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Emergence of quantum chaos in the quantum computer core and how to manage it
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We study the standard generic quantum computer model, which describes a realistic isolated quantum
computer with fluctuations in individual qubit energies and residual short-range interqubit couplings. It is
shown that in the limit where the fluctuations and couplings are small compared to the one-qubit energy
spacing, the spectrum has a band structure, and a renormalized Hamiltonian is obtained which describes the
eigenstate properties inside one band. Studies are concentrated on the central band of the Ctromiter
with the highest density of states. We show that above a critical interqubit coupling strength, quantum chaos
sets in, leading to a quantum ergodicity of the computer eigenstates. In this regime the ideal qubit structure
disappears, the eigenstates become complex, and the operability of the computer is quickly destroyed. We
confirm that the quantum chaos border decreases only linearly with the number of guaiteough the
spacing between multiqubit states drops exponentially witiThe investigation of time evolution in the
guantum computer shows that in the quantum chaos regime, aniceahteracting state quickly disappears,
and exponentially many states become mixed after a short chaotic time scale for which the dependence on
system parameters is determined. Below the quantum chaos border an ideal state can survive for long times,
and an be used for computation. The results show that a broad parameter region does exist where the efficient
operation of a quantum computer is possible.

PACS numbdps): 05.45.Mt, 03.67.Lx, 24.10.Cn

[. INTRODUCTION also shown by Grovdi8] that searching for an item in a long
list is parametrically much faster on a quantum computer.
During the last decade, remarkable progress has beerhe recent development of error-correcting cod@slO]
achieved in the fundamental understanding of the main eleshowed that a certain amount of noise due to external cou-
ments necessary for the creation of a quantum computepling could be tolerable in the operation of a quantum com-
Indeed, as stressed by Feynniiah classical computers have puter.
tremendous problems to simulate very common quantum All these exciting developments motivated a great body of
systems, since the computation time grows exponentiallexperimental proposals to effectively realize such a quantum
with the number of quantum particles. Therefore, for suchcomputer. They include ion tragd1,12, nuclear magnetic
problems it is natural to envision a computer composed ofesonance systemid3], nuclear spins with interaction con-
quantum elementgqubit9 which operate according to the trolled electronically[14,15 or by laser pulse$16], elec-
laws of quantum mechanics. In any case, such devices will itrons [17] or excitons[18] in quantum dots, Cooper pair
a sense be unavoidable since technological progress will ledsbxes|[19], optical latticed 20] and electrons floating on lig-
to chips of smaller and smaller size which will eventually uid helium[21]. As a result, a two-qubit gate was experi-
reach the quantum scale. At present a quantum computer mentally realized with cold iong22], and the Grover algo-
viewed as a system of qubits (two-level quantum systems rithm was performed for three qubits made from nuclear
with the possibility of switching a coupling between them onspins in a molecul§23]. However, to have a quantum com-
and off (see the detailed reviews in Ref@—4]). The opera- puter competitive with a classical one will require a much
tion of such computers is based on reversible unitary trandarger number of qubits. For example, the minimal number
formations in the Hilbert space, whose dimenshag=2"is  of qubits for which Shor’s algorithm will become useful is of
exponentially large im. It was shown that all unitary opera- the order ofn=1000[4]. As a result, a great experimental
tions can be realized with two-qubit transformatidms6). effort is still needed to achieve quantum computer realiza-
This makes the existence of a coupling between qubits nedion.
essary. Any quantum algorithm will be a sequence of such A serious obstacle to the physical realization of such com-
fundamental transformations, which form the basis of a newputers is quantum decoherence due to couplings with the
guantum logic. external world, which gives a finite lifetime to the excited
An important next step was the discovery of quantumstate of a given qubit. This question was discussed by several
algorithms which can make certain computations much fastegroups for different experimental qubit realizations
than on a classical computer. The most impressive of these j4,6,24,25. The effects of decoherence and laser pulse shape
the problem of factorization of large numbers in prime fac-broadening were numerically simulated in the context of
tors, for which Shor constructel] a quantum algorithm Shor’s algorithm[26,27], and shown to be quite important
which is exponentially faster than the classical ones. It wasor the operability of the computer. However, in a number of
physical proposals, for example nuclear spins in two-
dimensional semiconductor structures, the relaxation time
*ULR: http://w3-phystheo.ups-tise fridima due to this decoherence process can be many orders of mag-
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nitude larger than the time required for the gate operatiomquantum computer can be operated below the quantum chaos
[2,14,15,25, so that there are hopes of managing this ob-border, when noninteracting multiqubit states are very close
stacle. to the exact quantum computer eigenstates. For example, at
Here we will focus on a different obstacle to the physicaln=1000 andA,~1 K, the critical residual interaction i
realization of quantum computers that was not stressed up to 1 MK, compatible with the proposal discussed abjd.
now. This problem arises even if the decoherence time i¥Ve note that for other experimental proposals the value of
infinite and the system is isolated or decoupled from thedo Might differ (e.g., 1 eV for excitons in semiconductor
external world. Indeed, even in the absence of decoheren@/antum dotg18]), and will accordingly lead to different
there are always imperfections in physical systems. Due t§eduirements for the residual interaction.

