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Atoms in parallel fields: Analysis with diffractive periodic orbits
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We show that fluctuations in the density of states of nonhydrogenic atoms in parallel fields are strongly
influenced by diffractive periodic orbits. Unlike typical systems with a diffractive point scatterer, the atomic
core of small atoms like lithium and helium is best understood as a combined geometric and diffractive
scatterer. Each Gutzwillggeometri¢ periodic orbit is paired with a diffractive orbit of the same action. We
investigate, particularly, amplitudes for contributions from repetitions, and multiple scattering orbits. We find
that periodic orbit repetitions are described by “hybrid” orbits, combining both diffractive and geometric core
scatters, and that by including all possible permutations we can obtain excellent agreement between the
semiclassical model and accurate fully quantal calculations. For high repetitions, we find even one-scatter
diffractive contributions become of the same order as those of the geometric periodic orbit for repetition
numbersn~#~ 2. Although the contribution of individual diffractive orbits is suppressedgyi*’?) relative
to the geometric periodic orbits, the proliferation of diffractive orbits with increasing period means that the
diffractive effect for the atom can persist in the-0 limit.

PACS numbds): 05.45~a, 03.65.Sq, 32.60.i

I. INTRODUCTION More recently, the spectra of nonhydrogenic atoms in weak
fields were shown to be associated with a new generic class
Highly excited(Rydberg atoms in the presence of static of intermediate energy level statistics. Nearest-neighbor
external magnetic and/or electric fields provide some of thespacing(NNS) distributions were foun@10,11] to be neither
best examples of experimental studies of the effects of chad2oissonian(regulay nor Wigner-Dyson(chaotig, but close
and classical orbitf1]. A very useful feature of these sys- to a distribution[ P(s)=4se 2] called asemi-Poissonlis-
tems is their scaling property: the classical motion does natribution. Such intermediate spectra are also of broad current
depend on the electron energy and the magnetic and electriicterest in mesoscopic systerfi?—15.
field strengths separately, but only on a single parameter: the These observations have led, in recent years, to much in-
scaledenergy. In the case of diamagnetic hydrogen, the clasterest in the phenomenon of so-calledre-induced chaos
sical motion undergoes a gradual transition from regularity{5,6,9,16—19in the dynamics of Rydberg atoms in external
to full chaos as this parameter is varied. With the developfields. The unexpected features in the nonhydrogenic spectra
ment of experimental fixed scaled-energy spectrosd@hy were variously interpreted as arising from chaos due to the
and methods for calculating fully quantal spectra at a coneffect of the inner multi-electron corg9,18 or as
stant scaled energy, it has been possible to make detailgddependent correctiongl9] which were semiclassically
comparisons between the quantum and classical dynamics vénishing.
both diamagnetic hydrogef8,4] and nonhydrogeni¢5,6] It was since showri20] that modulations of the eigen-
atoms. In particular, frequencies and amplitudes of longvalue spectra of nonhydrogenic atoms in weak fields due to
range modulations in the density of states of highly excitecberiodic orbits can be described semiclassically at a quanti-
hydrogen atoms in a static magnetic field have been detative level only if diffractive corrections are included. In
scribed quantitatively using periodic ort§RO) theory[7] in addition, a semiclassical analysis of spectral rigidities for
the form of the well-known Gutzwiller trace formul&TF) atoms in electric fieldsintegrable with diffraction revealed
[8]. that there are substantial core-induced effects due to diffrac-
The spectra of nonhydrogenic atoms in weak fields, howtive one-scatter orbits which do not vanish in the semiclas-
ever, were found to have unexpected properties not seen #&ical limit[21]. Another recent semiclassical study of general
hydrogen. Comparisons between accurate quantum spectthaotic systems with diffraction considered scattering to all
revealed spectral amplitudes for nonhydrogenic atoms thairders[22]. For chaotic dynamics, the number of ordinary
differed substantially from those of hydroggs]. In addi- (geometri¢ PO’s proliferates exponentially with increasing
tion, experimental measurements of diamagnetic helium afperiod T. However, it was showh22] that the number of
oms found modulations, not seen in hydrogen, which wereliffractive orbits in a generic chaotic system with diffraction
identified as resulting from combinations of hydrogenic pe-grows even more rapidly. Indeed, the number of one-scatter
riodic orbits that arise from scattering with the nonhydro-trajectories increases faster than the number of geometric
genic core[6]. Similar structures were found in the experi- PO’s by a factor ofT.
mental Stark(pure electric fielgd spectrum of lithium[9]. Diffraction in atoms(Coulomb plus short range scatterer
differs in key respects from typical diffractive billiards. The
additional presence of the Coulomb term means that every
*Present address: Department of Chemistry, University of Southdiffractive orbit is paired with a geometric periodic orbit or
ern California, Los Angeles, CA 90089-0482. half-periodic orbit, even in the chaotic regime. In contrast,
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for billiard problems, diffractive and isolated geometric PO’s core region of nonhydrogenic atoms. However, it is appro-
are unrelatefl22—24. The diffractive effect in chaotic atoms priate to apply the same scaling transformation to nonhydro-
is expected to differ significantly from that in billiard prob- genic atoms because the core region is very small when com-
lems. pared to the size of the highly excited Rydberg states.
Atomic spectral properties and statistics depend strongly The procedure for scaling the parallel field case is similar.
on the interference between groups of contributions of thé'he parallel field Hamiltoniahin cylindrical coordinatesg,
same action, but with different phases and amplitudes. Addz, ¢) and atomic units withm=0] is
ing these correctly is nontrivial. For example, the dominant
effect in long-range statistics was found to be due to the
“off-diagonal” contributions between geometric POs and
diffractive one-scatter orbits of the same acfidt]. In semi-
classical studies of atomic photoabsorptiéziosed orbit  with r=\/p?+z2. Equation(1) can be rescaled by transform-
theory [25-28,19 an analogous effect—the gradual sup-ing position, momentum and time variables according to
pression of the amplitude of high harmonics by core-—rB~ %3 P—PBY® andt—t/B. Regularization, to remove
scattering terms of the same action—was termed “core shadhe Coulomb singularity, is achieved by the usual procedure
owing.” Experimental photoabsorption spectra, however,of transformation to semiparabolic coordinatesu,#
probe closed, rather than periodic, orbits. In a previous papet \r +=z) and a rescaled timér= (u2+ v?)dt, with conju-
[20] we proposed a model which combined standard PQjate moment® ,=du/dr andP,=dv/dr. The regularized,
theory with diffractive corrections for a few short primitive scaled Hamiltonian for hydrogen in parallel electric and
periodic orbits in diamagnetic atoms. This was the first sucmagnetic fields now depends only on two parametgrand
cessful application of periodic orbit theory, in the form of the ¢, which completely determine the classical behavior, and
GTF, to nonhydrogenic Rydberg atoms. One of the mairs written as
results shown in Ref{20] is that, in periodic orbit theory
with core-scattering, core shadowing affects even primitive
orbits.
In this paper we investigate in particular multiple scatter-
ings, and give a prescription for obtaining the correct multi-where
plicities for different types of diffractive orbits. The motiva-
tion for this work is, broadly, to establish a scheme for 5 o o o A
counting correctly, to all orders, atomic diffractive orbit con- Vext:g” pAuty )+§ er (u"=v7) )
tributions so as to further understanding of the persistence of
these diffractive effects in the semiclassical limit. In particu-is the contribution from the external fields.
lar, we investigate up to third order the core-shadowing The equations of motion arising from the classical Hamil-
terms, which are unique to the atomic systems. Since weonian of Eq.(2) were solved numerically to obtain the rel-
found in Ref.[20] that some propertiesuch as phases and evant classical trajectories, their actions, stability parameters,
multiplicities of the important quasi-Landau orbitere sym-  and Maslov indices.
metry dependent, we test the model on atoms in parallel When considering the classical dynamics of a nonhydro-
fields, which have different symmetry properties from thegenic atom in an external field, one possible approach
diamagnetic atom. [17,18 is to add a short-range “model” potential, which
In Sec. I, we briefly review the calculations at a fixed describes the non-Coulombic nature of the ionic core, to the
scaled energy for both the classical and quantal cases. In Sé¢amiltonian of Eq.(1). However, we do not use this ap-
[, we present details of the semiclassical calculation of dif-proach here. Instead, we follow R¢20], and treat the sys-
fractive amplitudes. The contribution of the diffractive orbits tem as hydrogenic with the multielectron core playing the
to the amplitude of first traversals of geometric PO’s is studtole of a point diffractive source, as described in Sec. IlI
ied in Sec. IV. In Sec. V we discuss the phases and multibelow. With this prescription, the required periodic orbits are
plicities of different types of diffractive orbit. We explain the then those of the hydrogenic system described by(Bq.
core shadowing in detail up to third order of one particular  For parallel fields, the corresponding scaled-coordinate
PO. In Sec. VI we present comparisons between our semSchralinger equatiorfwith m=0) takes the form
classical and quantal results for core shadowing and other
trajectories.
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IIl. ATOMS IN PARALLEL FIELDS: SCALED SPECTRA The scaled energies; and e fix the classical behavior of

