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Spatiotemporal stability of one-way open coupled nonlinear systems
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The present paper investigates the spatiotemporal stability of homogeneous solutions in one-way open
coupled nonlinear systems. We show thatlhenorm concept, which has been used as an important index in
the field of robust control theory, allows us to grasp the mechanism of spatial instability in coupled systems.
Spatial instability occurs only when the,, norm of the transfer function of each site is greater than 1. It is
shown that numerical simulations for one-way open coupled double scroll circuits are in good agreement with
our theoretical results.

PACS numbses): 05.45.Ra, 05.45.Xt

I. INTRODUCTION Il. ONE-WAY OPEN COUPLED NONLINEAR SYSTEMS

. . . . . . Let us consider a one-way open coupled nonlinear system
Chaotic behavior and bifurcations in nonlinear systems y op P y

have been widely studigd.,2]. Several types of bifurcation %(1)=fx(i)+b{x,(i—1)—x; ()} (i=1,2,..N)

have been investigated from many points of vigi Bifur- (2.2
cations occur in continuous-time nonlinear systems when at
least one of the eigenvalues of the Jacobi matrix around where  x(i):=[X1(i) Xo(i) - - Xn(i)] e R is the

fixed point intersects the imaginary axis in the complexn-dimensional system state of th¢h lattice site and:R"
plane. The bifurcation type depends on the crossing points;R" is an n-dimensional nonlinear function. The coupling
where the eigenvalues intersect the imaginary axis. Furthekector is b=[¢0---0]"e R", where ¢ is the coupling
more, the location of the eigenvalues is a unique criterion foktrength. Figure 1 illustrates a one-way open coupled nonlin-
classification of the fixed-point type. We may, therefore, reaear system. If the upper boundaxy(0) is fixed atx;;, a
sonably conclude that the fixed points of nonlinear systemgomogeneous solution of systeh1) is given by

have been examined using the eigenvalues of Jacobi matrix.

Recently, the dynamics of spatially extended nonlinear sys- [X(1) X(2) -+ x(N)]=[Xs X¢ = X¢], (2.2
tems has gained much attention in the field of nonlinear sci-

ence. The dynamics of extended systems is too complicateghere

to analyze the bifurcations and stability theoretically. Thus

most studies on bifurcations and stability have used com- Xe=[Xs1 Xp *°* X¢n] e R (2.3
puter simulations instead of theoretical approaches.

Coupled map latticeéCMLs) have been particularly in- The fixed pointx; of each site satisfief(x;)=0. We shall
vestigated by many researchers, since they exhibit a wideonsider the spatiotemporal stability of homogenous solution
variety of complex spatiotemporal behav[di. CMLs have (2.2 in Sec. lll.
discrete time, discrete space, and continuous-state variables.

The one-way open CML is well known as a typical open . STABILITY ANALYSIS

flow model[5—8]. Kaneko discovered that spatial instability

occurs in the one-way open CME], and it has been exam- For simplicity, we focus on the dynamics of thié lattice
ined in detail by numerical simulatiof6,7]. Yamaguchi in-  Site. Assume that the dynamics of the upper dites, the 1,
vestigated the instability and derived the bifurcation condi-2, ..., {—2)th lattice site$ has already converged to the
tions [9]. Konishi, Kokame, and Hirata examined the homogeneous solutidne., x(m)=x;, m=1,2,....(—2)]. If
mechanism of the instability by using ti&, norm concept the (i —1)th andith lattice site states(i —1) andx(i) are in
of control theory[10]. Johnson, Loher, and Hunt found a the neighborhood of the fixed poirt, then the dynamics of
spatial period-doubling bifurcation in one-way open coupledtheith lattice site is governed by

diode resonator circuitgl1]. However, it remains an open

question how to clarity the mechanism of spatial instability y(i)=Ay(i)+by,(i—1),
in one-way open couplecbntinuous-timeonlinear systems.
The present paper investigates the spatiotemporal stability y(i)=cy(i), (3.1
of a homogeneous solution in one-way open coupled
continuous-time nonlinear systems. The spatiotemporal sta . Site 1 Site 2 s Site i o

