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We analyze the phase-space structure of a model for thermoreceptors in fish and mammals. As a function of
the temperature we identify a period doubling scenario at low temperatures, a regime where an unstable
stationary fixed point collides with the attractor and blocks the thermoreceptor, and a transition from period
n+1 to periodn as the temperature is further increased. The period reduction phenomenon is due to an
autoresonance between fast and slow ion channels and shows the features typical for mode locking.

PACS numbgs): 05.45.Ac, 05.45.Tp, 87.19.La, 87.19.Nn

[. INTRODUCTION which we would like to focus in the following. First, there
are some differences between the two diagramarked by

Sensory neurons translate continuous input into spikéhe label A: The points where the period 2 orbits split off
trains which are transmitted along axons to other neurongnd where they coalesce, respectively, are different and the
that process the information further. The response of sensoghape of the curve is not square-root-like, as expected for the
receptors in f|sfil’2] and mamma|$3,4] to various stimuli periOd dOUinng scenario. Second, for hlgher temperatures
(electrical, thermal, sharp transition or gradual transjtioas ~ (B) the maximum of the interspike interval increases and no
been studied in a series of experiments by Bratial. The ~ Upper limit is recognizable. The absence of an upper limit
relation between temperature Change and impu'se patterﬁgeans that the Splke enCOdel’ ceases to funCtIOI’I. Th|rd, the
was found not to be monotonic, but to be influenced by nondynamics in this temperature range is largely chaotic but
linear and chaotic responses of the sensor as well as noise Wjth & clear accumulation of interspike intervals near two
the system. Typical impulse patterns show regular singl¢/alues, the lower one being close to 150 ms and the upper
spike activity and rhythmic groupings of spikes into bursts agPne decreasing from about 1000 ms at 8 °C to 650 ms near
well as irregular activity with multimodal spike interval dis- 13 °C (indicated by the label C At slightly higher tempera-
tributions. The experiments have stimulated the developmeritires strongly hysteretic differences in behavior between in-
of methods to identify signatures of chaos in signals with acreasing and decreasing temperatures can be obs@ye#l
considerable amount of noise, and specific methods to exourth and perhaps most interesting observation is the tran-
tract periodic orbits have been propod&d. Motivated by  sition from periodn+1 to periodn behavior when increas-
these investigations and the existence of a mpglghat can  ing the temperature from about 15 °C upw4ElF,G.
account for most observed features in the temperature depen- We here want to study the above mentioned features from
dent changes of cold receptor activity, we here propose afe vantage point of dynamical system the¢®8]. We
analysis of the model from a nonlinear dynamics point ofsearch for periodic orbits, calculate their stability, and follow
view.

The cold receptor model has four dynamically active de-
grees of freedom, and is thus capable of nontrivial and po- 35 30 25 20 15 10
tentially chaotic dynamics. The external parameter is the
temperature, the measured signal the interval between spike
in the voltage across the cell membrane. The details of the
model will be given in the next section. The model is de- _.
signed to describe temperature dependent changes of the in
pulse patterns. Figure 1 compares experimental data and da%
from the model with a certain amount of noise added. For§ — , me—a—
most of the temperature range shown noise leads just to & 15000 | |, ) .
smearing of interspike intervals. However, for high tempera- & o C
tures the noise is responsible for occasional skipping of spikeg 1000.0 .. " °
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formation. This multimodal interspike interval distribution in £ SO

the upper temperature range can only be reproduced witt  500.0 R

noise. Do ; . i
Our focus here is on the dynamics without noise, where 00 C—— e it i

the model produces the interspike intervals shown in Fig. 2 00 2000 4000 Time?gg; 800.0 10000

for slowly increasingtop) and decreasingoottom tempera-
ture. While this looks on first sight like the usual bifurcation  FIG. 1. Experimental data from a peripheral cold receptor of
diagram there are a number of conspicuous features otats(top) and data from the model with additive noiéottom).
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FIG. 2. Interspike intervals for increasiritpp) and decreasing V [mV]
(bottom) temperature. The plots were obtained by changing the o o
temperature by 0.0015 °C after every spike. This corresponds to a FIG. 3. Equilibrium states of the activation curves for the fast
temperature gradient of about0.003°C/ms. The labels A-G ion channels dy,=ax.., solid line and the polarization channels

