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We study the control of chaos in an experiment on a parametrically excited pendulum whose excitation
mechanism is not perfect. This imperfection leads to a weakly excited degree of freedom with an associated
small eigenvalue. Although the state of the pendulum could be characterized well and although the perturbation
is weak, we fail to control chaos. From a numerical model we learn that the small eigenvalue cannot be ignored
when attempting control. However, the estimate of this eigenvalue frorfeperimental time series is
elusive. The reason is that points in an experimental time series are distributed according to the natural
measure. It is this extremely uneven distribution of points that thwarts attempts to measure eigenvalues that are
very different. Another consequence of the phase-space distribution of points for control is the occurrence of
logarithmic-oscillations in the waiting time before control can be attempted. We come to the conclusion that
chaos needs to be destroyed before the information needed for its control can be obtained.

PACS numbdps): 05.45-a

[. INTRODUCTION through a dynamical invariant. The strength of the interac-
tion and, therefore, the importance of the parasitic mode are
In the past few years the control of chaos has evolved intget by a single parameter in our numerical simulation. For
a very actively pursued application of nonlinear dynamicsmost parameter settings, dynamical invariants of the system
Chaos is full of unstable periodic orbits which visit phaseare not affected by this mode. It is, therefore, dynamically
space in a huge variety of ways and which have periods oifrelevant most of the time. Still, it has a dramatic influence
almost any length. When given enough time, a chaotic traen the possibility of controlling the system. Thus, to design
jectory will pass arbitrarily close to each of them. The keythe control strategy, the associated small eigenvalue must be
idea by Ott, Grebogi, and YorKe] is that it can be steered known.
onto the unstable periodic point when it is close enough us- If no other information is available in an experiment, the
ing modulation of a system parameter. The magnitude ofinear neighborhood of an unstable periodic point must be
these modulations must be sufficient to capture the systehearned from an experimental time series. The points that
into a periodic orbit when it is near, but can decrease tdiappen to be close to the unstable periodic point can be used
almost zero when the system is exactly on the orbit. in a least-squares analysis to determine the local linear dy-
A central notion is that all needed information can benamics near the unstable periodic point. In our case, the as-
learned from an experimental time series of measurementociated matrix has both large and small eigenvalues. In any
on the chaotic system. It is not even necessary to perform gegistered time series the points are distributed according to
complete measurement of the system’s phase space, as etihe natural measure. It was already noted8r9] that this
bedding techniquel2] can be used to reconstruct the phasehinders an accurate estimate of the eigenvalues. In the
space from a measurement of a sin(dealaj component. present paper we quantify this error amplification by intro-
This information can be used to trace the location of unstablelucing a condition number which exhibits interesting scaling
periodic orbits, and to deduce the dynamics of their locabehavior. For the perturbed pendulum this number is so large
linear neighborhoods. Thus, chaotic dynamics of any lowthat it becomes impossible to learn the needed information
dimensional system can be turned into the regular motion ofrom a time series, even in the absence of noise.
choice without detailed knowledge of the dynamical system Control of chaos separates into two distinct problems. The
and using parameter modulations that are just large enoudirst one is how to modulate the system parameter, given the
to overcome the intrinsic noise of the system and the medinear environment of the unstable periodic point whose sta-
surement. This exciting idea motivated the present work. bilization is sought. This problem is entirely within the realm
We have tried to control chaos in an experiment of aof control theory, and a plethora of techniques exists to solve
parametrically excited pendulum, but failed. On the otherit [10]. A perhaps more interesting aspect is related to the
hand, there are numerous reports of successful chaos contitucture of phase space of chaotic nonlinear systems: the
[4-7]. Our failure was also surprising because we were ablguestion here is which unstable periodic points exist, and
to precisely characterize the chaotic state and found verfiow long one has to wait before a chaotic orbit comes close
favorable agreement with a faithful numerical simulati@h enough to a periodic point and control can become effective.
The failure of this experiment made us consider carefully theAs we found, a third question is how chaos affects the esti-
ideas of controlling chaos. mate of the dynamics in small neighborhoods of unstable
Analysis of the experiment revealed that an extra mode operiodic points. In our experiment the necessity for consid-
motion exists that is related to a weak interaction of theering small eigenvalues for control is rooted in control engi-
pendulum with its driving. As the associated eigenvalue imeering, but the impossibility of measuring them is related to
small, this mode is stiff and adjusts quickly to the state of thethe structure of phase space.
pendulum. In a numerical model we quantify this interaction In Sec. Il we will describe the experiment and formulate a
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The (¢,<}5)dynamical state of the pendulum is described

by the equation of motion
Suspension
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where wy=(g/1)*? is the eigenfrequency of the pendulum.
The acceleration of the pendulum suspengigh) is propor-
tional to cosf2t), but the crank mechanism used contributes
P via higher harmonics
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FIG. 1. The parametric pendulum, drawn to scale; its height isvvhereA is the length of the driving arm of the crank mecha-

