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Parametric resonance energy exchange and induction phenomenon
in a one-dimensional nonlinear oscillator chain
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We study analytically the induction phenomenon in the Fermi-Pasta-\Blascillator chain under initial
conditions consisting of single mode excitation. Our study is based on the analytical computation of the largest
characteristic exponent of an approximate version of the variational equation. The main results can be sum-
marized as follows{1) the energy density scaling of the induction tim& is given byT~ e~ %, andT becomes
smaller for higher-frequency mode excitati@®) there is a threshold energy densétysuch that the induction
time diverges wher< e,= w2/63N?, whereN is the system size and the nonlinearity parameter, and this
expression fok, is correct in the limitN— o; (3) the thresholdk, vanishes ag.~N~2 in the limit N—; (4)
the thresholde, does not depend on the mode numkehat is excited in the initial condition(5) the two
modesk+m have the largest exponential growth rate, améhcreases with increasingasm/N= \/ﬁ/w.

The above analytical results are thoroughly verified in numerical experiments. Moreover, we discuss the
energy exchange process after the induction period in some energy density regimes, based on the numerical
results.

PACS numbses): 05.45-a, 45.20.Jj, 05.26-y

[. INTRODUCTION really diverges at the threshold. It may be necessary to obtain
more accurate theoretical results for the threshold.

Fermi, Pasta, and UlarfFPU) first studied the relaxation A model more extensively studied in the literature is the
to equilibrium of one-dimensional nonlinear oscillator chainsFPU 8 model, which has quartic nonlinearity in its Hamil-
[1]. They chose an initial condition far from equilibrium, tonian. A simple initial condition often used in those studies
giving all energy to the lowest-frequency normal mode, ands that involving only a single-mode excitation or a narrow-
then numerically integrated the equations of motion. It isPacket excitation. In such a condition, only a single normal
well known that the expected chaotic energy exchangénode of some wave numbgior a wave packet of small size
among the normal modes did not occur within their observa®k With mean wave numbér (Sk/k<1) is initially excited.
tion time scale, but quasiperiodic normal mode oscillation/Zrailev and Chirikov applied the resonance overlap criterion
including only a few low-frequency modes was observed.under this initial Cpndlthh and _|ndlcated that above a thresh-
Their numerical results showed that the relaxation to equilib—OIﬂ ener%y density Fhe cr;]aotu; energy elxchsn?esv(\snth the
rium is not an obvious consequence of the nonexistence ther modes occurs in a short tifg (see also Refg5,6]).

analytic first integrals of the motion other than the ener hey also showed that, in the regime of smilli.e., k
y 9 . . 9y- <N), the threshold decreases as the wave nunkber-
Since the appearance of their ground-breaking work

wudi f the chaotic d . ¢ h ¢ h treases. This implies that the time scale for the chaotic en-
many studies of the chaolic dynamics of such systems aV@rgy exchange to occur becomes smaller when a mode of

been carried out in order to understand their relaxation propp, e is initially excited. Recently, thi dependence of the
erties. For the FPl& model, which has cubic nonlinearity in - ime scale for chaotic energy exchange has been studied in
its Hamiltonian, Casettét al. have recently reexamined the getajl [7,8]. A quite different result was found for a rather
relaxation properties by carrying out extensive numerical extargek mode excitation. The time scale exhibited an intricate
periments with the aid of modern high-performance computk dependence in a sufficiently large energy density regime:
ers[2]. An interesting result they found is that at a certainthe chaotic energy exchange is enhanced intermittently in
threshold in energy density (e=E/N is the energy per some specific wave number ranges and the time scale then
degree of freedoi the largest Lyapunov exponent rapidly becomes smaller, while for wave numbers within a certain
decreases and the relaxation time seems to diverge. That i&nge the mode oscillation is extremely stable and the time
the motion seems to be quite regular below the thresholdcale is very large. It was theoretically shown that parametric
while it is chaotic(although very weaklyabove the thresh- resonance instability among four specific modes plays a cru-
old. The threshold was also shown to become smaller as thaal role in this strongk dependence of the time scdl@].
numberN of degrees of freedom increases. A theoreticalPettini and his collaborators proposed a new interpretation of
study of theN scaling of the threshold based on an approxi-the threshold energy density, which distinguishes weak and
mate resonant Hamiltonian suggests that the threshold estrong chao$9,10]. They showed that below the threshold
ergy density vanishes in the thermodynamic liit>< [3].  the relaxation time rapidly increases and the largest Lya-
However, it is still not very clear whether the largest Lya- punov exponent rapidly decreases asdecreases. They
punov exponent drops exactly to zero and the relaxation timealled the energy density thresholds&rong stochasticity
threshold (SST). A SST has also been shown to exist in
some other oscillator chain models besides the [BRdodel
*Electronic address: kazuyuki@cslab.kecl.ntt.co.jp [11]. A detailed study of the chaoticity transition between
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weak and strong chaos was done by using a Riemanniagescribed by the Hamiltonian

geometric description of Hamiltonian chap$2—-15. Re-

cently, De Lucaet al. have studied the same model and N-1 N g B

given a very detailed picture of the motion in the low-energy  H== > pi2+2 =(qi— 1)+ = (gi—ai_1)*|.

regime[16]. In spite of all the above work, the dynamics of i=1 =112 4

the FPUB model in the relaxation process is not yet fully @

understood. In particular, a theoretical result that appropri-

ately describes the dynamics in the relaxation process is stilfhis is referred to as the FPJ3 model. This Hamiltonian

lacking. describes a one-dimensional nonlinear oscillator chain with
A well known dynamical phenomenon relevant to the re-nearest neighbor interaction. We employ fixed-end boundary

laxation from single-mode excitation in the small energyconditions, i.e.go=qy=0. The parameteB represents the

density regime is thdnduction phenomengnwhich was nonlinear coupling strength. We will sgt=1 in later nu-

found for the FPUB model by Ooyamaet al.[17] (see also merical experiments. We define the energy densitgs e

[18,19). In the induction phenomenon, energy initially sup- =E/N, whereE is the total energy of the system. The equa-

plied to a single mode remains in the initially excited modetions of motion derived from the Hamiltonigi) are

during a certain period called thieduction period and then

abruptly transfers to some of the other modes. A theoretical ,

study of this phenomenon has also been presented based ona_':qi+1+ Oi—1— 20+ B[(qi1—a)3— (g —a;_1)°].

Mathieu equation stability analys[49]. Recently, Christie dt?

and Henry pointed out that this analysis is unsatisfactory, so 2

they carried out an analysis based on a frequency shifted

perturbatior{20]. Their analysis fully explains the mode en- The transformatiom— Q defined by

ergy pattern in the very early stage of the induction period.