The scaling properties of the classical dynamics of Rydihe system. However, the dependence on the fittlcbugh
berg atoms in static magnetic fields were extensively rethe eigenvalued?®) cannot be eliminated in the quantum
viewed elsewherg4], so only a brief outline is given here. case. EactB?* eigenvalue corresponds to energy eigenval-
The classical dynamics of a hydrogen atom in a pure maguesEi=sBBi2/3. The set of eigenvalud?:f/3 all correspond to
netic field (of strengthB) depends only on a scaled energy the same classical regime but Bs—0 the quantum spec-
eg=EB™ 22 In a pure electric fieldof strengthF), the cor-  trum becomes increasingly dense: the square root of the ei-
responding parameter is=EF %2 It should be noted that genvalue plays the role of an effective Planck’s constant, i.e.,
the hydrogenic scaling property does not hold strictly in theB¥3=7 . This can be seen by considering the momentum-
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. ‘ In the pure magnetic field case both the azimuthal quan-
tum numbem and thez parity are good quantum numbers.
T In the parallel field case, only is a good quantum number,
since the electric field breaks the symmetry akoa0, de-
stroying parity conservation. All calculations presented here
are form=0, gg=—0.6, andeg=—3.0. The classical dy-
namics for a hydrogen atom in a pure magnetic field with

(@ Hydrogén: £.=-3.0

1 Fisolated

tori + diffractive orbits
(b) Lithium; g.~=-3.0 . ‘ eg=—0.6 is near integrable. The pure electric fi¢Btark

10 20 30 40 spectra is integrable for allez, and its NNS statistics are
(c) Hydrogen: e,=—0.6 ‘ Poissonian:P(s)=e"5. In both cases, the nonhydrogenic
isolathd POs 1 NNS statistics are intermediat®(s)=ase *$?, with the
0 L4 m(]) IARANNInTwrn diamagnetic atom close to half-Poisson, witk=4.
T ‘| | “ ||]l Differences between the spectra of hydrogen and nonhy-
- . drogenic atoms in pure magnetic, electric, and parallel fields
- perturbed tori
(d) Hydrogen: £,=-3.0, £,=—0.6
0 10