1.38 m. A bob with an effective mass of=0.0858 kg is attached NiSM ande is the ratio ofA to the length of the other arm.
to a rod ofl =0.317 m length and negligible mass. The anglis ~ 1he damping constants; 3 were determined experimen-
read with help of a 12 bit optical encoder. The suspension has Elly. The presence of the Coulomb friction ter(propor-
massm, of 0.5 kg. It is driven with a driving rod with length, ~ tional tok;) is essential for the asymptotic state of the pen-
=0.75 m and a crank with ard=0.13 m and moment of inertia dulum. It gives rise to a small island of stability at the origin
1.=0.08 kg nf. The damping constants of the pendulum used inof the (¢, ¢)phase plane which lies in a sea of chaos. As a
Eq. (1) arek;=0, k,=0.056 39 s, andk;=0.02209. The two  consequence, all chaos is transient, although these transients
angles¢ and « are the dynamical variables. may last several hours. A slight complication of the Cou-
lomb friction is that the pendulum may become stuck near its
model differential equation for the weak interaction of the downward position and may be shaken loose again at a later
pendulum with its drive. Next, we will analyze dynamical instant during one excitation cycle. Our numerical procedure
invariants as a function of the parameter that controls thedequately handles these complications, but in order to avoid
Strength of the interaction. For most values of this parameteli',estarting the integration while generating |0ng time series
the mode associated with the perturbation is very weak angie performed all numerical simulations with the Coulomb
the question is if chaos control can be achieved while ignorfriction coefficient set to zero. As our interest is in a faithful
ing this mode. In Sec. IV we give the control matrix for this numerical simulation of the experiment, we care about these
approach, and conclude that such control will not work un-details. They are, however, not relevant for our conclusion.
less the extra mode is very weak. In Sec. V we discuss the |n our experiments, the vertical oscillatory motion of the
Ieast—squares estimate of this mode and the adverse effect Qlipport of the penduium is driven by a crank mechanism
the structure of the natural measure on the errors of such agsing a 1 kW motor with tachogenerator feedback. This
estimate. In Sec. VI we analyze the average waiting timgeedback mechanism is not perfect and the angular velocity
before control can become effective as a function of thesf the crank varies approximately by 5%. Clearly, the feed-
maximum control action. Both this waiting time and the er- back mechanism cannot cope perfectiy with the Varying load
ror amplification reflect the Cantor-like structure of the natu-exerted by the chaoticaiiy Swinging penduium_ As mentioned
ral measure. We conclude that chaos must be destroyed bgr the Introduction, this imperfection has dramatic conse-
fore we can learn the information needed for controlling it. quences for the controllability of unstable periodic orbits. In
order to understand this, let us introduce a version of our
Il. PARAMETRIC PENDULUM pendulum_ model that _faithfully mimics th(_a nonidea_lities of
the experiment. We will do that by extending Ed) with a
The parametric pendulum is a nonlinear system whichifferential equation for the angular velocity feedback.
features a chaotic state whose basin of attraction occupies a | gt ys call the angular velocity of the driving craek In

!arge portion of phase space. It thus is ideally suited to study,[—he nonideal experimenty is not a constant, but will vary
ing control of chaos.

A schematic view of the experiment is shown in Fig. 1. due to the fluctuating load of the chaotically swinging pen-

The pendulum is a massless rod of 0.317 m length, ending iHulum. It is in this way that the pendulum interacts with its

a bob with an effective weight of 0.0858 kg. Its angular?nngcli]o;nri]s?:ti'sA simple model for the driving feedback
position ¢ can be read using a 12 bit encoder gAvelocity

measurement is done by finite difference. The support of the S Yo . -

pendulum is oscillated \}//ertically with frequen€y Ssping a lca=—M(d.d.d.a) +Kp( Q)+ Ko @
crank mechanism. A true PoinCasection is obtained by wherel, is the moment of inertia of the crank aniis the
reading¢ and ¢ when the support of the pendulum is in its torque that is exerted by the pendulum and its suspension on
highest position. the driving crank, which depends on the dynamical state
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(¢,<}5); it is specified below. In the feedback mechanism
Kp(Q—a)JrKd&, Q is the set fre_quenc;!_ip is the propor-
tional feedback constant, aril; is the integral feedback
constant(which can be trivially absorbed in the moment of
inertial . of the crank.

In the limit K = the angular frequency is constant,

=, and the pendulum does not interact with its environ-g
ment. For decreasin§, the influence of the driving mecha- 3 0
nism on the stated, ¢)of the pendulum and vice versa in- e
creases and & ,=0 the angular frequency of the drive is
simply uncontrolled. At finiteK,, when the driving fre-
guency is no longer a constant, the accelera@gh) of the
pendulum suspensiditq. (2)] becomes

G(t)=A] cosa+

€coSs 2u+ €3 sin' a] :
o 2

(1— € sir? a)¥?

(4)
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+A|sing+—— 1«
{ (1—625iI’T2 a)l/2
Thus, our model turns from a second-order nonautonomou
dynamical system into a fourth-order autonomous one.

