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Synchronous chaos in coupled map lattices with small-world interactions
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~Received 14 March 2000; revised manuscript received 27 July 2000!

In certain physical situations, extensive interactions arise naturally in systems. We consider one such situ-
ation, namely, small-world couplings. We show that, for a fixed fraction of nonlocal couplings, synchronous
chaos is always a stable attractor in the thermodynamic limit. We point out that randomness helps synchroni-
zation. We also show that there is a size dependent bifurcation in the collective behavior in such systems.

PACS number~s!: 05.45.2a
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Maps are successful and widely used models of nonlin
and chaotic systems. All routes to chaos observed in h
dimensional systems have been found in maps. Maps he
to understand the basic features and requirements of ch
systems without going to higher dimensions and getting
tangled in unnecessary details. They are not necess
mathematical abstractions alone. There are cases like
delayed feedback in optical or hybrid optical systems
which maps can be rigorously derived from first principl
@1#. Another example would be the case of periodica
pulse-kicked oscillators@2#. For models of population dy
namics, maps are natural mathematical systems of des
tion @3#. Coupled map lattices~CML’s! are an attempt to
understand spatially extended nonlinear systems using b
ing blocks that are well understood. We have seen a spu
literature spanning various ideas in CML’s. In the late 198
the one dimensional Euclidean lattice was extensively u
to cover the phenomenological viewpoint@4#. Later discus-
sions turned to globally coupled lattices, hierarchica
coupled lattices, CML’s on a fractal, random nonlocal co
plings, or global inhomogeneous coupling, each of wh
was motivated by different physical systems and met vary
degree of success in modeling those systems@5–11#. In this
work we will investigate dynamics on connectivities diffe
ent from the above, i.e., extensive interactions. In particu
we will study the dynamics on the recently introduced sm
world lattices@12#. In the past we have seen extensive int
actions in other work, namely, connectivities decaying a
power law with distance, and connectivities in which ea
site is connected to a range of neighbors that is a fractio
the total number of lattice sites@13#.

Completely random and completely local connectivit
have been studied in the past@8,14#. However, in many case
in real life, connections are known to be not completely ra
dom nor completely local but somewhere in between. T
was modeled in an interesting work by Watts and Strogat
the small-world model@12#. Examples are plenty: collabora
tion of movie stars, interactions of stockmarket brokers, a
connectivity of internet web pages or neural nets. There
various studies on systems proposed by Watts and Stro
However, the dynamics of such connections has not b
much studied. In this paper, we will study the dynamics
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CML’s with such connections, in particular, the synchron
zation on such networks. In this system the connections
local as well as nonlocal. It is clear that due to nonloc
interactions the range of interaction will keep growing as o
increases the lattice size. Hence we call these interact
extensive.

In a previous work, we studied interactions that were e
tensive and local@13#. In that case we observed that in th
thermodynamic limit synchronization is possible in a certa
parameter regime if the number of sites connected to a g
site is a finitefraction of the total number of sites. Howeve
it is impossible if only a finitenumberof sites are connected
On the other hand, in the case of a small-world netwo
synchronization is always possible in the thermodynam
limit if a finite fraction of sites is connected, and even if
finite number of sites is connected to a given site, synch
nization is possible in a certain parameter regime. Thus w
nonlocal extensive interactions one is able to bring in s
chronization in the presence of seemingly weaker conditio
As reflected in the behavior of the mean field, even the
synchronized state shows a certain coherence for a l
CML with finite nonlocal couplings. The reason for th
qualitative difference could be that it is not possible to ha
extensive interaction for a finite number of local coupling
while interaction is extensive for nonlocal couplings.

Let us define a generic coupled map on a linear lattice
N sites with periodic boundary conditions. Letxi be a vari-
able associated with sitei ( i 51, . . .N). The time evolution
of xi is given by

xi~ t11!5S j 51
N I i , j f „xj~ t !…. ~1!

