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Convergence to the critical attractor of dissipative maps: Log-periodic oscillations, fractality,
and nonextensivity

F. A. B. F. de Moura
Departamento de Fı´sica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil

U. Tirnakli*
Department of Physics, Faculty of Science, Ege University, 35100 Izmir, Turkey

and Centro Brasileiro de Pesquisas Fı´sicas, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ, Brazil

M. L. Lyra
Departamento de Fı´sica, Universidade Federal de Alagoas, 57072-970 Maceio´, AL, Brazil

~Received 11 February 2000!

For a family of logisticlike maps, we investigate the rate of convergence to the critical attractor when an
ensemble of initial conditions is uniformly spread over the entire phase space. We found that the phase-space
volume occupied by the ensembleW(t) depicts a power-law decay with log-periodic oscillations reflecting the
multifractal character of the critical attractor. We explore the parametric dependence of the power-law expo-
nent and the amplitude of the log-periodic oscillations with the attractor’s fractal dimension governed by the
inflection of the map near its extremal point. Further, we investigate the temporal evolution ofW(t) for the
circle map whose critical attractor is dense. In this case, we foundW(t) to exhibit a rich pattern with a slow
logarithmic decay of the lower bounds. These results are discussed in the context of nonextensive Tsallis
entropies.

PACS number~s!: 05.45.Ac, 05.20.2y, 05.70.Ce
ib
h

t
as
e
e

ce
pe
n

on

d
e
al

to

he

al
e
e

th

sin

r

n-
e

of

e-
en-
e

non-
d to
er-

n-
ec-

own

of
I. INTRODUCTION

Nonlinear low-dimensional dissipative maps can descr
a great variety of systems with few degrees of freedom. T
underlying nonlinearity can induce the system to exhibi
complex behavior with quite structured paths in the ph
space. The sensitivity to initial conditions is a relevant asp
associated to the structure of the dynamical attractor. In g
eral, the sensitivity is measured as the effect of any un
tainty on the system’s variables. For systems exhibiting
riodic or chaotic orbits, the effect of any uncertainty o
initial conditions depicts an exponential temporal evoluti
with j(t)[ lim

Dx(0)→0
Dx(t)/Dx(0);elt, where l is the

Lyapunov exponent, andDx(0) andDx(t) are the uncertain-
ties at times 0 andt. When the Lyapunov exponentl,0,
j(t) characterizes the rate of contraction towards perio
orbits. On the other hand, forl.0, it characterizes the rat
of divergence of chaotic orbits. At bifurcation and critic
points ~i.e., onset to chaos! the Lyapunov exponentl van-
ishes. Recently, it was shown that this feature is related
power-law sensitivity to initial conditions on the form@1–3#

j~ t !5@11~12q!lqt#1/(12q), ~1!

with lq defining a characteristic time scale after which t
power-law behavior sets up.

A quantitative way to measure the sensitivity to initi
conditions is to follow, from a particular partition of th
phase space, the temporal evolution of the number of c
W(t) occupied by an ensemble of identical copies of
system. For periodic and chaotic orbits,W(t)5W(0)elt. In

*Email address: tirnakli@sci.ege.edu.tr
PRE 621063-651X/2000/62~5!/6361~5!/$15.00
e
e

a
e
ct
n-
r-
-

ic

a

lls
e

the particular case of equiprobability, the well-known Pe
equality reads K5l if l>0 @5# with K being the
Kolmogorov-Sinai entropy@4# defined as the variation pe
unit time of the standard Boltzmann-Gibbs entropyS
52(pi ln pi . This equality provides a link between the se
sitivity to initial conditions and the dynamic evolution of th
relevant entropy.