However, it fails to explain the exponential growth of the N-1

mode energies. !r_l this paper, we presgnt a the_oretical study qi= E E Qy Sin(w_ki), (i=1,2,...N—=1) (3

based on a stability analysis obupledHill equations. Our N =1 N

analysis explains the exponential growth of the mode ener-

gies, correctly identifies the fastest growing modes, Scaleaives the normal modes of the corresponding linear system.
the induction time with the energy density, and shows tha ere,Q, is the amplitude of th&th normal mode. The char-

the induction period diverges at a threshold energy density, ~teristic frequency of thkth normal mode is given by
which is independent of the initially excited mode’s wave

numberk and vanishes a~? in the limit N—o. Our the-
oretical results appropriately describe the mode dynamics wk=23ir<lk). ()
during the induction period. 2N

The present paper is organized as follows. In Sec. I, we

describe the FPB model and introduce normal mode coor- | terms of the normal mode coordina®@sand their conju-

dinates. In Sec. lll, we describe the relationship between the . . - o (=0), the Hamiltonian(1) is rewritten as
mode energy exchange in the induction phenomenon and t

exponential instability of nearby orbits. An approximate ver- No1
sion of a variational equation, which we call an average 1
variational equation, is proposed for examining the exponen- (
tial instability. In Sec. 1V, we analytically compute the ex-

ponential instability rate using the averaging method and de- B N-1

rive some analytical results on the induction phenomenon. In + 8N . & kE g PPk,

Sec. V, we verify these results in numerical experiments. 1h2:Re e

Conclusions are offered in Sec. VI. XlekaQk3Qk4D(klyk21k3yk4)v (5)

Il. FPU B MODEL AND NORMAL MODE . -
p whereD (kq,k,,ks,k,) represents the selection rule defining

In this section, we describe the FP8 model and the the interaction among the normal modes. It is explicitly writ-
normal modes. Our investigation is of the dynamical modelen as

D(Ky g, Kz, Ka) = 8(Ky+ Ky, ka+Kg) + 8(ky+ K, kot Kg) + S(Ky + Ky Ko+ ka) + 8(Ky + Ko+ kg Kg) + 8(ky + Ko+ Ky, Ka)

+ 5('(1“1‘ k3+ k4,k2)+ 5(k2+ k3+ k4,kl)_ 5(k1+ k2+ k3+ k4,2N)_ 5('(1“1‘ k2+ k3,2N+k4)

- 5(k1+ k2+ k4,2N+ k3) - 5(kl+ k3+ k4,2N+ kz) - 5(k2+ k3+ k4,2N + kl)! (6)
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FIG. 1. Mode energiek; plotted versus timé. N=16, k=10,

ande=0.1.

where § is the Kronecker delta function. The linear energy

E; of each normal mode is defined as

Ei(t)= ;[Piz(t) +w2Qi%(1)].

The equation of motion for a normal mode is
N—1

d? B
_ 2 =
e Qut 0" Qut 5 o >

WyWg, Wy, O
Ky Kg=1 172

X Qy,Qk,Qk,D (kK1 kz,k3)=0.
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is transferred from mode 10 to these mode$-aB850. The
period prior to the significant energy exchange is called the
induction period and its length the induction time, which we
denote byT. The growth rates are different between the
modes: mode 8 has the largest growth rate in the early part of
the induction period. After the induction period, the energy
exchange among the modes seems chaotic. In the present
paper, we investigate some properties of the mode dynamics
during the induction period and some propertied of

B. Exponential instability of orbits

In this subsection, we discuss the relationship between the
exponential growth of mode energies and the exponential
instability of nearby orbits in phase space. The amount of
energy in the modes other than the initially excited one is
given by

[P%(t) + 0?Qi%(1)].

N| -

AE(t)=,

i#k

(10

We denote a point in phase space by (P,Q) and define
the norm normal to the planH ={(P,Q)|P;=Q;=0, #k}
as |I|>=2;.«(Pi?+Q;?). Due to the initial condition
Pi(0)=0, Q;(0)=0 (i#k), the normal norm ofI'(t)
—TI'(0) is approximately given by

|\F<t>—r<0>||f:§k[Pi2<t>+Qi2<t>]. (12)

From Egs.(4), (10), and(11), we have the inequalities

2 2
WN-1

Tt =T, 2

of an almost single-mode excitation: at the initial time, most (12)
of the energy is given to a single normal mode of wave
numberk and only a small amount of energy is placed in theThese can be rewritten as
other modes. Thus, 5
: 2 IE() = T(0)], + ~Int
Q(0)=0, Q0)=0 (i#k). © ANCRRC iy
The nature of these initial conditions implies th&f(t) 1
~0(i #k) holds for some period, and then significant energy = 7INAE()
is transferred from the initially excited mode to others. In
this paper, we investigate this process of energy exchange. 2 1 Wﬁ,,l
s?InHF(t)—F(O)Hﬁr?In 5 (13
IIl. ENERGY EXCHANGE AND ORBIT INSTABILITY
A. Induction phenomenon For a sufficiently large, we obtain
The induction phenomenon was first reported in a numeri- 1 1
cal study of the energy exchange in the FBUnodel[17]. f'nAE(t)_Z f'nHF(t)_F(O)”L : (14

This phenomenon is observed most often in the small energy

density regime. We start with a numerical example calcu-This indicates that the exponential growth rate XE is
lated for the system dfl=16 andB=1. The energy density twice as large as that of the phase point separation from the
€ is set to 0.1 and the mode=10 is initially excited. A initial point.

small amount of energy (2110 % ¢ is initially placed in Figure 2 shows the phase point separation.ll{&tS,) be
every other mode. This initial condition allows the odd a solution that has an initial poi, att=0. Since an almost
modes to participate in the energy exchange. Figure 1 showsingle-mode excitation is employed as initial condition, an
some of the mode energids plotted versus timé. In an  almost single-mode oscillation of the initially excited mode
early stage of the time evolution, some of the mode energielsts during the induction period, and thus the phase point
E; (i#k) grow exponentially. The energies of all the modesreturns to the neighborhood of the initial point after the
except that of mode 10 become large, and significant energsingle-mode oscillation periodt,. The points S, (n
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d? 3B
EQk wy Qk+ N “k *Q3=0. (18

It is well known that the solution of E418) may be written,
with the Jacobi elliptic function, in the form

Qu(t)=ayNen(ot k), (19)
where
2 2
FIG. 2. Schematic illustration of an orbit in phase space. The 2_ 4kp, 2= Wy (20)
solid curve represents the actual orbit and the dashed curve the 3ﬁwk2(1_2kr2n)’ 1_2k2m’

pseudoperiodic orbit.