Here the connectivity matrixI i , j gives information on the
connectivity andf is a nonlinear function. For example, th
most explored connectivity is on a one dimensional latt
with nearest neighbor coupling, whereI i ,i5h0 , I i ,i 21
5h21 , I i ,i 115h1 , i 51, . . . ,N, and other matrix element
are 0. By a synchronous state we mean a state in whichx1
5x25•••5xN . We note that, with the evolution of neare
neighbor coupling, if we start with a synchronized state
system stays synchronized. What we are interested in is
stability of the synchronized state, i.e., whether a syst
away from the synchronized state will reach the synch
nized state asymptotically.

One would expect that networks will start behaving mo
coherently as a result of extensive interactions, even in
6409 ©2000 The American Physical Society
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presence of temporal chaos. One of the most striking co
ent modes is the synchronous mode. We will focus on
stability of this state in this work. Let us assumeS j 51

N I i , j

51 ; i so that a synchronous state exists. The stability o
temporally chaotic but spatially synchronized state can
determined analytically. This can be done by expanding
perturbation away from the synchronous state in terms o
eigenvectors. The only eigenmode that corresponds to
uniform state is@1,1, . . . ,1#. This is an eigenvector by con
struction if the synchronized state exists. It is easy to sh
that the condition for the stability of synchronous chaos
that only this eigenmode should survive and the rest sho
be damped@7,8,15#. The Jacobian of the synchronized sta
is directly related to the interaction matrix. Letl0 be the
eigenvalue corresponding to this eigenmode@1,1, . . . ,1# and
l i , i 51,2, . . . ,N21, represent the otherN21 eigenvalues
of the interaction matrix ordered such thatul1u>ul2u>•••

>ulN21u. Let l be the Lyapunov exponent of the mapf. It
can be shown that the necessary condition for the stabilit
synchronous chaos is that only one eigenvalueul0elu.1 and
the restul ie

lu,1 for i 51, . . . ,N21 @6–8#. Thus the sym-
metries and topology of the interaction matrix are very i
portant in determining the stability conditions. We will stud
the eigenvalue spectrum of the interaction matrices with
tensive couplings and show that there is invariably a gap
the largest eigenvalue and the second largest eigenvalu
all of these cases.

In the original model by Watts and Strogatz@12#, there is
a possibility that the lattice can be broken into unconnec
clusters. Here we study a slightly modified model by Ne
man and Watts@16#. In this model, we start with a regula
one dimensional ring withN sites. Each sitei is connected to
its nearest neighborsi 11 and i 21 @ i 11Pnbr(i ),i 21
Pnbr(i ) where nbr means ‘‘neighbor of#.’’ In addition, we
consider each of theN2 possible pairs of sites@( i , j ),i
51, . . . ,N, j 51, . . . ,N# and with probabilityp we make a
directed bond between them, i.e.,j is the neighbor ofi @ j
Pnbr(i )# with a probabilityp. We do not break any of the
connections between two nearest neighbors. We allow c
pling of the site with itself. We allow the site to be couple
to another site more than once and in such a case we c

FIG. 1. The second largest eigenvalue as a function ofpN ~av-
eraged over 50 configurations!.
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this bond more than once. Letk( i ) be the total number of
connections including nearest neighbors for sitei. We define
the CML on this lattice as

xi~ t11!5
1

k~ i !
S j Pnbr(i ) f „xj~ t !…. ~2!

For example, if sitei 515 has nonlocal neighbors 7, 3
and 7, i.e., 7 is chosen twice,x15(t11)5(1/5)@ f „x14(t)…
1 f „x16(t)…1 f „x7(t)…1 f „x3(t)…1 f „x7(t)…#.

As has been explained above, understanding the stab
of the synchronized chaos in such a system demands ana
of its connectivity matrix and the question of interest is if t

FIG. 2. ~a! The eigenvalue spectrum forpN516 in the complex
plane. ~b! The eigenvalue spectrum forpN54 in the complex
plane.