this the spacing between the two states of each qubit will " the present paper, we study in more detail the transition
fluctuate in some finite detuning interval Also, some re- to chaos, and how it affects the time evolution of the system.

sidual static interactiod between qubits will be unavoidably The effects of residual interaction in the presence or absence

resentwe point out that an interqubit coupling is required of fine fluctuations of individual qubit energy spacing are
F rat tE tpsExtensive stu%lies of mpan g—bod (?nter- analyzed in great detail. The paper is arranged as follows. In
O operate the ga ens ! y y Sec. Il we describe the standard generic quantum computer
acting systems, such as nuclei, complex atoms, quantu

. MUodel, introduced in Ref40]. In Sec. Ill, we present the
dots, and quantum spin glas4@8-37, showed that generi- oqits of numerical and analytical studies of eigenenergies

cally in such systems interaction leads to quantum chaognq eigenstate properties of this model. Section IV is de-
characterized by ergodicity of the eigenstates and level spagyted to the analysis of the time evolution of this system, and
ing statistics as in random matrix thedi§8,39. In a sense  typjcal time scales for the development of quantum chaos are

the interaction leads to dynamical thermalization Withoutpresented as a function of the System parameters_ We end
coupling to an external thermal bath. If the quantum com-some concluding remarks in Sec. V.

puter were in such a regime, its operability would be effec-
tively destroyed since the noninteracting multiqubit states
representing the quantum register states will be eliminated
by quantum ergodicity.

In this respect, it is important to stress that the residual In Ref. [40] the standard generic quantum computer
interactionJ will unavoidably be much larger than the en- (SGQQ model was introduced to describe a systemnof
ergy spacing\,, between adjacent eigenstates of the quantungubits containing imperfections which generate a residual
computer. Indeed, the residual interactidnis relatively  interqubit coupling and fluctuations in the energy spacings
small, so that alN,; computer eigenenergies are distributedbetween the two states of one qubit. The Hamiltonian of this
in an energy band of sizRE~nA,, whereA is the average model reads
energy distance between the two levels of one qubit,raisd
the total number of qubits in the computer. As a conse-
quence, the spacing between multiqubit states Ais H:Z Fi"iZJriij Jijotof, @
~AE/Ny~nAg2 "<A,. Let us consider a realistic esti-
mate forA, andJ for the case witm=1000, as required for  \yhereq; are the Pauli matrices for the qubjtand the sec-
Shor’s algorithm to be useful. Fako~1 K, which corre-  ong sum runs over nearest-neighbor qubit pairs on a two-
sponds to the typical one-qubit spacing in the experimentajimensional lattice with periodic boundary conditions ap-
proposalg 14,15, the multiqubit spacing becomes,~10°  pjied. The energy spacing between the two states of a qubit
x271°A~1072%8 K. This value will definitely be much is represented by’; randomly and uniformly distributed in
smaller than any physical residual interaction. In the case ofhe interval[ A,— 8/2,A,+ 6/2]. The detuning parametet
Ref. [15], for example, with a distance between donors of gives the width of the distribution near the average valye
=200 A and an effective Bohr radius e5=30 A [Eq.(2)  and may vary from 0 ta\,. Fluctuations in the values dF
of Ref.[15]], the coupling between qubitspin-spin interac- appear generally as a result of imperfections. For example, in
tion) is J~Ay~1 K. By changing the electrostatic gate po- the framework of the experimental proposild,15, the de-
tential, the effective electron mass can be modified up to @uning § will appear for nuclear spin levels as a result of
factor of 2. Sincelox(r/ag)®%exp(—2r/ag)/ag, andag is in- local magnetic fields and density fluctuations. For electrons
versely proportional to the effective mass, this gives a minifloating on liquid helium21], it will appear due to fluctua-
mal residual spin-spin interaction 310> K>A,. Inthis  tions of the electric field near the surface. The couplidigs
situation, one would naturally and naively expect that levelrepresent the residual static interaction between qubits which
mixing, quantum ergodicity of eigenstates, and chaos are uns always present for reasons explained in Sec. I. They can
avoidable, since the interaction is much larger than the eneriginate from spin-exciton exchand#4,15, Coulomb in-
ergy spacing between adjacent levels>QA,,). teraction[11], dipole-dipole interactiof21], etc. To catch

