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Atoms in parallel fields: Analysis with diffractive periodic orbits

S. M. Owen, T. S. Monteiro, and P. A. Dando*
Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, United Kingdom

~Received 25 February 2000!

We show that fluctuations in the density of states of nonhydrogenic atoms in parallel fields are strongly
influenced by diffractive periodic orbits. Unlike typical systems with a diffractive point scatterer, the atomic
core of small atoms like lithium and helium is best understood as a combined geometric and diffractive
scatterer. Each Gutzwiller~geometric! periodic orbit is paired with a diffractive orbit of the same action. We
investigate, particularly, amplitudes for contributions from repetitions, and multiple scattering orbits. We find
that periodic orbit repetitions are described by ‘‘hybrid’’ orbits, combining both diffractive and geometric core
scatters, and that by including all possible permutations we can obtain excellent agreement between the
semiclassical model and accurate fully quantal calculations. For high repetitions, we find even one-scatter
diffractive contributions become of the same order as those of the geometric periodic orbit for repetition
numbersn;\21/2. Although the contribution of individual diffractive orbits is suppressed byO(\1/2) relative
to the geometric periodic orbits, the proliferation of diffractive orbits with increasing period means that the
diffractive effect for the atom can persist in the\→0 limit.

PACS number~s!: 05.45.2a, 03.65.Sq, 32.60.1i
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I. INTRODUCTION

Highly excited~Rydberg! atoms in the presence of stat
external magnetic and/or electric fields provide some of
best examples of experimental studies of the effects of ch
and classical orbits@1#. A very useful feature of these sys
tems is their scaling property: the classical motion does
depend on the electron energy and the magnetic and ele
field strengths separately, but only on a single parameter
scaledenergy. In the case of diamagnetic hydrogen, the c
sical motion undergoes a gradual transition from regula
to full chaos as this parameter is varied. With the devel
ment of experimental fixed scaled-energy spectroscopy@2#,
and methods for calculating fully quantal spectra at a c
stant scaled energy, it has been possible to make det
comparisons between the quantum and classical dynami
both diamagnetic hydrogen@3,4# and nonhydrogenic@5,6#
atoms. In particular, frequencies and amplitudes of lo
range modulations in the density of states of highly exci
hydrogen atoms in a static magnetic field have been
scribed quantitatively using periodic orbit~PO! theory@7# in
the form of the well-known Gutzwiller trace formula~GTF!
@8#.

The spectra of nonhydrogenic atoms in weak fields, ho
ever, were found to have unexpected properties not see
hydrogen. Comparisons between accurate quantum sp
revealed spectral amplitudes for nonhydrogenic atoms
differed substantially from those of hydrogen@5#. In addi-
tion, experimental measurements of diamagnetic helium
oms found modulations, not seen in hydrogen, which w
identified as resulting from combinations of hydrogenic p
riodic orbits that arise from scattering with the nonhydr
genic core@6#. Similar structures were found in the expe
mental Stark~pure electric field! spectrum of lithium@9#.

*Present address: Department of Chemistry, University of So
ern California, Los Angeles, CA 90089-0482.
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More recently, the spectra of nonhydrogenic atoms in we
fields were shown to be associated with a new generic c
of intermediate energy level statistics. Nearest-neigh
spacing~NNS! distributions were found@10,11# to be neither
Poissonian~regular! nor Wigner-Dyson~chaotic!, but close
to a distribution@P(s)54se22s# called asemi-Poissondis-
tribution. Such intermediate spectra are also of broad cur
interest in mesoscopic systems@12–15#.

These observations have led, in recent years, to much
terest in the phenomenon of so-calledcore-induced chaos
@5,6,9,16–19# in the dynamics of Rydberg atoms in extern
fields. The unexpected features in the nonhydrogenic spe
were variously interpreted as arising from chaos due to
effect of the inner multi-electron core@9,18# or as
\-dependent corrections@19# which were semiclassically
vanishing.

It was since shown@20# that modulations of the eigen
value spectra of nonhydrogenic atoms in weak fields due
periodic orbits can be described semiclassically at a qua
tative level only if diffractive corrections are included. In
addition, a semiclassical analysis of spectral rigidities
atoms in electric fields~integrable with diffraction! revealed
that there are substantial core-induced effects due to diff
tive one-scatter orbits which do not vanish in the semicl
sical limit @21#. Another recent semiclassical study of gene
chaoticsystems with diffraction considered scattering to
orders@22#. For chaotic dynamics, the number of ordina
~geometric! PO’s proliferates exponentially with increasin
period T. However, it was shown@22# that the number of
diffractive orbits in a generic chaotic system with diffractio
grows even more rapidly. Indeed, the number of one-sca
trajectories increases faster than the number of geom
PO’s by a factor ofT.

Diffraction in atoms~Coulomb plus short range scattere!
differs in key respects from typical diffractive billiards. Th
additional presence of the Coulomb term means that ev
diffractive orbit is paired with a geometric periodic orbit o
half-periodic orbit, even in the chaotic regime. In contra

h-
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for billiard problems, diffractive and isolated geometric PO
are unrelated@22–24#. The diffractive effect in chaotic atom
is expected to differ significantly from that in billiard prob
lems.

Atomic spectral properties and statistics depend stron
on the interference between groups of contributions of
same action, but with different phases and amplitudes. A
ing these correctly is nontrivial. For example, the domin
effect in long-range statistics was found to be due to
‘‘off-diagonal’’ contributions between geometric POs an
diffractive one-scatter orbits of the same action@21#. In semi-
classical studies of atomic photoabsorption~closed orbit
theory! @25–28,19# an analogous effect—the gradual su
pression of the amplitude of high harmonics by co
scattering terms of the same action—was termed ‘‘core sh
owing.’’ Experimental photoabsorption spectra, howev
probe closed, rather than periodic, orbits. In a previous pa
@20# we proposed a model which combined standard
theory with diffractive corrections for a few short primitiv
periodic orbits in diamagnetic atoms. This was the first s
cessful application of periodic orbit theory, in the form of th
GTF, to nonhydrogenic Rydberg atoms. One of the m
results shown in Ref.@20# is that, in periodic orbit theory
with core-scattering, core shadowing affects even primit
orbits.

