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Parametric resonance energy exchange and induction phenomenon
in a one-dimensional nonlinear oscillator chain

K. Yoshimura*
NTT Communication Science Laboratories, 2-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan

~Received 10 May 2000!

We study analytically the induction phenomenon in the Fermi-Pasta-Ulamb oscillator chain under initial
conditions consisting of single mode excitation. Our study is based on the analytical computation of the largest
characteristic exponent of an approximate version of the variational equation. The main results can be sum-
marized as follows:~1! the energy densitye scaling of the induction timeT is given byT;e21, andT becomes
smaller for higher-frequency mode excitation;~2! there is a threshold energy densityec such that the induction
time diverges whene,ec5p2/6bN2, whereN is the system size andb the nonlinearity parameter, and this
expression forec is correct in the limitN→`; ~3! the thresholdec vanishes asec;N22 in the limit N→`; ~4!
the thresholdec does not depend on the mode numberk that is excited in the initial condition;~5! the two
modesk6m have the largest exponential growth rate, andm increases with increasinge asm/N5A3be/p.
The above analytical results are thoroughly verified in numerical experiments. Moreover, we discuss the
energy exchange process after the induction period in some energy density regimes, based on the numerical
results.

PACS number~s!: 05.45.2a, 45.20.Jj, 05.20.2y
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I. INTRODUCTION

Fermi, Pasta, and Ulam~FPU! first studied the relaxation
to equilibrium of one-dimensional nonlinear oscillator cha
@1#. They chose an initial condition far from equilibrium
giving all energy to the lowest-frequency normal mode, a
then numerically integrated the equations of motion. It
well known that the expected chaotic energy excha
among the normal modes did not occur within their obser
tion time scale, but quasiperiodic normal mode oscillat
including only a few low-frequency modes was observ
Their numerical results showed that the relaxation to equi
rium is not an obvious consequence of the nonexistenc
analytic first integrals of the motion other than the energ

Since the appearance of their ground-breaking wo
many studies of the chaotic dynamics of such systems h
been carried out in order to understand their relaxation pr
erties. For the FPUa model, which has cubic nonlinearity i
its Hamiltonian, Casettiet al. have recently reexamined th
relaxation properties by carrying out extensive numerical
periments with the aid of modern high-performance comp
ers @2#. An interesting result they found is that at a certa
threshold in energy densitye (e[E/N is the energy per
degree of freedom!, the largest Lyapunov exponent rapid
decreases and the relaxation time seems to diverge. Th
the motion seems to be quite regular below the thresh
while it is chaotic~although very weakly! above the thresh
old. The threshold was also shown to become smaller as
number N of degrees of freedom increases. A theoreti
study of theN scaling of the threshold based on an appro
mate resonant Hamiltonian suggests that the threshold
ergy density vanishes in the thermodynamic limitN→` @3#.
However, it is still not very clear whether the largest Ly
punov exponent drops exactly to zero and the relaxation t
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really diverges at the threshold. It may be necessary to ob
more accurate theoretical results for the threshold.

A model more extensively studied in the literature is t
FPU b model, which has quartic nonlinearity in its Hami
tonian. A simple initial condition often used in those studi
is that involving only a single-mode excitation or a narro
packet excitation. In such a condition, only a single norm
mode of some wave numberk or a wave packet of small siz
dk with mean wave numberk (dk/k!1) is initially excited.
Izrailev and Chirikov applied the resonance overlap criter
under this initial condition and indicated that above a thre
old energy density the chaotic energy exchange with
other modes occurs in a short time@4# ~see also Refs.@5,6#!.
They also showed that, in the regime of smallk ~i.e., k
!N), the threshold decreases as the wave numberk in-
creases. This implies that the time scale for the chaotic
ergy exchange to occur becomes smaller when a mod
largerk is initially excited. Recently, thek dependence of the
time scale for chaotic energy exchange has been studie
detail @7,8#. A quite different result was found for a rathe
largek mode excitation. The time scale exhibited an intrica
k dependence in a sufficiently large energy density regim
the chaotic energy exchange is enhanced intermittently
some specific wave number ranges and the time scale
becomes smaller, while for wave numbers within a cert
range the mode oscillation is extremely stable and the t
scale is very large. It was theoretically shown that parame
resonance instability among four specific modes plays a
cial role in this strongk dependence of the time scale@8#.
Pettini and his collaborators proposed a new interpretatio
the threshold energy density, which distinguishes weak
strong chaos@9,10#. They showed that below the thresho
the relaxation time rapidly increases and the largest L
punov exponent rapidly decreases ase decreases. They
called the energy density threshold astrong stochasticity
threshold ~SST!. A SST has also been shown to exist
some other oscillator chain models besides the FPUb model
@11#. A detailed study of the chaoticity transition betwee
6447 ©2000 The American Physical Society
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6448 PRE 62K. YOSHIMURA
weak and strong chaos was done by using a Rieman
geometric description of Hamiltonian chaos@12–15#. Re-
cently, De Lucaet al. have studied the same model a
given a very detailed picture of the motion in the low-ener
regime@16#. In spite of all the above work, the dynamics
the FPUb model in the relaxation process is not yet ful
understood. In particular, a theoretical result that appro
ately describes the dynamics in the relaxation process is
lacking.

A well known dynamical phenomenon relevant to the
laxation from single-mode excitation in the small ener
density regime is theinduction phenomenon, which was
found for the FPUb model by Ooyamaet al. @17# ~see also
@18,19#!. In the induction phenomenon, energy initially su
plied to a single mode remains in the initially excited mo
during a certain period called theinduction period, and then
abruptly transfers to some of the other modes. A theoret
study of this phenomenon has also been presented based
Mathieu equation stability analysis@19#. Recently, Christie
and Henry pointed out that this analysis is unsatisfactory
they carried out an analysis based on a frequency sh
perturbation@20#. Their analysis fully explains the mode en
ergy pattern in the very early stage of the induction peri
However, it fails to explain the exponential growth of th
mode energies. In this paper, we present a theoretical s
based on a stability analysis ofcoupledHill equations. Our
analysis explains the exponential growth of the mode en
gies, correctly identifies the fastest growing modes, sc
the induction time with the energy density, and shows t
the induction period diverges at a threshold energy dens
which is independent of the initially excited mode’s wa
numberk and vanishes asN22 in the limit N→`. Our the-
oretical results appropriately describe the mode dynam
during the induction period.

The present paper is organized as follows. In Sec. II,
describe the FPUb model and introduce normal mode coo
dinates. In Sec. III, we describe the relationship between
mode energy exchange in the induction phenomenon and
exponential instability of nearby orbits. An approximate ve
sion of a variational equation, which we call an avera
variational equation, is proposed for examining the expon
tial instability. In Sec. IV, we analytically compute the e
ponential instability rate using the averaging method and
rive some analytical results on the induction phenomenon
Sec. V, we verify these results in numerical experimen
Conclusions are offered in Sec. VI.