In spite of this natural expectation, it was shown recentlythe general features of the different proposals, we chgse
in Ref.[40] that in a quantum computer the quantum chaosandomly and uniformly distributed in the interviat-J,J].
sets in only for couplings exponentially stronger tha,.  We note that a similar Hamiltonian, but without coupling or
In fact, it was shown that a critical couplinly for the tran-  detuning fluctuations, was discussed for a quantum computer
sition to quantum chaos decreases only linearly with thebased on optical latticef20,41]. This SGQC model de-
number of qubits (for short-range interqubit couplingJ, scribes the quantum computer hardware, while the gate op-
~Ap/n. This result opens a broad parameter region where aration in time should include additional time-dependent

II. STANDARD GENERIC QUANTUM COMPUTER
MODEL
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30000 . - . use the one aE=—A,. Such a band corresponds to the

A highest density of states, and in a sense represents the quan-
Ao tum computer core. It is clear that quantum chaos and ergod-
icity will first appear in this band, which will therefore set
the limit for operability of the quantum computer. Inside this
band, the system is described by a renormalized Hamiltonian
Hp which depends only on the number of quhitsind the
dimensionless coupling/ é.
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tum chaos border in the SGQC modElg. (1)] corresponds
to a critical interactionJ.., given by

The first investigations in Ref40] showed that the quan-
A 1 A .

E/A 20 Cé
0 Je~— (3]
FIG. 1. Density of multiqubit states of Eql) as a function of
the total system enerdyfor J=0. Heren=16 andé/Ao=0.2. The  hereC is a numerical constant. This border is exponentially
two extreme bands &/Ao~ =16 contain only one state, and are |arger than the energy spacing between adjacent multiqubit
not seen at this scale. statesA,. The physical origin of this difference is due to the

_ o . _ fact that the interaction is of a two-body nature. As a result,
terms in Hamiltonian(1), and will be studied separately. At one noninteracting multiqubit statey;) has nonzero cou-

J=0 the noninteracting eigenstates of the SGQC model cajing matrix elements only with 2 other multiqubit states

be presented a$yi)=|ay, ....an), where =0 or 1 [iis is for nearest-neighbor interaction; if all qubits are
marks the polarization of each individual qubit. These are th%oupled this number becomegn—1)/2]. In the basis of

ideal eigenstates of a quantum computer, and we will caly ;antym register statds;), the Hamiltonian is represented
them quantum register states. Rb#0, these states are N0 .5 very sparse nondiagonal matrix with onlg-21 non-

longer eigenstates of the Harr_liltonian,. and the new eigensq o matrix elements by line of lengtty,= 2" (one diagonal
states are now linear combinations of different quantum regz o ment plus B coupled statés For 5~ A, all these transi-
ister states. We will use the term multiqubit states to denot(ﬁonS take place in an energy intenal oof width of order
the eigenstates of the SGQC model with interaction, but aIs%AO, since flipping two qubits changes the energy by the
for the_ ca;e]=0. . . order of =3A,. Therefore, the energy spacing between di-
While in Ref.[40] the main studies concentrated on therectly coupled states i8 ~B/2n~3A,/n. According to