-

-

|Fourier Transform| (arbitrary units)
o

are summarized in Fig. 1. The magnitude of the Fourier
transform of the quantum mechanically calculated spectrum
of hydrogen in a static electric field af= — 3.0 is shown in
Fig. 1(a). At low scaled actions, €S/(27)<7, there are a
number of weak contributions arising from isolated
FIG. 1. lllustration of the different types of trajectories contrib- Gutzwiller PO’s. At higher actions, the main peaks arise
uting to the density of statega) Fourier transformed spectrum of from contributions of tori, and are well described by the
hydrogen in an electric field. For low action there are mainly weakBerry-Tabor formuld30] for integrable systems. Figureid
contributions from isolated Gutzwiller PO’s. For higher action thereShows the corresponding Fourier transformed spectrum of a
are mainly integrable tori, described by the Berry-Tabor formulalithiumlike atom in an electric field. At low scaled actions
[30]. (b) Fourier transformed spectrum of a lithiumlike atom in an there are again weak contributions from the isolated periodic
electric field. There are now additional contributions from diffrac- Orbits. At higher scaled actions, significant differences from
tive PO’s. Their numbers proliferate rapidly for higher actiofg.  that of the hydrogenic case can be seen. Here, in addition to
Fourier transformed spectrum of hydrogen in a magnetic figld. the torus effects, are contributions ariSing from diffractive
Fourier transformed spectrum of hydrogen in a parallel field. Inorbits which occur due to the presence of the ionic core. The
both (c) and(d), the high action region is dominated by remnants of "umber of such diffractive orbits proliferates rapidly at
integrable tori. In this regime the Gutzwiller formula is not valid. higher scaled actions.
Figure Xc) shows the Fourier transformed spectrum of

hydrogen in a static magnetic field &= —0.6. The classi-
cal dynamics of the diamagnetic hydrogen atom is noninte-
grable. However, it remains near-integrable fgy=—0.6
and, in the high scaled-action regime, the spectrum is domi-
[pB Y3,qBY?=iBY3=ifi. (5) nated by contributions from perturbed tori. The situation is
similar for hydrogen in parallel fields witkr=—3.0 and
) eg=—0.6, which is shown in Fig. (). Here contributions
Fixed scaled-energy quantum spectra can be compargghm tori, evident at large scaled actions in the pure electric
directly with semiclassical calculations. A Fourier transformfield case shown in Fig.(4), are modified by the presence of
with respect tdigﬁl yields sharp peaks at trezaledactions  the weak magnetic field; the spectrum is dominated in this
of classical orbits. The scaled action is simply related to theegion by contributions from the remnants of integrable tori.
true action: S(eg,eg) =B Y3S(E,F,B). The heights of Only those orbits, with a reasonably low scaled action, may
these peaks yield accurate estimates of the semiclassical afe considered isolated and amenable to treatment with the
plitudes. GTF. Semiclassical trace formulas for the density of states of
In the case of nonhydrogenic atoms in external fieldsnear-integrable systems have been derjadd, but we will
most theoretical quantum solutiorfsee, e.g., Refg5,6)  Not use these here. Instead, we restrict our detailed compari-
follow a suggestion of Clark and Tayl629] who noted that  SONS between semlclass_lcal and quanta] spectra of nonhydro-
the problem splits conveniently into two regions: an outerd€Nic atoms in parallel fields to the regiom® (2m)<5.
region where the core is negligible, and an inner region _'heoretical and experimental investigations of atomic
where the external field can be neglected. In the inner regiofpl10toabsorption in parallel fields at a constant scaled energy

the interaction of the outer electron with the ionic core can/ave been undertaken previously in REg2]. But only in
be accounted for by a set of angular momentum dependelﬁief' [20] was t_he .Gutzwnle.r formula applied for the first
phase shifts—the quantum defects—in each partial wav me to a generic diamagnetic atom. Hence to our knowledge

[33]. Separate solutions are obtained for the two regions an is represents the first semiclassica_l analysis of the Qensity
the wave functions matched at a boundary usingamatrix ~ ©f States(@s opposed to photoabsorption spedinaatoms in

type approach, yielding the required energy eigenvalues foparallel fields.
thhe entire system. In the quantum c;alculatlons presentedm_ SEMICLASSICAL CALCULATIONS: GEOMETRIC
ere, we have_ used a variant of this method_ Whe_re the AND DIFFRACTIVE PERIODIC ORBITS
R-matrix matching procedure is replaced by the inclusion of
a Schneider term on the boundaf§] to obtain levels An important approach to the quantization of noninte-
16 000—32 000 above the ground state. grable, time independent Hamiltonian systems is via periodic

20 30 40
S/2r

position commutator in scaled variabléstomic units are
used throughout, hende=1):
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orbit theory (POT) in the form of the well-known GTF. In where the tilde refers to scaled quantities. For convenience,
standard POT, the density of statd809), p(E)=X,;8(E  we drop the tildes below, but understand that all quantities
—E;), is calculated from the trace of the semiclassicalrefer to scaled calculations.

Green'’s functionp(E) = — (1/7) Im Tr Ggc. The trace can In Ref. [20], a prescription for adapting DPOT for the
be decomposed into a sum of smooth and oscillating compatomic case was presented. The atomic core gives rise to
nents: p(E) = psn(E) + posd E). The oscillations inp,cd E) both Coulomb as well as short-range scattering. The latter is
are given quantitatively by the GTF as a sum of contribu-well described by quantum defect fhedi33] parametrized
tions from the isolated POs. by a set of quantum defect§ in each partial wave. For

In diffractive periodic orbit theory(DPOT) [23], the = many atoms only the lowest partial waves have nonzero
Green’s function is expressed as the sum of a geometric arguantum defects. For example, for lithiugy=0.47 and
a diffractive component: 6,=,=0, while for triplet heliumdy=0.37 and 6,~,=0.

