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Convergence to the critical attractor of dissipative maps: Log-periodic oscillations, fractality,
and nonextensivity
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For a family of logisticlike maps, we investigate the rate of convergence to the critical attractor when an
ensemble of initial conditions is uniformly spread over the entire phase space. We found that the phase-space
volume occupied by the ensemét) depicts a power-law decay with log-periodic oscillations reflecting the
multifractal character of the critical attractor. We explore the parametric dependence of the power-law expo-
nent and the amplitude of the log-periodic oscillations with the attractor’s fractal dimension governed by the
inflection of the map near its extremal point. Further, we investigate the temporal evolutiv(itpfor the
circle map whose critical attractor is dense. In this case, we faM(td to exhibit a rich pattern with a slow
logarithmic decay of the lower bounds. These results are discussed in the context of nonextensive Tsallis
entropies.

PACS numbegps): 05.45.Ac, 05.20-y, 05.70.Ce

[. INTRODUCTION the particular case of equiprobability, the well-known Pesin
equality readsK=\ if A=0 [5] with K being the
Nonlinear low-dimensional dissipative maps can describé&olmogorov-Sinai entropy4] defined as the variation per
a great variety of systems with few degrees of freedom. Thenit time of the standard Boltzmann-Gibbs entroy
underlying nonlinearity can induce the system to exhibit a= —Zp; In p;. This equality provides a link between the sen-
complex behavior with quite structured paths in the phassitivity to initial conditions and the dynamic evolution of the
space. The sensitivity to initial conditions is a relevant aspectelevant entropy.
associated to the structure of the dynamical attractor. In gen- At bifurcation and critical points and for an ensemble of
eral, the sensitivity is measured as the effect of any unceiinitial conditions concentrated in a single cell, i.8V(0)
tainty on the system'’s variables. For systems exhibiting pe=1, it has been shown that
riodic or chaotic orbits, the effect of any uncertainty on
initial conditions depicts an exponential temporal evolution W(t)=[1+(1—-q)Kt]" ", 2
with g(t)EIimAX(O)AOAx(t)/Ax(0)~e“, where A is the

Lyapunov exponent, andix(0) andAx(t) are the uncertain-  with K, being the generalized Kolmogorov-Sinai entropy de-
ties at times 0 and. When the Lyapunov exponent<O, fined as the rate of variation of the nonextensive Tsallis en-
&(t) characterizes the rate of contraction towards perlod|Qr0pys (1-=p%/(q—1) [6]. The Pesin equality can be
orbits. On the other hand, far>0, it characterizes the rate genera“zed a$( _)\ if )\ =0 [1] Tsallis entr0p|es have
of dlvergence of chaotic orbits. At bifurcation and critical been Successfu”y app“ed to recent studies of a series of non-
points (i.e., onset to chagghe Lyapunov exponent van-  extensive systems and provided a theoretical background to
ishes. Recently, it was shown that this feature is related to the understanding of some of their unusual physical proper-
power-law sensitivity to initial conditions on the forft—3]  ties[7,9].
_ (1 The expansion towards the critical attractor of an en-

§O=[1+(1=aq)Aqt] 1w, @ semble of initial conditions concentrated around the inflec-
tion point of the map can be characterized by a prd@ger
evolving at a constant rate. Scaling arguments have shown
that the appropriate entropic indepis related to the multi-
fractal structure of the critical dynamical attractor [[3}

with A, defining a characteristic time scale after which the
power-law behavior sets up.

A quantitative way to measure the sensitivity to initial
conditions is to follow, from a particular partition of the
phase space, the temporal evolution of the number of cells

. . . - 1 1 1
W(t) occupied by an ensemble of identical copies of the = — ' (3)
system. For periodic and chaotic orbit/(t) =W(0)eM. In 1-9  amin  @max

wherea i, and a . are the extremal singularity strengths of
*Email address: tirnakli@sci.ege.edu.tr the multifractal spectrum of the critical attractf®]. The
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above scaling relation has been shown to hold for the fami- 10" - :
lies of generalized logistic and circle maj#10-13.