case wheres is relatively large and comparable 1q), here studies of quantum chaos in many-body Systd@ 32—

we will focus on the cas@<Ao, which corresponds to the 37 44 “the transition to chaos takes place when the matrix
sﬂuapon where fluctgatlons induced by imperfections areements become larger than the energy spacing between di-
relatively weak. In this case, the unpe_rturbed energy SpeCr'ectly coupled states. This givds>A. which leads to rela-
trum of”Eq. (1) (Coc;rke;spzndmghtq]:Ok)) lsdcompqsedzzh tion (2). For the cas&<A, on which we focus here, still in

+1 well separated bands, with interband spacidg, 2An the renormalized Hamiltoniafl, the number of nonzero

example of the density of multiqubit statps=1/A, in this 1\ iy elements in one line is of the ordermfandB~ 5, so
situation is presented in Fig. 1. Sinte randomly fluctuate that A~ &/n, that leads to resul2) [42]
C , .

in an interval of sized, each band a§=0, except the ex- The transition to quantum chaos and ergodicity can be

treme ones, have a Gaussian shape with W*gﬂfﬁé The  (learly seen in the change of the spectral statistics of the
r}u_mbernof states in the bands equal to the binomial coef- gy siem. One of the most convenient is the level spacing sta-
ficient () whose value is approximately,;/n in the central istics P(s), which gives the probability of finding two adja-
bands, so that the energy spacing between adjacent multiqgant |evels whose spacing is [is,s+ ds]. Heres is the en-
bit states inside one band is exponentially smafl, ( ergy spacing measured in units of average level spacing. It is
~n¥27"8), in line with the general estimate in Sec. . well known that while the average density of states is not
In the presence of a residual interactidty 6, the spec-  sensitive to the presence or absence of chaos, fluctuations of
trum will still have the above band structure with exponen-the energy Spacings between adjacent levels around the mean
tially large density of states. Fal~d<A,, the interband yajue, determined bp(s), are sensitive to it. In the presence
coupling is very weak and can be neglected. In this situationef chaos, eigenstates are ergodic, overlap of wave functions
the SGQC HamiltoniahEq. (1)] is to a good approximation  gives a finite coupling matrix element between nearby states
described by the renormalized HamiltonianHp  and the spectral statistidd(s) follows the Wigner-Dyson
=311p HP, whereP, is the projector on th&th band, so (WD) distribution Py(s)= (ws/2)exp(ms¥4) typical of
that qubits are coupled only inside one band. We will thererandom matrices. This distributid®(s) shows level repul-
after concentrate our studies on the band neare&=t®. sion at smalls, due to the fact that overlap matrix elements
For an evem this band is centered exactly@&t 0, while for ~ between adjacent levels tend to move them away from each
oddn there are two bands centeredeat = Ay, and we will  other. Conversety, in the integrable casd&t]., the over-
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FIG. 2. Transition from Poisson to Wigner-Dyson statistics for ~ FIG. 3. Level spacing statistics for the renormalized Hamil-
the renormalized Hamiltonian of the SGQC model in the centraltonian of the SGQC model in the central band &+ 0. The sta-
band. The statistics is obtained for the states in the middle of théistics is obtained for the states in the middle of the energy band
energy band £6.25% around the centerfor n=16: J/§ (*+6.25% around the cenbeior n=15: »=0.023(histogram. Full
=0.05,7=0.99 (dashed line histogramJ/5=0.32,,7=0.047 (full curves showPp(s) and Py, (s); Np=20 andNg>1.6x 10",
line histogram. Full curves show the Poisson distributi®p(s)
and the Wigner-Dyson distributioRy(s); Np=8 andNg>1.2  in the same figure we also show the dependence of the mul-
X 10%. tiqubit spacingA, (computed numericallyon n. This defi-

nitely demonstrates that>A,,.