The Coulomb part results in geometric orbits, described
by the GTF. Hence there is a geometric component to which
all periodic orbits make a contribution, regardless of whether
they pass through the nucleus, and an additional diffractive
Correspondingly, oscillations in the density of stagg&€)  part to which only orbits passing through the nucleus con-
now have one contribution from geometric PO’s and anothetribute.
from diffractive orbits. A key difference with the standard DPOT approach re-

The GTF yields a good description of the amplitudes ofsults from the presence of the multielectron core and Cou-
the geometric component. The diffractive component arisefomb divergence. We cannot write (aadia) semiclassical
from trajectories which meet a discontinuity in the potentialGreen’s function which is valid right up to the nucleusrat
or a dynamical structure comparable in size to the de Broglie=0. Instead, the problem of atomic core scattering is solved
wavelength. This could be, for example, the sharp vertex in &y matching quantal solutions using Coulomb waves and
cardioid billiard. A ray incident at a vertex at poirg pro-  semiclassical waves on surface r=r,, outside the multi-
duces an outgoing sourae;; which is proportional to the electron core. The formalism was originally developed to
semiclassical Green’s function at the incidence of the raypbtain closed orbit modulations of photoabsorption spectra
i.e., agr=0d(6,0")GsdX,Xo) [23]. The diffraction constant [25,28, including combination recurrencé9].

d(6,6') quantifies the angular redistribution of the ampli- However, we have found that we can, by analogy, obtain
tude of an incident ray due to the diffraction. An orbit with a @ similar expression to treat the DOS using Gutzwiller PO’s
single scatter at the diffractive point, contributes a term  with diffraction to a nonhydrogenic atom. We have an “ex-
agifr(X,X0) Gsc(Xo,X") 10 Gp(X,x'). A key result proven in ternal” form of the Green's functionGgs(rg,0,rq,6")

Ref. [23] is that the trace of5p is simply proportional to  Which propagates outgoing waves outward semiclassically
dGsd(Xo,Xo). In particular, the contribution of theéth  from the surfacer=r,, and back again. We also need an

single-scatter diffractive trajectory to the trace@®, is internal, diffractive termag(ro,6,ro,6’) which relates an
incoming ray incident on the core to an outgoing diffracted

) Tk ok wave. The matching radiusy is arbitrary, subject to the
A exii (St Py} = ﬁd(ak!ak)Gsc(Xo’Xo)v (7)  constraint that it must lie outside the core, but within the
region where a solution using Coulomb waves is vdilid.,

where G¥. is the contribution to the semiclassical Green'sWhere the external field is negligibleThen we will have a
function along classical trajectokystarting and returning to contribution for a complete closed diffractive orbit of the
the diffractive pointx,, A is an amplitudeS, is the classi- form
cal action, andb, includes other phases such as the Maslov
index. For multiple scatter23], it has been shown that, in
general, the trace is obtained by taking products over contr
butions. Then,

1 1
p(E)=— —Im TrGy(E)~—Im TrGp(E).  (6)

g( 010,):adiff(r01eirOIHI)GSC(roveiroval)- (10)

LI'he amplitude cannot depend on the matching radius, so an

obvious requirement is thai(6,0’) should be independent

T of ry.

Tréo=2, —I d(n)Gsd X Xns1), (8) In a region near the core where the Coulomb interaction is
p 177 dominant and the external field is negligible, the quantum

i - ) wave function can be written as the sum of outgoing and
whereT, is the total sum ofprimitive) periods taken over incoming waveg25,28;

the paths between theh and g+ 1)th vertices.
We note that the expressions weightedTyyrefer to un- = ¢i_nc + Yocart (11)
scaled spectra. For scaled spectra, we requ(iBs *3). For- I seat
tunately the well-known transformation to a scaled DOS isTh : : . inc_ ,(-) .
. . ; . ; e incoming wave is a Coulomb wavg; "= , Which
straightforward, and involves a simple change in the weight- ! ng wave | N wave, "= ifcou, Whi

_ . i . approaches the atomic core from infinity at an angle,to
ing factor; instead of,, we weight by thescaledactionS,. e positivez axis. On reaching the coretl;), produces a
Hence, the scaled version of EF) (with 2=1) is

scattered wavefs.,r, Which feeds outgoing semiclassical
3 waves along periodic orbits, starting at any angleyscqy
A (B~Y% + P, ) =g Ne 9 can be degomposed further into an outgoing Coulomb wave
< exXpi( Sct ©}=77d(6, 8 Co(X0.X0), (9) together with a core-scattered waj2s]:
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= ) Ot
¢scat(r .0) 'ﬂCouI(r 0)+ 'ﬂcore(r ,0). (12 Gl ai(k) , 0]((k)) - Bl/3( e2id0— D|——
2mék
12

e, (18

The Coulomb part of the scattered wave is strongly back-

focused alon@= 0;, and can be written in closed forf8]. - :
W i (9;’ wéi"[fh " To» for geometric path riﬁtr]] whereA o =nSB~ 8- u g m/2— m/2. We note tham{¥ is
e equatgficoy € source for geometric pallie., the  c5|cylated for coordinates normal to the surface of section

) .
usual GTH. The core-scattered wavg ., arising from an  (j.e., for the semiparabolic coordinate=0) rather than nor-

incoming wave at an angl®; to the positivez axis, is mal to the orbit itself.
equated with the source of diffractive semiclassical waves.