point to the various features discussed in the text. (8sg. , dashed ling

their development under changes of parameters. As will be I'Na= PONa@NA(V — Vi), 2
shown, this allows us to explain the dynamical response of

the system rather well. In particular, we can connect the four lk=pakak(V—Vk), 3

observations mentioned above to the sweeping of a period
doubling bifurcation, the presence of an unstable fixed pointyhere theg's are the conductances and tas contain the
the shape of the return map, and an autoresonance betweswwitching characteristics of the channels. In the steady state,
fast and slow ion channels, respectively.

The outline of the paper is as follows. In the next section A —a. = 1
we describe the model and the numerical methods. This is Naz™ K=" 1+exd —0.25V+25 mV)]
followed by a discussion of the period doubling scenario
(Sec. Ill), the divergence of the interspike intervéBec. IV), (see Fig. 3 The sodium channel is assumed to relax to its
and the accumulation of poin{Sec. \j. Finally, we address steady state immediatel§iy,= aya -, but the potassium cur-
the period decreasing transitions for higher temperatures irent relaxes exponentially,
Sec. VI. In a concluding section we discuss the physiological

relevance of the various phase-space features found here. day ¢
Wz—T—K(aK—aK,w). (5)

4

II. MODEL AND NUMERICAL METHODS . . .
The dimensionless factogs and ¢ contain the temperature

The model for the thermoreceptors is based on thelependence,
Hodgkin-Huxley model[9]. It uses a simplified version of

the classical spike-generating conductareeg., without in- T-T,

activation) but is extended for two additional slow channels pP= exp( 10 OCIn 1-3)' ©)
activated at lower potentials to account for slow subthreshold

potential oscillations which are assumed to underlie the slow T-T,

rhythms of impulse generation. A temperature dependence is b= exp{ 0 ocln 3.0) ) @)

introduced mainly by scaling of the rate constants and, to a
lesser extent, by scaling of the maximum conductances.

The principal observable is the potential differende
(measured in millivoltsacross the membrane, which is con-
trolled by five currents according to

where the reference temperatiig= 25 °C. We here follow

the model as developed by Braanal, but it is clear that for

the limited temperature range studied the exponential could
be replaced by a linear function ferand a quadratic poly-
nomial for ¢.

(1) The next two currents in Eql) describe the slow sub-
threshold oscillator proposed by Braehal.[1,2,4,§. They
are given by

whereC,, is the capacitance of the membrane. The currents

on the right hand side fall into three groups. The first two, lsq=POsq@sd(V—Vsq), (8)

Ina @ndly, are the fast sodium and potassium currents that

generate the action potentials, lsr=pOsas(V—Vs,), 9

CMHZ_INa_IK_Isd_Isr_IIa
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where the indicesd andsr stand for “slow depolarization”

and “slow repolarization.” They are assumed to relax ac- MMMWM“ T-6.0C
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The model for the repolarization current differs from that for
the depolarization current in that it includes an activation
the boxes always cover the voltage range freni00 mV to

term that is directly related to the slow depolarizing current. _

This reflects the general finding that slow repolarization iﬁzr?;)ﬂ:n (\)/f' tr?g tzzfg it:teersgfg:]u;\?v::gpllguge;t:cgnoE’g (;?Ep?ageodé The
oftgp carried Fy potassmr‘r: currents \.Nhlcr; ?re %Ctlvateq b he spike activity is regular, of period 1 and 2, respectively. The
sodium or calcium currentéfor experimental evidence in trains atT=9.0 °C and 11.5 °C are irregular with narrow groups of

peripheral cold receptors, sE&0)). . spikes separated by long spikeless intervalse is marked by an
The temperature dependence is controlled by the Samzfsterisk. At T=20.0°C the train has period 3, i.e., three spikes
faCtQFSP and ¢ as abpve. . separated by a somewhat longer interval in which the slow oscilla-
Finally, the model is completed by a passive leak currentiions of the membrane potential are visible. The train Tat
=22.5°C is taken from the transition region between a period 2
Lhi=ai(V=V)). 13 and a period 3 region and shows an irregular sequence of two and

h | £ all th h in th b three spike bursts. AT=33.0 °C the signal is a regular train with
The values of all the parameters that appear in the al 0V§ng|e spikes on top of a regular oscillation.