|ap Coup”ng matrix element between nonergodic states is The transition in the level Spacing statistics reflects a

very small. As a result, energy levels are uncorrelated, angualitative change in the structure of the eigenstates. While
P(s) follows the Poisson distributionPp(s)=exp(—s)  for J<Jc the eigenstates are expected to be very close to the

known to be valid for integrable one-particle systelra8]. quantum register statgg;), for J>J. each eigenstatipy)
In the SGQC model, we expect a transition fréu(s) at becomes a superposition of an exponential number of states
smallJ to Py(s) above the quantum chaos bordEq. (2)]. | ). It is convenient to characterize the complexity of an

An example of such a transition is shown in Fig. 2. To de-€igenstate|¢y,) by the quantum eigenstate entrof
crease the statistical fluctuations, we averaged over several — 2iWim 10gWir, whereW,, is the quantum probability to
independent realizations &% andJ;; in Eq. (1), which is the ~ find the quantum register StdW’i)z'n the eigenstatppy,) of
standard procedure used in random matrix the@§,39.  the Hamiltonian Win=[(#i|dm)|%). In this way Sq=0 if
We used up toNp=5x10* realizations so that the total |¢m) iS one quantum register statd@=<0), S;=1 if [pp,) is
statistics 1.5% 10°=Ng>1.2x 10", It is interesting to note €dqually composed of twgy;)'s, and the maximal value is
that in the limitJ/ §—«(5<J<A,) the system remains in
the regime of quantum chaos with WD statistiek3], as Iy
illustrated in Fig. 3. This means that in the absence of indi-1.0 &% A
vidual qubit energy fluctuations, the residual coupling alone ‘
leads to chaotic eigenstates. n
To characterize the variation ¢#(s) from one limiting
distribution to another it is convenient to use the parameter
7= L(P()— Pw(s))ds/ [X(Pp(s) — Pw(s))ds [33], where
Sso=0.47D . .. is theintersection point oPp(s) andPy(s).
In this way Pp(s) corresponds top=1, andPy(s) to » 05
=0. Studies of different systems have already shown thai
this parameter well characterizes the transition from one sta
tistics to the othef33,35,37,4Q Indeed, according to the
data of Fig. 4,7 changes from 1 at smallto »~0 at large
J. To characterize this transition, we chose the critical value
J. by the conditionn(J;)=0.3. The dependence afon the
rescaled coupling strengthlJ. shows that the transition be- o0
comes sharper and sharper wheimcreasegFig. 4). 0
The dependence of the critical coupling strengitton the
number of QUbitS'] is shown in Flg 5.1t cIearIy shows that FIG. 4. Dependence af on the rescaled coupling strengthl,
this critical strength decreases linearly withand follows  for the states in the middle of the energy bandrfer6 (*),9 (0),12
the theoretical borddiEg. (2)] with C~3. For comparison, (triangles, 15 (squares and 16(diamonds.
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FIG. 5. Dependence of lod{/8) (diamond$ and log(.s/4) (tri-
angles vs log(); the variation of the scaled multiqubit spacing

[log(A,/8)] with log(n) is shown for comparisoii+). The Dashed . . .
line gives the theoretical formuld.= C6/n with C=3.3; the solid SGQC modelEq. (1)] at §<A, (lower inset in Fig. 2 of

line is J.s=0.415/n; the dotted curve is drawn to guide the eye for Ref. [40]). The qu,antum eiggnstate emroﬁé{ Characterizes.
(+). Logarithms are decimal. the global properties of the eigenstates, while a more detailed

information about them can be obtained from the local den-
sity of statesp,y introduced by Wignef44]:

0.I25 J/J 0.50
c

FIG. 7. Same as Fig. 6, but on a larger scale.