and k,,, is the modulus of the Jacobi elliptic function. The
=1,2,...)represent the phase poirdf¢nt,;Sp), which are  modulusk,, is related to the energy densiéyas
close t0S,. Defining oI';=T((i + 1)ty;Sy) —I'(itg; Sp), we
have 2kn(1—Kp)

n-1 “T3p(1-2k2)
I'(nty)—I(0)= ZO ST (15)

(21)

In phase space, the soluti@(t) defines the periodic orbit

Consider an orbif(t;S,) that has the initial poin§, at L (t) whose nonzero components are only ktie momentum
t=0, i.e, [(t;S)=I(t+t;Sy). SinceS, is close to the P, and amplituded, . SinceQ,(t) is an approximate rather
initial point Sy, the time evolution of the difference than an exact solution, the periodic oribi(t) is also only
I(t;S,) ~TI'(t;Sp) can be approximately described by the o qyimate. In this sense, we cdllt) a pseudoperiodic

variational equation orbit. An orbit starting with an almost single-mode excitation
42 N—1 initial condition remains close to the pseudoperiodic orbit for
— &t 028+ _'8 E 0w O @ t<T (see Fig. 2 In other words, the pseudoperiodic orbit
2 Si isitoN _ i PPk, Pk, . . h | .
dt j kg Kp=1 approximates, in an average sense, the actual orbit generated
by the equations of motiofB) for t<T. Therefore, we re-

X Q, (D) Q, (D €D(i,j ,ky,k2) =0, (16)  place the reference orbit in E¢L6) with the pseudoperiodic
) orbit Q. That is, the variational equation employed for the
where §; (i= - N—1) represents the variation in the theoretical analysis is

normal mode coordmat@l anko (t) a component of the

reference orbil’(t;Sy). Equat|on(16) is obtained by linear- d? 38 =, N-1

izing Eq. (8) along the reference orbit. The soluticf Egl—'—wl &it 5N @Ok Qk (t)E wjw;;D(i,],kk)=0.
=(§1.,.- B NPT ST N | qf Eq. (16) \(vith the ini.tial (22)
condition §(0)= 6I'y can approximate the time evolution of

the differencd’(t;S;) —I'(t;So). Therefore, we have the ap- The actual reference orbit may contain a small oscillating

proximate expression part other tharQ,. This small oscillating part might affect
n—1 the growth of the solution. However, we first assume that
I'(nty)—(0)= >, &ito). (17)  only the contribution ofQ, is important and later confirm
1=0 that this assumption is acceptable by comparing the theoret-
ical results with numerical results.
C. Average variational equation Since Q, is a periodic function, the AVE is a so-called

In this subsection, we introduce an approximate versior¢oupled Hill equation We denote the period d@, by to.
of the variational equatiofl6) as a tool for our theoretical According to Floquet theory, solutions of E(2) att=0
analysis; we call this anmaverage variational equation andt, are related via thenonodromy matrix Mas &(t)
(AVE). Since we are interested in the mode dynamics over M &(0). The AVE is aHamiltonian system itself with the
the induction period, the exponential growth rategdf the ~ Hamiltonian
periodt<T (rather than through infinite timeas useful. The

initially excited mode has the only significant amplitude 17t 2.2
since the amplitudes of the other modes are sufficiently small AVE_ Z (&2+ 0i%E?)
during the induction period. This fact enables us to simplify
the variational equatiofiL6). 38 . N-1 .
If the approximatiorQ;(t)=0 (i #k) is made in Eq(8), + mwszkz(t)iJZl wjw;&&D(,j,kk).

the equation of motion for thikth mode(the mode excited
initially ) is approximated as (23



PRE 62 PARAMETRIC RESONANCE ENERGY EXCHANGE AND ... 6451

Let ;e C[i=1,... 2N—1);[ay|=---=|ayn-1)|] be ei- We proceed to the case dfa;|=1 and aijil (
genvalues of the monodromy matiik of the AVE. Because =1 .. d). In this case, all the eigenvalues are on the unit
of .S|mplect|C|ty of Erlle AVE, the glgenvalues satlsfy the re-gircle (|0{1|: -+ =|ayn-1)|=1), so the right hand side of
lations ap(n-1y=ay , ..., an=ay>;. Therefore, if [ay|  Eq.(26) is bounded as
=1, all of the eigenvalues are on the unit circle of the com-
plex plane, i.e.|a|="--=|ayn-1)|=1. d [al—1\ d 2 ‘
If we approximate the variational vectdf in Eq. (17) > ‘—1 PIDEO)|| <> T PN &)
using the solution of the AVE, we have j=1\ T =1 |O‘ij_ I
(30)
n—1
I'(nty)—T(0)= >, M'0). (24  We evaluate the order of the right hand side in &) for a
i=0 sufficiently smalle. In the limit e— 0, the equations of mo-
L 1 q- - - be disti . tion (8) reduce to those of harmonic oscillators, and the AVE
et @i (=1...4 |ai1|/' ' 'f|aid|) e distinct €igen- 556 reduces to the equation 8= 0. The eigenvalues d¥l
values ofM, wherei;=1 andP(}) is a projection onto the are given bye™ 271/, . . . g*i2men-1/ok since the period
eigenspace ok . Since some eigenvalues may have thejs t,=27/w,. If we assume the initial conditiof'(0) as
same modulus ag; , we assuméail|= e =|ais| (s=d). Py(0)=wipjcosyi, Qi(0)=pisinyg (i=1,...N—1),

We consider a simple case where the monodromy madrix Where|pi|<[py| (i#k), we can calculate the right hand side
is diagonalizable. The monodromy matii& can be written  in this limit as

as d 2 N-1
M=a; PO+ .+ PO9, (25) h) @ 1] IIP“J"§(0)||=2§1 piN1tol, (3D
Substituting this intq Eq(24) and assuming tha&ij#l (j iikN_l
=1,...d), we obtain SZ\/EE o 32
IT(nto) =L'(0) ik
n—-1 n—-1
- [( 3 o foti (3 ol P“f”}ﬁm H of €1 2 54l of he ordr of (S, for suffcenty.

small e. This shows that the right hand side is small if the

initial amplitudesp; of the modes other than the dominant
: (26) modek are sufficiently small. Therefore, EG0) shows that
within the AVE approximation, the phase point separation
I'(nty) —T'(0) does not significantly increase but is bounded
by a small value. This implies that eveB; of the modes
gther than the initially excited one remains of the order of its
value at the initial stage, and thus the induction timei-
verges where is sufficiently small ande;|=1 (or A\;=0).