A simple geometrical argument gives for the moment tha 92
the pendulum exerts on its driving

da/dt

M(¢, ¢, b,a)={mg+(m+my)G(t)+mli[(¢)?cose
+ ¢ singl}Asina, (5)

where mg is the mass of the suspensigsee Fig. 1. We
emphasize that the details of our model, such as the precis
form of the driving term Eq(4), are irrelevant for the con-

clusions reached; what matters is the existence of a parar 8'80 - ' |1 — !
Ieteer that gauges the nonideality of the parametric pendu p/n
um

For finite values ofK the dynamics of the perturbed FIG. 2. Chaotic attractor of perturbed pendulum driven at a set
pendulum no longer takes place in a two-dimensionaf2=9.09 s*, and with a coupling feedback constak,=0.59
stroboscopic plane, but involves the four-dimensionakgn?s . (a) View of the (¢,¢)secti_on of the three-dimensional
(¢,¢,a,d) space. Assuming that the feedback control is ef- Poincarespace.(b) View of the (¢,a) section of the Poincare
fective enough to prevent sign reversal df, a three- Space.The angular velocitigsande are in ' *. The finite value of

. . L S . the feedback constant causes chaotic fluctuations of the angular
dimensional Poincarspace ¢, ¢,a) results from intersect- locity o of the drivi
ing the orbit with the planex= 7. Therefore, the interaction veloclly a ot the driving.
of the pendulum with its excitation extends phase space with
one extra dimension.

Obviously, as the fluctuations i are small, the new
three- dlmensmnal space is a flat pancake which gets thinn
in the « direction with increasing constant of proporuonal
feedbackK . Both for the isolated pendulum and for the
perturbed case, a mappirtg can be defined that evolves
phase(—spac)e points between two subsequent Poirsesre p[ 27K, ]
tions (=), ANz~ exp—=—— -

Q(IC_Kd)

The linear neighborhood of a poidt evolves under the
action of the JacobiaA of the mapA;; = dF; /a§j|§ & Ina

élrxed point, the Jacobian has real eigenvalues with the small-

st one\ 5 determined by the nonideality of the driving. For
large K, the reactionM on the driving mechanism of the
pendulum in Eq(3) can be ignored, and

)

F 6
&1 =F (&) © If the constant of the proportional driving feedback tends to

For the unperturbed pendulum this is trivially the same as &finity, the driving angular velocity is a constant and
stroboscopic map at timés=n27/{). From now on we will tends to zero. When the driving feedback constant vanishes,
study the dynamics of the pendulum through iterations of théhe restoring force disappears, axgtends to 1.

mapF. Of course, a computation &f involves integration of The (¢, ¢)pr01ect|on of the chaotic attractor &,

the equations of motion. =0.59 is shown in Fig. @). It is very similar to the phase
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FIG. 3. Full lines: Lyapunov exponents of a pendulum that in- £ 4. Full line: Lyapunov dimension of a pendulum that in-
teracts with its driving. Dashed lines: Lyapunov exponents of th&eracts with its driving as a function of the driving feedback param-
isolated penduluntwhich has a two-dimensional phase space eterK,. Dashed line: Lyapunov dimension of the isolated pendu-

lum.

plane of the unperturbed pendulyB]. The difference is that _ . _ . .
the interaction of the pendulum with its excitation results inThe Lyapunov dimension as a function Kf, is shown in

dynamical behavior of the excitation angular velogityThe Fig. 4. It is a striking observation that the attractor dimension

(¢,x) projection of the Poincarepace is shown in Fig(8) has already reached its asymptotic valueKgt=0.2. From
d”a. Proj rsp 9. " then on, the relevant embedding space is two-dimensional
At this value of the feedback parameter, the chaotic fluctua- _ .

nd the dynamics of the degree of freedom apparently no

. * . 0 . .
tion Of a Is about 6%, which is comparab_le to _that observefﬁnger has a life of its own and must be merely slaved to the
experimentally. A fundamental question is, however,

whether thea dynamics constitutes an essential new degree ynamics of the ¢, ¢)subspace. In_formaﬂon abqut it might
of freedom of the perturbed pendulum, or whether it is"© longer be needed when controlling chaos. Asdtdegree

merely slaved to that of thef( ¢) pendulum state. To answer ©f freedom adjusts rapidly to thed(¢)state, it might be
this question, we will study the evolution of a dynamic in- removed altogether by adiabatic elimination. However, we
variant with the strength of the perturbation. do not know how to do this by using information from an

As dynamical invariants we computed the three Lyapunoy$XPerimental time series only.
exponents that gauge the average sensitivity to variation of
initial conditions along a chaotic orbit from the map E6). IIl. CONTROLLING UNSTABLE PERIODIC ORBITS
The Lyapunov exponents of the perturbed pendulum are

shown in Fig. 3. For large feedback paramefey Eq. (7) If no a priori information is available about the experi-

mental system, unstable periodic points must be found from

predicts that; goes to—x as—2aK,/Q(ls—Ky). Inthis registered chaotic time series. For controlling one of those,
case the largest and next-largest Lyapunov exponepnis i

approach those of the isolated pendulum. We believe that thé is also necessary to learn the linearized dynamiics a

“anticrossing” behavior of the Lvapunov exponents small neighborhood of it. Finding unstable periodic points
SSIng yap poner K amounts to finding close returns in the time series. A phase-
~0.15 is the consequence of the well-known Wigner—von : . :
space point§y that almost returns ip steps,§i, ,~ &, is