S,=n if all 2" states contribute equally @,,). We average
S, over the states in the center of the energy band,Ngd
realizations ofl"; andJ;; . pw(E—E)=2 Wind(E—Ep). Q)
The variation of this averagg, as a function ofJ for m
different values ofn is shown in Figs. 6 and 7. This shows
that indeed the entrop§, grows withJ until it saturates to a
large value corresponding to an exponential number o{
mixed states. These data show that the critical coupigat
which S;=1 (two states mixedis proportional toJ.. In-
deed, Fig. 7 shows a small dispersion n&g1 whenn r
changes from 6 to 16, whild, varies by three orders of pew(E—Ej)= ,
magnitude. This is confirmed by the data in Fig. 5, which 2m((E—E;)?+I?/4)
give J.¢~0.13 andJ.~0.45/n. This result is in agreement ) ) o . o
with the result§40] obtained by direct diagonalization of the WhereI' is the width of the distribution. This expression is
valid whenT" is smaller than the bandwidtH" & \/ﬁé‘), and

The functionp,y characterizes the average probability dis-
ribution of W,,,, (see a numerical example in Fig. 3 of Ref.
40]). For moderate coupling strengthy, is well described
by the well-known Breit-Wigner distributiopy,= pgw

4

15 . many levels are contained inside this width. In this regime,
the Breit-Wigner widthl" is given by the Fermi golden rule,

Sq F=277U§pc, whereUy is the root mean square of the tran-
o0 sition matrix element, ang. is the density of directly

'&/E——EFEFEE’E% coupled states. The validity of this formula was well checked
=l in many-body systems with quantum ch486,35,36,3% In
our caseU,~J andp.~n/é, so that

Aﬁﬁ’ﬁﬁﬁﬁﬁ_ﬂ_ﬁ‘
ot J%n
oo r~ 5 5
0000
I R This dependence is confirmed by the data in Fig. 8. How-

ever, for largeJ, whenT > né, the shape opy, becomes
non-Lorentzian, and is well fitted by a Gaussian distribution.
The width of this modified distribution grows lik& ~J.
'J/Jo 2 This scaling naturally appears in the lindit 0, J<A,, since
the noninteracting part of the Hamiltonian is simply a con-
FIG. 6. Dependence of the quantum eigenstate ent®pygn  Stant commuting with the perturbation. The change from one
J13, for n=6(*), 9 (0), 12 (triangles, 15 (squarel and 16(dia-  dependence to the other takes placelfers/n'*. Above this
monds; 1.5X 10°=Ng>1.2x 10, limit T" is still weakly dependent on the number of qubits
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FIG. 8. Dependence of the Breit-Wigner widkhon the cou-
pling strengthd for n=15 for the states in the middle of the energy  FIG. 9. Melting of the quantum computer core generated by the
band. The straight lines show the theoretical dependfBage(5)] interqubit coupling. Grayness represents the level of quantum
with T'=1.33%n/ 6 and the strong coupling regime wilh~J; Np eigenstate entrop$,, from gray S~ 12) (top) to black (S;=0)
=20. Logarithms are decimal. Lower inset: example of the local(bottom). The horizontal axis is the scaled enei#s of the com-
density of statepyy [Eq. (3)] for J/§=0.08; the full line shows the puter eigenstates in the central band counted from the band bottom
best fit of the Breit-Wigner formiEq. (4)] with I'=0.105. Upper  to the top €/ 5~ = \/n). The vertical axis is the value df &, vary-
inset: example of the local density of stateg [Eq. (3)] for J/§  ing from 0 to 0.5. Here=16, J./5=0.22, and one random real-
=0.4; the full line shows the best Gaussian fit of widtk0.645.  ization is chosen. A color figure is available on http://xyz.lanl.gov/

format/quant-ph/0005015 .

_ it is natural to analyze how they evolve in time. Indeed, if at
We expect that fod> 6 the energy width of one band I3  timet=0 an initial state in(t=0)>=|¢i0>, corresponding
N_J\/ﬁ_(a” effective frequency of the sum nfRabi frequen- g the quantum register staitg then with time the probabil-
cies with random signsand have checked this law numeri- ity will spread over the register and at a tirthe projection

cally for 5=0 (data not shown probability on the register stafe;) will be
According to the results obtained from many-body sys-

tems[35], the number of quantum register states mixed in-
side the widthl" is of the order of"p,,, and is exponentially
large. However, this assumes tlat J., and that the system
is already in the quantum chaos regime. In this case the
quantum eigenstate entrofg is large[S,~ log(I'p,)~nl,

and the operability of the computer is quickly destroyed,
since many quantum register states become mixed. The pic-
torial view of the quantum computer melting is shown in Fig.
9. This image is qualitatively similar to the one in Rp0]

(Fig. 5 there, which was obtained for the SGQC model at
6=A,. In Fig. 9 the melting goes in a smoother way, since
all the states belong to the same central b@npntum com-
puter core.