a'—1

d
2 ( ) P 0)
2

Olij_l

It is generally expected th&®(D£0)+#0 (j=1, ... s) and
these terms become dominant for largein the case of
|a,|>1. (Precisely speaking, the terms that correspond t
the eigenvalues with moduli close ta,| are also important
for finite n.) Therefore, we can obtain the scaling

[T(nty) —T(0)|~|ai|"=expAinty), (27 IV. ANALYTICAL COMPUTATION OF THE LCE

where we defined the largest characteristic expofieGE) In this section, we carry out an analytical computation of
Ny as A\p=In|aylfty. Since T(nty)—T(0) may contain the _LCE. For this purpose, we introduce a further approxi-
a component normal to the plari, the normal norm mation to the AVE and then apply the second order averag-

IT(nty)—T(0)[, also follows the same scaling law. From N9 method.
Eq. (14), the growth ofAE(t) is approximated as
A. Averaging method

AE(t)=ABqexp(2qh), (28) We briefly review the averaging meth¢#1] in this sub-

section. The averaging method is applicable to an equation

whereAE, represents the value &fE(t) at the initial stage of the standard form,

t=0(ty). The induction timeT can be estimated as the time

at whichAE becomes of the same order as the total energy dx
E, i.e., AE(T)=0(E). Therefore, we can estimaieas qi vyE(X,1), (33
1 E .
T=-—In—. (29  wherexeR", teR, andy is a small parameter. We assume
2\, AEg

that the functionF(x,t) is periodic int and takes the form

This shows thafl can be estimated by using the inverse of o
N\, since the dependence on the logarithmic factor is ex- F(x,t)= E F)(x)elvet, (34)
pected to be weak. )
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We introduce the following two operatoh {F} andE: variational vectors to those giving the six largest character-
istic exponents by iteratively orthonormalizing them. Figures
M{F(x,t)}=FO(x), (39 3(a)-3(f) show&2+ &2 of those vectors plotted agairisior
. N1—\g, respectively. In the numerical calculation, we set the
Tiv =S _~ ivot parameters abl=64, k=43, =1, ande=0.01. The AVE
Fx.b) ;o' ch (e, (36) appears to have multiple characteristic exponents, ig.,

=N5, A3=\4, and As=N\g, Or equivalently,|a;|=]|asl,
Since the parametey is assumed to be sufficiently small, |ag|=|a,|, and|as|=|ag).
it is reasonable to expect that the solutioto Eq.(33) varies The figures show that only two components have non-
very slowly and a fast variation df in t does not cause a negligible values and the others are almost equal to zero.
significant variation ofx. Therefore, the averaging method These two components have mode numlsersn, wherem
approximates Eq(33) by using anaveraged autonomous is a positive integer. The two non-negligible components are
equation The first order averaged equation is given by 43+ 3 for Ay and\,, 43+ 4 for A3 and\,4, and 432 for A s
and\g. Based on this numerical observation, we assume that
% _ the parametric resonance betweenkhem andk+m mode
dt = yM{F(Xo,1)}. 37 . : ; .
components is dominant for the instability in the AVE. The
importance of such a coupling was also pointed oUt2i4.
The solutionx of Eq. (33) can be approximated to first order |f e retain only the two-mode componentslofm in Eq.

with the solutionx, of Eq. (37), namely,x=Xo. (22, then we have equations of the form
As we will mention later, the first order averaged solution
turns out to be inadequate for appropriately computing the d?

3B .
LCE. Therefore, we use a second order averaging method in &t o6 T o @ QE(D)
this study. To second order, the averaged equation is given

by

de?

X (2w; 2& + 0 0;§,)=0,

deo _ (40

d
2
dt YM{F(Xo,t)}+ v Mt{(F' %o

F(xo,t)]. (39) 42

3 ~
_ — &, w2+ %wszkz(t)
The operatolF - 9/ dxq is defined by dt
- - P X (w0 & +20; & )=0,
F- Fi(Xg,t)—, (39
0. wherei, andi, stand fork—m andk+m, respectively. This
type of coupling between modéstm exists for the initial
excitation of any modé exceptk=1, N/2, andN—1: the
modesk=1 andN—1 do not have one of the pak=m
since they are the boundary modes, andkfeiN/2 the AVE
separates intdl— 1 decoupled equations. Therefore, the fol-
B. Two-mode approximation of the AVE lowing theoretical analysis applies to the case of keycept
It is difficult to analyze the stability of solutions to Eq. k=1, N/2, andN—1.
(22) directly because of the high dimensionality, except for We solve this set of equations for anyand calculate its
the simple case where E(R2) separates intti—1 decou- WO positive characteristic exponents as a functionnof
pled equations. A stability analysis in such a simple case wakfom the above numerical observation, we can assume that a
carried out in[22,23. In order to overcome this difficulty, Pair of positive characteristic exponents for a singlgives
we attempt to approximate the AVE by using a low- SOme successive characteristic exponents ; and \;,
dimensional equation consisting of a few important modevherej=1,2, . ... Inother words, lettingV,; ; andW5; be
components. In our previous wofR], we showed that for a the eigenspaces af,;_; and «,;, respectively, we can as-
sufficiently large energy density parametric resonancéume that the real subspace of their direct sulivy;(;
among four specific mode components is dominant for thedW,)) "RZMN"1), is approximately included in a four-
instability and the AVE can be well approximated with a dimensional subspact.,={(P,Q)|P;=Q;=0,#k+m}
four-dimensional equation including only the couplingsof phase space, which is spanned by the two mode compo-
among these four modes. The energy density range for theentsk=m. Next, we look for then that gives the maximum
induction phenomenon is smaller than this. Therefore, in thi®f those m-dependent characteristic exponents in order to
study, we deal with the AVE in a smaller energy densitydetermine the LCR;.
regime and the dominant mode couplings in the AVE are If we introduce a new time variable= w,t and rewrite
different. the dependent variables Wit.f]l:gil and {=é, in Eqgs.
We numerically integrate Eq22) and calculate the varia- (40), then we obtain the equations
tional vectors that correspond to some of the largest charac-

whereEj andxg; represent components Efandxo, respec-
tively. The solutionx can be approximated to the second

order asx=Xq+ yF(Xo,t).

teristic exponents, in order to find a set of a small number of 2 3

important mode components. We started the numerical inte- —— L2+ = BAA(T)(2r2 L+ 14T 00,) =0,  (41)
: T " 2617 M61™ 5 1617 M1l262 ,

gration with six different initial conditions and converged the dr
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FIG. 3. Variational vectors corresponding to the six largest characteristic exponents calculatéd 6dr k=43, ande=0.01. &2
+ &2 is plotted against. (@ N\ ;=5.9X103. (b) A ,=5.9X10 3. (c) A3=5.5X10"3. (d) A\,=5.5X10"3. (€) As=4.6x10" 3. (f) \q=4.6
X103,

d2 3 and the functionp( ) is defined as
G2kt 3l 5 BEA(raralit 2r55) =0,
Wy ~
_ _ $(1)= —=Qu(rlw ) =Ac (1+6B8) Y 1ky], (43
wherer, andr, are the ratios between two frequencies de- VN
fined by

wherek,, is the modulus defined in Eg21) and the ampli-

®i, sirf 7(k—m)/2N] tudeA is given by

M= T sin(mki2N)

2
(42) AZ:@(— 1+1+6pe). (44)
0, sifw(k+m)/2N]
rz_aTk - sin(wk/i2N) Note that the functiorp depends on neithée nor N.