At bifurcation and critical points and for an ensemble
initial conditions concentrated in a single cell, i.e.,W(0)
51, it has been shown that

W~ t !5@11~12q!Kqt#1/(12q), ~2!

with Kq being the generalized Kolmogorov-Sinai entropy d
fined as the rate of variation of the nonextensive Tsallis
tropy Sq5(12(pi

q)/(q21) @6#. The Pesin equality can b
generalized asKq5lq if lq>0 @1#. Tsallis entropies have
been successfully applied to recent studies of a series of
extensive systems and provided a theoretical backgroun
the understanding of some of their unusual physical prop
ties @7,8#.

The expansion towards the critical attractor of an e
semble of initial conditions concentrated around the infl
tion point of the map can be characterized by a properSq
evolving at a constant rate. Scaling arguments have sh
that the appropriate entropic indexq is related to the multi-
fractal structure of the critical dynamical attractor by@3#

1

12q
5

1

amin
2

1

amax
, ~3!

whereamin andamax are the extremal singularity strengths
the multifractal spectrum of the critical attractor@9#. The
6361 ©2000 The American Physical Society
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above scaling relation has been shown to hold for the fa
lies of generalized logistic and circle maps@3,10–12#.

However, the temporal evolution of critical dynamic
systems can be strongly dependent on the particular in
ensemble. Although some scaling laws can be found for
ensemble of initial conditions concentrated around the m
inflection point, these are usually not universal with resp
to a general ensemble. In this work, we are going to num
cally investigate the critical temporal evolution of the vo
ume of the phase space occupied by an ensemble of in
conditions spread over the entire phase space. This ense
is expected to contract towards the critical attractor. Usin
family of one-dimensional generalized logistic maps hav
df,1, we will perform a detailed study of the parametr
dependence ofW(t) on the fractal dimension of the critica
attractor. Due to the discrete scale invariance of the crit
attractor, the convergence displays log-periodic oscillati
@13#. We are also going to explore the dependence of
amplitude of these oscillations with respect to the attracto
fractal dimension. Further, the behavior ofW(t) will be in-
vestigated for the one-dimensional critical circle map hav
df51. For this map, the temporal evolution is expected
display distinct trends since the critical attractor is dense

II. THE CONVERGENCE TO THE CRITICAL
ATTRACTOR OF GENERALIZED LOGISTIC MAPS

Logisticlike maps are the simplest one-dimensional n
linear dynamical systems that allow a close investigation o
series of critical exponents related to the onset of cha
orbits. This family reads

xt11512auxtuz,

~z.1; 0,a,2; t50,1,2, . . . ; xtP@21,1# !. ~4!

Herez is the inflection of the map in the neighborhood of t
extremal pointx̄50. These maps are well known to hav
topological properties not dependent ofz. However, the met-
rical properties, such as Feigenbaum exponents@14,15# and
the multifractal spectrum of the critical attractor, do depe
on z. In particular, the fractal dimension of the critical attra
tor df(z),1 @16# and therefore it does not fill a finite frac
tion of the phase space. For a set of initial conditions spr
in the vicinity of the inflection point, it was found that th
volume in phase space occupied by the ensemble grows
lowing a rich pattern with the upper boundsWmax(t) gov-
erned by a power lawWmax(t)}t1/(12q), whereq is the en-
tropic index characterizing the relevant Tsallis entropy t
grows at a constant rate. It has been shown that the dyna
exponent 1/(12q) is directly related to geometric scalin
exponents related to the extremal sets of the dynamic at
tor @3#.

Due to the presence of long-range spatial and temp
correlations at criticality, one expects the critical expon
governing the temporal evolution to be sensitive to the p
ticular initial ensemble. Indeed, the multifractal spectru
characterizing the critical dynamical attractor indicates t
an infinite set of exponents are needed to fully characte
the scaling behavior. In particular, an ensemble consistin
a set of identical systems whose initial conditions are spr
i-
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over the entire phase space is a common one when stud
nonlinear as well as thermodynamical systems.