Neumann “no crossing rule,” which states that the eigenval- robably close to a trua-beriodic point. especially if a
ues of a real symmetric matrix generically do not cross if aph | Y. hborhood P lIC paint, hp p y
parameter is varied. whole neighborhoo of, returns inp steps. The linear evo-
From the spectrum of Lyapunov exponents it is possible:f:]?r?: dog pt?]lgtjag(‘xl)gi::;nsag ne_lggh borb(;‘(zogll ng ;S V(\j,ﬁger:

to derive the fractal dimension of the chaotic attractor. The d by th . i+p  Skip— i okds T
+p Is the image of§; in the rapidly expanding neighbor-

argument is that the integer part of the dimension is given by’ .
the numbelK of expanding directions in phase space alongf 00d of §i4p. The elements of the matrlé\_ can be found
rom a least-squares procedure. The mafigan be used to

which the measure is smooth, with given by %{),>0. approximate the true location of thpeperiodic point¢
The fractional part of the dimension is the ratio of contrac- PP P P P

tion and expansionll] Bo= &+ (1 _A)71(§k+p_§k)r
K where | is the unit matrix. In our procedure we take the
D =K+ 1 2 A (8) points used for a least-squares estimaté éfom a ball with

Ncal =2 radiusr around the nearly returning poid . In an experi-
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ment, points within a noise radiug<r can be excluded, so which is very similar to Eq(11). Similarly, this approach
that the ball turns into an annulus. The radiusust be small can be used to enact control at multiple sectioss
enough so that the evolution of the balls’ contents can still be=2#7/N,i=1, ... N.
considered linear. The discrete control action of Egll) assumes that the

A successful quest for close returns needs a long timeery change of the parameterdoes not induce a dynamics
series, especially if close returns near unstable periodiof its own. For the parametric pendulum it is not possible to
points with large eigenvalues are sought. To search for suckuddenly change the excitation frequency as it implies an
close returns, we used the efficient procedures described bfinite acceleration of the pendulum support. In practice, the
Theiler[12]. excitation will not be able to cope with such a change and

So far, we have just assumed that the least-squares prodie true excitation frequency will lag. This is actually ac-
dure to find the dynamics in the linear neighborhood of thecounted for in our model, where the paramete+ Q) is the
unstable periodic point always works. As will be explainedset point of the driving frequency. It is possible to change
in Sec. V there are serious problems with this procedurethis set point suddenly.
Remarkably, these problems are caused bynthainearity For the control scheme to work, a trivial requirement is
of the dynamics that distributes points over phase space. Léhat the unstable periodic point moves when the control pa-
us first describe the technique to control unstable periodicameter is varied. Thus, by symmetry, the unstable point of
motion, and worry about ways to obtain the needed informathe upright pendulum cannot be controlled in this manner.
tion later on. The upright pendulum can, however, be stabilized by choos-

In the method sketched by Ot, Grebogi, and YorKd, ing an appropriate excitation frequenéy. Acheson and
controlling unstable periodic orbitéb can be done if their Mullin [13] show that this principle actually extends to mul-
location depends on a parametg(for which we will use the tiple coupled upright pendulums.

excitation frequencyl), ¢= ¢+ qg. Settingq to g, at each An interesting question is how long one has to wait before
iteration alters the dynamics in a linear neighborhood of thea chaotically wandering orbit is near enough to an unstable
unstable periodic point to periodic point and control can become effective. The dis-
placement of the unstable periodic point in the direction per-

&n1=A&t+anu, 9) pendicular toes is proportional tog,, . If there exists a maxi-

mal allowed parameter modulatioq,,,,, which is, for

with u=(1—A)g, and where from now on we will place the . )
unstable periodic point at the origin. The quest of the Con_example, given by the requirement that the system may not

troller is for a vectorK such that parameter variation be perturbed too strongly, control can only take effect when

_ . a chaotic iterate falls in a strig of width |, along the stable
E,ngg{ﬁ,;?ad to successful control. From E@) it then fol eigenvectok;. The control scheme of E¢Ll) is based on a

linear approximation of the local dynamics. Nonlinearity will
&= (AtueK)§,=Cé,, (10) be felt if the phase-space point is too far away from the
unstable periodic point. Therefore, the lengttof the region
which defines the control matri€. For successful control, Sof effective control is limited by the curvature of the stable
the largest eigenvalue of the control matrix must have modumanifold. As nonlinearities will start quadraticallys~ll1,’2.

lus less than 1. If nothing is done to steer the chaotic orbit toward the s&ip
A geometrically appealing solution to the control problemthe waiting time before control can take effect for an arbi-
was given in[1] by choosing trary initial condition is inversely proportional to the mea-
sure ofS. It can be shown simply1] that the measure &
K=—fy-Al(f,-u) (1D scales withg . as

where the contravariant vectfr has unit length and is per-
pendicular to all stable eigenvectaes. The strategy of Eq.

