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Synchronous chaos in coupled map lattices with small-world interactions
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In certain physical situations, extensive interactions arise naturally in systems. We consider one such situ-
ation, namely, small-world couplings. We show that, for a fixed fraction of nonlocal couplings, synchronous
chaos is always a stable attractor in the thermodynamic limit. We point out that randomness helps synchroni-
zation. We also show that there is a size dependent bifurcation in the collective behavior in such systems.

PACS numbds): 05.45-a

Maps are successful and widely used models of nonlinea€ML’s with such connections, in particular, the synchroni-
and chaotic systems. All routes to chaos observed in higlzation on such networks. In this system the connections are
dimensional systems have been found in maps. Maps help dgcal as well as nonlocal. It is clear that due to nonlocal
to understand the basic features and requirements of chaofigteractions the range of interaction will keep growing as one
systems without going to higher dimensions and getting enincreases the lattice size. Hence we call these interactions
tangled in unnecessary details. They are not necessarigxtensive.
mathematical abstractions alone. There are cases like long In @ previous work, we studied interactions that were ex-
delayed feedback in optical or hybrid optical systems fortensive and local13]. In that case we observed that in the
which maps can be rigorously derived from first principlesthermodynamic limit synchronization is possible in a certain
[1]. Another example would be the case of periodicallyParameter regime if the number of sites connected to a given
pulse-kicked oscillator§2]. For models of population dy- Site is a finitefraction of the total number of sites. However,
namics, maps are natural mathematical systems of descrifi-is impossible if only a finitenumberof sites are connected.
tion [3] Coupled map lattice$CML’s) are an attempt to On the other hand, in the case of a small-world network,
understand spatially extended nonlinear systems using builgynchronization is always possible in the thermodynamic
ing blocks that are well understood. We have seen a spurt dimit if a finite fraction of sites is connected, and even if a
literature spanning various ideas in CML's. In the late 1980sfinite number of sites is connected to a given site, synchro-
the one dimensional Euclidean lattice was extensively use8lization is possible in a certain parameter regime. Thus with
to cover the phenomenological viewpoid]. Later discus- nonlocal extensive interactions one is able to bring in syn-
sions turned to globally coupled lattices, hierarchicallychronization in the presence of seemingly weaker conditions.
coupled lattices, CML'’s on a fractal, random nonlocal cou-As reflected in the behavior of the mean field, even the un-
plings, or global inhomogeneous coupling, each of whichsynchronized state shows a certain coherence for a large
was motivated by different physical systems and met varying=ML with finite nonlocal couplings. The reason for this
degree of success in modeling those systfBasl1]. In this ~ qualitative difference could be that it is not possible to have
work we will investigate dynamics on connectivities differ- €xtensive interaction for a finite number of local couplings,
ent from the above, i.e., extensive interactions. In particularwhile interaction is extensive for nonlocal couplings.
we will study the dynamics on the recently introduced small- Let us define a generic coupled map on a linear lattice of
world lattices[12]. In the past we have seen extensive inter-N sites with periodic boundary conditions. Letbe a vari-
actions in other work, namely, connectivities decaying as @&ble associated with site (i=1, ...N). The time evolution
power law with distance, and connectivities in which eachof X; is given by
site is connected to a range of neighbors that is a fraction of
the total number of lattice sitd43]. xi(t+1) =311 F(x(1)). (N

Completely random and completely local connectivities
have been studied in the p4#8t14]. However, in many cases Here the connectivity matrix; ; gives information on the
in real life, connections are known to be not completely ran-connectivity andf is a nonlinear function. For example, the
dom nor completely local but somewhere in between. Thisnost explored connectivity is on a one dimensional lattice
was modeled in an interesting work by Watts and Strogatz awith nearest neighbor coupling, wherg ;=hg, 1;;i_1
the small-world modef12]. Examples are plenty: collabora- =h_,, I;;,;=h;, i=1,... N, and other matrix elements
tion of movie stars, interactions of stockmarket brokers, andire 0. By a synchronous state we mean a state in whjch
connectivity of internet web pages or neural nets. There are=x,=-- - =xy. We note that, with the evolution of nearest
various studies on systems proposed by Watts and Strogataeighbor coupling, if we start with a synchronized state the
However, the dynamics of such connections has not beesystem stays synchronized. What we are interested in is the
much studied. In this paper, we will study the dynamics ofstability of the synchronized state, i.e., whether a system