. 05 . .
The closed form expression fap . . may be given in a |y AMPLITUDE OF FIRST TRAVERSALS OF PERIODIC

partial-wave expansion which, fon=0, is[28] ORBITS
o\ 14 w Diffractive orbits contribute with different phases relative
¢Cﬂére(ro,9): _3) > (—1)'YE5 (65,00 Y,0(6,0) to the geometric and Coulomb terms. For geometric orbits,
rs =0 the phase is given simply by the action plus a topological
(BTl 3mid) 206 phase which is related to the Maslov index. The phader
X eltvPro (e71—1). (13 thenth traversal of theéth geometric orbit is
A closed form expression for the incoming Coulomb wave Agk:ng<3—1/3_ Mﬁﬂ/z- (19

can also be derivef25]; for 6;#0 or 7, this is

In general, the topological pha$é<1 does not scale with tra-
- _exp{—i(\Bro—m/2)} versal number. One-scatter diffractive orbits have an addi-
Yeoul o, 0r) = /8l sing ' (14) tional phase differenceb, accumulated for each scatter. In
o= general, ¢=— w4+ (Sy+m2), with ¢=—m/2+ (5,
+ ar/2) for orbits along the axis, for which6*= 6¥=0 or .

Hence, in the case of first traversals, the Gutzwiller and
giffractive pair interferes destructively §,> 7/4, leading to
genuine “core shadowing” in the sense that the core reduces
the amplitude of the oscillation at first traversal. However, if
6o<ml4, we have constructive interference, and instead we
have ‘“core brightening”: the amplitude of the nonhydro-
genic spectral oscillation isnhancedby the core. This ex-

(15) plains why quantal amplitudes for contributions from typical
primitive PO’s of singlet heliumwith §,=0.14#) are ob-
We took a to be the fractional amplitude scattered by theserved to be enhanced relative to hydrogen, while for lithium
core: they are decreased.

We generated a semiclassical spectrum using contribu-
tions of the form given by Eqg17) and(18) and products
thereof foreg=—3.0 andeg=—0.6. Our quantal calcula-

_ . tions are forfi .= B~ 1/205. This spectrum was then Fou-

For the case of-wave scatteringand with 6:#0, 7),  rier transformed. In order to compare the quantal and semi-
each diffractive contribution in Eq10) is classical diffractive contributions directly, we adopt the now

standard procedure of subtracting tlleomplex Fourier
_ transform of the hydrogenic spectrum from that of the non-
e'bm, hydrogenic. This removes the contribution of the geometric

17 orbits, and exposes that of the diffractive trajectories. In ad-

dition, all amplitudegboth quantal and semiclassicalere
normalized to that of the geometric orbit denotedRy

In the pure magnetic field cas®; is the well-known

For the case whema=0, it is also possible for the incoming
waves to arise from PO’s for whick=0 or 7, so that they
approach the nucleus along the axis of the fields. In thi
special case, the closed form expressionygg), is [28]

1 2
YeaulTo.0r) = E(m/?) expl{ —i(\/8ro— m/4)}.

o

it ( 0; , 05) = lﬁz;re(ro,9i)/¢(c;&|(ro,9f)- (16)

Kk 1/2
g0 g
—~SIN—(—SIN—/(—

Gi(6%), 6{19) = B e2!00—1)| —
w2

where the phas jy=nSB~ 3~ u g m/2— /4, andm{y is
an element of the 22 stability matrix for orbit, k. The  «qyasi-Landau” PO, which corresponds to a straight line
contribution of a single-scatter diffractive orbit to the DOS IS trajectory perpendicular to the magnetic field. In that dage
thus — (L/m)Im (S, /1) G619, 69). Although we have not ryns along a symmetry boundary and its Gutzwiller contri-
carried out a rigorous derivation including the traceG¥,  pution has an additional phase. In the parallel field cRse,
we equate our heuristic expressio(i%)G(61,6{Y) siill lies on a straight line orbit, but is no longer perpendicu-
=TrGf . The amplitudes in Eq(17) have been found to lar to the fields[see orbit(a) in Fig. 2]. Its Gutzwiller am-
yield results for diamagnetic atoni20] within 1% of the  plitude is given by the usual form and the contribution to
quantal values. Below we test the expressions on paralleir G, is
atoms and multiple scatters.

For the special case of orbits parallel to the field, the S,
equivalent semiclassical expressions take a different form Trefi=—j ™t iR (20)
[20]. Hence, for6;=0, r, g |m11+ m22_2|1/2
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FIG. 2. Classical periodic orbits of the hydrogen atom in parallel

static electric and magnetic fields wit=—3.0 andeg=—0.6.
The trajectories are plotted in the plane. The heavy line denotes
the classical turning surface. Only those orbits that contribute to th
semiclassical spectra for scaled actigt{27)<5 are shown. La-
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curately to the(normalized quantum peak height for the
single diffraction PO. This peak is labeled- in our Fourier
transforms[see Fig. 5a)]. We now consider degeneracies
and multiplicities of the different types of diffractive contri-
butions.

V. MULTIPLICITY OF DIFFRACTIVE ORBITS

Multiple-scatter contributions can, in the atomic case, in-
clude different combinations of geometric and diffractive or-
bits which all have the same actiofsore shadowing We
note that, although core shadowing does not affect primitive
contributions in closed orbit theory, it affects both the primi-
tive PO’s and their repetitions in diffractive PO thedB0].

In order to describe core shadowing, it is vital that the con-
tributions from the different combinations and, in particular
their phases, are combined correctly.