II. FPU b MODEL AND NORMAL MODE

In this section, we describe the FPUb model and the
normal modes. Our investigation is of the dynamical mo
an
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described by the Hamiltonian

H5
1

2 (
i 51

N21

pi
21(

i 51

N F1

2
~qi2qi 21!21

b

4
~qi2qi 21!4G .

~1!

This is referred to as the FPUb model. This Hamiltonian
describes a one-dimensional nonlinear oscillator chain w
nearest neighbor interaction. We employ fixed-end bound
conditions, i.e.,q05qN50. The parameterb represents the
nonlinear coupling strength. We will setb51 in later nu-
merical experiments. We define the energy densitye as e
5E/N, whereE is the total energy of the system. The equ
tions of motion derived from the Hamiltonian~1! are

d2qi

dt2
5qi 111qi 2122qi1b@~qi 112qi !

32~qi2qi 21!3#.

~2!

The transformationq°Q defined by

qi5A2

N (
k51

N21

Qk sinS pk

N
i D , ~ i 51,2, . . . ,N21! ~3!

gives the normal modes of the corresponding linear syst
Here,Qk is the amplitude of thekth normal mode. The char
acteristic frequency of thekth normal mode is given by

vk52 sinS pk

2ND . ~4!

In terms of the normal mode coordinatesQ and their conju-
gate momentaP (5Q̇), the Hamiltonian~1! is rewritten as

H5 (
k51

N21 S 1

2
Pk

21
1

2
vk

2Qk
2D

1
b

8N (
k1 ,k2 ,k3 ,k451

N21

vk1
vk2

vk3
vk4

3Qk1
Qk2

Qk3
Qk4

D~k1 ,k2 ,k3 ,k4!, ~5!

whereD(k1 ,k2 ,k3 ,k4) represents the selection rule definin
the interaction among the normal modes. It is explicitly wr
ten as
D~k1 ,k2 ,k3 ,k4!5d~k11k2 ,k31k4!1d~k11k3 ,k21k4!1d~k11k4 ,k21k3!1d~k11k21k3 ,k4!1d~k11k21k4 ,k3!

1d~k11k31k4 ,k2!1d~k21k31k4 ,k1!2d~k11k21k31k4,2N!2d~k11k21k3,2N1k4!

2d~k11k21k4,2N1k3!2d~k11k31k4,2N1k2!2d~k21k31k4,2N1k1!, ~6!



gy

si
s
ve
he

g
In
ge

er

r
cu

d
o

gi
es
r

the
e

he
rt of
gy
sent
ics

the
tial
of
is

the

an
e

oint
he

PRE 62 6449PARAMETRIC RESONANCE ENERGY EXCHANGE AND . . .
whered is the Kronecker delta function. The linear ener
Ei of each normal mode is defined as

Ei~ t !5
1

2
@Pi

2~ t !1v i
2Qi

2~ t !#. ~7!

The equation of motion for a normal mode is

d2

dt2
Qk1vk

2Qk1
b

2N (
k1 ,k2 ,k351

N21

vkvk1
vk2

vk3

3Qk1
Qk2

Qk3
D~k,k1 ,k2 ,k3!50. ~8!

The initial conditions considered in the present study con
of an almost single-mode excitation: at the initial time, mo
of the energy is given to a single normal mode of wa
numberk and only a small amount of energy is placed in t
other modes. Thus,

Qi~0!.0, Q̇i~0!.0 ~ iÞk!. ~9!

The nature of these initial conditions implies thatEi(t)
.0(iÞk) holds for some period, and then significant ener
is transferred from the initially excited mode to others.
this paper, we investigate this process of energy exchan

III. ENERGY EXCHANGE AND ORBIT INSTABILITY

A. Induction phenomenon

The induction phenomenon was first reported in a num
cal study of the energy exchange in the FPUb model @17#.
This phenomenon is observed most often in the small ene
density regime. We start with a numerical example cal
lated for the system ofN516 andb51. The energy density
e is set to 0.1 and the modek510 is initially excited. A
small amount of energy (1310210)e is initially placed in
every other mode. This initial condition allows the od
modes to participate in the energy exchange. Figure 1 sh
some of the mode energiesEi plotted versus timet. In an
early stage of the time evolution, some of the mode ener
Ei ( iÞk) grow exponentially. The energies of all the mod
except that of mode 10 become large, and significant ene

FIG. 1. Mode energiesEi plotted versus timet. N516, k510,
ande50.1.
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is transferred from mode 10 to these modes att.350. The
period prior to the significant energy exchange is called
induction period and its length the induction time, which w
denote byT. The growth rates are different between t
modes: mode 8 has the largest growth rate in the early pa
the induction period. After the induction period, the ener
exchange among the modes seems chaotic. In the pre
paper, we investigate some properties of the mode dynam
during the induction period and some properties ofT.

B. Exponential instability of orbits

In this subsection, we discuss the relationship between
exponential growth of mode energies and the exponen
instability of nearby orbits in phase space. The amount
energy in the modes other than the initially excited one
given by

DE~ t !5(
iÞk

1

2
@Pi

2~ t !1v i
2Qi

2~ t !#. ~10!

We denote a point in phase space byG5(P,Q) and define
the norm normal to the planeP5$(P,Q)uPi5Qi50,iÞk%
as iGi'

2 5( iÞk(Pi
21Qi

2). Due to the initial condition
Pi(0).0, Qi(0).0 (iÞk), the normal norm ofG(t)
2G(0) is approximately given by

iG~ t !2G~0!i'
2.(

iÞk
@Pi

2~ t !1Qi
2~ t !#. ~11!

From Eqs.~4!, ~10!, and~11!, we have the inequalities

w1
2

2
iG~ t !2G~0!i'

2<DE~ t !<
wN21

2

2
iG~ t !2G~0!i'

2.

~12!

These can be rewritten as

2

t
lniG~ t !2G~0!i'1

1

t
ln

w1
2

2

<
1

t
ln DE~ t !

<
2

t
lniG~ t !2G~0!i'1

1

t
ln

wN21
2

2
. ~13!

For a sufficiently larget, we obtain

1

t
ln DE~ t !.2F1

t
lniG~ t !2G~0!i'G . ~14!

This indicates that the exponential growth rate ofDE is
twice as large as that of the phase point separation from
initial point.

Figure 2 shows the phase point separation. LetG(t;S0) be
a solution that has an initial pointS0 at t50. Since an almost
single-mode excitation is employed as initial condition,
almost single-mode oscillation of the initially excited mod
lasts during the induction period, and thus the phase p
returns to the neighborhood of the initial point after t
single-mode oscillation periodt0. The points Sn (n
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6450 PRE 62K. YOSHIMURA
51,2, . . . ) represent the phase pointsG(nt0 ;S0), which are
close toS0. Defining dGi5G(( i 11)t0 ;S0)2G( i t 0 ;S0), we
have

G~nt0!2G~0!5 (
i 50

n21

dGi . ~15!