The effect of quantum chaos melting in the quantum reg-
ister representation is shown in Fig. 10 fbrJ.. The ideal
register structure is manifestly washed out. Conversely, be-
low the chaos borderJJ.), only a few quantum register
states are mixed. For comparison, Fig. 11 shows the same
part of the register in the reginie<J s (no mixing of states
and Fig. 12 that in the regim&~J. (few states are mixed

FIG. 10. Quantum chaos in the quantum register: Grayness rep-
resents the value of the projection probabilty,, of the quantum
register states on the eigenstates of the Hamiltonian, from gray

IV. TIME EVOLUTION IN THE SGQC MODEL (maximal valug to black (minimal valug. The horizontal axis cor-
responds to 150 quantum register states, and the vertical axis rep-

In Sec. Il we determined the properties of eigenstates ofesents the nearest 150 computer eigensideth ordered in en-
the quantum computer in the presence of residual interqubirgy). Heren=16, J/6=0.4 (J/§>J./5=0.22), and one random
coupling. In the presence of this coupling the quantum regrealization is chosen. A color figure is available on http://
ister stateg;) are no longer stationary states, and thereforexyz.lanl.gov/format/quant-ph/0005015.
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FIG. 13. Time dependence of the probability to remain in the
'same guantum register state for=16 andJ=0.01~J.,=0.026
(J./6=0.22); one random realization is chosen.

FIG. 11. Same as Fig. 10 below the quantum chaos border
J/6=0.001 Q/5<J.s/ 5=0.026).

Fiio(0=Kuilx () For J>J.s, quantum chaos sets in, and with time the
probability spreads over more and more quantum register
=> AImA* Alm’A mwexdi(E,,—Emt], (6)  states until a quasistationary regime is reached where an ex-

’ ponentially large number of states is mixed. The probability

Fioio(t) drops approximately to zero, as shown in Fig. 14.

whereA;,= (| ¢, En is the energy of the stationary state The chaotic time scale for this decay can be estimated as
|¢m> and we chosei=1. For J<J., the probability 7,~1/1T", wherel" is the width determined in Sec. . This

. Io (t) is very close to 1 for all times, since the states areesumate is very natural in the Fermi golden rule regime, with

not mixed by the interaction. This means that all quantumthe Breit-Wigner local density of statelEq. (4)] since
register state$y;) remain well defined, and the computer (t) is essentially the Fourier transform of the local den-
can operate properly. Fdr~J., only a few state$y;) are sity “of statespyy, and therefore decreases as exp(). We
mixed by the interaction, anaioio(t) oscillates in time regu- note that the decay in this regime was recently discussed in

larly around an average value of order 1/2. These oscillations
are similar to the Rabi oscillations between two levels with 1.0 B
frequencyQ ~J. An example is presented in Fig. 13. In this g
regime, we expect that error-correcting cofi@d.0] may ef- 'o'o
ficiently correct the spreading over few quantum register 0.8
states.

0.6

0.4

0.2

0.0

FIG. 14. Time dependence of the probability to remain in the
same quantum register state fbrd=0.4>J./6. Data are shown
for n=16 (diamonds,J./§=0.22), n=15 (squaresJ./§=0.24),
n=12 (triangles,J./6=0.28),n=9 (circles, J./5=0.35), andn
=6 (stars,J./6=0.59). An average is made over 200 states ran-
domly chosen in the central band. The inset shows the chaotic time
scale 7, [defined byF;; (7,)=1/2] as a function of /; the
FIG. 12. Same as Fig. 10 faf 6=0.01 /6~ J.s/6=0.026). straight line is7,=1.271".
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. FIG. 16. Time dependence of the quantum entr&gy) for
FIG. 15. Time dependence of the quantum entraiy) for different values ofd. n=16, J./§=0.22, andJ.;/5=0.026; one