Here, we will follow the dynamic evolution, in phas
space, of an ensemble of initial conditions uniformly distri
uted over the phase space and explore its relation with
generalized fractal dimensions of the critical attractor.
practice, a partition of the phase space onNbox cells of equal
size is performed and a set ofNc identical copies of the
system is followed whose initial conditions are uniform
spread over the phase space. The ratior 5Nc /Nbox is a con-
trol parameter giving the degree of sampling of the ph
space.

Within the nonextensive Tsallis statistics, there is a pro
entropySq evolving at a constant rate such that

Kq5 lim
Nbox→`

@Sq~ t !2Sq~0!#/t ~5!

goes to a constant value ast→`. Notice thatKq,0 for the
process of convergence towards the critical attractor. Ass
ing that all cells of the partition are occupied with equ
probability, the entropySq(t) can be written as

Sq~ t !5

12 (
i 51

W(t)

pi
q

q21
5

W~ t !12q21

12q
. ~6!

The last two equations imply that the number of occup
cells evolves in time as

W~ t !5@W~0!12q1~12q!Kqt#1/(12q) ~7!

with the exponent m521/(q21).0 governing the
asymptotic power-law decay.

In Fig. 1, we show our results forW(t)/Nbox in the stan-
dard logistic map with inflectionz52 and from distinct par-
titions of the phase space with sampling ratior 50.1. We
observe that, after a short transient period whenW(t) is
nearly constant, a power-law contraction of the volume
cupied by the ensemble sets up.W(t) saturates at a finite
fraction corresponding to the phase-space volume occu
by the critical attractor on a given finite partition. The sat

FIG. 1. The volume occupied by the ensembleW(t) ~number of
occupied boxes! as a function of discrete time in the standard l
gistic map (z52) and with sampling ratior 50.1. From top to
bottom,Nbox52000, 8000, 32 000, and 128 000.
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ration is postponed when a finer partition is used once
fraction occupied by the critical attractor vanishes in t
limit Nbox→`.

In Fig. 2, we showW(t)/Nbox for a given fine partition of
the phase space and distinct sampling ratiosr. We notice that
the crossover regime to the power-law scaling is quite sh
for large values ofr so that a clear power-law scaling regim
sets up even at early times. This feature is consistent w
Eq. ~7!, which states that the crossover timet scales ast
;1/W(0)q21. Further, the scaling regime exhibits log
periodic oscillations once the multifractal nature of the cr
cal attractor is closely probed by such a dense ensembl
general form forW(t) reflecting the discrete scale invarian
of the attractor can be written as

W~ t !5t2mPS ln t

ln l D , ~8!

whereP is a function of period unity andl is the character-
istic scaling factor between the periods of two consecu
oscillations. These log-periodic oscillations have been
served in a large number of systems exhibiting discrete s
invariance@13#. In general, the amplitude of these oscill
tions ranges form 1024 up to 1021. Keeping only the first
term in a Fourier series ofP(ln t/ln l), one can writeW(t) in
the form

W~ t !5c0t2mF112
c1

c0
cosS 2p

ln t

ln l
1f D G . ~9!

Log-periodic modulations correcting a pure power la
have been found in several systems, such as, for exam
diffusion-limited aggregation@18#, crack growth@19#, earth-
quakes@20#, and financial markets@21#. It has also been ob
served in thermodynamic systems with a fractal-like ene
spectrum@22,23#. The factors controlling the log-periodi
relative amplitude 2c1 /c0 are not well known for most of the
systems where it has been observed. In the present stud
can closely investigate the factors which may control th
amplitudes by measuring it as a function of the map infl
tion z for a fixed partition and sampling ratio~see Fig. 3!. We
found that these oscillations have amplitudes decaying ex
nentially with z as shown in Fig. 4. It is interesting to poin
out that the fractal dimension of the attractor is a monoto

FIG. 2. The volume occupied by the ensembleW(t) as a func-
tion of discrete time in the standard logistic map (z52) and for a
partition containingNbox5128 000 cells. Notice the emergence
log-periodic oscillations for large sampling ratios.
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cally decreasing function ofz. Therefore, the above tren
indicates a possible correlation between the amplitude of
log-periodic oscillations and the fractal dimension of the d
namical attractor.