Consider an orbitG(t;S1) that has the initial pointS1 at
t50, i.e., G(t;S1)5G(t1t0 ;S0). Since S1 is close to the
initial point S0, the time evolution of the difference
G(t;S1)2G(t;S0) can be approximately described by th
variational equation

d2

dt2
j i1v i

2j i1
3b

2N (
j ,k1 ,k251

N21

v iv jvk1
vk2

3Qk1
~ t !Qk2

~ t !j jD~ i , j ,k1 ,k2!50, ~16!

where j i ( i 51, . . . ,N21) represents the variation in th
normal mode coordinateQi andQk1,2

(t) a component of the

reference orbitG(t;S0). Equation~16! is obtained by linear-
izing Eq. ~8! along the reference orbit. The solutionj
5( j̇1 , . . . ,j̇N21 ,j1 , . . . ,jN21) of Eq. ~16! with the initial
conditionj(0)5dG0 can approximate the time evolution o
the differenceG(t;S1)2G(t;S0). Therefore, we have the ap
proximate expression

G~nt0!2G~0!. (
i 50

n21

j~ i t 0!. ~17!

C. Average variational equation

In this subsection, we introduce an approximate vers
of the variational equation~16! as a tool for our theoretica
analysis; we call this anaverage variational equation
~AVE!. Since we are interested in the mode dynamics o
the induction period, the exponential growth rate ofj in the
period t,T ~rather than through infinite time! is useful. The
initially excited mode has the only significant amplitud
since the amplitudes of the other modes are sufficiently sm
during the induction period. This fact enables us to simp
the variational equation~16!.

If the approximationQi(t)50 (iÞk) is made in Eq.~8!,
the equation of motion for thekth mode~the mode excited
initially ! is approximated as

FIG. 2. Schematic illustration of an orbit in phase space. T
solid curve represents the actual orbit and the dashed curve
pseudoperiodic orbit.
n

r

ll

d2

dt2
Qk1vk

2Qk1
3b

2N
vk

4Qk
350. ~18!

It is well known that the solution of Eq.~18! may be written,
with the Jacobi elliptic function, in the form

Q̃k~ t !5aAN cn~st,km!, ~19!

where

a25
4km

2

3bvk
2~122km

2 !
, s25

vk
2

122km
2

, ~20!

and km is the modulus of the Jacobi elliptic function. Th
moduluskm is related to the energy densitye as

e5
2km

2 ~12km
2 !

3b~122km
2 !2

. ~21!

In phase space, the solutionQ̃k(t) defines the periodic orbi
G̃(t) whose nonzero components are only thekth momentum
P̃k and amplitudeQ̃k . SinceQ̃k(t) is an approximate rathe
than an exact solution, the periodic orbitG̃(t) is also only
approximate. In this sense, we callG̃(t) a pseudoperiodic
orbit. An orbit starting with an almost single-mode excitatio
initial condition remains close to the pseudoperiodic orbit
t,T ~see Fig. 2!. In other words, the pseudoperiodic orb
approximates, in an average sense, the actual orbit gene
by the equations of motion~8! for t,T. Therefore, we re-
place the reference orbit in Eq.~16! with the pseudoperiodic
orbit Q̃k . That is, the variational equation employed for t
theoretical analysis is

d2

dt2
j i1v i

2j i1
3b

2N
vk

2Q̃k
2~ t ! (

j 51

N21

v iv jj jD~ i , j ,k,k!50.

~22!

The actual reference orbit may contain a small oscillat
part other thanQ̃k . This small oscillating part might affec
the growth of the solution. However, we first assume t
only the contribution ofQ̃k is important and later confirm
that this assumption is acceptable by comparing the theo
ical results with numerical results.

Since Q̃k is a periodic function, the AVE is a so-calle
coupled Hill equation. We denote the period ofQ̃k by t0.
According to Floquet theory, solutions of Eq.~22! at t50
and t0 are related via themonodromy matrix Mas j(t0)
5Mj(0). The AVE is aHamiltonian system itself with the
Hamiltonian

HAVE5
1

2 (
i 51

N21

~ j̇ i
21v i

2j i
2!

1
3b

4N
vk

2Q̃k
2~ t ! (

i , j 51

N21

v iv jj ij jD~ i , j ,k,k!.

~23!
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Let a iPC@ i 51, . . . ,2(N21);ua1u>•••>ua2(N21)u# be ei-
genvalues of the monodromy matrixM of the AVE. Because
of simplecticity of the AVE, the eigenvalues satisfy the r
lations a2(N21)5a1

21 , . . . ,aN5aN21
21 . Therefore, if ua1u

51, all of the eigenvalues are on the unit circle of the co
plex plane, i.e.,ua1u5•••5ua2(N21)u51.

If we approximate the variational vectorj in Eq. ~17!
using the solution of the AVE, we have

G~nt0!2G~0!. (
i 50

n21

Mij~0!. ~24!

Let a i j
( j 51, . . . ,d; ua i 1

u>•••>ua i d
u) be distinct eigen-

values ofM, wherei 151 andP( i j ) is a projection onto the
eigenspace ofa i j

. Since some eigenvalues may have t

same modulus asa i 1
, we assumeua i 1

u5•••5ua i s
u (s<d).

We consider a simple case where the monodromy matriM
is diagonalizable. The monodromy matrixM can be written
as

M5a i 1
P( i 1)1•••1a i d

P( i d). ~25!

Substituting this into Eq.~24! and assuming thata i j
Þ1 ( j

51, . . . ,d), we obtain

iG~nt0!2G~0!i

.I F S (
l 50

n21

a i 1
l D P( i 1)1•••1S (

l 50

n21

a i d
l D P( i d)Gj~0!I

5I(
j 51

d S a i j

n 21

a i j
21D P( i j )j~0!I . ~26!

It is generally expected thatP( i j )j(0)Þ0 ( j 51, . . . ,s) and
these terms become dominant for largen in the case of
ua1u.1. ~Precisely speaking, the terms that correspond
the eigenvalues with moduli close toua1u are also important
for finite n.! Therefore, we can obtain the scaling

iG~nt0!2G~0!i;ua1un5exp~l1nt0!, ~27!

where we defined the largest characteristic exponent~LCE!
l1 as l15 lnua1u/t0. Since G(nt0)2G(0) may contain
a component normal to the planeP, the normal norm
iG(nt0)2G(0)i' also follows the same scaling law. Fro
Eq. ~14!, the growth ofDE(t) is approximated as

DE~ t !.DE0 exp~2l1t !, ~28!

whereDE0 represents the value ofDE(t) at the initial stage
t5O(t0). The induction timeT can be estimated as the tim
at whichDE becomes of the same order as the total ene
E, i.e., DE(T)5O(E). Therefore, we can estimateT as

T.
1

2l1
ln

E

DE0
. ~29!