In this paper we investigate in particular multiple scatt
ings, and give a prescription for obtaining the correct mu
plicities for different types of diffractive orbits. The motiva
tion for this work is, broadly, to establish a scheme
counting correctly, to all orders, atomic diffractive orbit co
tributions so as to further understanding of the persistenc
these diffractive effects in the semiclassical limit. In partic
lar, we investigate up to third order the core-shadow
terms, which are unique to the atomic systems. Since
found in Ref.@20# that some properties~such as phases an
multiplicities of the important quasi-Landau orbit! were sym-
metry dependent, we test the model on atoms in para
fields, which have different symmetry properties from t
diamagnetic atom.

In Sec. II, we briefly review the calculations at a fixe
scaled energy for both the classical and quantal cases. In
III, we present details of the semiclassical calculation of d
fractive amplitudes. The contribution of the diffractive orb
to the amplitude of first traversals of geometric PO’s is st
ied in Sec. IV. In Sec. V we discuss the phases and mu
plicities of different types of diffractive orbit. We explain th
core shadowing in detail up to third order of one particu
PO. In Sec. VI we present comparisons between our se
classical and quantal results for core shadowing and o
trajectories.

II. ATOMS IN PARALLEL FIELDS: SCALED SPECTRA

The scaling properties of the classical dynamics of R
berg atoms in static magnetic fields were extensively
viewed elsewhere@4#, so only a brief outline is given here
The classical dynamics of a hydrogen atom in a pure m
netic field ~of strengthB) depends only on a scaled ener
«B5EB22/3. In a pure electric field~of strengthF), the cor-
responding parameter is«F5EF21/2. It should be noted tha
the hydrogenic scaling property does not hold strictly in
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core region of nonhydrogenic atoms. However, it is app
priate to apply the same scaling transformation to nonhyd
genic atoms because the core region is very small when c
pared to the size of the highly excited Rydberg states.

The procedure for scaling the parallel field case is simi
The parallel field Hamiltonian@in cylindrical coordinates (r,
z, f) and atomic units withm50# is

H5
1

2
~Pr

21Pz
2!2

1

r
1

1

8
B2r21Fz, ~1!

with r 5Ar21z2. Equation~1! can be rescaled by transform
ing position, momentum and time variables according tor
→rB22/3, P→PB1/3 and t→t/B. Regularization, to remove
the Coulomb singularity, is achieved by the usual proced
of transformation to semiparabolic coordinates (m,n
5Ar 6z) and a rescaled timedt5(m21n2)dt, with conju-
gate momentaPm5dm/dt andPn5dn/dt. The regularized,
scaled Hamiltonian for hydrogen in parallel electric a
magnetic fields now depends only on two parameters«F and
«B , which completely determine the classical behavior, a
is written as

H5
1

2
~Pm

2 1Pn
2!2«B~m21n2!1Vext~m,n![2, ~2!

where

Vext5
1

8
n2m2~m21n2!1

1

2 S «B

«F
D 2

~m42n4! ~3!

is the contribution from the external fields.
The equations of motion arising from the classical Ham

tonian of Eq.~2! were solved numerically to obtain the re
evant classical trajectories, their actions, stability paramet
and Maslov indices.

When considering the classical dynamics of a nonhyd
genic atom in an external field, one possible approa
@17,18# is to add a short-range ‘‘model’’ potential, whic
describes the non-Coulombic nature of the ionic core, to
Hamiltonian of Eq.~1!. However, we do not use this ap
proach here. Instead, we follow Ref.@20#, and treat the sys-
tem as hydrogenic with the multielectron core playing t
role of a point diffractive source, as described in Sec.
below. With this prescription, the required periodic orbits a
then those of the hydrogenic system described by Eq.~2!.

For parallel fields, the corresponding scaled-coordin
Schrödinger equation~with m50! takes the form

H 21/r 1
1

8
r21S «B

«F
D 2

z2«BJ c i5
Bi

2/3

2
¹2c i . ~4!

The scaled energies«B and «F fix the classical behavior o
the system. However, the dependence on the field~through
the eigenvalueBi

2/3) cannot be eliminated in the quantu
case. EachBi

2/3 eigenvalue corresponds to energy eigenv
uesEi5«BBi

2/3. The set of eigenvaluesBi
2/3 all correspond to

the same classical regime but asBi→0 the quantum spec
trum becomes increasingly dense: the square root of the
genvalue plays the role of an effective Planck’s constant,
B1/35\eff . This can be seen by considering the momentu



ar
m

th

l a

ds

te
io
io
a
e

av
an

f
t
th
o

an-
s.
,

ere

ith

ic

hy-
lds
ier
um

d
ise
e

of a
s
dic
m

n to
ve
he

at

of

te-

mi-
is

tric
f
his
ri.
ay
the

s of

pari-
dro-

ic
rgy

t
dge
sity

te-
dic

b-
f
a
re
la
n
c-

In
o
.

6390 PRE 62S. M. OWEN, T. S. MONTEIRO, AND P. A. DANDO
position commutator in scaled variables~atomic units are
used throughout, hence\51!:

@pB21/3,qB2/3#5 iB1/35 i\eff . ~5!