We also measured the critical exponentm as a function of
the map inflectionz. Our results are summarized in Table
It is a decreasing function ofz as can be seen in Fig. 5. Th
volume occupied by the ensemble depicts a fast contrac
for z;1 where the fractal dimension is small. On the oth
side, a very slow contraction is observed for large values
z, pointing towards a saturation or at most to a logarithm
decrease ofW(t) in the limit of dense attractors. We woul
like to point out here that the exponent governing the exp
sion of the volume occupied by an ensemble of initial co
ditions concentrated around the inflection point exhibits
reversed trend. Although scaling arguments have shown
this exponent can be written in terms of scaling expone
characterizing the extremal sets in the attractor, we could
devise a simple scaling relation betweenm and the multifrac-
tal singularity spectrum. However, we observed that, wh
plotted against the fractal dimension of the attractor
shown in Fig. 6, the dynamic exponentm is very well fitted

FIG. 3. The periodic functionW(t)/(c0t2m) versus discrete
time within the scaling regime and forr 510. Data from map in-
flectionsz51.1,1.25,1.5,2.0 are shown. The amplitude of the os
lations decreases monotonically asz increases, but the characterist
scaling factor between the periods of two consecutive oscillation
roughly z-independent.

FIG. 4. The amplitude of the log-periodic oscillations 2c1 /c0 as
a function of the map inflexionz for sampling ratior 510. The
monotonic decrease of the oscillations indicates a close rela
between these and the fractal dimension of the underlying dyna
cal attractor.
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by m}(12df)
2, which indicatesdf as the relevant geometri

exponent coupled to the dynamics of the uniform ensem
We would like to mention here that the same dynamic ex
nents were obtained for the generalized periodic maps, w
belong to the same universality class of logisticlike ma
@10#.

III. THE CONVERGENCE TO THE CRITICAL
ATTRACTOR OF THE CIRCLE MAP

The results from the preceding section indicate that a s
convergence to the critical attractor will be expected
dense critical attractors. However, it is not clear in what fa
ion this convergence will take place when the dynami
attractor fills the phase space with a multifractal probabi
density as occurs for the one-dimensional critical circle m

u t115u t1V2
1

2p
sin~2pu t! mod~1!, ~10!

where 0<u t,1 is a point on a circle. The circle map de
scribes dynamical systems possessing a natural frequencv1
that are driven by an external force of frequencyv2 (V
5v1 /v2 is the bare winding number! and belongs to the

FIG. 5. The dynamic exponentm governing the contraction o
the occupied phase-space volume@W(t)}t2m# as a function of the
map inflectionz.

TABLE I. Numerical values, within thez-generalized family of
logistic maps, of~i! the dynamic exponentm governing the contrac-
tion towards the critical attractor of the uniform ensemble;~ii ! the
entropic indexq of the proper Tsallis entropy decreasing at a co
stant rate;~iii ! the fractal dimensiondf of the critical attractor.
These values also hold for the generalized periodic maps. The
line represents our results for thez-generalized circle maps.

z m521/(12q) q df

1.10 1.6260.02 1.6260.01 0.3260.02
1.25 1.2360.01 1.8160.01 0.4060.01
1.5 0.9560.01 2.0560.01 0.4760.01
1.75 0.8060.01 2.2560.015 0.5160.01
2.0 0.7160.01 2.4160.02 0.5460.01
2.5 0.5960.01 2.7060.02 0.5860.01
3.0 0.51560.005 2.9460.02 0.6060.01
5.0 0.39560.005 3.5360.03 0.6660.01
z-circular
maps 0.0 ` 1.0
e.
-

ch
s

w
r
-
l

,

same universality class of the forced Rayleigh-Be´nard con-
vection @17#. For V50.606 661 . . . , thecircle map has a
cubic inflection (z53) in the vicinity of the pointū50.
Starting from a given point on the circle, it generates a q
siperiodic orbit which fills the phase space and the dynam
attractor is a multifractal with fractal dimensiondf51 @9#.