For example, below we demonstrate in detail the con-
struction of diffractive contributions interfering with the
third traversal of one specific isolated PO, nam@&y, In the
notation of Ref.[2], its second and third traversals are de-
notedR, andR3, respectively.

The contribution to the DOS has a phase equal to
SSRlB*1’3+Q. The additional phas@ varies depending on

the type of contribution(i) for the purely geometric contri-
bution, Q=,uR377/2; (ii) for one-scatter contributions()

=,uR377/2+ ¢; (iii) for two-scatter contributions, ()
,uerr/2+ ,LLR27T/2+ 2¢; and (iv) for three-scatter terms,
Q= 3,uRl7r/2+ 3¢. In this example, with5,= 0.5, we have

¢=3/4.
€ The one- and two-scatter orbits are in effect combinations
of geometric and diffractive “legs” in the same trajectory,

bels(a)—(i) correspond to the scheme used to identify the peaks ijnce each encounter with the core can result in either geo-
Figs. 4 and 5. Each orbit is also identified by its correspondingmetric or diffractive scattering. The three-scatter contribution

diamagnetic orbit using the naming convention introduced in Ref
[2]. Not shown are thé€b) “uphill” and (c) “downhill” straight-

line orbits that run along the-z axis, and were denoted; and

V1 , respectively, in Ref[32].

The corresponding contribution to Gy from the one-
scatter diffractive orbit is

1/2
. 0
Sin &y sm§e

R . i(AY
TrGDlz_lsRlBlIG ® |(AR1+11-/4+60).

12

1)

(21)

In parallel field terminology the perturbed;, PO is la-

is a combination of three diffractive orbits. We stress that
these hybrid PO’s, combining diffractive and geometric core
scatters, are a unique feature of the atomic systehs to
combined Coulomb plus short-range scattexigeneric dif-
fractive billiards have pure geometric and pure diffractive
orbits, which are unrelated, and in general have different
actions.

We have found that the amplitude of a single diffractive
orbit as given in Eq(17) is weighted by a degeneragy, .
For a primitive symmetric orbit §;=6;), g,=1. For a
primitive asymmetric orbit ¢;# 6;), g,=2. We attribute
this weighting to the fact that, for each incoming Coulomb
wave, the diffracted wave provides amplitude in one or two

beled POa. In order to stress that this is not a diamagneticpossible outgoing angles, respectively.

atom, we label the PO’s as b, c, etc., in our Fourier trans-

Another key parameter is the multiplicity or degeneracy

forms. The main PO’s are plotted in Fig. 2, where both theof multiple traversals. The one-scatter orbits have a multi-

parallel field label and that for the pure diamagnetic (#@o
which the PO evolves as the electric field is switched afé
shown. For theR; (a) PO, the classical parameters are
SR1/(27T) =0.8258 m]_l: m22: 07135, m12: - 1282, and
0,= 0;=0.449r. With these parameters it is easy to show
with a pocket calculator that, for an atom widg= 0.5, the
ratio of the amplitudéTrGgﬂ from Eq.(21) to the normal-

ization amplitude |(I'rG§1|:1.321]SR1), is |TrGgl|/

plicity equal to the repetition number of the orbit. Hence for
the one-scatter contribution to theh traversal,g, ,=ng.
This is due to the number of different permutations of geo-
metric and diffractive scatters.

For example, the one-scatter contributionRg has three
possible permutations of geometric or diffractive encounters
with the core. One of these can be representedRas
+ R XR; X, whereR; + indicates a traversal of the P@y,
followed by diffraction, andR;X indicates a traversal fol-

|TrG§1|=0.152. This value is seen below to correspond aclowed by a Coulomb scatter. The other two possible permu-
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tations areR;XR;+R;X and Ry XR;XR;+. Hence, from 05 R
Eq. (17), the contribution to the trace from each one-scatter —_— 04 - (a) N 16t Order S/C |
diffractive orbit is —iSg Gg. Where, 2 4\
177 S 03} y \
12 2 02l J \
el 87 ” Oi (a8 +3m1a) s o /
QR3= B Ry SlnEe R3 . (22) 'é 0.1
m12 i‘; 0 =% N
E 245 247 249 251 253
In this caseg=1 andAR3=3SR1+ ,LLR37T/2. From the mono- 5 M 5 : p———
dromy matrix elements given above ff, we can work out g (b) T 2na Order SC
that m(123)= —1.329. This contribution has a multiplicity of = 040 S 1
3. Hence from Eq(22) we can evaluate the total amplitude k]
(normalized by the geometric amplitude Bf), which is 3 039
3|SR19R3|/|TrGgl| =0.447. The quantal value is 0.4. For im- L \
1 i 1 L L 0\ L
proved agreement, higher order diffractive scatters_mustl be 0.33'475 2477 2479 2481
included. We note, however, that the one-scatter diffractive S/on
contribution forRj; is already almost 50% of the geometric
amplitude of the first traversal. FIG. 3. Contributions from diffractive PO’s at the action of PO

In general, the number aEscatter diffractive trajectories 3a, the third repetition of the P@. PO a is the parallel field PO

contributing to thenth traversal of a PO is simply the num- Which evolves(in the limit of zero electric fiellinto the diamag-
ber of combinations, and is given by the usual binomial co-netic POR;, responsible for quasi-Landau modulations observed in
efficient: N(n,s)=n!/[(n—s)!s!]. An important conse- atomic photoabsorption specti@ Comparison between quantum

quence is that, while in the GTF theh traversal of thexth (full line) and semiclassicaldashed ling results using only one-
geometric PO is weighted by thimitive period T, (in the scatter diffractive trajectories. The results show that at this value of
unscaled caseor actionS, (in the scaled ca$ethke corre- hei=1/205, including contributions from one-scatter trajectories re-