6454 K. YOSHIMURA PRE 62

C. Application of averaging method d2
2 2 _

We solve Eqgs(41) for small € using the second order ¥§1+r1§1+y[1+cos{297)](2r1§1+ rir,¢>)=0,
averaging method. From E(3), the period of the function 47)
¢ is given by

d2
4K (Km) 4 ml2 de F§2+r§§2+7[1"‘005(297)]“1"251"‘2r§§2):0,
T

T (11680 (1+6B0) )0 JI-KZsire’
(45  where the small parameteris defined byy= (3/4)BA%. We

assume a solution to E in the form
whereK (k,,) represents the elliptic integral with modulkig as7)

defined in Eq(21). The corresponding angular frequency is Li=ui(7)sin(Q7)+vi(7)cogQ 1), (48)
- 2 B m(1+ 636)1/4 46 d¢; .
= TR (46) 4y = Qui(n)cod 1) = Qui(7)sin(Q7), (49)

Using the approximationp(7)=A cos{17), we bring Eqs. wherei=1,2. If we substitute Eqg48) and (49), then Egs.
(41) to the form (47) are rewritten in the form

du; y[[1 3 1 1 _ 1
dr 0 §a13vl_zbl2vz + 5312U1_§b12U2 sin(2Q 7) + §a14vl_b1202 cog 20 )
1 1 , 1 1
+(_§bllul_Zb12U2)S|n(4QT)+ _Ebllvl_zblZUZ 003407') y
dv, vy 1 1 1 1 ) 1
Fzﬁ _Eallul+ Zblzuz + —§a12U1+ Eblzvz S|n(297')+ Ealoul COSZQT)
1 1 1 1
+ §b11U1+ Zb1202)3|n(407')+ _Ebllul_zblZUZ)C0$4QT) y (50)
du, y[[1 3 1 1 _ 1
Ezﬁ §a2302_zb21U1 + §a22U2_§b21U1 S|n(297')+ §a24l)2_b2101 CO&ZQT)
1 1 , 1 1
+(—§b22u2—1b21u1)SIl’1(4Q7')+ _Ebzzvz_zsz_vl)cos4ﬂ7') y
dv, vy 1 1 1 1 ) 1
Ezﬁ _§a21U2+ Zb21ul + _Eazzl)z"‘ §b21v1 S|n(207')+ Eazol.]z COSZQT)
1 1 1 1
+ Eb2202+ Zb21vl)sin(4ﬂ7')+ _Eb22U2_Zb21U1)CO$4QT) y
where we defined the coefficients andb;; as
1 2 2 ;
aijz;[ﬂ —ri(1+jy)l, (51)
bij=rirj. (52)

We assume that/N is much smaller thak/N in the present analysis. This assumption guarantees {hat andr,=1. In
addition, we can see th&t=1 if € is sufficiently small. Since these impiyJ«O(y*l) andb;;=0(1), Egs.(50) are in the
standard form(33); thus, the averaging method is applicable wheiN<k/N ande<1.
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If we calculate the second order averaged equations ac-

cording to Eq.(38), then we arrive at equations of the form

Uy 0 2A 4, 0 —3Ry
i U1 B l _ZAJ_U 0 R2 0
dT U2 - 49 0 _3R1 0 ZAZU
U2 R2 0 _ZAZU 0
up
U1
X[ u, | (53
U2

where the matrix element&,,Aq, ,A5,,A5, Ry, andR,,
respectively, are defined as

Y
Ay=agzt ——(8aast 4b7+1707), (54
320)
A, =ant ? (8ayespT 4bi+biy), (55
3202

Y
Ay =apst @(8322324Jr 4b5,+ 1703, (56)

Y

_ 2 2
Ay, =ap+ 3202 (820825 4bo,+ b1y), (57)
Ry=bypt ——[4byy(2a5,+ Ayat Anst 2
1= D12 @ [4b1x(2a1,+ a4t azgt2a5))
—2byy(b13+ by ], (58

Y
Ry=Dbqo+ @[‘“’12(310"‘ Agg) —2b15(b11 1+ b)) ].
(59

The eigenvalues of the coefficient matrix in Eq(53) can
be explicitly obtained as

Y
N=2q [T 3RIR=2(A 1Ay, + 42,42,

£ 2{(A1yRo+ 342, R1)(A2yR,+344,Ry)

+(AA g, — Agyhp, )22 (60)
We write the polynomials in Eq60) as
F=(A1,Ro+3A2,R1) (AR +3A1,Ry)
+(ApAg,—Azlg,)3, (62)
G=—-3R;Ry—2(A1 A1, +AsAs,). (62)

The polynomiald= and G depend ore. Calculating them as
a function of e, we can see that for fixeth/N and k/N, F
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Im[A]

=Re[A]

=)

FIG. 4. Diagram for changes in four eigenvalues with

changes its sign from positive to negative with an increase in
€ while G remains negative. Moreover, we can see t&it
is much larger tharjF|. All the eigenvalues\ are purely
imaginary numbers wheh is positive. In this case, the so-
lution of Eq. (53) is stable. On the other hand, the four ei-
genvalues are in the fornt (x*iy)(x,yeR) when F is
negative. Since the positive real parts of two eigenvalues are
the same, this coincides with the previous numerical obser-
vation indicating that the AVE appears to have multiple
characteristic exponents. Figure 4 shows changes in the four
eigenvalues in the complex plane with increasingVhenF
is negative, the solution of E@53) is unstable and grows at
the rate REN ], which represents the positive real part of the
eigenvalues. The exponential growth rate of a solution
(£1,¢,) to Egs. (47) is also given by Re\] since terms
corresponding tdé in the second order solution’s expression
X=X+ yF(Xo,t) are linear with respect to; andv; .