Fixed scaled-energy quantum spectra can be comp
directly with semiclassical calculations. A Fourier transfor
with respect to\eff

21 yields sharp peaks at thescaledactions
of classical orbits. The scaled action is simply related to
true action: S(«F ,«B)5B21/3S(E,F,B). The heights of
these peaks yield accurate estimates of the semiclassica
plitudes.

In the case of nonhydrogenic atoms in external fiel
most theoretical quantum solutions~see, e.g., Refs.@5,6#!
follow a suggestion of Clark and Taylor@29# who noted that
the problem splits conveniently into two regions: an ou
region where the core is negligible, and an inner reg
where the external field can be neglected. In the inner reg
the interaction of the outer electron with the ionic core c
be accounted for by a set of angular momentum depend
phase shifts—the quantum defects—in each partial w
@33#. Separate solutions are obtained for the two regions
the wave functions matched at a boundary using anR-matrix
type approach, yielding the required energy eigenvalues
the entire system. In the quantum calculations presen
here, we have used a variant of this method where
R-matrix matching procedure is replaced by the inclusion
a Schneider term on the boundary@6# to obtain levels
16 000–32 000 above the ground state.

FIG. 1. Illustration of the different types of trajectories contri
uting to the density of states.~a! Fourier transformed spectrum o
hydrogen in an electric field. For low action there are mainly we
contributions from isolated Gutzwiller PO’s. For higher action the
are mainly integrable tori, described by the Berry-Tabor formu
@30#. ~b! Fourier transformed spectrum of a lithiumlike atom in a
electric field. There are now additional contributions from diffra
tive PO’s. Their numbers proliferate rapidly for higher actions.~c!
Fourier transformed spectrum of hydrogen in a magnetic field.~d!
Fourier transformed spectrum of hydrogen in a parallel field.
both~c! and~d!, the high action region is dominated by remnants
integrable tori. In this regime the Gutzwiller formula is not valid
ed
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In the pure magnetic field case both the azimuthal qu
tum numberm and thez parity are good quantum number
In the parallel field case, onlym is a good quantum number
since the electric field breaks the symmetry aboutz50, de-
stroying parity conservation. All calculations presented h
are for m50, «B520.6, and«F523.0. The classical dy-
namics for a hydrogen atom in a pure magnetic field w
«B520.6 is near integrable. The pure electric field~Stark
spectra! is integrable for all«F , and its NNS statistics are
Poissonian:P(s)5e2s. In both cases, the nonhydrogen
NNS statistics are intermediate,P(s)5ase2as/2, with the
diamagnetic atom close to half-Poisson, witha.4.

Differences between the spectra of hydrogen and non
drogenic atoms in pure magnetic, electric, and parallel fie
are summarized in Fig. 1. The magnitude of the Four
transform of the quantum mechanically calculated spectr
of hydrogen in a static electric field at«F523.0 is shown in
Fig. 1~a!. At low scaled actions, 0<S/(2p)&7, there are a
number of weak contributions arising from isolate
Gutzwiller PO’s. At higher actions, the main peaks ar
from contributions of tori, and are well described by th
Berry-Tabor formula@30# for integrable systems. Figure 1~b!
shows the corresponding Fourier transformed spectrum
lithiumlike atom in an electric field. At low scaled action
there are again weak contributions from the isolated perio
orbits. At higher scaled actions, significant differences fro
that of the hydrogenic case can be seen. Here, in additio
the torus effects, are contributions arising from diffracti
orbits which occur due to the presence of the ionic core. T
number of such diffractive orbits proliferates rapidly
higher scaled actions.

Figure 1~c! shows the Fourier transformed spectrum
hydrogen in a static magnetic field at«B520.6. The classi-
cal dynamics of the diamagnetic hydrogen atom is nonin
grable. However, it remains near-integrable for«B520.6
and, in the high scaled-action regime, the spectrum is do
nated by contributions from perturbed tori. The situation
similar for hydrogen in parallel fields with«F523.0 and
«B520.6, which is shown in Fig. 1~d!. Here contributions
from tori, evident at large scaled actions in the pure elec
field case shown in Fig. 1~a!, are modified by the presence o
the weak magnetic field; the spectrum is dominated in t
region by contributions from the remnants of integrable to
Only those orbits, with a reasonably low scaled action, m
be considered isolated and amenable to treatment with
GTF. Semiclassical trace formulas for the density of state
near-integrable systems have been derived@31#, but we will
not use these here. Instead, we restrict our detailed com
sons between semiclassical and quantal spectra of nonhy
genic atoms in parallel fields to the region 0<S/(2p)<5.

Theoretical and experimental investigations of atom
photoabsorption in parallel fields at a constant scaled ene
have been undertaken previously in Ref.@32#. But only in
Ref. @20# was the Gutzwiller formula applied for the firs
time to a generic diamagnetic atom. Hence to our knowle
this represents the first semiclassical analysis of the den
of states~as opposed to photoabsorption spectra! for atoms in
parallel fields.

III. SEMICLASSICAL CALCULATIONS: GEOMETRIC
AND DIFFRACTIVE PERIODIC ORBITS

An important approach to the quantization of nonin
grable, time independent Hamiltonian systems is via perio
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orbit theory ~POT! in the form of the well-known GTF. In
standard POT, the density of states~DOS!, r(E)5S id(E
2Ei), is calculated from the trace of the semiclassi
Green’s function:r(E)52(1/p) Im Tr GSC. The trace can
be decomposed into a sum of smooth and oscillating com
nents:r(E)5rsm(E)1rosc(E). The oscillations inrosc(E)
are given quantitatively by the GTF as a sum of contrib
tions from the isolated POs.

In diffractive periodic orbit theory~DPOT! @23#, the
Green’s function is expressed as the sum of a geometric
a diffractive component:

r~E!52
1

p
Im Tr Gg~E!2

1

p
Im Tr GD~E!. ~6!