This shows thatT can be estimated by using the inverse
l1 since the dependence on the logarithmic factor is
pected to be weak.
-

-

e

o

y

f
-

We proceed to the case ofua1u51 and a i j
Þ1 ( j

51, . . . ,d). In this case, all the eigenvalues are on the u
circle (ua1u5•••5ua2(N21)u51), so the right hand side o
Eq. ~26! is bounded as

I(
j 51

d S a i j

n 21

a i j
21D P( i j )j~0!I<(

j 51

d
2

ua i j
21u

iP( i j )j~0!i .

~30!

We evaluate the order of the right hand side in Eq.~30! for a
sufficiently smalle. In the limit e→0, the equations of mo-
tion ~8! reduce to those of harmonic oscillators, and the AV
also reduces to the equation forb50. The eigenvalues ofM
are given bye6 i2pv1 /vk, . . . ,e6 i2pvN21 /vk, since the period
is t052p/vk . If we assume the initial conditionG(0) as
Pi(0)5v ir i cosci , Qi(0)5r i sinci ( i 51, . . . ,N21),
whereur i u!urku ( iÞk), we can calculate the right hand sid
in this limit as

(
j 51

d
2

ua i j
21u

iP( i j )j~0!i52 (
iÞk
i 51

N21

r iA11v i
2, ~31!

<2A5 (
iÞk
i 51

N21

r i . ~32!

Since the right hand side of Eq.~30! is a continuous function
of e, it is still of the order ofO(( iÞkr i) for sufficiently
small e. This shows that the right hand side is small if th
initial amplitudesr i of the modes other than the domina
modek are sufficiently small. Therefore, Eq.~30! shows that
within the AVE approximation, the phase point separati
G(nt0)2G(0) does not significantly increase but is bound
by a small value. This implies that everyEi of the modes
other than the initially excited one remains of the order of
value at the initial stage, and thus the induction timeT di-
verges whene is sufficiently small andua1u51 ~or l150).

IV. ANALYTICAL COMPUTATION OF THE LCE

In this section, we carry out an analytical computation
the LCE. For this purpose, we introduce a further appro
mation to the AVE and then apply the second order aver
ing method.

A. Averaging method

We briefly review the averaging method@21# in this sub-
section. The averaging method is applicable to an equa
of the standard form,

dx

dt
5gF~x,t !, ~33!

wherexPRn, tPR, andg is a small parameter. We assum
that the functionF(x,t) is periodic int and takes the form

F~x,t !5 (
n52`

`

F(n)~x!einvt. ~34!
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6452 PRE 62K. YOSHIMURA
We introduce the following two operatorsMt$F% and F̄:

Mt$F~x,t !%5F(0)~x!, ~35!

F̄~x,t !5 (
nÞ0

1

inv
F(n)~x!einvt. ~36!

Since the parameterg is assumed to be sufficiently sma
it is reasonable to expect that the solutionx to Eq.~33! varies
very slowly and a fast variation ofF in t does not cause a
significant variation ofx. Therefore, the averaging metho
approximates Eq.~33! by using anaveraged autonomou
equation. The first order averaged equation is given by

dx0

dt
5gMt$F~x0 ,t !%. ~37!

The solutionx of Eq. ~33! can be approximated to first orde
with the solutionx0 of Eq. ~37!, namely,x5x0.

As we will mention later, the first order averaged soluti
turns out to be inadequate for appropriately computing
LCE. Therefore, we use a second order averaging metho
this study. To second order, the averaged equation is g
by

dx0

dt
5gMt$F~x0 ,t !%1g2MtH S F̄•

]

]x0
DF~x0 ,t !J . ~38!

The operatorF̄•]/]x0 is defined by

F̄•
]

]x0
5(

j 51

n

F̄ j~x0 ,t !
]

]x0,j
, ~39!

whereF̄ j andx0,j represent components ofF̄ andx0, respec-
tively. The solutionx can be approximated to the seco
order asx5x01gF̄(x0 ,t).

B. Two-mode approximation of the AVE

It is difficult to analyze the stability of solutions to Eq
~22! directly because of the high dimensionality, except
the simple case where Eq.~22! separates intoN21 decou-
pled equations. A stability analysis in such a simple case
carried out in@22,23#. In order to overcome this difficulty
we attempt to approximate the AVE by using a low
dimensional equation consisting of a few important mo
components. In our previous work@8#, we showed that for a
sufficiently large energy density parametric resona
among four specific mode components is dominant for
instability and the AVE can be well approximated with
four-dimensional equation including only the couplin
among these four modes. The energy density range for
induction phenomenon is smaller than this. Therefore, in
study, we deal with the AVE in a smaller energy dens
regime and the dominant mode couplings in the AVE
different.

We numerically integrate Eq.~22! and calculate the varia
tional vectors that correspond to some of the largest cha
teristic exponents, in order to find a set of a small numbe
important mode components. We started the numerical i
gration with six different initial conditions and converged t
e
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e
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variational vectors to those giving the six largest charac
istic exponents by iteratively orthonormalizing them. Figur
3~a!–3~f! showj̇ i

21j i
2 of those vectors plotted againsti for

l1–l6, respectively. In the numerical calculation, we set t
parameters asN564, k543, b51, ande50.01. The AVE
appears to have multiple characteristic exponents, i.e.,l1
5l2 , l35l4, and l55l6, or equivalently, ua1u5ua2u,
ua3u5ua4u, andua5u5ua6u.

The figures show that only two components have n
negligible values and the others are almost equal to z
These two components have mode numbersk6m, wherem
is a positive integer. The two non-negligible components
4363 for l1 andl2 , 4364 for l3 andl4, and 4362 for l5
andl6. Based on this numerical observation, we assume
the parametric resonance between thek2m andk1m mode
components is dominant for the instability in the AVE. Th
importance of such a coupling was also pointed out in@24#.
If we retain only the two-mode components ofk6m in Eq.
~22!, then we have equations of the form

d2

dt2
j i 1

1v i 1
2j i 1

1
3b

2N
vk

2Q̃k
2~ t !

3~2v i 1
2j i 1

1v i 1
v i 2

j i 2
!50,

~40!

d2

dt2
j i 2

1v i 2
2j i 2

1
3b

2N
vk

2Q̃k
2~ t !

3~v i 1
v i 2

j i 1
12v i 2

2j i 2
!50,

wherei 1 andi 2 stand fork2m andk1m, respectively. This
type of coupling between modesk6m exists for the initial
excitation of any modek exceptk51, N/2, andN21: the
modesk51 and N21 do not have one of the pairk6m
since they are the boundary modes, and fork5N/2 the AVE
separates intoN21 decoupled equations. Therefore, the fo
lowing theoretical analysis applies to the case of anyk except
k51, N/2, andN21.