equations are

FIG. 4. Spike trains for several temperatures. The ordinates of

Membrane capacitance,G 1 (uF/cn?) section, defined by crossing a certain voltage level in a fixed
direction. The voltage level has to be higher than the one
obtained in a side maximurfto avoid overcountingand

Conductances (mS/én

Ona=1.5 9c=2.0 lower than the lowest maximungso that no spikes are
Jsg=0.25 g, =0.4 missed. We work with V¢;,ss= —20 mV; the requirement
9,=0.1 V>0 then fixes the orientation of the crossing.

Time constants (ms) The numerical method used to follow a periodic orbit uses

the surface of section map, the linearization in the surface of
section and in the parameter, here the temperature. An orbit
is first found dynamically in a temperature range where it is
stable and is then followed into the region where it is un-

K= 20
7s¢= 10 7sr=20
Reversal potentials (mV)

Vya=Veq= 50 stable usingpiTCcON, the Pittsburgh continuation program
Vi=Vg=—90 (14 [11]. The required derivatives are found by numerical inte-
V,=—60 gration of the corresponding variational differential equa-

tions [12]. For completeness we give some of the relevant

and «=0.012 A and B=0.17 (dimensionless For the Expressions in the Appepdlx. i i
simulations shown in Fig. 1 white noise is added to 8. Since there_are four differential e_qua_tlons_ the monodromy
Typical time series for different temperatures are showriS & 4<4 matrix. From the translation invariance along the
in Fig. 4. For low temperatures the time series consists off@jectory one eigenvalue is 1, and the numerical lineariza-
sharp spikes reaching to high voltage followed by lower andions reproduce this eigenvalue with high accuracy. A second
less pronounced secondary peaks. For high temperatur@jgenvame is of the order of 1, but the other two eigenvalues
there are still sharp spikes but their amplitude is lower andurn out to be extremely small, of the order of 16 and
the interspike modulations are more pronounced. The sharp0™ 6. These estimates are based on integrations of the equa-
peaks are due to the fast Na and K channels, the sloweions of motions in 128 bit precision, but no further efforts
modulations due to the de- and repolarization currents. ~ where put into determining these eigenvalues with higher
The highest spikes describe the generation of a pulse oaccuracy. The smallness of these two eigenvalues implies
the axon and thus the time between such spikes is the phydhat if the dynamics becomes chaotic the attractor will have
ologically relevant signal. It can be extracted as the timeonly a minimal extension in the direction of these two eig-
interval between two successive crossings of a surface afnvectors. Application of center manifold or other projection
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FIG. 5. The period 1, 2, and 4 orbits, superimposed on the . . )
temperature trace of Fig. 2 up to 12.0°C. The return times of the. FIG. 7. Slmulatlon of_a temperature sweep through the bifurca-
period 1 and 2 orbits diverge near=10.9°C andT=11.2°C, tion from period 1 to period 2. The crosses mark the data from the

respectively, due to an encounter with a stationary point of thefu" calculation, the open circles the data from the approximate
system. linear map. The temperature stAfd is 0.001 °C.

techniques might allow one to obtain an effective model Withpoint of bifurcation. The transition between the two states

three degrees of freedom, but this was not attempted. depends very muc_h on the rate of c.h.ange OT the Lyapunov
exponent when going through the critical region. The faster

the sweep the further the trajectory will follow the old orbit
I1l. SWEEPING PERIOD DOUBLING TRANSITIONS before moving away.