Correspondingly, oscillations in the density of statesr(E)
now have one contribution from geometric PO’s and anot
from diffractive orbits.

The GTF yields a good description of the amplitudes
the geometric component. The diffractive component ari
from trajectories which meet a discontinuity in the potent
or a dynamical structure comparable in size to the de Bro
wavelength. This could be, for example, the sharp vertex
cardioid billiard. A ray incident at a vertex at pointx0 pro-
duces an outgoing sourceadiff which is proportional to the
semiclassical Green’s function at the incidence of the r
i.e., adiff5d(u,u8)GSC(x,x0) @23#. The diffraction constant
d(u,u8) quantifies the angular redistribution of the amp
tude of an incident ray due to the diffraction. An orbit with
single scatter at the diffractive pointx0 contributes a term
adiff(x,x0)GSC(x0 ,x8) to GD(x,x8). A key result proven in
Ref. @23# is that the trace ofGD is simply proportional to
dGSC(x0 ,x0). In particular, the contribution of thekth
single-scatter diffractive trajectory to the trace ofGD is

Ak exp$ i ~Sk1Fk!%5
Tk

i\
d~uk ,uk8!GSC

k ~x0 ,x0!, ~7!

whereGSC
k is the contribution to the semiclassical Green

function along classical trajectoryk starting and returning to
the diffractive pointx0 , Ak is an amplitude,Sk is the classi-
cal action, andFk includes other phases such as the Mas
index. For multiple scatters@23#, it has been shown that, i
general, the trace is obtained by taking products over con
butions. Then,

Tr GD5(
p

Tp

i\)
n

d~n!GSC~xn ,xn11!, ~8!

whereTp is the total sum of~primitive! periods taken over
the paths between thenth and (n11)th vertices.

We note that the expressions weighted byTp refer to un-
scaled spectra. For scaled spectra, we requirer(B21/3). For-
tunately the well-known transformation to a scaled DOS
straightforward, and involves a simple change in the weig
ing factor; instead ofTp , we weight by thescaledactionS̃p .
Hence, the scaled version of Eq.~7! ~with \51! is

Ãk exp$ i ~B21/3S̃k1Fk!%5
S̃k

i
d~uk ,uk8!G̃D~x0 ,x0!, ~9!
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where the tilde refers to scaled quantities. For convenien
we drop the tildes below, but understand that all quantit
refer to scaled calculations.

In Ref. @20#, a prescription for adapting DPOT for th
atomic case was presented. The atomic core gives ris
both Coulomb as well as short-range scattering. The latte
well described by quantum defect fheory@33# parametrized
by a set of quantum defectsd l in each partial wave. For
many atoms only the lowest partial waves have nonz
quantum defects. For example, for lithiumd0.0.4p and
d l>2.0, while for triplet heliumd0.0.3p andd l>2.0.

The Coulomb part results in geometric orbits, describ
by the GTF. Hence there is a geometric component to wh
all periodic orbits make a contribution, regardless of whet
they pass through the nucleus, and an additional diffrac
part to which only orbits passing through the nucleus c
tribute.

A key difference with the standard DPOT approach
sults from the presence of the multielectron core and C
lomb divergence. We cannot write a~radial! semiclassical
Green’s function which is valid right up to the nucleus atr
50. Instead, the problem of atomic core scattering is sol
by matching quantal solutions using Coulomb waves a
semiclassical waves on asurface r5r 0, outside the multi-
electron core. The formalism was originally developed
obtain closed orbit modulations of photoabsorption spec
@25,28#, including combination recurrences@19#.

However, we have found that we can, by analogy, obt
a similar expression to treat the DOS using Gutzwiller PO
with diffraction to a nonhydrogenic atom. We have an ‘‘e
ternal’’ form of the Green’s functionGSC(r 0 ,u,r 0 ,u8)
which propagates outgoing waves outward semiclassic
from the surfacer 5r 0, and back again. We also need a
internal, diffractive termadiff(r 0 ,u,r 0 ,u8) which relates an
incoming ray incident on the core to an outgoing diffract
wave. The matching radiusr 0 is arbitrary, subject to the
constraint that it must lie outside the core, but within t
region where a solution using Coulomb waves is valid~i.e.,
where the external field is negligible!. Then we will have a
contribution for a complete closed diffractive orbit of th
form

G~u,u8!5adiff~r 0 ,u,r 0 ,u8!GSC~r 0 ,u,r 0 ,u8!. ~10!

The amplitude cannot depend on the matching radius, so
obvious requirement is thatG(u,u8) should be independen
of r 0.

In a region near the core where the Coulomb interactio
dominant and the external field is negligible, the quant
wave function can be written as the sum of outgoing a
incoming waves@25,28#:

C5c j
inc1cscatt. ~11!

The incoming wave is a Coulomb wave,c j
inc5cCoul

(2) , which
approaches the atomic core from infinity at an angle,u f

j , to
the positivez axis. On reaching the core,cCoul

(2) produces a
scattered wavecscatt, which feeds outgoing semiclassic
waves along periodic orbits, starting at any angleu; cscatt
can be decomposed further into an outgoing Coulomb w
together with a core-scattered wave@28#:
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cscatt~r ,u!5cCoul
(1) ~r ,u!1ccore

u f ~r ,u!. ~12!

The Coulomb part of the scattered wave is strongly ba
focused alongu.u f , and can be written in closed form@28#.
We equatecCoul

(1) with the source for geometric paths~i.e., the
usual GTF!. The core-scattered waveccore

u f , arising from an
incoming wave at an angleu f to the positivez axis, is
equated with the source of diffractive semiclassical wav
The closed form expression forccore

u f may be given in a
partial-wave expansion which, form50, is @28#

ccore
u f ~r 0 ,u!5S 2p2

r 0
3 D 1/4

(
l 50

`

~21! lYl0* ~u f ,0!Yl0~u,0!