. ) . . ) produces the quantal result to within 10—15(%.Comparison with
sponding one-scatter component is weighted byitil pe quantal amplitude#ull line) including up to two<(dashed lingand

r'Od_ Dzsk Hence for high enou_gh re_petltlon pum_bems three-scatteftdotted ling trajectories. Including the two-scatter tra-
~h even the one-scatter d|ffract|ve. contrlbuthn t?e'jectories already brings the agreement with the quantal results to
comes of the same order as the geometric PO contributionye|i within 1%. The graphs had to be magnified substantially to
For the two-scatter diffractive case, there a@—1)/2  show any difference between the semiclassical result including
possible trajectories. Hence this component will be signifithree-scatter orbits and the quantal amplitude.
cant forn>~#~1. We conclude that multiple traversals of
PO’s will also have significant two-scatter components for a
sufficiently high number of traversals. In the case of fye
orbit, the two-scatter orbits have a multiplicity(3,2)=3.
Their total contribution to TGy is equal to

The final and smaller contribution ®3, the three-scatter
term, has a multiplicityN(3,3)=1. Hence its contribution is
equal to

—i39%Sg Gr Or,. (23 Sr,
—i FgngngRl- (24
Here g=1. Since m(1§2)=—1.8298, we can evaluate

3|Sg Or,0r,|/|Tr G| =0.0764. We have tested the counting algorithm by including suc-
This contribution is dephased byz24 relative to the one- cessively the contributions from one-, two- and three-

scatter diffractive contribution of 0.447. However adding scattering trajectories at a scaled action correspondiiiy;to

these values with the correct dephasing is easily shown tthe results for a nonhydrogenic atom with a single quantum

yield a value very close to the quantal peak.4 shown in  defectd,=0.57 in the|=0 channel are shown in Fig. 3.

Fig. 3. For this particular example, Maslov indices scale with  In Fig. 3(@ we compare the resulting quantum amplitude

the traversal, i.e.ur + ug.= ug.. But this is not generally Wwith the first-order semiclassical result obtained using Eg.

1 2 3 . . . .

the case. Although the total number of two-scatter core{22): At this value offi¢=1/205, single-scattering trajecto-

shadowing corrections is alwag§(n,2), for detailed studies €S (dashed ling reproduce the quantum amplitudéull

of higher traversals it is not possible to simply weight one!in€ to within 10-15%. Figure &) shows the results of

expression such as E€3) by a multiplicity, N(n,2), since including second- and third-order terms, for which the con-

in general there will be different combinations of two orbits. {fibutions to TiGp are given by Eqs(23) and (24), respec-
For example, if we were considering the two-scatter correctively, in the sem|cla§S|caI calculat!on. Including the secqnd—
tion to Rg we would haveN(6,2)=15 contributions. How- order termgdashed Im_}salready b_rlngs the agreement with
ever, six of these would involvég Gx terms, another six the quanta_l resultéull line) to_ W|th|r_1 1%. When third-order

. 2004 . terms are included, the semiclassit@btted ling and quan-
would involve gngRs terms, and three would involve tal amplitudes agree almost exactly. The excellent agreement
Ur,0r, terms. These three groups have different phases, s@r the third-order terms seen in Fig(t3 strongly supports

care must be taken when combining them. our counting algorithm.
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0.8

This is in contrast to the closed orbit result for nonhydro-
genic photoabsorption spectra, where it was shown that the
core-shadowing terms only alter the phase of the primitive
orbit contributions while leaving their amplitudes un-
hi changed. The peaks labelbd-, at S/(27)=0.88, andc+,

at S/(27)=0.96, are the core-shadowed contributions to the
“uphill” ( Vi) and “downhill” (V) orbits, respectively.

As can be seen by comparing E¢&7) and(18), the diffrac-

tive contributions to both of these orbits ad§%?), smaller
than those for orbits withg;#0 or 7. Hence peakd+

(a) Quantum

|Fourier Transform| (arbitrary units)

(b) Semiclassical and c+ are considerably smaller than that of tRe orbit
0.8 ‘ : ‘ ; ata+
0 1 2 3 4 5 C. . .
S/2n In Fig. 5(b) we show the region of scaled action close to

the contributions from the second repetitions of the oraits

for all periodic orbits up to the scaled acti®®27=5, including all E andc [1'5$S/(.27T) s?_O]_ Again, .the qgreement between

orders of scattering. The agreement is excellent except where bifuguantal and _semlcla_lssmal calculations 'S_?Xce"ent' nge the

cation effects are significant. Labeled peaks correspond to the clatrgest contribution is to the second repetition of Beorbit

sical periodic orbits shown in Fig. 2. at S/(27)=1.65. This contribution consists of two terms:
2a+ anda+a+ of O(%Y? and O(#), respectively. The

However, two-scatter combination orbits will proliferate P&k at the second repetition of the downhill orbit at
sufficiently rapidly to ensure that their contribution is not S/(27)=1.92is larger than might be expected given that the
semiclassically vanishing relative to the primitive geometricterms Z+ andc+c+ are O(%) and O(%?), respectively.
PO’s. For an integrable system, the total number of PO'diowever, here there is also @{#i?) contribution from the
grows polynomially with the period, a3? in our two- V% orbit (labeledd+). The inset shows a further magnifica-
dimensional system and & in the scaled case. The total tion of the region 1.%S/(27)<1.84, where two further
two-scatter combination orbits can easily be shown to prolif-small peaks can be seen: one at the second repetition of the
erate asT* (or S%). Hence their contribution, relative to that uphill orbit at S/(27)=1.76, and a second, purely core-
of the geometric PO's, for sufficiently long periods or ac- Scattered peak, arising from a combination of contributions
tions, does not vanish. from theR; (a+) and downhill ¢+) orbits.