We solve this set of equations for anym and calculate its
two positive characteristic exponents as a function ofm.
From the above numerical observation, we can assume th
pair of positive characteristic exponents for a singlem gives
some successive characteristic exponentsl2 j 21 and l2 j ,
wherej 51,2, . . . . Inother words, lettingW2 j 21 andW2 j be
the eigenspaces ofa2 j 21 anda2 j , respectively, we can as
sume that the real subspace of their direct sum, (W2 j 21
% W2 j )ùR2(N21), is approximately included in a four
dimensional subspaceUk6m5$(P,Q)uPi5Qi50,iÞk6m%
of phase space, which is spanned by the two mode com
nentsk6m. Next, we look for them that gives the maximum
of those m-dependent characteristic exponents in order
determine the LCEl1.

If we introduce a new time variablet5vkt and rewrite
the dependent variables withz15j i 1

and z25j i 2
in Eqs.

~40!, then we obtain the equations

d2

dt2
z11r 1

2z11
3

2
bf2~t!~2r 1

2z11r 1r 2z2!50, ~41!
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FIG. 3. Variational vectors corresponding to the six largest characteristic exponents calculated forN564, k543, ande50.01. j̇ i
2

1j i
2 is plotted againsti. ~a! l155.931023. ~b! l255.931023. ~c! l355.531023. ~d! l455.531023. ~e! l554.631023. ~f! l654.6

31023.
e

d2

dt2
z21r 2

2z21
3

2
bf2~t!~r 1r 2z112r 2

2z2!50,

wherer 1 and r 2 are the ratios between two frequencies d
fined by

r 15
v i 1

vk
5

sin@p~k2m!/2N#

sin~pk/2N!
,

~42!

r 25
v i 2

vk
5

sin@p~k1m!/2N#

sin~pk/2N!
,

-

and the functionf(t) is defined as

f~t!5
vk

AN
Q̃k~t/vk!5A cn@~116be!1/4t,km#, ~43!

wherekm is the modulus defined in Eq.~21! and the ampli-
tudeA is given by

A25
2

3b
~211A116be!. ~44!

Note that the functionf depends on neitherk nor N.
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C. Application of averaging method

We solve Eqs.~41! for small e using the second orde
averaging method. From Eq.~43!, the period of the function
f is given by

t05
4K~km!

~116be!1/4
5

4

~116be!1/4E0

p/2 du

A12km
2 sin2u

,

~45!

whereK(km) represents the elliptic integral with moduluskm
defined in Eq.~21!. The corresponding angular frequency

V5
2p

t0
5

p~116be!1/4

2K~km!
. ~46!

Using the approximationf(t)5A cos(Vt), we bring Eqs.
~41! to the form
d2

dt2
z11r 1

2z11g@11cos~2Vt!#~2r 1
2z11r 1r 2z2!50,

~47!

d2

dt2
z21r 2

2z21g@11cos~2Vt!#~r 1r 2z112r 2
2z2!50,

where the small parameterg is defined byg5(3/4)bA2. We
assume a solution to Eqs.~47! in the form

z i5ui~t!sin~Vt!1v i~t!cos~Vt!, ~48!

dz i

dt
5Vui~t!cos~Vt!2Vv i~t!sin~Vt!, ~49!

where i 51,2. If we substitute Eqs.~48! and ~49!, then Eqs.
~47! are rewritten in the form
du1

dt
5

g

V F S 1

2
a13v12

3

4
b12v2D1S 1

2
a12u12

1

2
b12u2D sin~2Vt!1S 1

2
a14v12b12v2D cos~2Vt!

1S 2
1

2
b11u12

1

4
b12u2D sin~4Vt!1S 2

1

2
b11v12

1

4
b12v2D cos~4Vt!G ,

dv1

dt
5

g

V F S 2
1

2
a11u11

1

4
b12u2D1S 2

1

2
a12v11

1

2
b12v2D sin~2Vt!1S 1

2
a10u1D cos~2Vt!

1S 1

2
b11v11

1

4
b12v2D sin~4Vt!1S 2

1

2
b11u12

1

4
b12u2D cos~4Vt!G , ~50!

du2

dt
5

g

V F S 1

2
a23v22

3

4
b21v1D1S 1

2
a22u22

1

2
b21u1D sin~2Vt!1S 1

2
a24v22b21v1D cos~2Vt!

1S 2
1

2
b22u22

1

4
b21u1D sin~4Vt!1S 2

1

2
b22v22

1

4
b21v1D cos~4Vt!G ,

dv2

dt
5

g

V F S 2
1

2
a21u21

1

4
b21u1D1S 2

1

2
a22v21

1

2
b21v1D sin~2Vt!1S 1

2
a20u2D cos~2Vt!

1S 1

2
b22v21

1

4
b21v1D sin~4Vt!1S 2

1

2
b22u22

1

4
b21u1D cos~4Vt!G ,

where we defined the coefficientsai j andbi j as

ai j 5
1

g
@V22r i

2~11 j g!#, ~51!

bi j 5r i r j . ~52!

We assume thatm/N is much smaller thank/N in the present analysis. This assumption guarantees thatr 1.1 andr 2.1. In
addition, we can see thatV.1 if e is sufficiently small. Since these implyai j !O(g21) andbi j 5O(1), Eqs.~50! are in the
standard form~33!; thus, the averaging method is applicable whenm/N!k/N ande!1.
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If we calculate the second order averaged equations
cording to Eq.~38!, then we arrive at equations of the form

d

dt S u1

v1

u2

v2

D 5
g

4V S 0 2D1u 0 23R1

22D1v 0 R2 0

0 23R1 0 2D2u

R2 0 22D2v 0
D

3S u1

v1

u2

v2

D , ~53!

where the matrix elementsD1u ,D1v ,D2u ,D2v ,R1, and R2,
respectively, are defined as

D1u5a131
g

32V2
~8a12a1414b11

2 117b12
2 !, ~54!

D1v5a111
g

32V2
~8a10a1214b11

2 1b12
2 !, ~55!

D2u5a231
g

32V2
~8a22a2414b22

2 117b12
2 !, ~56!

D2v5a211
g

32V2
~8a20a2214b22

2 1b12
2 !, ~57!

R15b121
g

48V2
@4b12~2a121a141a2412a22!

22b12~b111b22!#, ~58!

R25b121
g

16V2
@4b12~a101a20!22b12~b111b22!#.

~59!

The eigenvaluesl of the coefficient matrix in Eq.~53! can
be explicitly obtained as

l56
g

4V
@23R1R222~D1uD1v1D2uD2v!

62$~D1uR213D2vR1!~D2uR213D1vR1!

1~D1uD1v2D2uD2v!2%1/2#1/2. ~60!