3ei (A8r 02 lp23p/4)~e2id l21!. ~13!

A closed form expression for the incoming Coulomb wa
can also be derived@25#; for u fÞ0 or p, this is

cCoul
(2) ~r 0 ,u f !5

exp$2 i ~A8r 02p/2!%

pA8r 0 sinu f

. ~14!

For the case wherem50, it is also possible for the incomin
waves to arise from PO’s for whichu f50 or p, so that they
approach the nucleus along the axis of the fields. In
special case, the closed form expression forcCoul

(2) is @28#

cCoul
(2) ~r 0 ,u f !5

1

2 S 2

pA8r 0
D exp$2 i ~A8r 02p/4!%.

~15!

We took a to be the fractional amplitude scattered by t
core:

adiff~u i ,u f !5ccore
u f ~r 0 ,u i !/cCoul

(2) ~r 0 ,u f !. ~16!

For the case ofs-wave scattering~and with u fÞ0, p),
each diffractive contribution in Eq.~10! is

Gk~u i
(k) ,u f

(k)!5B1/6~e2id021!U 2p

m12
(k)

sin
u i

(k)

2
sin

u f
(k)

2 U1/2

eiD(k),

~17!

where the phaseD (k)5nSkB
21/32m (k)p/22p/4, andm12

(k) is
an element of the 232 stability matrix for orbit,k. The
contribution of a single-scatter diffractive orbit to the DOS
thus 2(1/p)Im (Sk / i )Gk(u i

(k) ,u f
(k)). Although we have not

carried out a rigorous derivation including the trace ofGD ,
we equate our heuristic expression (Sk / i\)Gk(u i

(k) ,u f
(k))

5Tr GD
k . The amplitudes in Eq.~17! have been found to

yield results for diamagnetic atoms@20# within 1% of the
quantal values. Below we test the expressions on par
atoms and multiple scatters.

For the special case of orbits parallel to the field, t
equivalent semiclassical expressions take a different f
@20#. Hence, foru f50, p,
-

s.

is

lel

e
m

Gk~u i
(k) ,u f

(k)!5B1/3~e2id021!U 1

2m12
(k)UeiD(k), ~18!

whereD (k)5nSkB
21/32m (k)p/22p/2. We note thatm12

(k) is
calculated for coordinates normal to the surface of sec
~i.e., for the semiparabolic coordinatem50) rather than nor-
mal to the orbit itself.

IV. AMPLITUDE OF FIRST TRAVERSALS OF PERIODIC
ORBITS

Diffractive orbits contribute with different phases relativ
to the geometric and Coulomb terms. For geometric orb
the phase is given simply by the action plus a topologi
phase which is related to the Maslov index. The phaseD for
the nth traversal of thekth geometric orbit is

Dnk
g 5nSkB21/32mn

kp/2. ~19!

In general, the topological phasemn
k does not scale with tra

versal number. One-scatter diffractive orbits have an ad
tional phase differencef, accumulated for each scatter.
general, f52p/41(d01p/2), with f52p/21(d0

1p/2) for orbits along thez axis, for whichu i
k5u f

k50 or p.
Hence, in the case of first traversals, the Gutzwiller a

diffractive pair interferes destructively ifd0.p/4, leading to
genuine ‘‘core shadowing’’ in the sense that the core redu
the amplitude of the oscillation at first traversal. However
d0,p/4, we have constructive interference, and instead
have ‘‘core brightening’’: the amplitude of the nonhydro
genic spectral oscillation isenhancedby the core. This ex-
plains why quantal amplitudes for contributions from typic
primitive PO’s of singlet helium~with d050.14p) are ob-
served to be enhanced relative to hydrogen, while for lithi
they are decreased.

We generated a semiclassical spectrum using contr
tions of the form given by Eqs.~17! and ~18! and products
thereof for «F523.0 and«B520.6. Our quantal calcula
tions are for\eff5B1/3;1/205. This spectrum was then Fou
rier transformed. In order to compare the quantal and se
classical diffractive contributions directly, we adopt the no
standard procedure of subtracting the~complex! Fourier
transform of the hydrogenic spectrum from that of the no
hydrogenic. This removes the contribution of the geome
orbits, and exposes that of the diffractive trajectories. In
dition, all amplitudes~both quantal and semiclassical! were
normalized to that of the geometric orbit denoted byR1.

In the pure magnetic field case,R1 is the well-known
‘‘quasi-Landau’’ PO, which corresponds to a straight lin
trajectory perpendicular to the magnetic field. In that caseR1
runs along a symmetry boundary and its Gutzwiller con
bution has an additional phase. In the parallel field case,R1
still lies on a straight line orbit, but is no longer perpendic
lar to the fields@see orbit~a! in Fig. 2#. Its Gutzwiller am-
plitude is given by the usual form and the contribution
Tr Gg is

Tr Gg
R152 i

SR1

um111m2222u1/2
eiDR1

g
. ~20!
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The corresponding contribution to TrGD from the one-
scatter diffractive orbit is

Tr GD
R152 iSR1

B1/6U 8p

m12
(R1)U1/2

sind0 sin
u i

2
ei (DR1

g
1p/41d0).

~21!