- . . . . . x1(0) m x(2) xi(i
bility has two criteria: the eigenvalues of the Jacobi matrix ™ P T P e 2 )= A
(i.e., the poles of a transfer functipand theH., norm of a - B -
transfer function. In order to confirm our theoretical results,

we simulate the one-way open coupled double scroll circuits FIG. 1. Block diagram of one-way open coupled nonlinear
proposed if12]. system.
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Site 1 Site 2 Site i an upper site, the lower sites are significantly influenced by
Yo(s) Yils) Yals)  Fials) Yils) the signal. For caséi), the influence of the added signal at
—3 G G6) f>eee—3 GO f—>... the upper sites is constant for all the sites.

For real systems with external noise or for numerical sys-
tems with round-off error on computers, we have to investi-
gate spatial robustness for alle R. In order to simplify the
discussions below we introduce thie, norm concepf{13].

FIG. 2. Frequency domain block diagram around the homoge
neous solution.

where Definition 1 Assume that a transfer functioB(s) is
stable. TheH., norm of the transfer functio®(s) is given
y(i)=x(D) =xe=[ys(i) ya(i) - ya(H], by [13]
- 0 -+ 0 IG(S)|l..=suplG(jw)].
welkR
af(x) 0O 0 - 0
As= IX + N ¢=[1 0 - O]. Roughly speaking, thél,, norm is the peak gain of the

X=X bode diagram o6(s). We note that théd.. norm concept is

useful in defining spatial stability; hence, we give a simple
definition of the spatiotemporal stability of homogeneous so-
lution (2.2) in one-way open coupled nonlinear systems.
Definition 2 The spatiotemporal stability of homogeneous
solution (2.2) in one-way open coupled nonlinear system
Yi(s)=G(S)Y;_4(s), 3.2  (2.))is classified into the following three type$) If G(s) is
unstable(i.e., at least one eigenvalue of system makixs
where in the open right half of the complex planét is temporally
unstable(TU). (i) If G(s) is stable and|G(s)|..<1, it is
Yi(s):=L[y1(1)], Yi-1(s)=Ly.(i—1)], temporally spatially stabléTSS. (iii) If G(s) is stable and
|G(s)||.>1, it is temporally stable and spatially unstable
G(s)=N(s)/D(s). (TSSV.
This definition can be regarded as a continuous-time ver-
sion of the spatiotemporal stability introduced in Réf0]
If solution (2.2) is TU, we can observe the oscillation for
) ) X _ all sites. On the contrary, if it is TSS, no sites oscillate. If it
theith lattice statex(i) converges orx; only whenG(s) iIs s TSSU, some upper sites never oscillate. However, the
stable(i.e., all the eigenvalues of the system matidie in  gise ot the upper sites induces oscillation in the lower sites.
the open left half of the complex planeFigure 2 sketches  Thjs is hecause a tiny external noise or a round-off error on
the block diagram of the coupled linear systé32). Letus 5 computer at an upper site significantly disturbs the lower

assume that thei ¢ 1)th lattice site is disturbed a& (i gjtes. Hence, the lower site statds) cannot keep staying on
—1)=Xs1+Yy1(i—1), where the small disturbance is set as,

y1(i—1)=38i_1 sinwt. Then theith lattice site is given by In order to check the stability of homogeneous solution

Note that the input and output of systdthl) arey;(i—1)
andy,(i), respectively. In the frequency domain, the input-
output relation of systen(3.1) can be described as