FIG. 3. Histograms ofulu for pN54 andpN516.
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FIG. 4. ~a! The bifurcation diagram of the mean field as a function ofN for pN51. ~b! The bifurcation diagram of the mean field as
function ofN for pN52. ~c! The variance of the mean field as a function ofN for pN51 andpN52. The number of sitesN is plotted on
a logarithmic scale in all the figures.
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eigenvalues have a gap. We have diagonalized these ma
numerically and they show a clear gap. The spectrum se
to be a function ofpN instead ofp or N. This means that the
number of nonlocal connections of each site determines
spectrum. Previously, we analyzed coupled maps on c
pletely random networks in which each site was coupledk
neighbors chosen randomly. The second largest eigenv
in the spectrum varied as 1/Ak @8#. For largepN, i.e., a large
number of nonlocal connections, we expect a similar beh
ior since each lattice point will havepN nonlocal connec-
tions on average. Figure 1 shows the second largest ei
value as a function ofpN. Each point has an average of 5
configurations. The anticipated trend for largepN is better
for largeN. Figure 2 shows the eigenvalues for this matrix
the complex plane. The picture is very similar to that o
served in fully nonlocal connectivity. Probably this has to
with the large number of nonlocal connections for this ca
Figure 3 shows the histogram of the distribution of absol
values of the eigenvalues. This is most probably a sin
peaked distribution.
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The eigenvalues in the limitsp50 andp51 are simple.
In the former limit the absolute value of the second larg
eigenvalue tends to 1, while in the latter limit it tends
2/(N12). In the region in between, we expect it to beha
as 1/ApN. We observe that the eigenvalues smoothly int
polate between these expected behaviors.

The fact that the number of nonlocal connections matt
and not their fraction is quite interesting. In a previous pu
lication @13#, we found that there is no gap in the eigenval
spectrum in the thermodynamic limit for a fixed number
local connections for a lattice site. The gap exists only i
fixed fraction of sites is connected. However, in the case
nonlocal connectivity even one or two nonlocal connectio
are enough to cause a gap in the spectrum, allowing
possibility of synchronous chaos. Furthermore, if a fix
fraction of sites are connected nonlocally, synchronous ch
is alwaysstable in the thermodynamic limit. For a fixedp
.0, synchronous chaos is always a stable attractor in
thermodynamic limit since the second largest eigenva
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~which varies as 1/ApN) of the connectivity matrix will tend
to zero asN→`.

The gap in the eigenvalue spectrum means that sync
nization is indeed possible on such lattices and is more
more likely as the number of nonlocal connections increa
This spectrum is related to the spectrum of the Laplac
operator. The spectrum of the Laplacian operator in
original scheme of the small-world lattice by Watts and St
gatz has been studied from the viewpoint of localizatio
diffusion, and dispersion relations. Thus study of the int
action matrix is useful for purposes other than synchron
tion. In these systems, there is no true gap in the spectr
unlike the case in our system@17#. Our study on a modified
small-world lattice in which nonlocal connections do n
come into being at the expense of local connections sho
also shed light on these questions.

Whenever the above condition, i.e.,l ie
l,1 for i

51, . . . ,N21 andl0el.1, is satisfied, it implies the linea
stability of the synchronized state, but it does not tell mu
about its basin of attraction. However, we observe synch
nization from a wide range of initial conditions. This is u
like the case of a globally coupled array where, despite lin
stability, the system away from the synchronized state m
not reach a synchronized state easily because of attra
crowding @18#. A globally coupled system has high symm
try. In fact, if there is an attractor in addition to the synchr
nized state, there will beN! equivalent attractors crowding
the phase space. The system of the present paper has
low symmetries due to randomness and thus it is easie
reach the synchronized state.