We write the polynomials in Eq.~60! as

F5~D1uR213D2vR1!~D2uR213D1vR1!

1~D1uD1v2D2uD2v!2, ~61!

G523R1R222~D1uD1v1D2uD2v!. ~62!

The polynomialsF andG depend one. Calculating them as
a function ofe, we can see that for fixedm/N and k/N, F
c-

changes its sign from positive to negative with an increas
e while G remains negative. Moreover, we can see thatuGu
is much larger thanuFu. All the eigenvaluesl are purely
imaginary numbers whenF is positive. In this case, the so
lution of Eq. ~53! is stable. On the other hand, the four e
genvalues are in the form6(x6 iy)(x,yPR) when F is
negative. Since the positive real parts of two eigenvalues
the same, this coincides with the previous numerical obs
vation indicating that the AVE appears to have multip
characteristic exponents. Figure 4 shows changes in the
eigenvalues in the complex plane with increasinge. WhenF
is negative, the solution of Eq.~53! is unstable and grows a
the rate Re@l#, which represents the positive real part of t
eigenvalues. The exponential growth rate of a solut
(z1 ,z2) to Eqs. ~47! is also given by Re@l# since terms
corresponding toF̄ in the second order solution’s expressio
x5x01gF̄(x0 ,t) are linear with respect toui andv i .

We proceed to expand Re@l# in powers ofe andm. When
F,0, the positive real part ofl is written as

Re@l#5
g

4A2V
@G1~G214uFu!1/2#1/2. ~63!

If we consider the case of2F!1, then Re@l# can be ex-
panded as

Re@l#.
g

4V S F

GD 1/2

. ~64!

From Eq.~46!, the frequencyV can be expanded in pow
ers ofe as

V511V1be1V2~be!21O~e3! ~65!

511
9

8
be2

621

256
~be!21O~e3!, ~66!

and, using Eq.~44!, we can expand the parameterg as

g5
3

2
be2

9

4
~be!21O~e3!. ~67!

FIG. 4. Diagram for changes in four eigenvalues withe.
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We introduce a parameterm5pm/2N, which is small be-
cause we assumed a smallm/N. Thus, r i ( i 51,2) can be
expanded bym. Using the expansions forV, g, andr i and
expanding Eq.~64! to the lowest order ofe andm, we arrive
at the following expression:

Re@l#.
1

4
@24m2$m212~2V123!be%#1/2 ~68!

5
1

4
@22m2~2m223be!#1/2. ~69!

The expansion coefficientV1 appears in Eq.~68!. This
shows that the frequency shift of the initially excited mo
due to the nonlinearity affects Re@l# in the lowest order.
Figure 5 shows the shape of Re@l# as a function ofm for a
fixed e. The real part Re@l# is positive form,m0 and has a
maximum Re@l#max at m5mmax. For m.m0 , F is positive,
so Re@l#50. We can easily find

mmax5
1

2
A3be ~70!

and the maximum

Re@l#max5
3

8
be. ~71!

Equation~70! shows that the pair of modes giving Re@l#max
changes withe: these modes separate from the initially e
cited one ink space with increasinge and, for largeN, their
mode numberskmax are given by

kmax5k6FN

p
A3beG , ~72!

where@•# on the right hand side means the nearest inte
The mode energiesEkmax

of these two modes exhibit th
largest growth rate.

The maximum Re@l#max corresponds to the LCE sinc
the spacing between the neighboring two modes is dens
k/N space and a value sufficiently close tommax is possible
for largeN. As we introduced a new timet5vkt, the LCE
l1 is given by

l15vk Re@l#max5
3

8
vkbe. ~73!

FIG. 5. Illustration of Re@l# as a function ofm for a fixede.
r.

in

If we calculatel1 for the case ofN564, k543, and e
50.01 according to Eq.~73!, we obtainl156.531023. This
is in good agreement with the numerical valuel155.9
31023 in Fig. 3~a!. The agreement becomes better ase de-
creases. This comparison validates our analytical comp
tion of the LCE. From Eq.~29!, we can obtain thee scaling
of the induction timeT as

T;
1

vkbe
;e21. ~74!

The induction timeT is proportional to the inverse ofe.
Moreover, T depends on the frequencyvk of the initially
excited mode and thus becomes smaller for higher-freque
mode excitation. The rangem0 for positive Re@l# can also
be easily found as

m05A3be

2
. ~75!

We can see thatm0 decreases with decreasinge. This means
that the number of modes with positive exponential grow
rates decreases ase decreases. Ife is small enough and the
growth rate of them51 pair of modes becomes zero
namely,m0,p/2N, then all of the modes become stable a
the induction timeT diverges. This threshold energy densi
ec determined fromm0,p/2N is obtained for largeN as

ec5
p2

6bN2
. ~76!

This shows thatec decreases as the system sizeN increases,
ec;N22, and vanishes in the thermodynamic limitN→`.
Equation~76! also shows that the threshold does not depe
on the initially excited mode numberk, except in the cases o
k51,N/2, andN21.

A similar expressionec5p2/3bN2 has been obtained fo
the stability threshold of the zone-boundary mode althou
periodic boundary conditions were employed in Re
@23,25,26#. Moreover, for a generic largek mode excitation
and in the case of periodic boundary conditions, Berman
Kolovskii obtained an expression for the exponential grow
rate of the perturbation similar to our lowest order result E
~69!, different only with respect to the factors, and the s
bility threshold ec5p2/3bN2 by means of a different ap
proximation@27#: they retained only the resonant terms a
made the narrow-packet approximation in Hamiltonian~5! to
obtain an integrable Hamiltonian, and examined the lin
stability of a plane wave solution of the integrable Ham
tonian system. Our result shows that their approximation
reasonable up to the lowest order.

The higher-order terms in Eq.~60! are important for large
e. Equation~69! shows that Re@l# does not depend on th
initially excited modek in the lowest-order expansion. How
ever, k dependence of Re@l# appears ase increases. The
eigenvaluel is a function ofm/N, k/N, and e. In Figs.
6~a!–6~c!, Re@l# obtained from Eq.~60! is plotted as a func-
tion of m/N ande for k/N50.289, 0.664, and 0.867, respe
tively. The shape of Re@l# is apparently different among
these results in the largee regime. The number of unstabl
modes strongly depends onk. It is interesting that in the cas
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of k/N50.867 all the modes become stable whene exceeds
some critical value: the parametric resonance betweek
6m modes is suppressed. In thise regime, the induction
time T becomes somewhat longer in numerical experime
and the energy exchange may be driven by another para
ric resonance mechanism.