However, the temporal evolution of critical dynamical
systems can be strongly dependent on the particular initial
ensemble. Although some scaling laws can be found for an
ensemble of initial conditions concentrated around the map
inflection point, these are usually not universal with respect
to a general ensembile. In this work, we are going to numeri-
cally investigate the critical temporal evolution of the vol-
ume of the phase space occupied by an ensemble of initial
conditions spread over the entire phase space. This ensemble 107 5 X > 3
is expected to contract towards the critical attractor. Using a 10
family of one-dimensional generalized logistic maps having t

d;<1, we will perform a detailed study of the parametric £, 1. The volume occupied by the ensemlét) (number of

dependence ofV(t) on the fractal dimension of the critical occupied boxesas a function of discrete time in the standard lo-
attractor. Due to the discrete scale invariance of the criticayjistic map ¢=2) and with sampling ratic =0.1. From top to

attractor, the convergence displays log-periodic oscillationgottom, N,,,,= 2000, 8000, 32 000, and 128 000.
[13]. We are also going to explore the dependence of the
amplitude of these oscillations with reSpeCt to the attraCtOf’S)ver the entire phase space is a common one when Studying
fractal dimension. Further, the behaVior\M(t) will be in- nonlinear as well as thermodynamica| systems.
VestigatEd for the one-dimensional critical circle map haVing Here, we will follow the dynamic ev0|ution, in phase
d¢=1. For this map, the temporal evolution is expected tospace, of an ensemble of initial conditions uniformly distrib-
display distinct trends since the critical attractor is dense. uted over the phase space and explore its relation with the
generalized fractal dimensions of the critical attractor. In
II. THE CONVERGENCE TO THE CRITICAL practice, a partition of the phase spaceNy, cells of equal
ATTRACTOR OF GENERALIZED LOGISTIC MAPS size is performed and a set of; identical copies of the
o ) , , system is followed whose initial conditions are uniformly
' Loglstlcllkg maps are the simplest one-Q|men§|on§1I NONspread over the phase space. The ragd, /Ny, is a con-
linear dynamical systems that allow a close investigation of g, parameter giving the degree of sampling of the phase
series of critical exponents related to the onset of chaoti%pace_
orbits. This family reads Within the nonextensive Tsallis statistics, there is a proper
entropy S, evolving at a constant rate such that

b
[+
O
<
=
_—
—
R

Xpr1=1—alx/%

Kg= i Sy(t) —S4(0)]/ 5
(z>1; O<a<2; t=0,1,2...; xe[—-L11). (4 d Nb::lw[ alh) = Sy(O)J7t ®

Herezis the inflection of the map in the neighborhood of the goes to a constant value &s. Notice thatk,<0 for the
extremal pointx=0. These maps are well known to have process of convergence towards the critical attractor. Assum-
topological properties not dependentzoHowever, the met- ing that all cells of the partition are occupied with equal
rical properties, such as Feigenbaum expongisls and  probability, the entropys,(t) can be written as

the multifractal spectrum of the critical attractor, do depend

onz In particular, the fractal dimension of the critical attrac- W

tor d;(z)<1 [16] and therefore it does not fill a finite frac- 1- Z p{ W(t)L -1

tion of the phase space. For a set of initial conditions spread Sy = o ( ] (6)
in the vicinity of the inflection point, it was found that the q-1 1-q

volume in phase space occupied by the ensemble grows fol-

lowing a rich pattern with the upper boundf¥,.(t) gov-  The last two equations imply that the number of occupied
erned by a power lawV,,,,(t)<t¥2~9 whereq is the en-  Cells evolves in time as

tropic index characterizing the relevant Tsallis entropy that

grows at a constant rate. It has been shown that the dynamic W(t)=[W(0)' "+ (1—q)K4t]¥* 9 (7)
exponent 1/(1q) is directly related to geometric scaling

exponents related to the extremal sets of the dynamic attragvith the exponent u=-1/(q—1)>0 governing the
tor [3]. asymptotic power-law decay.