We proceed to expand Re] in powers ofe andm. When
F <0, the positive real part of is written as

Y

4,20

If we consider the case of F<1, then REN] can be ex-
panded as

RN ]= [G+(G2+4|F|)¥?)Y2, (63

F 1/2

R z%(é (64)

From Eq.(46), the frequency) can be expanded in pow-
ers ofe as

Q=14+0Q,B8e+Q,(Be)2+0(€) (65)
.9 621 .
=1+ gﬁe— EG(ﬁE) +0(€°), (66)

and, using Eq(44), we can expand the parametgras

3 9 ) 3
y=5Be= 7 (B> +O(&). (67
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Re[A] If we calculate\; for the case ofN=64, k=43, ande
=0.01 according to Eq73), we obtain\ ;=6.5x 10 3. This
L P — is in good agreement with the numerical valdg=5.9

x 10" 2 in Fig. 3(a@). The agreement becomes bettereade-
creases. This comparison validates our analytical computa-
tion of the LCE. From Eq(29), we can obtain the scaling

of the induction timeT as

T 1 -1 (74)
~ ~€ .
u wyBe

0 Momax Ko N : .
The induction timeT is proportional to the inverse of.
FIG. 5. lllustration of REN] as a function ofu for a fixede. Moreover, T depends on the frequenay, of the initially
excited mode and thus becomes smaller for higher-frequency
We introduce a parametgr=mm/2N, which is small be- mode excitation. The range, for positive R¢\] can also
cause we assumed a smallN. Thus,r; (i=1,2) can be be easily found as
expanded byw. Using the expansions fdR, vy, andr; and
expanding Eq(64) to the lowest order o and ., we arrive 3Be
at the following expression: Ho= \ 5 (79)
We can see that, decreases with decreasiagThis means
that the number of modes with positive exponential growth
rates decreases asdecreases. |€ is small enough and the
1 a2 12 growth rate of them=1 pair of modes becomes zero,
_Z[_Zf“ (2u"=3Be)]7" (€9 namely,uo< 7/2N, then all of the modes become stable and
the induction timeT diverges. This threshold energy density
The expansion coefficienf); appears in Eq.(68). This €. determined fromu,<#/2N is obtained for largeN as
shows that the frequency shift of the initially excited mode
due to the nonlinearity affects Re] in the lowest order. T
Figure 5 shows the shape of [Rg as a function ofu for a ECZG,BNZ'
fixed e. The real part Re\] is positive foru<uy and has a

maximum R Jmax &t u= fimax- FOru>uo, F is positive,  This shows that, decreases as the system sizancreases,
so R¢N]=0. We can easily find ec~N~2, and vanishes in the thermodynamic lir\t—oc.
1 Equation(76) also shows that the threshold does not depend
Hma= [3Be (70) (lzr;tlhel\ll/réltlzlrll)éﬁl)flied mode numbé&r except in the cases of
_ A similar expressiore,= 2/38N? has been obtained for
and the maximum the stability threshold of the zone-boundary mode although
3 periodic boundary conditions were employed in Refs.
qu]maﬁgﬁf- (72) [23,2_5,26. Moreover, for_a generic large que excitation
and in the case of periodic boundary conditions, Berman and
) ) . Kolovskii obtained an expression for the exponential growth
Equation(70) S_hOWS that the pair of modes giving[Rdmax  rate of the perturbation similar to our lowest order result Eq.
changes withe: these modes separate from the initially ex- gg), different only with respect to the factors, and the sta-
cited one ink space with increasing and, for largeN, their bility threshold e.= 7%/38N? by means of a different ap-
mode numberk,, are given by proximation[27]: they retained only the resonant terms and
made the narrow-packet approximation in Hamiltonianto
N
;\/3ﬁ6

RAN|= 7 [~ 4u?{u?+ 220, DB (69

2

(76)

, (72 ~ obtain an integrable Hamiltonian, and examined the linear
stability of a plane wave solution of the integrable Hamil-
) ) ] tonian system. Our result shows that their approximation is
where[ - ] on the right hand side means the nearest integehassonable up to the lowest order.
The mode energieg,  of these two modes exhibit the  The nigher-order terms in E¢60) are important for large
largest growth rate. e. Equation(69) shows that Re\] does not depend on the
The maximum RE\ ]nhax corresponds to the LCE since initially excited modek in the lowest-order expansion. How-
the spacing between the neighboring two modes is dense ver, k dependence of R&] appears as increases. The
k/N space and a value sufficiently closeiq,,x is possible eigenvalue\ is a function ofm/N, k/N, and e. In Figs.
for largeN. As we introduced a new time=w,t, the LCE  6(a)—6(c), R§ \] obtained from Eq(60) is plotted as a func-
\4 is given by tion of m/N ande for k/N=0.289, 0.664, and 0.867, respec-
tively. The shape of Ra ] is apparently different among
these results in the largeregime. The number of unstable
modes strongly depends @&nlt is interesting that in the case

Kmax= K=

3
A= oy th)\]mangwkﬁf- (73
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FIG. 7. Induction timeT plotted versus energy densigy Sys-

Re[A] (b) tem size isN=32, 64, 128, and 256, and modes|of 21, 43, 85,
0.04 | and 171 k=2N/3) are initially excited. A reference line of power
0.03 - law e~ (dashed lingand a reference line obtained from[Rép,

0.02 ‘ﬂ of the full order expression of Eq. (60) (solid line) are also drawn.
q 4’4‘;‘ AT
001 1%5 5% e Siguniiy
25 %eSuliguuy . . .
0 é,:o:“:‘““““l‘“‘\‘__— TN equations of motior(2) was performed by using the leap-
"'é‘ﬁ‘_,‘,-:-i!"ii-;‘{-:::‘:—" = e frog algorithm because of its symplectic nature and simplic-

ity. The nonlinear coupling strengjh was set ag=1 in all

the following numerical experiments. We use an initial con-
dition consisting of an almost single-mode excitation: at the
initial time, most of the energy is given to a single mode of
wave numberk and only a small amount of enerdy1

x 10 % ¢] is placed in every other mode. The energy is
contained in kinetic form initially. This initial condition is
physically more natural and generic than the exact single-
mode excitation.