V. NUMERICAL EXPERIMENTS

We performed numerical experiments in order to ver
the above theoretical results. A numerical integration of

FIG. 6. Re@l# as a function ofm/N ande. ~a! k/N50.289.~b!
k/N50.664.~c! k/N50.867.
ts
et-

e

equations of motion~2! was performed by using the leap
frog algorithm because of its symplectic nature and simp
ity. The nonlinear coupling strengthb was set asb51 in all
the following numerical experiments. We use an initial co
dition consisting of an almost single-mode excitation: at
initial time, most of the energy is given to a single mode
wave numberk and only a small amount of energy@(1
310210)e# is placed in every other mode. The energy
contained in kinetic form initially. This initial condition is
physically more natural and generic than the exact sing
mode excitation.

We define the induction timeT as the time when the en
ergyEk(t) of the initially excited mode decreases to 50%
the initial value, i.e.,Ek(T)50.5Ek(0) @this is equivalent to
DE(T).0.5Ek(0)]. For very smalle, the maximum amount
of energy transferred from the initially excited mode to t
others never exceeds 50% ofEk(0). In such a case, we de
fine T as the time whenEk(t) shows a perceptible decreas
and takes a minimum value for the first time@cf. Fig. 11~b!
below#. This case is marked by * in the following figure
Moreover, for further smalle ’s, Ek(t) does not show a per
ceptible decrease until the end of the calculation@cf. Fig.
11~a! below#. This case is marked by an arrow in the follow
ing figures. The induction timeT is calculated forN in the
range 32 to 256. The initially excited mode number is se
k.2N/3: k521, 43, 85, and 171 forN532, 64, 128, and
256, respectively. Figure 7 shows the induction timeT plot-
ted as a function ofe for severalN’s, a reference line of the
power lawe21, and a reference line obtained from Re@l#max
of the full order expression ofl Eq. ~60! (T;1/Re@l#max).
Here the numerical results forT are clearly in good agree
ment with the power lawT;e21 although the numerica
results become different from the power law ase becomes
sufficiently large, roughlye.0.01. In the rangee.0.01, T
decreases more slowly thane21 with an increase ine. The
full order scaling law is in good agreement with this nume
cal result.

The induction timeT is not ~or at least only weakly! de-
pendent onN. The spacing between two neighboring mod

FIG. 7. Induction timeT plotted versus energy densitye. Sys-
tem size isN532, 64, 128, and 256, and modes ofk521, 43, 85,
and 171 (k.2N/3) are initially excited. A reference line of powe
law e21 ~dashed line! and a reference line obtained from Re@l#max

of the full order expression ofl Eq. ~60! ~solid line! are also drawn.
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6458 PRE 62K. YOSHIMURA
becomes more dense ink/N space with an increase inN.
Consequently,kmax/N approaches the limiting valuek/N
6A3be/p with increasingN in Eq. ~72!, and thusl1 also
approaches the corresponding limiting value given by
~73!, which depends only onk/N and e. Therefore,T con-
verges to a certain value with an increase inN under fixed
k/N and e. This coincides with the above numerical obse
vation.

In Fig. 7, the induction timeT displays an apparently
divergent behavior ase decreases. We define the thresho
energy densityec using the value ofe at the points marked
by arrows. The threshold energy densityec decreases with
increasingN. Figure 8 shows a plot of thresholdec againstN
and a theoretical lineec5p2/6bN2, Eq. ~76!. They com-
pletely agree with each other.

The energy growth rates are different between the mo
as shown in Fig. 1. In Fig. 9, the differencekmax2k between
the mode number of the mode exhibiting the largest ene
growth rate in the numerical experiments and that of

FIG. 8. Threshold energy densityec plotted againstN. The line
for the theoretical estimationec5p2/6bN2 is also shown.

FIG. 9. Mode with largest energy growth rate.kmax2k is plot-
ted againste. Parameters areN5128 andk537, 85, and 111. The
theoretical linekmax2k5NA3be/p ~solid line! and three theoret-
ical lines obtained from Re@l# of the full order expression ofl, Eq.
~60!, are also shown.
.

-

es

y
e

initially excited one is plotted againste. We note that the
energy growth rate of each mode was measured in an e
part of the induction period@cf. Figs. 1 and 11~b!–11~d!
below#. We show the results fork537, 85, and 111 in the
case ofN5128, which correspond to the cases in Figs. 6~a!-
6~c!, respectively. In Fig. 9, the lowest-order theoretical
sult kmax2k5NA3be/p obtained from Eq.~72! is plotted
with a solid line and three theoretical lines obtained from
mode numberkmax that maximizes Re@l# of the full order
expression ofl Eq. ~60! are also plotted. The results ar
symmetric with respect to the linekmax2k50 although we
show only the results forkmax2k.0. Good agreement be
tween the numerical and lowest order theoretical resul
observed for smalle, but the agreement becomes rath
worse with an increase ine. Moreover, in the largee regime,
the numerical results show that the differencekmax2k
strongly depends onk. The full order theoretical estimation
coincide with the numerical results even in this largee re-
gime.

Figures 10~a!–10~c! present numerical results ofT plotted
againste for various initially excited mode numbersk, where
N5128, and~a!, ~b!, and ~c! refer to k53, 51, and 125,
respectively. The reference lines of the power lawe21 are
also shown and this power law is validated in these ca
Note that a discrepancy from the power law appears
smallere in the case ofk53 and 125 than in the case ofk
551 and 85. These modes, which are too close to 1 orN, do
not have a sufficient number of pairs of modesk6m: only
m51,2 are allowed in these cases. Therefore, the pre
analysis does not apply whenkmax2k>3. This is the main
reason why the discrepancy from the power law appears
smaller e. In addition, some other mechanism suppress
the parametric instability, which is not included in the a
proximate result Eq.~69!, seems to exist. Comparing Figs.
10~a!, 10~b!, and 10~c!, we can also confirm thatT becomes
smaller for higher-frequency mode excitation. The thresho
in e in all three cases coincide with the theoretical valueec
51.00431024, which is calculated from Eq.~76! for N
5128. This agrees with the theoretical prediction that
threshold does not depend on the initially excited mode nu
ber k.

Let us briefly mention here the reason why we used
second order averaging method instead of the first order
If we calculate the LCE using the first order averagi
method, we obtain zero LCE for any initial excitation ofk
<N/2. However, this result is apparently inconsistent w
the preceding numerical results fork53 and 51. The first
order averaging method is considered inadequate for ap
priately calculating the LCE. Therefore, we used the sec
order one.

We proceed to discuss the energy exchange process
lowing the induction period in some energy density regim
Figures 11~a!–11~d! show the time evolution of mode ene
gies in different energy density regimes: we plot only so
of the mode energiesEi for graphical reasons. Figures 11~a!,
11~b!, 11~c!, and 11~d! refer to e5131024, 231024, 7
31024, and 131022, respectively. The other parameters a
N5128 andk585.