Due to the presence of long-range spatial and temporal In Fig. 1, we show our results foi/(t)/Npoy in the stan-
correlations at criticality, one expects the critical exponentdard logistic map with inflectioz=2 and from distinct par-
governing the temporal evolution to be sensitive to the partitions of the phase space with sampling ratie 0.1. We
ticular initial ensemble. Indeed, the multifractal spectrumobserve that, after a short transient period wh#() is
characterizing the critical dynamical attractor indicates thanearly constant, a power-law contraction of the volume oc-
an infinite set of exponents are needed to fully characterizeupied by the ensemble sets Uf(t) saturates at a finite
the scaling behavior. In particular, an ensemble consisting draction corresponding to the phase-space volume occupied
a set of identical systems whose initial conditions are spreally the critical attractor on a given finite partition. The satu-
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FIG. 2. The volume occupied by the ensemWi¢t) as a func- FIG. 3. The periodic functionWV(t)/(cqot™#) versus discrete
tion of discrete time in the standard logistic map=(2) and for a  time within the scaling regime and for=10. Data from map in-
partition containingNy.,=128 000 cells. Notice the emergence of flectionsz=1.1,1.25,1.5,2.0 are shown. The amplitude of the oscil-
log-periodic oscillations for large sampling ratios. lations decreases monotonicallyzisicreases, but the characteristic

scaling factor between the periods of two consecutive oscillations is
ration is postponed when a finer partition is used once theoughly zindependent.
fraction occupied by the critical attractor vanishes in the
limit Npg—°. cally decreasing function of. Therefore, the above trend

In Fig. 2, we showW(t)/Npy for a given fine partition of  indicates a possible correlation between the amplitude of the
the phase space and distinct sampling ratid&'e notice that  log-periodic oscillations and the fractal dimension of the dy-
the crossover regime to the power-law scaling is quite shomamical attractor.
for large values of so that a clear power-law scaling regime  We also measured the critical expongnas a function of
sets up even at early times. This feature is consistent witkhe map inflectiorz. Our results are summarized in Table I.
Eqg. (7), which states that the crossover timescales asr It is a decreasing function afas can be seen in Fig. 5. The
~1MW(0)9"L. Further, the scaling regime exhibits log- volume occupied by the ensemble depicts a fast contraction
periodic oscillations once the multifractal nature of the criti- for z~1 where the fractal dimension is small. On the other
cal attractor is closely probed by such a dense ensemble. gide, a very slow contraction is observed for large values of
general form folW(t) reflecting the discrete scale invariance z, pointing towards a saturation or at most to a logarithmic

of the attractor can be written as decrease o¥V(t) in the limit of dense attractors. We would
n like to point out here that the exponent governing the expan-
W(t) =t “P _) (8)  sion of the volume occupied by an ensemble of initial con-
InA ditions concentrated around the inflection point exhibits a

. . . . . reversed trend. Although scaling arguments have shown that
whereP is a function of period unity and is the character- : . . ;

- : . . this exponent can be written in terms of scaling exponents
istic scaling factor between the periods of two consecutive

oscillations. These log-periodic oscillations have been Obpharactenzmg the extremal sets in the attractor, we could not

served in a large number of systems exhibiting discrete scal%ﬁvé?: igmpli Sgcilrll??nreﬁiwgv%?tmefgggérvee?ltjrlfg[a;;hen
invariance[13]. In general, the amplitude of these oscilla- 9 Y SP ' ' '

. 1 . . plotted against the fractal dimension of the attractor as
tions ranges form 10° up to 10™%. Keeping only the first shown in Fig. 6, the dynamic exponeatis very well fitted
term in a Fourier series & (Int/In \), one can writé/N(t) in 9. y poneam y