J/6=0.4>J./6; symbols are as in Fig. 14. An average is made - . _ - .
over 200 initial states randomly chosen in the central band. Théandom realization is choserd/§=0.001<Jcs/4 (disks, J/o

. ; . . =0.01<J./6 (crossey J/6=0.03~J../5 (squares J/6=0.2
inset shows the same curves normalized to their maximal value. ~3./5 (diamonds, and J/6=0.4>J./5 (triangles. The inset

) gives the probability of remaining in the same quantum register
Ref. [45]. According to our data, whehi becomes compa-  state for the same values 5. Averages are made over 200 states
rable to the energy bandwidtfns, py, is close to a Gauss- randomly chosen in the central band.
ian distribution of widthl", and its Fourier transforrﬁioio(t)

is also a Gaussian of widthI1/ Therefore, in both regimes process on coupling strength detuning fluctuationss of

we expect the time scale, for the decay ofF; ; (t) to be  one-qubit energy spacing, and the number of quhitafter

7,~ 1. The data shown in Fig. 14 correspond to the satua time 7, the quantum computer hardware is melted. To
ration regime for large values of and the inset shows that prevent this melting one needs to introduce an efficient error-
7,~ 1T is still valid. In fact the curve fon=16 in Fig. 14 is correcting code which operates on a time scale much shorter
already close to the limiting decay curve &t 0 (data not thanrt,, and suppresses the development of quantum chaos.
shown).

At the same time scale, the quantum entropg(t) is
large but still growing. It reaches its maximal value on a
larger time scale which seems independentnofAt this
stage, an initial quantum register state is now spread over
most of the registefhere S(t) = —EiF“O(t)IogFiiO(t)]. This
process is shown in Fig. 15. This maximal valueS§f) is
approximately given bys, (see Fig. 6, and accordingly de-
creases with decreasing as illustrated in Fig. 16.

Figure 17 illustrates this mixing process in the quantum
register representation, evolving in time. The quantum com-
puter hardware becomes quickly destroyed due to the inter-
qubit coupling. It is necessary to decrease the coupling
strength below the quantum chaos border to get obtain well-
defined quantum register states for0, as illustrated in Fig.

18. The obtained data clearly show that exponentially many
guantum register states become mixed after the finite chaotic
time scaler, ~1/T'.

FIG. 17. Time explosion of quantum chaos in the quantum reg-
V. CONCLUSIONS ister: grayness represents the value of the projection probability

. ) . (il x () of an initial state on the quantum register states ordered
The results presented in this paper show that residual ing, energy, from white(maximal valug to black (minimal valus.

terqubit coupling can lead to quantum chaos and very comrhe horizontal axis corresponds to 150 states, and the vertical axis
plicated ergodic eigenstates of the quantum computer. Wg, 150 time steps fromé=0 tots=2. Att5=0, the chosen initial
have shown that in this regime quantum register states disstate is the superposition of two quantum register states. Here
integrate quickly in time over an exponentially large number=16, J/§=0.4 (3/5>J./5=0.22), and one random realization is
of states, and that computer operability is destroyed. We dezhosen. A color figure is available on http://xyz.lanl.gov/format/
termined the dependence of the chaotic time sealef this  quant-ph/0005015.
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to the external world. Nevertheless, since decoherence can be
viewed as a result of internal interactions in a larger system,
the results presented here may also apply to this problem.
Our main conclusion is that although in the quantum
chaos regime a quantum computer cannot operate for long,
fortunately the border for this process happens to be expo-
nentially larger than the spacing between adjacent computer
eigenstates, and therefore a broad parameter region remains
available for realization of a quantum computer. Another
possibility is to operate the quantum computer in the regime
of quantum chaos. However, here one should keep in mind
that after the chaotic time scatg, the computer hardware
will melt due to interqubit coupling and quantum chaos.
Therefore, the computer operability in this regime is possible
only if many gate operations can be realized during the finite
time 7, (in a sense it becomes similar to the decoherence
time). It is clear that the most preferable regime corresponds

_ to quantum computer operation below the quantum chaos
FIG. 18. Same as Fig. 17 below the quantum chaos bordely qer.

J/8=0.001 (/ 5<J.s/ 5=0.026).
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