L denotes the Laplace transfer functioi(s) andD(s) are
polynomials. The derivation of Eq3.2) is given in the Ap-
pendix. If the {—1)th lattice site is fixed ak(i —1)=x,

x1(1) =X +y1(i), wherey,(i)= 6 sin(wt+¢). The ampli- (2 5 we have to estimate the eigenvalues of maiand
tude ratio ofé; to 6, can be described as the H,, norm of G(s) in advance. For coupled high-
5 dimensional nonlinear systems, the analytical estimation of
—=|G(jw)|. the eigenvalues and the norm is not easy; however, a soft-
Oi-1 ware packaggl4] allows us to obtain a numerical estimation

of the eigenvalues and norm by simple commands. For ex-

?ﬁppose"thgt all .Z't? ds_tatesb converge tg thg dﬂ):jed Fl’q'm ample, the eigenvalues and the norm can be estimated by the
e small sinusoidal distur ana, sin ot Is added only to commandssPOL and NORMINF, respectively.
the pth lattice site; the influence of the disturbance can be

observed ag, sin(wt+¢) at theqth lattice site. The ampli-

tude ratio Of5q to 5, is given by IV. ONE-WAY OPEN COUPLED DOUBLE SCROLL

CIRCUITS
ﬁ =|G(jw)|9P (3.3 We shall consider the one-way open coupled double scroll
Sp ’ ' circuits proposed by Kapitaniak, Chua, and Zh¢thg] as a

numerical example. They reported experimental observation
where g>p. Now consider the following three case(i)  of hyperchaotic attractors in the coupled circuits. In our pa-
IG(jw)|<1, (i) |G(jw)|=1, (iii) |G(jw)|>1. For casdi),  per, we investigate the spatiotemporal stability of the homo-
the amplitude ratio decreases about exponentially with ( geneous solution of the coupled circuits. The simple dimen-
—p) [see Eq.(3.3)]. Therefore, if a sinusoidal signal with sjonless state equation of the circuit] can be written as
angular frequencyw is added to an upper lattice site, the
signal has little effect on lower sites. For cdgg), the am- X1(1)==Xq(1) +X5(1) +X3() + e{x1(i — 1) —x4(i)},
plitude ratio increases about exponentially with-(p). If a
tiny sinusoidal signal with angular frequenayis added to Xo(1) = af{x1(1) —Xxo(i) —h(x5(1))}, 4.7
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FIG. 3. Bode diagranfa) and impulse respongb) of G(s) for

a=6.5.

time t

X3(i) == Bxa(i),

for i=1,2,...N. The nonlinear functiom(x,(i)) is

h(xa(i))=

bx,(i)+a—b
axy(i)
bx,(i)—a+b

if X,(i)=1
if |x,(i)]=1,
if Xo(i)<—1

.Site8'

960

980
time t

FIG. 4. Behavior of four sites foivr=6.5

time t
FIG. 5. Bode diagranfa) and impulse respongb) of G(s) for
a=17.0.

Our analysis will be based on the dynamidsl). Each cir-
cuit has three fixed points:

0 0 0
e Y A LI R R
-\ 0 +A

wherex =(b—a)/(b+1). Let us consider the stability of the
following homogeneous solution:
[x(1) x(2) -

X(N)]T:[X(fﬂ ng) X(f“]T_

(4.2
The upper boundary,(0) is set at
X1(0)=0+ 5o (1),
where—1=<o¢(t)<+1 is the uniform random noise angis

the small noise level. The error dynamics around homoge-
neous solutior(4.2) is

Site5 Site 8 Site 11
o 0
Site 13 Site 30 Site 50
2.0F o o
s
>
1.0f 1t 1
04 00 0.4

xy() ——————>

FIG. 6. Trajectories in the phase plane o+ 7.0.
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2| Site 1 2| Site 5 2| Site 8

(i)
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X)) ———————

FIG. 7. Trajectories in the phase plane for7.5.

yu(i)] | ~1-e 1 L ya(h
Vo(i)|=| « —a(b+1) Of|y,(i)
ya(i) .y 0 o] Lya(i)
&
+| 0y, (i—1),
0
ya(i)
yi(i)=[1 0 0] y2i)|.
y3(i)