the form

(o Int
1+2—co8 27r——+ ¢
Co

=cat M
W(t)=cot Y

. 9

Log-periodic modulations correcting a pure power law
have been found in several systems, such as, for example,
diffusion-limited aggregationl8], crack growth[19], earth-
guaked20], and financial market21]. It has also been ob-
served in thermodynamic systems with a fractal-like energy
spectrum[22,23. The factors controlling the log-periodic
relative amplitude 2, /c, are not well known for most of the 10 : :
systems where it has been observed. In the present study, we 1.0 1.5 2.0 25 3.0
can closely investigate the factors which may control these z
amplitudes by measuring it as a function of the map inflec-  FiG. 4. The amplitude of the log-periodic oscillations; 2c, as
tion zfor a fixed partition and sampling ratisee Fig. 3 We 3 function of the map inflexiorz for sampling ratior = 10. The
found that these oscillations have amplitudes decaying expanonotonic decrease of the oscillations indicates a close relation

nentially with z as shown in Fig. 4. It is interesting to point between these and the fractal dimension of the underlying dynami-
out that the fractal dimension of the attractor is a monotoni<al attractor.
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TABLE I. Numerical values, within the-generalized family of 0.4 . T .

logistic maps, ofi) the dynamic exponent governing the contrac-

tion towards the critical attractor of the uniform ensembi§ie; the 0.2 ’//. |

entropic indexq of the proper Tsallis entropy decreasing at a con- 00 el .

stant rate;(iii) the fractal dimensiord; of the critical attractor. = /,"

These values also hold for the generalized periodic maps. The last S 02 r ‘/0’ |

line represents our results for tz@eneralized circle maps. o 04 - i

z w=—1/(1-q) q dr 0.6 1 I

1.10 1.62:0.02 1620001  0.32:0.02 08 e o4 03 o2 o

1.25 1.23:0.01 1.8%+0.01 0.46:0.01 Iog(1 -df)

1.5 0.95-0.01 2.05-0.01 0.470.01

1.75 0.86:0.01 2.25-0.015 0.5%0.01 FIG. 6. logyu) versus logy(ds). The parametric dependence

2.0 0.710.01 2.410.02 0.54-0.01 of the dynamic exponengk with the fractal dimensiord; of the

25 0.59-0.01 2.76-0.02 0.58-0.01 critical attractor is very well fitted to the formuoc(1—d¢)2. It in-

3.0 0.515- 0.005 2.94-0.02 0.60-0.01 dicates thai; is the relevant geometric exponent coupled to the

50 0.395-0.005 353 0.03 0.66-0.01 dynamics of the uniform ensemble.

Z-circular same universality class of the forced RayleighBe con-

maps 0.0 0 1.0

vection [17]. For 2=0.60664. . .., thecircle map has a
cubic inflection ¢=3) in the vicinity of the pointé=0.
by wo(1—d;)?, which indicatesl; as the relevant geometric Starting from a given point on the circle, it generates a qua-
exponent coupled to the dynamics of the uniform ensembleSiperiodic orbit which fills the phase space and the dynamical
We would like to mention here that the same dynamic expoattractor is a multifractal with fractal dimensiah=1 [9].
nents were obtained for the generalized periodic maps, which In Fig. 7, we show our results for the temporal evolution
belong to the same universality class of logisticlike mapsof the phase-space volume occupied by an ensemble of ini-
[10]. tial conditions uniformly spread over the circl/(t) exhib-
its a rich pattern which resembles the one observed for the
sensitivity function associated to the expansion of the phase
space from initial conditions concentrated around the inflec-
tion point. However W(t) does not present any power-law
The results from the preceding section indicate that a slowegime. Instead, the lower bounds display a slow logarithmic
convergence to the critical attractor will be expected fordecrease with time, saturating at a finite volume fraction. The
dense critical attractors. However, it is not clear in what fashsaturation is a feature related to the finite partition used in the
ion this convergence will take place when the dynamicalnumerical calculation. This minimum decreases logarithmi-
attractor fills the phase space with a multifractal probabilitycally with the number of cells in the phase space as shown in
density as occurs for the one-dimensional critical circle mapFig. 8. We also observed the same behavior for generalized
circle maps with an arbitrary inflection[12]. The critical
attractors within this family all havel;=1 although they
exhibit a z-dependent multifractal singularity spectra. The
z-independent scenario faW(t) corroborates the conjecture
that d; is the relevant geometric exponent coupled to the
dynamics of the uniform ensemble.