(11) is to steer the orbit onto the space spanned by the stablgccordingly, the waiting timeT,, before control can be en-

MSN(qmax)lf(ln\)xu\lln|)\s|)/2. (13)

eigenvectors oA. The choice Eq(11) is equivalent to acted scales with the maximum allowed parameter modula-
a(fo£) tion asT,,~ug .
n:$, (12 Soon aftef1], it was emphasizefll4] that the quest for a
(A= D)(fy-9) control vectorK for a given matrixA and displacement vec-

here \.. is the sinal table ei tor Af Conse- tor u is a central pr_oblem of_control theory. There exists a
wheré A, IS Ihe singie unstable eigenvector ~ONSE- yide variety of solutions to this problem that lead to success-
quently, the control matrbiC has eigenvalues with ac- ¢ control” Under certain conditions, a vecté can be
companying eigenvectors and eigenvalue 0 with right and found for any choice of the desired eigenvalues of the con-
left eigenvectord, and e,—u/(f,-u), respectively. There- trol matrix C [10]. In control engineering, finding the control
fore, the choice Eq11) for the control vectoK completely  vectorK is called “pole placement.”
eliminates the unstable direction Af The choice of Eq(11) is one of many possibilities, but it
This control scheme can be extended naturally to the conis special because it maximizes the aBxaf successful con-
trol of unstable cycles with a longer periodicity. The idea istrol and thus minimizes the waiting time before control can
to execute a control action upon each Poincagetion, and become effectivg14]. The intuitively appealing interpreta-
not to wait until the full cycle is completed. The technique istion of Eq.(11) may lead to the erroneous impression that in
explained in Appendix A, with a resulting control recipe systems with more than one unstable eigenvector variation of
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FIG. 5. The angular velocity'x of the pendulum driven af) FIG. 6. Controllability of an unstable fixed point in the per-

=9.09 s ! at driving feedback parametkt, = 0.59 kg n? s lwhile turbed pendulum as a function of the driving feedback parameter
it is captured in an unstable fixed point. K, using reduced information. Full lines: eigenvalues of the fixed

point; dashed line: largest eigenvaliig of the control matrixC.
a single system parameter generically cannot lead to succed®r valuesK,>0.59 kgnfs™*, [\¢/<1 and control based on re-
ful control. This is clearly contradicted by the cited elemen-duced phase-space information is successful.
tary result of control theory10] and by experiments7]. On

the other hand, the general pole-placement recipe of contrlith a reduced control vectdf which is constructed out of

theory is blind to the local structure of phase space. Pole, qimensional (b,éf;)information only with no use made
placement allows the specification of eigenvalueobut f the w dear f freedom. In anal with EQL1)
not its eigenvectors ot the a degree ot freedom. In anaiogy '

IV. USING PARTIAL INFORMATION K=—T,-Al(fy-u), (15

If complete state information is known, such as the loca- h th i is f db i in the third
tion of the unstable periodic points and their stable and un¥/""¢'¢ e Ma& r! 'S formed by VY” Ng zeros in the ) i
stable eigenvalues and eigenvectors, the control metho@W and the third column oA, with f, the contravariant

sketched in Sec. 11l will also work for the perturbed pendu-unstable eigenvector and= (I —A)g, with g the projection

lum. This is demonstrated in Fig. 5 wherekaf=0.59 the  of the displacement vectay on the (¢,£j))phase plane.
angular velocitya of the pendulum is shown while it is The result of this information reduction for stabilization
captured in a fixed point. In this case the periodic peipt of a fixed point is shown in Fig. 6 where the largest eigen-
and its eigenvectors were found numerically from E@s. value A of the control matrix is shown together with the
and(3)—(5). As seeds for the Newton procedure used to findeigenvalues of the unstable fixed point whose stabilization is
¢, we have used close returns from a long time sefriés. attempted. In the case of the unperturbed pendulaii,

Not only is the mode of motion associated with the varia-=«), \. approaches the second eigenvabus% of A in

tion of o dynamically irrelevant for mosk-values, but we agreement with the eigenvalue of the control matrix for con-
will also show that information about it is extremely hard to trol with full state information. For decreasirig,, |\¢| in-
come by from an experimental time series. The question theareases, and #,<0.59 two-dimensional control fails. This

is whether control can be achieved by simply ignoring thisis a surprisingly large value because at this point the dynam-
mode of motion. Thus, we will try control that is based onics of the perturbed pendulum is essentially two dimensional
reducedstate space information where only the dynamics inaccording to Fig. 4. Apparently, for control to be effective

the (¢, )plane is considered and no use is made ofdhe we are forced to consider the irrelevant dynamics of dhe
mode. Of course, the answer is affirmative in the case oflegree of freedom. WheK, is decreased further and the
large values of the feedback parametgy, when the inter-  perturbation of the pendulum becomes more importagt,
action between the pendulum and its excitation vanishes anends to the largest eigenvalue Af

the state of the pendulum is completely determined by the The control strategy Eq15) is the same as Eql1), but

coordinates in thed, ¢)phase plane alone. now based on reduced state information. A reduced state
A quantitative answer can be given by considering thevector is guaranteed to be perpendicularftothrough Eq.
reduced control matri which is defined as (15), but may not lie in the plane spanned by the two un-

~ 5 stable eigenvectors. In this case other choiceKftiran that
C=A+u®K, (149 of Eq. (15) may offer better control performance, i.e., smaller
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|\¢|. We have found this to be the case. However, the desig
of these vectors can only be done if the full state informatior
aboutA andg is available.