away from the synchronized state will reach the synchro-
nized state asymptotically.
*Electronic address: gade@helios.phy.ohiou.edu One would expect that networks will start behaving more
TElectronic address: huck@phys.sinica.edu.tw coherently as a result of extensive interactions, even in the
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FIG. 1. The second largest eigenvalue as a functiopMfav-
eraged over 50 configurations
0.1

Im|N
presence of temporal chaos. One of the most striking coher ol 0

ent modes is the synchronous mode. We will focus on the

stability of this state in this work. Let us assurﬂé‘zlli'j 0.1

=1 Vi so that a synchronous state exists. The stability of a

temporally chaotic but spatially synchronized state can be 2

determined analytically. This can be done by expanding the 03

perturbation away from the synchronous state in terms of its 08 06 -04 -02 02 04 06 08 1

0
eigenvectors. The only eigenmode that corresponds to the Beld

uniform state i 1,1, ... ,1. This is an eigenvector by con-  F|G. 2. (a) The eigenvalue spectrum fpiN= 16 in the complex
struction if the synchronized state exists. It is easy to showlane. (b) The eigenvalue spectrum fq@wN=4 in the complex
that the condition for the stability of synchronous chaos isplane.

that only this eigenmode should survive and the rest should

be damped7,8,15. The Jacobian of the synchronized state
is directly related to the interaction matrix. L&t be the
eigenvalue corresponding to this eigenmpdid,, . . . ,1 and
Ni, i=1,2,...N=1, represent the oth&—1 eigenvalues
of the interaction matrix ordered such tHat|=|\,|=- -
=|\y_41|. Let X be the Lyapunov exponent of the magt
can be shown that the necessary condition for the stability of
synchronous chaos is that only one eigenvalye*|>1 and o _
the restj\;e*|<1 fori=1, ... N—1 [6-8]. Thus the sym- For exa_mple, !f sitei =15 hfis nonlocal neighbors 7, 3,
metries and topology of the interaction matrix are very im-8nd 7, i.e., 7 is chosen twices(t+1)=(1/5)[ f(x1(t))

portant in determining the stability conditions. We will study + f(x16(t)) +f0xz(t)) + f(xa(t)) + f(x2(1))]. _ -
the eigenvalue spectrum of the interaction matrices with ex-f ﬁs has kr)]een_ exg)lar:ned _abover,] understan&jlng thc? Stab;“ty
tensive couplings and show that there is invariably a gap P! the synchronized chaos in such a system demands analysis

the largest eigenvalue and the second largest eigenvalue % its connectivity matrix and the question of interest is if the

all of these cases.

In the original model by Watts and Strogdfi2], there is
a possibility that the lattice can be broken into unconnected*® oN =16
clusters. Here we study a slightly modified model by New- 350 - M .
man and Watt$16]. In this model, we start with a regular 3q9 L M i
one dimensional ring with\ sites. Each siteis connectedto | 7] I 1
its nearest neighbors+1 and i—1[i+1enbr(i),i—1 I 1
e nbr(i) where nbr means “neighbor pf In addition, we 200 e ]
consider each of théN? possible pairs of site$(i,j),i 150 - .
=1,...N,j=1,... N] and with probabilityp we make a
directed bond between them, i.¢.js the neighbor ofi[j
e nbr(i)] with a probabilityp. We do not break any of the
connections between two nearest neighbors. We allow cou 9
pling of the site with itself. We allow the site to be coupled
to another site more than once and in such a case we count

this bond more than once. L&(i) be the total number of
connections including nearest neighbors for sité&/e define
the CML on this lattice as

1
Xi(t+1) = =3 cnory F (X (1)). 2

k(i)