Ill. THE CONVERGENCE TO THE CRITICAL
ATTRACTOR OF THE CIRCLE MAP

1
where 0<6,<1 is a point on a circle. The circle map de-
scribes dynamical systems possessing a natural frequency
that are driven by an external force of frequeney (Q)

=wq/w, is the bare winding numbgrnd belongs to the 1.0 , : :
2.0 . . ' 08 r 1
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FIG. 5. The dynamic exponent governing the contraction of
the occupied phase-space volufivé(t) ot~ #] as a function of the

map inflectionz.

FIG. 7. The volume occupied by the ensemWlét) as a func-
tion of discrete time in the standard critical circle map. The lower
bounds display a slow logarithmic decay with time saturating at a
finite volume fraction due to the finite partition of the phase space.
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0.40 . parametric dependence dn. For dense multifractal attrac-
tors,W(t) presents only a slow logarithmic contraction of its
lower bounds followed by a rich pattern.

0.35 | i The critical exponent characterizing the contraction of the

8 uniform ensemble was found to have no direct relation to the
pd one governing the expansion from a set of initial conditions
\-g concentrated around the inflection point. In particular, no
= 0.30 | power law was found for the contraction in the standard and

generalized circle maps, in contrast to tkelependent
power-law expansion. These results indicate that the relevant

0.25 ) s Tsallis entropy evolving at a constant rat@odulated by
10 10 10 log-periodic oscillationsis characterized by an entropic in-
box dexq that depends on the initial ensemble. It would be valu-

) _ able to investigate the possible existence of classes of en-
FIG. 8. The asymptotic lower bounds for the occupied volumeggmples with a common dynamics in phase space and
in the phase space versus the.number of &¢lls. The logarithmic therefore, characterized by the same entropic ingleXhe
dec?ly agrees with the predlct|on_tha¢df—>1)—>_0. Th_e same be- onuniversality ofg with respect to the initial ensemble is
havior was observed for the family of generalized circle maps an elated to the multifractal character of the dynamical attrac-
corroborates the conjecture thit is the relevant geometric expo- e
ment counled to the dvmamics of the uniform ensemble tor. However, as for the ensemble concentrated at the vicin
P y ' ity of the inflection point, the exponent governing the dy-
namics of the uniform ensemble is coupled to a geometric
IV. SUMMARY AND CONCLUSIONS scaling exponent, in particular to the proper fractal dimen-
In this work, we studied the temporal evolution in phasesion of the attractor. Extensive numerical work would be
! Ialuable to verify the validity of the proposed relation on

space of an ensemble of identical copies of one-dimensional. . .
nonlinear dissipative maps. We found that the phase-spa gher—d|m.en3|onal systems. In any case, the present results
come out in favor of the concept that the degree of nonex-

volume occupied by an initially uniform ensemble displays at ivity of th i Vi i tant rate i
power-law decay with log-periodic oscillations whenever the ensivity of the entropy measure evolving at a constant rate 1
related to the fractal nature of the dynamical attractor.

dynamical attractor has a fractal dimensihr<1, i.e., when
the fractal attractor does not densely fill the phase space.
Generally, these oscillations also emerge in open high-
dimensional systems operating at a self-organized critical U.T. acknowledges the partial support of the BAYG-C
state. The spatiotemporal long-range correlations present grogram of TUBITAK (Turkish agency as well as CNPq

the critical state reflect the scale invariance of the dynamicahind PRONEX(Brazilian agencigs This work was partially
attractor. Therefore, the present work corroborates the corsupported by CNPq and CAPESrazilian research agen-
cept that the fractal nature of the dynamical attractor and theies. M.L.L. would like to acknowledge the hospitality of
presence of a characteristic scaling factor are key ingredientie Physics Department at Universidade Federal de Pernam-
for the emergence of log-periodic oscillatiofis3]. The am-  buco during the Summer School 2000 where this work was
plitude of the oscillations was found to depict a monotonicpartially developed.
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