In the case that not all modes can be registered directly i
the experiment, it is possible to reconstruct the full state 6.5
space from a partial measurement through embedding. |
control engineering the “observer” technique is related to=~
embedding, but it has a narrower scdgé]. If information £
about the eigenvalue associated with thenode is hard to §
come by in a direct measurement, it will also be elusive in ar.g
indirect measurement through embedding. This is illustrater ¢ g L
almost trivially in Appendix B. [

V. ESTIMATING PHASE SPACE

If no a priori information exists about the dynamical sys- )
tem, it is necessary to find in an experiment the location o 28
unstable periodic points and their local linear neighborhooc
from long chaotic time series. The linear dynamigs, ; o
— ¢,=A(&,— ¢,) in a small neighborhood of the unstable ~ FIG. 7. Neighborhood of the unstable fixed poing, (,a)
periodic orbit ¢, is then estimated from the evolution of =(3.0041,6.1932,9.1545) of the perturbed pendulunKgt0.2
close points using a least-squares method. For the perturbé@ n? s 1. The local Cantor-like structure of the attractor gives rise
pendulum, the matri has three very different eigenvalues, tf)_ Iogarithmic-oscillgtions ir_l the scaling behavior of several quan-
that is, the matrixA is near singular. For example, for the lities that are associated with control.
stabilized fixed point atkK,=0.2, A;=—2.0096\,= o } .
—0.2896, and\;=0.1449, with a ratio of largest to smallest Periodic pointé . In a least-squares approach fémoints
eigenvalue of 14. AK,=0.59 [where the reduced control N a(smal) neighborhood ofp, the minimum of the quantity
matrix Eq.(14) just becomes stabjehis ratio has increased N
t;)o'z)ggz'as now A, =—1.7334\,=—0.3430, and A3 21 Iy, — Ax; — BJ|2 (16)

Although the least-squares approach enables us to accu-
rately pinpoint the locations of the periodic points, there ards sought, with the solution
several profound problems associated with it for determining -
the elements of the matriX. First, the dynamics in the linear A=SR"™. (17)
neighborhoodA must be found from following the evolution
of phase-space points near a close return. Clearly, points th
are not very close to the unstable periodic point will experi-
ence the nonlinearity of the system. The dynamics along th& N ioN ui _
most stable manifolds is then overwhelmed by the local cur— (N)2i=1yZj=1xj. On Cantor-like supports, such as
vature of the unstable manifold. Determining small eigenval-Shown for the pendulum in Fig. 7, the correlation mafix
ues, therefore, requires close returns and thus long time sB&s @ highly problematic structure. If we span a phase-space
ries. Second, if the registered time series is affected by nois¢/€Ctorx by a componen, in the expanding directiotalong
the least-squares fit ok to the neighborhood off, is an ~ the bands in Fig.7and components,,x; in the transverse
ill-conditioned problem, even in the absence of curvaturecontracting directions, it is readily appreciated that t@
and the smallest eigenvalue is strongly determined by th€0mponents are more strongly correlated tharxtheompo-
noise level. nent. The result is tha has very different eigenvalues. The

These problems are aggravated in an essential way by tmggr-singular character of the correlation matrix strongly am-
Cantor-like structure of the measure generated by thelifies errors, for example, errors that are dl_Je to th_e curvature
dynamical system. This structure is clearly observed irPf phase space or due to experimental noise. This error am-
the distribution of points near the fixed point (b, e) plification property is quantified by the condition numli&r

— (3.0041,6.1932,9.1545) in Fig. 7. We will now quantify its which is the ratio of the largest to the smallest eigenvalue of
effect on the least-squares analysis of the local dynamics. I'?
& is a phase-space point that nearly returng steps, so that
it is a candidatg-cycle, we determine the local linear neigh-
borhood from the evolution of nearby poirgs,

Iiis the correlation matrix of theupportof the least-squares
fit with elements R=3N,xixi—(IUN)=N X SN x,

N

nd S is the matrix with elements &=,y

From a long time series (1Qterates, we took allN(r)
iterates in balls with radius around the unstable periodic
point ¢; shown in Fig. 7. The number of point$(r) in-
creases witlr asN(r)~rP with D=1.61, which is close to
the prediction of Eq(8), 1+ In|\4)/|In]\,|=1.56. The condi-
tion numberC(r) was computed on these sets of points. The
result is shown in Fig. 8 and should be compared to the case
where y; = (& p— & p), and x;=(&— &), and where the of completely random points, when the condition number is
vector B allows for the displacement of, from the true close to 1. As the correlation matriR is computed over

yi:AXi+B
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FIG. 8. Condition number of the correlation matRxas a func- FIG. 9. Eigenvalues estimated from small neighborhoods

tion of the radiusr of a ball around an unstable fixed point. 2The around an unstable fixed point. The radius normalized such that
number of pointsN over whichR was computed increases from“10 the chaotic attractor of Fig. 2 has unit extent in thﬁil),iv) direc-

—10-3 —10-1 illati i
f‘;rl_lo t(t) 5>f<t1k?5 atr=10 ;r:]'he OdS.C.I"atIOHS Ilrc zre dlqueﬂt]ot tions. A least-squares analysis was done on 32 points picked ran-
€ lacunarity ot the measure. The radius normalized such that - 455y from spheres with radius The result is an average of 32

the chaotic attractor of Fig. 2 has unit extent in thie ¢, @) direc-  selections. Full lines: neighborhoods containing the natural mea-
tions. sure. Dashed lines: uniformly filled neighborhoods.

areas with an increasing sizgthe singular character of the noise and there is no uncertainty in the location of the fixed
measure is more effectively averaged, &hdecreases. point. The importance of the nonlinearity dependsrpbut