450 T Ni T T T T T T

100 | i

l — 1 1 1

03 04 05 06 07 08 09 1

01 02

FIG. 3. Histograms of\| for pN=4 andpN=16.
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FIG. 4. (a) The bifurcation diagram of the mean field as a functioiNdbr pN= 1. (b) The bifurcation diagram of the mean field as a
function of N for pN=2. (c) The variance of the mean field as a functior\ofor pN=1 andpN=2. The number of siteNl is plotted on
a logarithmic scale in all the figures.

eigenvalues have a gap. We have diagonalized these matricesThe eigenvalues in the limitgs=0 andp=1 are simple.
numerically and they show a clear gap. The spectrum seema the former limit the absolute value of the second largest

to be a function opN instead ofp or N. This means that the ejgenvalue tends to 1, while in the latter limit it tends to
number of nonlocal connections of each site determines thg;(\+2). In the region in between, we expect it to behave

spectrum. Previously, we analyzed coupled maps on comso N \we observe that the eigenvalues smoothly inter-
pletely random networks in which each site was couplekl to late between th spected behavior
[polate between these expected behaviors.

neighbors chosen randomly. The second largest eigenval The f hat th ber of local .
in the spectrum varied ast [8]. For largepN, i.e., a large e fact that the number of nonlocal connections matters

number of nonlocal connections, we expect a similar behay@nd not their fraction is quite interesting. In a previous pub-
ior since each lattice point will haveN nonlocal connec- lication[13], we found that there is no gap in the eigenvalue
tions on average. Figure 1 shows the second largest eigefiPectrum in the thermodynamic limit for a fixed number of
value as a function opN. Each point has an average of 50 local connections for a lattice site. The gap exists only if a
configurations. The anticipated trend for largdl is better fixed fraction of sites is connected. However, in the case of
for largeN. Figure 2 shows the eigenvalues for this matrix in nonlocal connectivity even one or two nonlocal connections
the complex plane. The picture is very similar to that ob-are enough to cause a gap in the spectrum, allowing the
served in fully nonlocal connectivity. Probably this has to dopossibility of synchronous chaos. Furthermore, if a fixed
with the large number of nonlocal connections for this casefraction of sites are connected nonlocally, synchronous chaos
Figure 3 shows the histogram of the distribution of absolutgs alwaysstable in the thermodynamic limit. For a fixgu
values of the eigenvalues. This is most probably a single>0, synchronous chaos is always a stable attractor in the
peaked distribution. thermodynamic limit since the second largest eigenvalue
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(which varies as 4/pN) of the connectivity matrix will tend 1 | | |

to zero aN— . 08 b P%f% N
The gap in the eigenvalue spectrum means that synchro- ) py =2 X

nization is indeed possible on such lattices and is more and 0.6 4

more likely as the number of nonlocal connections increases.

This spectrum is related to the spectrum of the Laplacian 04 *® -

operator. The spectrum of the Laplacian operator in the  k(+1) ®

original scheme of the small-world lattice by Watts and Stro- 0.2

gatz has been studied from the viewpoint of localization, ol

diffusion, and dispersion relations. Thus study of the inter-

action matrix is useful for purposes other than synchroniza- 02k

tion. In these systems, there is no true gap in the spectrum,

unlike the case in our systefi7]. Our study on a modified -0.4 : ' : : :

small-world lattice in which nonlocal connections do not 04 -02 0 0.2h(t)0.4 0.6 08 1

come into being at the expense of local connections should

also shed light on these questions. FIG. 5. The return map for the mean field, i.(t+1) as a
Whenever the above condition, i.e\e*<1 for i function of h(t) for pN=1 andpN=2 for N=1.5x 1C".