We define the induction tim& as the time when the en-
ergy E,(t) of the initially excited mode decreases to 50% of
the initial value, i.e.Ey(T)=0.5E,(0) [this is equivalent to
AE(T)=0.5,(0)]. Forvery smalle, the maximum amount
of energy transferred from the initially excited mode to the
others never exceeds 50% B§(0). In such a case, we de-
fine T as the time wherk,(t) shows a perceptible decrease
and takes a minimum value for the first tirhef. Fig. 11(b)
below]. This case is marked by * in the following figures.
Moreover, for further smalk’s, E,(t) does not show a per-
ceptible decrease until the end of the calculatioh Fig.
11(a) below]. This case is marked by an arrow in the follow-
ing figures. The induction tim& is calculated forN in the
range 32 to 256. The initially excited mode number is set to
k=2N/3: k=21, 43, 85, and 171 foN=32, 64, 128, and

FIG. 6. R¢\] as a function oim/N ande. (a) k/N=0.289.(b) 256, respectively. Figure 7 shows the induction timplot-
k/N=0.664.(c) k/N=0.867. ted as a function o€ for severalN’s, a reference line of the
power lawe ™, and a reference line obtained from[Ré,
of the full order expression of Eq. (60) (T~1/Rd\]may-

0.05 " m/N

of k/N=0.867 all the modes become stable wheexceeds

iome crltlcal_ value: the parame_trlc resonance betvyleen Here the numerical results far are clearly in good agree-
—m modes is suppressed. In thfs.reg|me, f[he IndUCt.IOI’l ment with the power lawl~ e~ ! although the numerical
time T becomes somewhat longer in numerical experiments

and the energy exchange may be driven by another aramef?SUItS become different from the power law abecomes
. gy 9 y y P sufficiently large, roughlye>0.01. In the range>0.01, T
ric resonance mechanism.

decreases more slowly than! with an increase ire. The
full order scaling law is in good agreement with this numeri-
cal result.

We performed numerical experiments in order to verify  The induction timeT is not (or at least only weaklyde-
the above theoretical results. A numerical integration of thependent orlN. The spacing between two neighboring modes

V. NUMERICAL EXPERIMENTS
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2
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FIG. 8. Threshold energy density plotted againsN. The line
for the theoretical estimatioa,= 72/68N? is also shown.

becomes more dense kiIN space with an increase iN.
Consequentlykyax/N approaches the limiting valuk/N
+/3Bel w with increasingN in Eq. (72), and thus\; also

initially excited one is plotted againgt We note that the
energy growth rate of each mode was measured in an early
part of the induction periodcf. Figs. 1 and 1(b)—11(d)
below]. We show the results fok=37, 85, and 111 in the
case ofN=128, which correspond to the cases in Figs)-6
6(c), respectively. In Fig. 9, the lowest-order theoretical re-
sult Kax— k=N+/3B¢e/ 7 obtained from Eq(72) is plotted
with a solid line and three theoretical lines obtained from the
mode numbek,,,, that maximizes Re\] of the full order
expression of\ Eq. (60) are also plotted. The results are
symmetric with respect to the line,,,— k=0 although we
show only the results fok,,x—k>0. Good agreement be-
tween the numerical and lowest order theoretical result is
observed for smalle, but the agreement becomes rather
worse with an increase ia Moreover, in the large regime,
the numerical results show that the differenkg,,—k
strongly depends ok. The full order theoretical estimations
coincide with the numerical results even in this largee-
gime.

Figures 10a)—10(c) present numerical results dfplotted
againste for various initially excited mode numbekswhere

approaches the corresponding limiting value given by EqN=128, and(a), (b), and (c) refer to k=3, 51, and 125,

(73), which depends only ok/N and e. Therefore,T con-
verges to a certain value with an increaseNirunder fixed

respectively. The reference lines of the power law are
also shown and this power law is validated in these cases.

k/N ande. This coincides with the above numerical obser-Note that a discrepancy from the power law appears at

vation.

In Fig. 7, the induction timeT displays an apparently

smallere in the case ok=3 and 125 than in the case bf
=51 and 85. These modes, which are too close to N, o

divergent behavior ag decreases. We define the thresholdnot have a sufficient number of pairs of modesm: only

energy densitye, using the value ok at the points marked
by arrows. The threshold energy denséy decreases with
increasing\. Figure 8 shows a plot of threshotd againstN
and a theoretical lines,= 72/68N?, Eq. (76). They com-
pletely agree with each other.

m=1,2 are allowed in these cases. Therefore, the present
analysis does not apply whégq,,,—k=3. This is the main
reason why the discrepancy from the power law appears for
smaller e. In addition, some other mechanism suppressing
the parametric instability, which is not included in the ap-

The energy growth rates are different between the modegroximate result Eq(69), seems to exist. Comparing Figs. 7,

as shown in Fig. 1. In Fig. 9, the differenkg,,—k between

10(a), 10(b), and 1@c), we can also confirm that becomes

the mode number of the mode exhibiting the largest energgmaller for higher-frequency mode excitation. The thresholds
growth rate in the numerical experiments and that of then e in all three cases coincide with the theoretical vadyde

25

20

FIG. 9. Mode with largest energy growth ratg,,,—k is plot-
ted againsk. Parameters ard=128 andk=237, 85, and 111. The
theoretical linek,,,x— k=N+38€/ 7 (solid line) and three theoret-
ical lines obtained from Ra ] of the full order expression of, Eq.
(60), are also shown.

=1.004<10 *, which is calculated from Eq(76) for N
=128. This agrees with the theoretical prediction that the
threshold does not depend on the initially excited mode num-
ber k.

Let us briefly mention here the reason why we used the
second order averaging method instead of the first order one.
If we calculate the LCE using the first order averaging
method, we obtain zero LCE for any initial excitation lof
<N/2. However, this result is apparently inconsistent with
the preceding numerical results feke=3 and 51. The first
order averaging method is considered inadequate for appro-
priately calculating the LCE. Therefore, we used the second
order one.

We proceed to discuss the energy exchange process fol-
lowing the induction period in some energy density regimes.
Figures 11a)—11(d) show the time evolution of mode ener-
gies in different energy density regimes: we plot only some
of the mode energiel; for graphical reasons. Figures(al
11(b), 11(c), and 11d) refer to e=1x104, 2x10 4, 7
X 1074, and 1x 10" 2, respectively. The other parameters are
N=128 andk=85.

In Fig. 11(a), mode energies except for 85 do not grow
but remain small over the long period. The other mode en-
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FIG. 10. Induction timeT plotted versus energy densi¢y Sys-
tem size isN=128. (a) k=3. (b) k=51. (c) k=125. A reference

line of power lawe ™! is also drawn.
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<¢€.. The numerical result in Fig. 18 coincides with the
theoretical result and indicates that the KAM tori exist. In the
rangee<e., the system retains the initially excited mode
structure over infinite time, and it therefore never relaxes to
an energy equipartition state. In this connection, it has been
shown recently that, if the FP|3 system starts from a high-
frequency mode excitation, the system relaxes to an energy
equipartition state via a spatially localized oscillating struc-
ture called achaotic breather which is spontaneously cre-
ated in the system after the breakup of the initially excited
high-frequency mode structuf@8-30. The present result
indicates that there is an energy threshold for creating the
chaotic breather since the chaotic breather is never created, at
least, belowe;. It may be interesting to study the threshold
for creating the chaotic breather, in other words, when the
path from a single high-frequency mode state to the chaotic
breather state is created in phase space.