In Fig. 7, we show our results for the temporal evoluti
of the phase-space volume occupied by an ensemble of
tial conditions uniformly spread over the circle.W(t) exhib-
its a rich pattern which resembles the one observed for
sensitivity function associated to the expansion of the ph
space from initial conditions concentrated around the infl
tion point. However,W(t) does not present any power-la
regime. Instead, the lower bounds display a slow logarithm
decrease with time, saturating at a finite volume fraction. T
saturation is a feature related to the finite partition used in
numerical calculation. This minimum decreases logarithm
cally with the number of cells in the phase space as show
Fig. 8. We also observed the same behavior for general
circle maps with an arbitrary inflectionz @12#. The critical
attractors within this family all havedf51 although they
exhibit a z-dependent multifractal singularity spectra. Th
z-independent scenario forW(t) corroborates the conjectur
that df is the relevant geometric exponent coupled to
dynamics of the uniform ensemble.

FIG. 6. log10(m) versus log10(df). The parametric dependenc
of the dynamic exponentm with the fractal dimensiondf of the
critical attractor is very well fitted to the formm}(12df)

2. It in-
dicates thatdf is the relevant geometric exponent coupled to t
dynamics of the uniform ensemble.

FIG. 7. The volume occupied by the ensembleW(t) as a func-
tion of discrete time in the standard critical circle map. The low
bounds display a slow logarithmic decay with time saturating a
finite volume fraction due to the finite partition of the phase spa
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IV. SUMMARY AND CONCLUSIONS

In this work, we studied the temporal evolution in pha
space of an ensemble of identical copies of one-dimensi
nonlinear dissipative maps. We found that the phase-sp
volume occupied by an initially uniform ensemble display
power-law decay with log-periodic oscillations whenever t
dynamical attractor has a fractal dimensiondf,1, i.e., when
the fractal attractor does not densely fill the phase sp
Generally, these oscillations also emerge in open hi
dimensional systems operating at a self-organized crit
state. The spatiotemporal long-range correlations presen
the critical state reflect the scale invariance of the dynam
attractor. Therefore, the present work corroborates the c
cept that the fractal nature of the dynamical attractor and
presence of a characteristic scaling factor are key ingredi
for the emergence of log-periodic oscillations@13#. The am-
plitude of the oscillations was found to depict a monoto
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parametric dependence ondf . For dense multifractal attrac
tors,W(t) presents only a slow logarithmic contraction of i
lower bounds followed by a rich pattern.

The critical exponent characterizing the contraction of
uniform ensemble was found to have no direct relation to
one governing the expansion from a set of initial conditio
concentrated around the inflection point. In particular,
power law was found for the contraction in the standard a
generalized circle maps, in contrast to thez-dependent
power-law expansion. These results indicate that the rele
Tsallis entropy evolving at a constant rate~modulated by
log-periodic oscillations! is characterized by an entropic in
dexq that depends on the initial ensemble. It would be va
able to investigate the possible existence of classes of
sembles with a common dynamics in phase space a
therefore, characterized by the same entropic indexq. The
nonuniversality ofq with respect to the initial ensemble i
related to the multifractal character of the dynamical attr
tor. However, as for the ensemble concentrated at the vi
ity of the inflection point, the exponent governing the d
namics of the uniform ensemble is coupled to a geome
scaling exponent, in particular to the proper fractal dime
sion of the attractor. Extensive numerical work would
valuable to verify the validity of the proposed relation o
higher-dimensional systems. In any case, the present re
come out in favor of the concept that the degree of non
tensivity of the entropy measure evolving at a constant rat
related to the fractal nature of the dynamical attractor.
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