In parallel field terminology the perturbedR1 PO is la-
beled POa. In order to stress that this is not a diamagne
atom, we label the PO’s asa, b, c, etc., in our Fourier trans
forms. The main PO’s are plotted in Fig. 2, where both
parallel field label and that for the pure diamagnetic PO~into
which the PO evolves as the electric field is switched off! are
shown. For theR1 ~a! PO, the classical parameters a
SR1

/(2p)50.8258 m115m2250.7135, m12521.282, and

u i5u f50.449p. With these parameters it is easy to sho
with a pocket calculator that, for an atom withd050.5p, the
ratio of the amplitudeuTr GD

R1u from Eq. ~21! to the normal-

ization amplitude (uTr Gg
R1u51.3211SR1

), is uTr GD
R1u/

uTr Gg
R1u50.152. This value is seen below to correspond

FIG. 2. Classical periodic orbits of the hydrogen atom in para
static electric and magnetic fields with«F523.0 and«B520.6.
The trajectories are plotted in therz plane. The heavy line denote
the classical turning surface. Only those orbits that contribute to
semiclassical spectra for scaled actionS/(2p)<5 are shown. La-
bels ~a!–~i! correspond to the scheme used to identify the peak
Figs. 4 and 5. Each orbit is also identified by its correspond
diamagnetic orbit using the naming convention introduced in R
@2#. Not shown are the~b! ‘‘uphill’’ and ~c! ‘‘downhill’’ straight-
line orbits that run along the6z axis, and were denotedV1

1 and
V1

2 , respectively, in Ref.@32#.
c

e

-

curately to the~normalized! quantum peak height for the
single diffraction PO. This peak is labeleda1 in our Fourier
transforms@see Fig. 5~a!#. We now consider degeneracie
and multiplicities of the different types of diffractive contr
butions.

V. MULTIPLICITY OF DIFFRACTIVE ORBITS

Multiple-scatter contributions can, in the atomic case,
clude different combinations of geometric and diffractive o
bits which all have the same actions~core shadowing!. We
note that, although core shadowing does not affect primit
contributions in closed orbit theory, it affects both the prim
tive PO’s and their repetitions in diffractive PO theory@20#.
In order to describe core shadowing, it is vital that the co
tributions from the different combinations and, in particul
their phases, are combined correctly.

For example, below we demonstrate in detail the co
struction of diffractive contributions interfering with th
third traversal of one specific isolated PO, namely,R1. In the
notation of Ref.@2#, its second and third traversals are d
notedR2 andR3, respectively.

The contribution to the DOS has a phase equal
3SR1

B21/31V. The additional phaseV varies depending on
the type of contribution:~i! for the purely geometric contri-
bution, V5mR3

p/2; ~ii ! for one-scatter contributions,V

5mR3
p/21f; ~iii ! for two-scatter contributions, V

5mR1
p/21mR2

p/212f; and ~iv! for three-scatter terms

V53mR1
p/213f. In this example, withd050.5p, we have

f53p/4.
The one- and two-scatter orbits are in effect combinatio

of geometric and diffractive ‘‘legs’’ in the same trajector
since each encounter with the core can result in either g
metric or diffractive scattering. The three-scatter contribut
is a combination of three diffractive orbits. We stress th
these hybrid PO’s, combining diffractive and geometric co
scatters, are a unique feature of the atomic systems~due to
combined Coulomb plus short-range scattering!. Generic dif-
fractive billiards have pure geometric and pure diffracti
orbits, which are unrelated, and in general have differ
actions.

We have found that the amplitude of a single diffracti
orbit as given in Eq.~17! is weighted by a degeneracygk .
For a primitive symmetric orbit (u f5u i), gk51. For a
primitive asymmetric orbit (u fÞu i), gk52. We attribute
this weighting to the fact that, for each incoming Coulom
wave, the diffracted wave provides amplitude in one or t
possible outgoing angles, respectively.

Another key parameter is the multiplicity or degenera
of multiple traversals. The one-scatter orbits have a mu
plicity equal to the repetition number of the orbit. Hence f
the one-scatter contribution to thenth traversal,gnk5ngk .
This is due to the number of different permutations of ge
metric and diffractive scatters.

For example, the one-scatter contribution toR3 has three
possible permutations of geometric or diffractive encount
with the core. One of these can be represented asR1
1R1XR1X, whereR11 indicates a traversal of the PO,R1,
followed by diffraction, andR1X indicates a traversal fol-
lowed by a Coulomb scatter. The other two possible perm

l

e

in
g
f.
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tations areR1XR11R1X and R1XR1XR11. Hence, from
Eq. ~17!, the contribution to the trace from each one-sca
diffractive orbit is2 iSR1

GR3
where,

GR3
5B1/6U 8p

m12
(R3)U1/2

sin
u i

2
ei (DR3

g
13p/4). ~22!

In this case,g51 andDR3
53SR1

1mR3
p/2. From the mono-

dromy matrix elements given above forR1, we can work out
that m12

(R3)
521.329. This contribution has a multiplicity o

3. Hence from Eq.~22! we can evaluate the total amplitud
~normalized by the geometric amplitude ofR1), which is
3uSR1

GR3
u/uTr GD

R1u50.447. The quantal value is 0.4. For im
proved agreement, higher order diffractive scatters mus
included. We note, however, that the one-scatter diffrac
contribution forR3 is already almost 50% of the geometr
amplitude of the first traversal.

In general, the number ofs-scatter diffractive trajectories
contributing to thenth traversal of a PO is simply the num
ber of combinations, and is given by the usual binomial
efficient: N(n,s)5n!/ @(n2s)!s! #. An important conse-
quence is that, while in the GTF thenth traversal of thekth
geometric PO is weighted by theprimitive periodTk ~in the
unscaled case! or actionSk ~in the scaled case!, the corre-
sponding one-scatter component is weighted by thetotal pe-
riod nSk . Hence for high enough repetition numbersn
;\21/2 even the one-scatter diffractive contribution b
comes of the same order as the geometric PO contributi

For the two-scatter diffractive case, there aren(n21)/2
possible trajectories. Hence this component will be sign
cant for n2;\21. We conclude that multiple traversals o
PO’s will also have significant two-scatter components fo
sufficiently high number of traversals. In the case of theR3
orbit, the two-scatter orbits have a multiplicityN(3,2)53.
Their total contribution to TrGD is equal to

2 i3g2SR1
GR1

GR2
. ~23!