=1,... N—1 and\,e*>1, is satisfied, it implies the linear

stability of the synchronized state, but it does not tell much
about its basin of attraction. However, we observe synchroeonfigurations. FopN=2, the difference between the be-
nization from a wide range of initial conditions. This is un- havior of the mean field in different configurations is very
like the case of a globally coupled array where, despite lineasmall for large lattices N>20000). However, fopN=1
stability, the system away from the synchronized state mayhe different configurations continue to be quite different. In
not reach a synchronized state easily because of attractboth cases, there is a range of valdgs<N<N, such that
crowding[18]. A globally coupled system has high symme- one may observe either a two-band or one-band structure in
try. In fact, if there is an attractor in addition to the synchro-the mean field depending on the configuration. We find that
nized state, there will b&l! equivalent attractors crowding N;~21000 andN,~40000 for pN=1 and N;~1500 and
the phase space. The system of the present paper has veéty~ 10500 forpN=2. ForN<N; we find exclusively one-
low symmetries due to randomness and thus it is easier tband structure while for values df=N, we find exclusively
reach the synchronized state. two-band structure. The “bifurcation” from one-band struc-
The collective behavior of CML'’s in various dimensions ture to two-band structure is not well defined, which is un-
has been studied extensively in recent years. It seems that @derstandable since this is a random system and at smaller
interesting nontrivial collective behavior is obtained in lattice sizes individual configurations may vary a lot. We
higher dimensions in CML'’s even in the presence of localtried to study the variance of the mean figld=(h(t)?)
chaos. There have been detailed studies of the behavior ef(h(t))2, and we used the mean value of the variance over
the mean field in CML'’s in globally coupled mag$],  several configurationéo?) to quantify the uncorrelatedness
coupled maps and cellular automata in higher dimensionsf individual elements. Given the structure in the mean field,
[10], and coupled maps with random nonlocal couplif§fs  the variance does not obey the law of large numbers and
We will study the behavior of the mean field on a small-does not approach zero in the thermodynamic limit. If all the
world lattice for a given number of average nonlocal conneciattice elements were unrelated, we would expect the mean
tions pN, since for constanp one will always get synchro- field to converge to a constant value. In fact, fpiN
nization in the thermodynamic limit. We studied the =2, (o?) grows and saturates. FpN=1, however, there is
behavior of the mean fieIU(t)z(l/N)EiN:lxi(t) as a func-  adecrease ifio?) that is slower than N. Figure 4c) shows
tion of N for constantpN. We chose the local maf(x) as  (¢?) as a function ofN for pN=1 and forpN=2. The
the logistic map at fully developed chadgx) =1—2x2. averaging is performed over at least 150 configurations. The
We studied this behavior for two valugdN=1 andpN  growth of the variance of the mean field as a functioiNa$
=2, i.e., the cases of one nonlocal coupling per site and twoather strange and needs further investigation. The mean field
nonlocal couplings per site on average. Since there are twimdeed has a much more coherent structurepfdr=2 than
local coupling at each site, we felt this is representative ofor pN=1. Figure 5 shows the return map of the mean field
what happens when nonlocal couplings are weaker than locdér pN=1 and pN=2 for N=1.5x10°. For pN=2, one
couplings and when they are as strong as local couplings. Wean clearly see a structure in the return map of the mean field
find that the mean field develops a two-band type of behaviowhich is very similar to the original logistic map.
for larger lattices in both cases. However, foN=2, i.e., Extensive interactions arise in several physical situations
when the nonlocal connections are as strong as the locéh nature. In general, they lead to higher coherence in spa-
connections, a strong collective behavior emerges even in thially extended systems. In this work, we have explored the
absence of synchronization. Figuréadand Fig. 4b) show  stability of synchronous chaos in coupled map lattices with
the “bifurcation diagram” for the mean field as a function of small-world connectivity, which is an extensive connectivity
the total number of sites fopN=1 and forpN=2. There in the sense that the range of interaction keeps growing with
are differences in behaviors of individual configurations duethe lattice size. We have shown that in this case the eigen-
to randomness. We have shown representative configuraalue spectrum of the interaction matrix has a gap and thus
tions, i.e., those that have behavior seen in the majority o§ynchronous chaos is possible even in the thermodynamic
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limit. Small-world connectivity is conjectured to exist in sys- tion is not reached, dynamical behavior can be highly coher-
tems as diverse as power grid connections and neural ne®nt in small world networks.
We have showed that randomness and extensivity of cou- Thjg work was supported by the National Science Council

pling play important roles in reaching coherence in this casepf the Republic of ChingTaiwan under Grant No. NSC
We have also shown that, even in cases where synchronizgg-2112-M001-005.
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