The condition number displays scaling behavior, but it isnot on the distribution of points. With an error amplification
strongly modulated by regular oscillations on a logarithmicof a factor 16, even for large neighborhoods0.1) it is
scale. The occurrence of oscillations in the scaling propertiesearly impossible to find the information needed for control.
of fractal sets is very well known, and was first discussed byClearly, it is necessary to destroy chaos in an essential man-
Mandelbrot in the context of lacunarifit7]. Lacunarity is a ner in order to bring the condition number closer to 1.
property of fractal sets that have holes at all scales. A well-

known example is the middle-third Cantor set. Imagine a V1. WAITING TIME

point in the Cantor set that is in the middle of an interval o . ) ]

with length| of which we compute the measugg. When As the oscillations in the scaling curve of Fig. 8 reflect the
the interval reaches out to a hole, will not change until local Cantor structure of the measure, they will emerge in the

has grown sufficiently to reach across the gap. Because thep&aling curves of all pointwise quantities. An example is the
is a geometric progression of holes in holgswill oscillate waiting time before control, for which it was predicted in
on a logarithmic scale. Except for strictly self-similar sets,S€¢- Il that
lacunarity oscillations are generically only seen in local scal- T~ () (Ml 1072 (18)
ing behavior, as they will not survive averaging over the W m '
chaotic attractor. Ir{18], precise arguments are given for | Fig. 10 we plot the waiting time before an unstable fixed
survival of lacunarity oscillations in averages over multifrac- point and a period 3 orbit can be controlled. The average
tals. waiting time was computed in the unperturbed pendulum by
The dramatic effect of the uneven distribution of pointsrandomly sprinkling 512 initial conditions on the phase
on an estimate of eigenvalues is illustrated in Fig. 9. Theplane, iterating each of them 256 times, and then registering
estimate was made by picking randomly 32 poigtfrom  the number of iterates before successful control of the un-
balls with radiusr around the unstable fixed point. Each of staple periodic point. For the unstable period 3 orbit we used

these points was iterated according to the full dynamical syscontrol at each of the three cycle elements, as explained in
tem Eq.(6), & =F(&). The matrixA that describes the lin-  Appendix A.

ear evolution was then determined in a least-squares analysis In agreement with Eq(18), the waiting times have an
[Egs. (16) and (17)] with x;=& — ¢, andy,=& — ¢;. The  algebraic dependence on the maximum allowed parameter
resulting eigenvalues were averaged over 32 such selectionsiodulationA (). However, the predicted dependence is only
For balls containing the natural measure, only the largesteenon average In particular, the waiting time before suc-
eigenvaluex ; can be estimated with confidence. If the balls cessful control of the fixed point fluctuates wildly about its
are, instead, filled uniformly, the error in the estimated ei-correctly predicted average dependence. These fluctuations
genvalues is small. Let us emphasize that in both cases theke the form of regular oscillations in 14g), such that the
nonlinearity ofF (&) is the only cause of the error; there is no waiting time can be as much as a factor of 4 longer than the
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the environment characterized by a small eigenvalue is a
genereric problem, we expect that the sketched route to fail-
ure of chaos control must be a common one. For successful

control we are forced to consider the dynamics of the
coordinate when it has no dynamics of its own. Unfortu-
nately, there is not a simple transformation that eliminates

the a dynamics using the information in an experimental
time series. We believe that it can be done only using a
faithful model of the experiment.

Our most important conclusion is the impossibility of
learning the needed information due to the nonlinearity of
the system and the fractal nature of chaos. It does not help to
split the linear dynamicsA over N partial sectionse;
=i2#/N,i=1,... N, and determine the partial matricAs
for each of them. We have found that the error An
=A;---Ay now simply accumulates.

10 Lt Ll Ll ol It may be that the necessity of including information
106 et ey about the small eigenvalues Afis dugto the_ control scheme
(b) used. The cpntrol strategy o] and its variants act on the
system at discrete times. In our case this is at each cycle of
the excitation. Perhaps it is possible to &tttimes at «;
=i27/N,i=1,... N, and use théstill inaccurate matrices
A; such that the resulting control action is stable.

Better estimates of the local linear neighborhood of un-
stable periodic points with near-singular Jacobfamay be
obtained by estimating the elements Af using random
modulations of the control parameter. This should result in a
more even distribution of points in small neighborhoods of
unstable periodic orbits than is given by the natural measure.
The location of unstable periodic points may then first be
learned from a time series, after which noise is fed to the
system in order to determine the evolution of their linear
neighborhoods.
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which is used as the control parameter. For eAéh, 512 initial
points were randomly sprinkled over the squére [0,27], de
[ —20,20Q, each of them iterated 256 times, after which the number APPENDIX A: CONTROLLING PERIOD- p UNSTABLE
of iterates before successful control was registered. The slope of the ORBITS

dashed line is the prediction of E#3). (b) Same adga), but for

. ; We will describe the extension of the control method to
control of an unstable period 3 orbit.

the stabilization of unstable periqucycles. Another appli-

rediction of Eq.(13). Because cycles with larger periods cation of this extension is to take contrbl times (at «;
b q.429). Y ger p =i27/N,i=1, ... N) in each excitation cycle, in order to

sample more regions of phase space, we expect that the os- . . .
N . overcome problems with rapid expansion near very unstable
cillations of longer cycles are averaged more effectively.