Here g51. Since m12
(R2)

521.8298, we can evaluat

3uSR1
GR1

GR2
u/uTr GD

R1u50.0764.

This contribution is dephased by 3p/4 relative to the one-
scatter diffractive contribution of 0.447. However addi
these values with the correct dephasing is easily show
yield a value very close to the quantal peak;0.4 shown in
Fig. 3. For this particular example, Maslov indices scale w
the traversal, i.e.,mR1

1mR2
5mR3

. But this is not generally
the case. Although the total number of two-scatter co
shadowing corrections is alwaysN(n,2), for detailed studies
of higher traversals it is not possible to simply weight o
expression such as Eq.~23! by a multiplicity, N(n,2), since
in general there will be different combinations of two orbi
For example, if we were considering the two-scatter corr
tion to R6 we would haveN(6,2)515 contributions. How-
ever, six of these would involveGR2

GR4
terms, another six

would involve GR1
GR5

terms, and three would involve

GR3
GR3

terms. These three groups have different phases
care must be taken when combining them.
r

e
e

-

.

-

a

to

h

-

.
-

so

The final and smaller contribution toR3, the three-scatter
term, has a multiplicityN(3,3)51. Hence its contribution is
equal to

2 i
SR1

ip
GR1

GR1
GR1

. ~24!

We have tested the counting algorithm by including su
cessively the contributions from one-, two- and thre
scattering trajectories at a scaled action corresponding toR3;
the results for a nonhydrogenic atom with a single quant
defectd050.5p in the l 50 channel are shown in Fig. 3.

In Fig. 3~a! we compare the resulting quantum amplitu
with the first-order semiclassical result obtained using E
~22!. At this value of\eff.1/205, single-scattering trajecto
ries ~dashed line! reproduce the quantum amplitude~full
line! to within 10–15 %. Figure 3~b! shows the results o
including second- and third-order terms, for which the co
tributions to TrGD are given by Eqs.~23! and ~24!, respec-
tively, in the semiclassical calculation. Including the secon
order terms~dashed line! already brings the agreement wit
the quantal results~full line! to within 1%. When third-order
terms are included, the semiclassical~dotted line! and quan-
tal amplitudes agree almost exactly. The excellent agreem
for the third-order terms seen in Fig. 3~b! strongly supports
our counting algorithm.

FIG. 3. Contributions from diffractive PO’s at the action of P
3a, the third repetition of the POa. PO a is the parallel field PO
which evolves~in the limit of zero electric field! into the diamag-
netic POR1, responsible for quasi-Landau modulations observed
atomic photoabsorption spectra.~a! Comparison between quantum
~full line! and semiclassical~dashed line! results using only one-
scatter diffractive trajectories. The results show that at this valu
\eff.1/205, including contributions from one-scatter trajectories
produces the quantal result to within 10–15 %.~b! Comparison with
quantal amplitudes~full line! including up to two-~dashed line! and
three-scatter~dotted line! trajectories. Including the two-scatter tra
jectories already brings the agreement with the quantal result
well within 1%. The graphs had to be magnified substantially
show any difference between the semiclassical result includ
three-scatter orbits and the quantal amplitude.
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However, two-scatter combination orbits will prolifera
sufficiently rapidly to ensure that their contribution is n
semiclassically vanishing relative to the primitive geomet
PO’s. For an integrable system, the total number of P
grows polynomially with the period, asT2 in our two-
dimensional system and asS2 in the scaled case. The tota
two-scatter combination orbits can easily be shown to pro
erate asT4 ~or S4). Hence their contribution, relative to tha
of the geometric PO’s, for sufficiently long periods or a
tions, does not vanish.

The rules for obtaining multiplicities of two-scatter co
tributions of different orbits are analogous to those us
above for the multiple traversals@34#. Below, we apply these
rules for accumulating phases and multiplicities in our se
classical calculations for the range 0<S/(2p)<5 and com-
pare them with quantal calculations.

VI. RESULTS

The main result of this paper is shown in Fig. 4, where
compare quantal and semiclassical results for the total
fractive component up to actionS/2p55. As in Fig. 3, we
coherently subtract the Fourier transformed quantal spe
for d050.5p from the hydrogenic result, so we compa
only the diffractive quantal and semiclassical result. T
overall agreement is excellent. Indeed, on the scale of
figure, there are barely any discernible differences betw
the quantum and semiclassical diffractive contributions. T
labeled peaks indicate diffractive contributions at scaled
tions corresponding to the short classical periodic orbits
the hydrogen atom in parallel fields; the shapes of these
bits were shown in Fig. 2.

In Fig. 5 we magnify selected regions of Fig. 4 in order
further demonstrate the agreement. Figure 5~a! shows a mag-
nification of the spectra in the region 0.75<S/(2p)<1.0. In
this region, we see three peaks corresponding to the diff
tive contributions,a1, b1, andc1. For each of the peaks
the semiclassical result in the lower panel agrees almost
fectly with the exact quantum result in the upper panel. H
we see that the core-shadowing terms give rise to large
tributions at scaled actions of the primitive periodic orbi

FIG. 4. Comparison between quantum and semiclassical re
for all periodic orbits up to the scaled actionS/2p55, including all
orders of scattering. The agreement is excellent except where b
cation effects are significant. Labeled peaks correspond to the
sical periodic orbits shown in Fig. 2.
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This is in contrast to the closed orbit result for nonhydr
genic photoabsorption spectra, where it was shown that
core-shadowing terms only alter the phase of the primit
orbit contributions while leaving their amplitudes un
changed. The peaks labeledb1, at S/(2p).0.88, andc1,
at S/(2p).0.96, are the core-shadowed contributions to
‘‘uphill’’ ( V1

1) and ‘‘downhill’’ ( V1
2) orbits, respectively.

