a noise-
considered both cases of increasing and decreasing the noigeluced frequency shift. It eventually approaches zero fre-
level, only to obtain the same results within error bars. Thequency; this describes the system kicked by noise in a
behavior shown in Fig. 3 demonstrates that noise helps thgotential-well minimum and escaping from the minimum.
system escape from the potential well, enhancing the reNamely, the intrawell oscillation induced by noise turns into
sponse of the phase velocity to external driving. It is of in-the interwell transition. To disclose the noise-induced effects
terest to note that (=~ 1.4), at which the response becomesin such intrawell motion, we have also computed the gener-
its maximum, is almost the same as the critical noise strengthlized susceptibility at several frequencies versus the noise
T. below which synchronization sets |iT.~1.4 for K=3 level, where noise-induced enhancement in the response can
as shown in Fig. @]. The height of the effective potential again be observed. In particular, at finite frequencies, it is
barrier of the system described by Eg) is given byKA. convenient to characterize such noise-induced effects by the
Since the order paramet&rdecreases with the noise leviel  appropriate quality factor
the barrier height also becomes lower with helping the
escape from the potential well and enhancing the response to Q=Snaf /T a1, (16
the external driving. Eventually, &, the potential barrier
vanishes and the response reaches the maximum. It is thughereS,, ., is the peak height of the power spectruifpgy is
concluded that noise not only hinders synchronization, makthe corresponding frequency, aafl is the half-width of the
ing the critical coupling strengtK larger[see Fig. 1b)], peak. Thus the quality facta, given by the ratio of the
but also enhances the response of the phase velocity to tipeak height to the relative width, measures the degree of
external driving force. coherent motior13]. We have compute® from the power

We now investigate the ac components of the power specpectrum obtained from ten independent runs, taking the av-
trum, i.e., the power spectrum at nonzero frequencies, whickrage at each noise level. The obtained behavior of the qual-
gives the possibility of noise-induced intrawell resonanceity factor Q as a function of the noise levélis shown in Fig.
For this purpose, we have also performed numerical simulas, which demonstrates the presence of the intrawell reso-
tions on the equations of motion, using the same parameterance induced by noise. The valde~0.7 at which Q
values, and compute the power spectrum of the phase veloceaches its maximum is apparently lower than that for the
ity through the use of the fast Fourier transform. The ob-interwell motion in Fig. 3, indicating that intrawell resonance
tained power spectrum as a function of the frequehdy  can be induced by weaker noise.
shown in Fig. 4. At each noise level, averages have been
tgken over ten ino_Iependent runs with different initial con- V. SUMMARY
figurations, to obtain the data represented by such symbols as
solid circles, open circles, solid squares, etc., and the error We have studied the synchronization phenomena and the
bars have been estimated by the standard deviation. Note thavise-induced motion in a system of globally coupled oscil-
in the absence of noisd &0), no peak appears at any finite lators, each possessing finite inertia, subject to constant driv-
frequencies, which is natural in the system without periodidng force. The detailed behavior of the order parameter de-
(ag driving. When small noise comes into the system, how-pending on the coupling strength and the noise level has
ever, a peak develops at a nonzero frequerfey@.3 in our  been obtained from numerical simulations, which has re-
simulation resultsand grows up with the noise, suggesting vealed hysteresis both with the coupling and with the noise
the activation of intrawell oscillation by noise. As the noise as well as suppression of the synchronization by noise. The
level is raised, the amplitude of such a noise-induced inhysteresis with respect to the coupling is most conspicuous
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the presence of noise-induced enhancement in the response.
In particular, noise-induced resonance in the intrawell mo-
tion has been observed in the behavior of the quality factor
with the noise strength. It is thus concluded that noise in the
system of coupled oscillators not only suppresses phase syn-
chronization but also helps the system to escape from a
potential-well minimum in the response of the phase veloc-
ity, inducing the resonance. Such noise-induced resonance
may be manifested by a resonance peak of the voltage power
spectrum in the case of a superconducting wire network. Fi-
nally, we note that the major role of inertia is to bring about
hysteresis in the response of the system. The inertia is in
general necessary for the system to possgsie) natural
frequencies, and expected to be essential to the ac resonance
at these finite frequencies. On the other hand, it may not be
ucial in the dc resonance behavior of the power spectrum
the phase velocity in the system of coupled oscillators.
Preliminary results we have obtained for the case without
iEBertia indeed indicate that the peak at zero frequency per-

in the absence of noise, weakening as the noise comes in L ! .
the system; that with respect to the noise appears large |sts whereas that at finite frequency disappears, suggesting
i _the presence of only the interwell motion. A detailed inves-

intermediate coupling strengths, diminishing with the cou-_ = * i .
pling strength. We have also considered the power spectrur%gat'on of this and other effects is left for further study.
of the phase velocity, as the response of the system to the
(time-dependentexternal driving, and examined the possi-
bility of the noise-induced resonance in the system. The dc
component of the power spectrum, which corresponds to the We are grateful to G. S. Jeon for useful discussions.
dispersion of the mean oscillator frequency, has been showM.Y.C. also thanks D. J. Thouless for his hospitality during
to grow with noise, again manifesting suppression of thehis stay at the University of Washington, where part of this
synchronization. On the other hand, the noise-divided powework was accomplished. This work was supported in part by
spectrum or the generalized susceptibility, which describethe Ministry of Education of Korea through the BK21 Pro-
the response of the phase velocity to the external driving, hagram and by the National Science Foundation through Grant
been found to display a peak at a finite noise level, revealingflo. DMR-9815932.
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FIG. 5. Behavior of the quality facta® with the noise levell
(in the logarithmic scale exhibiting the noise-induced resonance.
Error bars have been estimated by the standard deviation and tﬁ%
solid curve is merely a guide to the eye. o
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