We note that this dynamics corresponds to systgr). The
transfer function fromy,(i—1) to y,(i) is given by G(s)
=N(s)/D(s). The polynomials areN(s)=es’+ase(1
+b)s and D(s)=s%+ p3s®+p,S+p;, Where p;=aB(1
+b), p,=ab+B+ae(l+b), p3=1+e+a(l+b). The
Routh-Hurwitz stability tesf15] allows us to obtain the nec-
essary and sufficient condition f@(s) to be stable, that is,

p1>0, p3>0, pzp3—p:;>0. (4.3
Our example employs the famous parameféf
a=-%, b=-% p=14+3,

The noise level at the upper boundary is sepasl0 2. The
coupling strength is fixed at=0.1. Now we shall check the
stability of homogeneous solutidd.2) for three cases: «
=6.5, 7.0, and 7.5.

For the casew=6.5, we derive the polynomialsl(s)
=0.1s?+0.1858 and D(s)=s%+2.957K+9.8286
+26.5306. It is confirmed that;, p,, andp; satisfy stabil-
ity condition (4.3). We estimate||G(s)|..=0.6029 by the
software[14], then we note that the solution is TSS from
Definition 2. In order to confirm the stability obtained above,
we show the bode diagram and the impulse respon&H &f
in Fig. 3. Since the peak gain @&(s) is less than 1 and the
impulse response db(s) is stable, we see thdG(s)|.. is

less than 1 an(s) is stable. Figure 4 illustrates the behav-
ior of the first, second, fourth, and eighth sites. The first site
X1(1) is disturbed by the noise of the upper boundary. The
influence of the disturbance decreases about exponentially
with the site number. At the eighth site, we observe little
influence of the upper boundary noise.

For the casex=7.0, we deriveN(s)=0.1s’+0.2s and
D(s)=s%+3.1s>+9.485%+ 28.5714. The coefficientp,,
po, and py satisfy stability condition(4.3). We estimate
|G(s)||..=1.9094; then we see that the solution is TSSU.
Figure 5 shows the bode diagram and the impulse response
of G(s). It is confirmed that|G(s)||.. is greater than 1 and
G(s) is stable. The trajectories in the phase plane for sites 5,
8, 11, 13, 30, and 50 are shown in Fig. 6. It can be seen that
the tiny noise at the upper boundary significantly disturbs
lower sites, and causes oscillation in the lower sites.

For the casex=7.5, the polynomials aré&(s)=0.1s?
+0.2143 and D(s)=s+3.242%2+9.142%+ 30.6122.
The coefficientg,, p,, andps do not satisfy stability con-
dition (4.3), and we see that the solution is TU. The trajec-
tories in the phase plane for the first, fifth, and eighth sites
are shown in Fig. 7. As one can see, the upper edgéiste
the first site oscillates with large amplitude, while we cannot
observe an upper edge oscillation in the TSS and TSSU re-
gimes.

V. CONCLUSIONS

We have investigated the spatiotemporal stability of a ho-
mogeneous solution in one-way open coupled continuous-
time nonlinear systems. The main result obtained is as fol-
lows: spatial instability in one-way open coupled continuous-
time nonlinear systems is clarified by the, norm of each
site transfer function. It should be noted that our theoretical
results do not depend on the system dize., number of
siteg or the dimension of sites.

APPENDIX
The Laplace transform of syste(8.1) is given by
sY(s)=AY(s)+bY,;_4(s), (Ala)
Yi(s)=cY(s), (Alb)
whereY(s)=L[y(i)]. Equation(Ala) can be described as
Y(s)=(sl—A)~bY,(s). (A2)

From Egs.(Alb) and (A2), we can obtain systeni3.2),
whereG(s)=c(sl,—A) !b.
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