In Fig. 11~a!, mode energies except fori 585 do not grow
but remain small over the long period. The other mode
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ergies not shown in the figure also remain small. The ene
density of this figure,e5131024, is slightly smaller than
the theoretical threshold,ec51.00431024. Equation~30! in-
dicates that the phase point separationG(nt0)2G(0) is
bounded by a small value; thus, everyEi of the modes other
than the initially excited one remains of the order of its sm
value at the initial stage over the infinite time whene,ec .
This suggests that Kolmogorov-Arnold-Moser~KAM ! tori
exist near the pseudoperiodic orbit in phase space whee

FIG. 10. Induction timeT plotted versus energy densitye. Sys-
tem size isN5128. ~a! k53. ~b! k551. ~c! k5125. A reference
line of power lawe21 is also drawn.
y

ll

,ec . The numerical result in Fig. 11~a! coincides with the
theoretical result and indicates that the KAM tori exist. In t
rangee,ec , the system retains the initially excited mod
structure over infinite time, and it therefore never relaxes
an energy equipartition state. In this connection, it has b
shown recently that, if the FPUb system starts from a high
frequency mode excitation, the system relaxes to an ene
equipartition state via a spatially localized oscillating stru
ture called achaotic breather, which is spontaneously cre
ated in the system after the breakup of the initially excit
high-frequency mode structure@28–30#. The present resul
indicates that there is an energy threshold for creating
chaotic breather since the chaotic breather is never create
least, belowec . It may be interesting to study the thresho
for creating the chaotic breather, in other words, when
path from a single high-frequency mode state to the cha
breather state is created in phase space.

Figure 11~b! shows a graph fore5231024, which
slightly exceedsec . In this figure, only mode 86 grows ex
ponentially and the others remain small in the early stage
the induction period. This coincides with the two-mode AV
analysis. However, the other modes begin to grow expon
tially after a time, and begin to differ from the theoretic
result.E84 andE86 have increased to a certain degree wh
the growth of these modes begins. It may be conceivable
small-amplitude oscillations of modes 84 and 86, which
neglected in the pseudoperiodic orbit approximation, lead
another parametric resonance mechanism resulting in the
ponential growth of modes other than modes 84 and 86.
ter the induction period,E86 alternately repeats rather regul
exponential decreases and increases. The other modes
exhibit repeated exponential decreases and increases, fo
ing mode 86. It should be noted thatE87, E88, andE89 fluc-
tuate chaotically when they become small after the expon
tial decrease. This alternate decrease and increase iEi
accompanied by chaotic fluctuation suggests that a very
stochastic separatrix layer is formed. Since a nonconjug
pair of the eigenvalues merges as shown in Fig. 4, a Kr
collision may occur on a periodic orbit near the pseudop
odic orbit. The largest Lyapunov exponent calculated for
motion in the thin stochastic separatrix layer islLyap54
31026. From the above numerical observation,ec is re-
garded as a threshold for the appearance of weakly cha
motion in the thin stochastic separatrix layer. In this conn
tion, a threshold for the formation of a stochastic separa
layer under low-frequency mode excitation was obtained
numerically investigating a reduced four-mode Hamiltoni
system in@16#. Their result agrees with our analytical resu
for ec . We can see from the figure that the characteris
frequency of the exponential decrease and increase inEi is
roughly estimated asVb.1/2T. From Eqs.~29! and~73!, Vb
can be estimated asVb.vkbe. For an initial excitation of
the smallk mode, this can be approximated byVb.kbe/N.
This also agrees with the characteristic frequency of b
oscillation due to the resonant interaction of a few lo
frequency modes, which is obtained by using the redu
four-mode Hamiltonian in@16#. A numerical calculation over
a longer time scale shows that energy is shared by on
small number of modes and is not transferred to the ot
modes on a computationally observable time scale. Is
sense, the chaos in this smalle range is local chaos. More
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FIG. 11. Mode energiesEi plotted versus timet. N5128 andk585. ~a! e5131024. ~b! e5231024. ~c! e5731024. ~d! e51
31022.
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over, as characterized by the small Lyapunov exponent,
very weak chaos.

As e increases, the number of modes sharing energy
comes larger and the motion also become more cha
However, energy equipartition does not seem to be achie
on a computationally observable time scale for relativ
small e. The equipartition time scale might be infinite. Fi
ure 11~c! shows a graph fore5731024, which is an ex-
ample for such a value ofe. Apparently chaotic energy ex
change occurs after the induction period and the cha
motion is stronger than that of Fig. 11~b!. However, as seen
in a longer calculation, energy is shared by a subset of mo
and equipartition is not achieved even in a long numer
calculation. The motion is still restricted to the subset
modes. In this sense, the chaos of thise range is strong loca
chaos.

As e increases further, the equipartition comes to oc
on short time scales. In this sense, the chaotic motion
comes global. The mode energy exchange for the relativ
large energy density ofe5131022 is shown in Fig. 11~d!.
Strongly chaotic energy exchange occurs after the induc
period. In this case, energy is distributed to every mode o
rather short, or computationally observable, time scale.
equipartition time decreases with an increase ine. Recently,
it has been shown that in a relatively largee regime the
equipartition time scales ase23 @31#.
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VI. CONCLUSIONS

We have carried out an analytical study of the inducti
phenomenon in the FPUb model relating the energy ex
change process to linear instability of the orbit, and ha
shown that parametric resonance in the AVE can desc
the induction phenomenon quite well. Our theoretical stu
is based on an analytical computation of the LCE of the AV
using a second order averaging method. In order to perf
the analytical computation, we used the two-mode appro
mation to the AVE. The two-mode approximation analys
applies to the initial excitation of any mode except for t
three modesk51, N/2, andN21.

The results are summarized as follows:~1! the energy
density scaling of the induction time is given byT;e21 and
T becomes smaller for higher-frequency mode excitation;~2!
there is a threshold energy densityec such that the induction
time diverges whene,ec and it is given byec5p2/6bN2

for largeN; ~3! the thresholdec vanishes asec;N22 in the
limit N→`; ~4! the thresholdec does not depend on th
mode numberk that is excited in the initial condition;~5! the
two modesk6m have the largest exponential growth ra
andm increases with increasinge asm/N5A3be/p. These
analytical results are thoroughly verified in numerical expe
ments. The above estimationsT;e21 and m/N5A3be/p
are correct only in the smalle regime since they are obtaine
from the lowest-order expansion ofl. Therefore, the agree
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ment between these estimations and the numerical re
becomes worse ase increases. The estimations forT and
m/N based on the full order expression ofl are in good
agreement with the numerical results even in the large
regime.

We have also discussed the energy exchange process
the induction period in some energy density regimes, ba
-

n,
lts

fter
ed

on the numerical results. We show that KAM tori exist ne
the pseudoperiodic orbit whene,ec , andec is regarded as
the threshold for formation of a thin stochastic separa
layer near the pseudoperiodic orbit. Apparently, chaotic
ergy exchange begins to occur just after the induction pe
whene becomes large.
g.

ys.
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