Figure 11b) shows a graph fore=2x10"4 which
slightly exceeds,. In this figure, only mode 86 grows ex-
ponentially and the others remain small in the early stage of
the induction period. This coincides with the two-mode AVE
analysis. However, the other modes begin to grow exponen-
tially after a time, and begin to differ from the theoretical
result.Eg, and Egg have increased to a certain degree when
the growth of these modes begins. It may be conceivable that
small-amplitude oscillations of modes 84 and 86, which are
neglected in the pseudoperiodic orbit approximation, lead to
another parametric resonance mechanism resulting in the ex-
ponential growth of modes other than modes 84 and 86. Af-
ter the induction periodsgg alternately repeats rather regular
exponential decreases and increases. The other modes also
exhibit repeated exponential decreases and increases, follow-
ing mode 86. It should be noted thag,;, Egg, andEg, fluc-
tuate chaotically when they become small after the exponen-
tial decrease. This alternate decrease and increadg; in
accompanied by chaotic fluctuation suggests that a very thin
stochastic separatrix layer is formed. Since a nonconjugate
pair of the eigenvalues merges as shown in Fig. 4, a Krein
collision may occur on a periodic orbit near the pseudoperi-
odic orbit. The largest Lyapunov exponent calculated for the
motion in the thin stochastic separatrix layerNgy,,=4
X 107°. From the above numerical observatiog, is re-
garded as a threshold for the appearance of weakly chaotic
motion in the thin stochastic separatrix layer. In this connec-
tion, a threshold for the formation of a stochastic separatrix
layer under low-frequency mode excitation was obtained by
numerically investigating a reduced four-mode Hamiltonian
system in[16]. Their result agrees with our analytical result
for e.. We can see from the figure that the characteristic
frequency of the exponential decrease and increa$g is
roughly estimated aQ,=1/2T. From Eqs(29) and(73), ),
can be estimated &@3,= w,Be. For an initial excitation of

ergies not shown in the figure also remain small. The energshe smallk mode, this can be approximated By,=kBe/N.

density of this figuree=1x10"4, is slightly smaller than
the theoretical threshol@,=1.004x 10~ 4. Equation(30) in-
dicates that the phase point separatibnty) —I'(0) is
bounded by a small value; thus, evétyof the modes other

This also agrees with the characteristic frequency of beat
oscillation due to the resonant interaction of a few low-
frequency modes, which is obtained by using the reduced
four-mode Hamiltonian if16]. A numerical calculation over

than the initially excited one remains of the order of its smalla longer time scale shows that energy is shared by only a

value at the initial stage over the infinite time whef ¢, .
This suggests that Kolmogorov-Arnold-Mosé(AM ) tori

small number of modes and is not transferred to the other
modes on a computationally observable time scale. Is this

exist near the pseudoperiodic orbit in phase space when sense, the chaos in this smalfrange is local chaos. More-
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FIG. 11. Mode energie&,; plotted versus time. N=128 andk=85. (a) e=1X10 *. (b) e=2x10"% (c) e=7x10"% (d) e=1
X102,

over, as characterized by the small Lyapunov exponent, it is VI. CONCLUSIONS

very wegk chaos. . We have carried out an analytical study of the induction
As € increases, the number of modes sharing energy be-

. .(phenomenon in the FPWB model relating the energy ex-
comes larger and the motion also become more chaotic, . . . i
%{:ange process to linear instability of the orbit, and have

However, energy equipartition does not seem to be achieve . ! .
4 . .~ “shown that parametric resonance in the AVE can describe
on a computationally observable time scale for relatively,, . . . :
T : L . _“the induction phenomenon quite well. Our theoretical study
small e. The equipartition time scale might be infinite. Fig- . . )
4 L is based on an analytical computation of the LCE of the AVE
ure 1Xc) shows a graph foe=7x10"“, which is an ex- : .
using a second order averaging method. In order to perform
.the analytical computation, we used the two-mode approxi-

ample for such a value of. Apparently chaotic energy ex-
fnation to the AVE. The two-mode approximation analysis

mot|on IS stronger .than that Of. Fig. . However, as seen applies to the initial excitation of any mode except for the
in a longer calculation, energy is shared by a subset of mod %Jree modes=1. N/2. andN— 1

and equipartition is not achieved even in a long numerical' 114 (esults are summarized as followd) the energy
calculation. The motion is still restricted to the subset Ofdensity scaling of the induction time is given By- e~ * and
modes. In this sense, the chaos of timnge is strong local T pecomes smaller for higher-frequency mode excitatiah;
chaos. there is a threshold energy denséysuch that the induction
As e increases further, the equipartition comes to ocCUkime diverges where<e, and it is given bye,= w2/68N?
on short time scales. In this sense, the chaotic motion beor largeN; (3) the thresholde, vanishes ag.~N 2 in the
comes global. The mode energy exchange for the relativelymit N—«; (4) the thresholde, does not depend on the
large energy density of=1x10 2 is shown in Fig. 1ld).  mode numbek that is excited in the initial conditior(5) the
Strongly chaotic energy exchange occurs after the inductiotwo modesk+m have the largest exponential growth rate
period. In this case, energy is distributed to every mode on andm increases with increasingasm/N= \38¢/ 7. These
rather short, or computationally observable, time scale. Thanalytical results are thoroughly verified in numerical experi-
equipartition time decreases with an increase.iRecently, ments. The above estimatiofis-e~* and m/N=\3B¢/w
it has been shown that in a relatively largeregime the are correct only in the smadl regime since they are obtained
equipartition time scales as 3 [31]. from the lowest-order expansion &f Therefore, the agree-
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ment between these estimations and the numerical results the numerical results. We show that KAM tori exist near

becomes worse as increases. The estimations fdrand
m/N based on the full order expression »fare in good
agreement with the numerical results even in the latge
regime.

the pseudoperiodic orbit whesx e, ande is regarded as

the threshold for formation of a thin stochastic separatrix
layer near the pseudoperiodic orbit. Apparently, chaotic en-
ergy exchange begins to occur just after the induction period

We have also discussed the energy exchange process af{@fien e becomes large.
the induction period in some energy density regimes, based
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