The rules for obtaining multiplicities of two-scatter con-  Figure 5c) magnifies the region 32S/(27)<3.9. Over-
tributions of different orbits are analogous to those usedll, the quantum-semiclassical agreement is very good. A
above for the multiple traversal84]. Below, we apply these close inspection, however, reveals two small discrepancies.
rules for accumulating phases and multiplicities in our semifor the peak at the fourth repetition8f [ S/(27)=3.3] the
classical calculations for the range<®/(27)<5 and com-  semiclassical result overestimates the quantal result by about
pare them with quantal calculations. 50%. This is due to then,, term that appears in the ampli-
tude being close to zero for the4 contribution. This leads
to a singularity in the semiclassical amplitude of this term.
Such a phenomenon occurs when the classical orbit under-

The main result of this paper is shown in Fig. 4, where wegoes a bifurcation, in which case its winding number is
compare quantal and semiclassical results for the total difnearly rational. Here the winding number for tRe or a PO
fractive component up to actio®27=5. As in Fig. 3, we s close to 1/8.
coherently subtract the Fourier transformed quantal spectra It is interesting to note that a given bifurcation can mani-
for 6,=0.57 from the hydrogenic result, so we compare fest itself at different actions in the diffractive and geometric
only the diffractive quantal and semiclassical result. Thecontributions. For the geometric contribution, the amplitude
overall agreement is excellent. Indeed, on the scale of this proportional to IyTrM—2, and will be unphysically
figure, there are barely any discernible differences betweelarge for the eighth repetition of the orbit when the winding
the quantum and semiclassical diffractive contributions. Thenumber of the primitive orbit is 1/8. For the diffractive con-
labeled peaks indicate diffractive contributions at scaled actribution, on the other hand, the amplitude is proportional to
tions corresponding to the short classical periodic orbits ofl/\ym,,, and will be divergent for the fourth repetition of the
the hydrogen atom in parallel fields; the shapes of these olrbit. This particular large diffractive peak at the action of

FIG. 4. Comparison between quantum and semiclassical resul

VI. RESULTS

bits were shown in Fig. 2. 4a is due to an asymmetric closed orbit, which appears at
In Fig. 5 we magnify selected regions of Fig. 4 in order tohalf the period of &.
further demonstrate the agreement. Figu@@ Shows a mag- A similar small discrepancy in the diffractive amplitudes

nification of the spectra in the region 0Z%/(27)<1.0. In  is also seen for the peak &f(27)=23.57, which has been
this region, we see three peaks corresponding to the diffradurther magnified in the right-hand inset. Again, this small
tive contributionsa+, b+, andc+. For each of the peaks, difference between quantal and semiclassical results can be
the semiclassical result in the lower panel agrees almost peattributed to a bifurcation in the underlying classical dynam-
fectly with the exact quantum result in the upper panel. Herécs.

we see that the core-shadowing terms give rise to large con- Finally, a magnification of the region 4.8%5/(2w)
tributions at scaled actions of the primitive periodic orbits.<4.2 is shown in Fig. &l). Again, the unphysically large
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FIG. 5. Magnification of parts of the spectrum presented in Fig. 4. Shown are the régiond5<S/(27)<1.0; (b) 1.5<S/(27)
<2.0;(c) 3.2<S/(2mw)=<3.9, and(d) 4.05<S/(27)<4.2. The figure shows that diffractive orbit contributions are described with extreme
accuracy. For completeness we indicate and include all possible scattering combinations contributing to each peak although, clearly, the
contribution of fourth and higher scattering combinations, for these low actions, is extremely small.

value of the diffractive amplitude for thead+ contribution seems clear that, for sufficiently long time scales, such dif-
leads to the semiclassical result overestimating the quanturfractive effects can persist in the—0 limit. Hence under-
this time by about 10%, for the peak &((27)=4.125. standing how the proliferation of diffractive orbits suffi-
However, again the agreement between the quantal anglently outpaces, at any order, the proliferation of geometric
semiclassical spectra is remarkable, especially bearing iftajectories to maintain their contribution, &—0, is an
mind that the peak &/(27)=4.125 is made up of no fewer interesting and topical question.

than seven different contributions; this in fact represents the | this study we focused on the near-integrable atomic

most challenging situation we have considered to date. regime. The combination of Coulomb and short-range scat-
tering introduces interference effects that to our knowledge
VIl. CONCLUSIONS have not been seen in typical systems such as billiards with

short-range scattering.

We have shown that the spectra of atoms in parallel fields Previously, we presented a model which gave diffractive
provide an interesting illustration of the effects of diffractive corrections for a diamagnetic atom. However, the proper way
PO’s in a real system. Features like the core brightening antb count contributions from higher-order scatterings, multiple
core shadowing as well as the hybrid diffractive and geometrepetitions, and combinations thereof remained unclear. We
ric scatter PO’s are unique features of the atomic core scatave extended the model to account for harmofiicgor-
tering, and are needed to describe the quantum results acdant in the stable regimeand have tested this on atoms in
rately. parallel fields. The physics is not drastically different from

Until quite recently, it seemed apparent that diffractivethe diamagnetic case, but the different symmetry and the fact
orbits represented-dependent corrections to periodic orbit that the important quasi-Landau orbR{ or a and its rep-
effects which vanished in the semiclassical limit. Now it etitions no longer lies on the symmetry boundary provides a



PRE 62 ATOMS IN PARALLEL FIELDS: ANALYSIS WITH . .. 6397

strong test of the general validity of the model. We have ACKNOWLEDGMENTS
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