The collective behavior of CML’s in various dimension
has been studied extensively in recent years. It seems th
interesting nontrivial collective behavior is obtained
higher dimensions in CML’s even in the presence of lo
chaos. There have been detailed studies of the behavio
the mean field in CML’s in globally coupled maps@5#,
coupled maps and cellular automata in higher dimensi
@10#, and coupled maps with random nonlocal couplings@8#.
We will study the behavior of the mean field on a sma
world lattice for a given number of average nonlocal conn
tions pN, since for constantp one will always get synchro
nization in the thermodynamic limit. We studied th
behavior of the mean fieldh(t)5(1/N)S i 51

N xi(t) as a func-
tion of N for constantpN. We chose the local mapf (x) as
the logistic map at fully developed chaos,f (x)5122x2.

We studied this behavior for two valuespN51 andpN
52, i.e., the cases of one nonlocal coupling per site and
nonlocal couplings per site on average. Since there are
local coupling at each site, we felt this is representative
what happens when nonlocal couplings are weaker than l
couplings and when they are as strong as local couplings.
find that the mean field develops a two-band type of beha
for larger lattices in both cases. However, forpN52, i.e.,
when the nonlocal connections are as strong as the l
connections, a strong collective behavior emerges even in
absence of synchronization. Figure 4~a! and Fig. 4~b! show
the ‘‘bifurcation diagram’’ for the mean field as a function
the total number of sites forpN51 and forpN52. There
are differences in behaviors of individual configurations d
to randomness. We have shown representative config
tions, i.e., those that have behavior seen in the majority
o-
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configurations. ForpN52, the difference between the be
havior of the mean field in different configurations is ve
small for large lattices (N.20 000). However, forpN51
the different configurations continue to be quite different.
both cases, there is a range of valuesN1,N,N2 such that
one may observe either a two-band or one-band structur
the mean field depending on the configuration. We find t
N1;1000 andN2;40 000 for pN51 and N1;1500 and
N2;10 500 forpN52. ForN<N1 we find exclusively one-
band structure while for values ofN>N2 we find exclusively
two-band structure. The ‘‘bifurcation’’ from one-band stru
ture to two-band structure is not well defined, which is u
derstandable since this is a random system and at sm
lattice sizes individual configurations may vary a lot. W
tried to study the variance of the mean fields25^h(t)2&
2^h(t)&2, and we used the mean value of the variance o
several configurationŝs2& to quantify the uncorrelatednes
of individual elements. Given the structure in the mean fie
the variance does not obey the law of large numbers
does not approach zero in the thermodynamic limit. If all t
lattice elements were unrelated, we would expect the m
field to converge to a constant value. In fact, forpN
52, ^s2& grows and saturates. ForpN51, however, there is
a decrease in̂s2& that is slower than 1/N. Figure 4~c! shows
^s2& as a function ofN for pN51 and for pN52. The
averaging is performed over at least 150 configurations.
growth of the variance of the mean field as a function ofN is
rather strange and needs further investigation. The mean
indeed has a much more coherent structure forpN52 than
for pN51. Figure 5 shows the return map of the mean fie
for pN51 and pN52 for N51.53105. For pN52, one
can clearly see a structure in the return map of the mean
which is very similar to the original logistic map.

Extensive interactions arise in several physical situati
in nature. In general, they lead to higher coherence in s
tially extended systems. In this work, we have explored
stability of synchronous chaos in coupled map lattices w
small-world connectivity, which is an extensive connectiv
in the sense that the range of interaction keeps growing w
the lattice size. We have shown that in this case the eig
value spectrum of the interaction matrix has a gap and t
synchronous chaos is possible even in the thermodyna

FIG. 5. The return map for the mean field, i.e.,h(t11) as a
function of h(t) for pN51 andpN52 for N51.53105.
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limit. Small-world connectivity is conjectured to exist in sy
tems as diverse as power grid connections and neural
We have showed that randomness and extensivity of c
pling play important roles in reaching coherence in this ca
We have also shown that, even in cases where synchron
. E

hy
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ts.
u-
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a-

tion is not reached, dynamical behavior can be highly coh
ent in small world networks.
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