Although the waiting time before control reflects an inter- pet&odme?i(())lgts. cvcle  consists  of cvele  elements
esting facet of the control of chaos, it is not necessary to wait, ;) P (p?_ y T orp ¢y
, ...,y In the Poincaresection. The control strategy

so long before control can be enacted. With crude knowledge P

of the dynamics it is possible to steer a wandering orbit ontdS 10 Stéer the orbit onto the stable ei.ger,lvclac&@r of the
the target neighborhodd.6. nearest cycle elemerw;f)') at each Poincaréntersection.

Without loss of generality we will describe the principle in
two dimensions with one unstabdg and one stable; eigen-
vector.

For the weakly perturbed pendulum the idea that control The linear neighborhood of the DOi!ﬁ(pl) is mapped onto
of chaos can be done on the basis of experimental informahat of cycle elementﬁff) by the partial matrixA;, much as
tion alone simply breaks down. As a weak interaction withthe partial matrixA; relates the linear neighborhoods of the

VIl. CONCLUSION
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cycle element&t)g) and ¢S+1)‘ The neighborhood Ofﬁél) +2D+1)7). The resulting state space has under certain con-
will be mapped onto itself after a complete cyclepoPoin-  ditions a one-to-one relation with the true state sfage

caresections by the composed mat#b(l)ZApAp_l- Ay The goal is to construct the full phase space from
In the same manner the neighborhood#gf will be mapped  (¢,,#,) measurements using the delay coordinates
onto itself by the matrbAD=A,_; 1+ AjAL - AiaAi. (bn,bn), and (bni 1, dns1). Itis instructive to write out the
The eigenvectors of the cycle elemeqbt,' then follow  dynamics of the perturbed pendulum in an embedded state
from space. At Poincarsectionn the delay vectors, are
A(i)eg,)s:)\u,s (I,)s- (A1) - _(zn+l) (B1)
Controlling periodp orbits should be done by adjusting the ) £, '
control parameter at each of tpePoincareintersections, as ~
the complete cycles have very large eigenvalues. The evolution of the embedded state ve@pcan be seen by
The eigenvectorsl, ... &) are related in the follow- augmenting the truncated vect@back to the full system,
ing way: ~ 5
. o . . . S A BT\[& u
A=Y with A(TD=gli T, Al ( "=l N W I TR )
(A2) Qnyq a/\ay Us
To facilitate the implementation of the control strategy Eq.Where the row vectoB consists of the two row elements that
(11), the matrixA; can be written in covariant notation, were deleted from the Jacobiénin order to reduce it to two
dimensions, and similarly for the column vectf. Equa-
A=A DE DR 4 ) G+ Dgli+ D)7 (A3) tion (B2) can be iterated to eliminate the dependence on the

angular frequencyr of the drive. The result is a complete

(i) ] (i), &) = ~
vzlif)wer(ei) the V(ie)Ct%r)gu,s are d(ei)fm%j as beford,"-€°=1,  jascription of the full state space in terms &fbut at the
fi’-&’=0, fg’-g,’=0, andf’-e’=1. The dynamics be- expense of time history,

tween subsequent Poincasections then is
i i+ 1) i+ D &= (A+al)+(B'B—aA)g,_
&1 gt D=[AI+ D+ D) &ni1=( )&t ( )€1

. . . . _|_~ + Ty At
ALV IO (5 qg"), (Ad) UPn (B U= alPn-1, B3

Q) o . which is equivalent to the evolution of the embedded system
where @' is the sensitivity to parameter variations of the

cycle elememgbg). The control strategy now is the require-

_ A+al B'B-aA|. u
ment thaté . ; is on the stable eigenvectef %, &ri1= | 0 ) nt IOn( 0)
o M- £) (5) BTus—al
i )\Ej+1)(f8)'g(i))_(f8+1)‘g(i+l)) . +Pn-1 0 . (B4)

We have used this form for controlling unstable perpd- Because the embedded system Egg) involves the past

orbits of the pendulum. , history p,_, of the system parameter, the control strategy is
We note emphatically that the|’; arenotthe eigenvalues more complicated than EqL1) for fixed points or Eq(A5)

of the partial matrices\; . In [5,6] a control strategy based for longer periodicities. These complications were first no-

on these eigenvalues is described. As is evident ffBin  ticed by Dressler and Nitschd9]. Embedding, therefore,

such a strategy is extremely problematic because the eigefas a price. We believe that embedding is not unavoidable in

values ofA; may be complex. experiments. With modern computerized instrumentation,
complete information about a system'’s state space should be
APPENDIX B: EMBEDDING obtained readily.

. . . The problem that the small eigenvaltend associated
Embedding amounts to usage of the time history of the . fthea d . difficult to find f
system in order to reconstruct its full state space. In fact, thi igenvectorsof the a dynamics is very difficult to find from

has become a customary procedure in control attempts fme series is not cured by embedding. The smalleigenvalue
systems whose instantaneous location in state space canr®tnow reflected in the small value deBTB—fiAH and

be characterized completely. The key idea is that dBTuz—au| which determine the dependence &f ., on
D-dimensional state space can be reconstructed from a timgast historyZ,_, and p,_;. As this information is now
series of measurementgir) of a single componené(t)  needed to devise a control scheme, nothing is gained by em-
using delay coordinatesé=(&(i7),&((i+1)7), ..., &(( bedding.
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