As can be seen by comparing Eqs.~17! and~18!, the diffrac-
tive contributions to both of these orbits areO(\1/2), smaller
than those for orbits withu iÞ0 or p. Hence peaksb1
and c1 are considerably smaller than that of theR1 orbit
at a1.

In Fig. 5~b! we show the region of scaled action close
the contributions from the second repetitions of the orbitsa,
b, andc @1.5<S/(2p)<2.0#. Again, the agreement betwee
quantal and semiclassical calculations is excellent. Here
largest contribution is to the second repetition of theR1 orbit
at S/(2p).1.65. This contribution consists of two term
2a1 and a1a1 of O(\1/2) and O(\), respectively. The
peak at the second repetition of the downhill orbit
S/(2p).1.92 is larger than might be expected given that
terms 2c1 and c1c1 are O(\) and O(\2), respectively.
However, here there is also anO(\1/2) contribution from the
V2

1 orbit ~labeledd1). The inset shows a further magnifica
tion of the region 1.7<S/(2p)<1.84, where two further
small peaks can be seen: one at the second repetition o
uphill orbit at S/(2p).1.76, and a second, purely core
scattered peak, arising from a combination of contributio
from theR1 (a1) and downhill (c1) orbits.

Figure 5~c! magnifies the region 3.2<S/(2p)<3.9. Over-
all, the quantum-semiclassical agreement is very good
close inspection, however, reveals two small discrepanc
For the peak at the fourth repetition ofR1 @S/(2p).3.3# the
semiclassical result overestimates the quantal result by a
50%. This is due to them12 term that appears in the ampl
tude being close to zero for the 4a1 contribution. This leads
to a singularity in the semiclassical amplitude of this ter
Such a phenomenon occurs when the classical orbit un
goes a bifurcation, in which case its winding number
nearly rational. Here the winding number for theR1 or a PO
is close to 1/8.

It is interesting to note that a given bifurcation can ma
fest itself at different actions in the diffractive and geomet
contributions. For the geometric contribution, the amplitu
is proportional to 1/ATr M22, and will be unphysically
large for the eighth repetition of the orbit when the windin
number of the primitive orbit is 1/8. For the diffractive con
tribution, on the other hand, the amplitude is proportional
1/Am12, and will be divergent for the fourth repetition of th
orbit. This particular large diffractive peak at the action
4a is due to an asymmetric closed orbit, which appears
half the period of 8a.

A similar small discrepancy in the diffractive amplitude
is also seen for the peak atS/(2p).3.57, which has been
further magnified in the right-hand inset. Again, this sm
difference between quantal and semiclassical results ca
attributed to a bifurcation in the underlying classical dyna
ics.

Finally, a magnification of the region 4.05<S/(2p)
<4.2 is shown in Fig. 5~d!. Again, the unphysically large
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FIG. 5. Magnification of parts of the spectrum presented in Fig. 4. Shown are the regions~a! 0.75<S/(2p)<1.0; ~b! 1.5<S/(2p)
<2.0; ~c! 3.2<S/(2p)<3.9, and~d! 4.05<S/(2p)<4.2. The figure shows that diffractive orbit contributions are described with extr
accuracy. For completeness we indicate and include all possible scattering combinations contributing to each peak although, c
contribution of fourth and higher scattering combinations, for these low actions, is extremely small.
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value of the diffractive amplitude for the 4a1 contribution
leads to the semiclassical result overestimating the quan
this time by about 10%, for the peak atS/(2p).4.125.
However, again the agreement between the quantal
semiclassical spectra is remarkable, especially bearing
mind that the peak atS/(2p).4.125 is made up of no fewe
than seven different contributions; this in fact represents
most challenging situation we have considered to date.

VII. CONCLUSIONS

We have shown that the spectra of atoms in parallel fie
provide an interesting illustration of the effects of diffractiv
PO’s in a real system. Features like the core brightening
core shadowing as well as the hybrid diffractive and geom
ric scatter PO’s are unique features of the atomic core s
tering, and are needed to describe the quantum results a
rately.

Until quite recently, it seemed apparent that diffracti
orbits represented\-dependent corrections to periodic orb
effects which vanished in the semiclassical limit. Now
m,

nd
in

e

s

d
t-
t-

cu-

seems clear that, for sufficiently long time scales, such
fractive effects can persist in the\→0 limit. Hence under-
standing how the proliferation of diffractive orbits suffi
ciently outpaces, at any order, the proliferation of geome
trajectories to maintain their contribution, as\→0, is an
interesting and topical question.

In this study we focused on the near-integrable atom
regime. The combination of Coulomb and short-range sc
tering introduces interference effects that to our knowled
have not been seen in typical systems such as billiards
short-range scattering.

Previously, we presented a model which gave diffract
corrections for a diamagnetic atom. However, the proper w
to count contributions from higher-order scatterings, multip
repetitions, and combinations thereof remained unclear.
have extended the model to account for harmonics~impor-
tant in the stable regime!, and have tested this on atoms
parallel fields. The physics is not drastically different fro
the diamagnetic case, but the different symmetry and the
that the important quasi-Landau orbit (R1 or a and its rep-
etitions! no longer lies on the symmetry boundary provide
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strong test of the general validity of the model. We ha
shown that the model yields amplitudes and phases w
great accuracy. The agreement is generally well within a
percent, except where bifurcation effects~neglected in the
semiclassics! become important.
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