For temperatures below about 6.75 °C the thermoreceptocrorlT? (;rrietrhtg Sz.ne]g{:)s;ztedg:ﬁ/gg?lrg:;bgtﬁn(gatn'zsa&%da( \f[\;]ee
oscillates with a single period that increases slightly with P J

temperature. Above that temperature a period 2 orbit takeg?ap \g"th thFe f!*” t;ajegtfones.m F'g'. 7 Wg took an |dn|t|r?l
over, then a period 4, indicative of a period doubling transi- Isturbancek, In the bifurcation point and computed the
tion to chaos. These orbits are shown in Fig. 5. The transitiorﬁjISturbance in the next temperature step using the iteration
from period 1 to 2 appears at~6.7668 °C(Fig. 6). In the ormula
sweeping record of Fig. 2 this transition appears at a some-

what higher temperature when going up and at a somewhat

lower temperature when going down. This phenomenon wagerej is the slope of the largest eigenvalue of the period 1
discussed earlier in connection with phase transitidr® orbit with temperature(taken from Fig. 6 and AT is the

and is connected with the marginal stability of the orbit at thetemperature increase per spike that was used in the numerical
simulations. At the point of bifurcation the eigenvalue is

Fni1=—Fn(1+anAT), (15

1000 . . —1, so thatF,,,;=—F, as is typical for a pitchfork bifur-
3 B ?Z;%‘;:aﬁfe“sweep cation. Thus the absolute value of the expression in paren-
E 800 - Period2orbit __.-==="""" M 1 theses in Eq(15) is the Lyapunov exponent of the orbit
£ . ‘i ———————————— temperature steps away from the bifurcation point. The only
€ T X | fit parameter for the comparison with the full simulations is
3 . ey .
5 the initial disturbancd-,. The two curves agree very well
until the attraction of the period 2 orbit takes over.

4208 I ‘ ‘ P The general scaling of the point of deviation with the
g ' ——”lfp"/cn it sweeping speed can be estimated from the continuum ver-
S 0l w7 T Porcdzomit - sion of Eq.(15). We write this as an equation of time, as-
;3-; ~~~~~~~~ —- Squared period 1 suming a constant sweeping spegduch than T=sAt and
z o0 Tl ] nAt=t. The alternation in sign is removed with the defini-
g -0 \\\ tion F,=(—1)"F,. Then

-20 : : ~ ~

6.6 6.8 7.0 7.2 F(t+At)—F(t) .
Temperature [°C] —a astk(t) (16)

FIG. 6. Magnification of the bifurcation from period 1 to period
2. In the lower half the largest eigenvalue of the Jacobian is plottedn
for both orbits. The slope of the period 1 eigenvalueais e
—1.32167°C1, F=atF, a=as, (17)
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FIG. 8. The equilibrium values of the currents for differenttem- 1. 9. Same region as Fig. 5 but with all periodic orbits that
peratures_, de_cre_asnng in steps of 2 °C from _Ieft to rlg_ht. Crossingoyld be identified up to period 7. In the regions where most time
the zero line indicates the presence of a stationary point. Note thaftervals lie one notes also a higher density of periodic orbits. Simi-
the voltage values are rather low. larly, there are no periodic orbitsip to this periodlin the less dense

~ - ~ region.
with solution F(t)=F(0)exp@t?2). The time to reach a
fixed threshold inF scales like 1{a [note thata as the negative real eigenvalue and two complex conjugate ones
variation of a Lyapunov exponent with time has dimensiongvith small positive real parts. The escape from the fixed
(time)~2]. point is thus in spirals, but since the frequency is small one

As in the period doubling scenario of the quadratic maphas to start very close to the fixed point to detect it. As
there are windows of stable orbits beyond the accumulatiofliscussed ir14], the dynamics in the neighborhood of the
point of the period doubling cascade. Some of these orbit§ollision with the fixed point is more complicated as there
have also been calculated and will be discussed below igre additional saddle node and homoclinic bifurcations

connection with the accumulation of interspike intervals. ~ nearby, which also lower the critical temperature for the oc-
currence of infinite interspike intervals slightly.

The fixed point becomes dynamically noticeable only if
the trajectories come close to the stable manifold. Thus,
Following the period 1 orbit to higher temperatures leadswhile it exists in the full temperature range, it seems to in-
to a turning point at 10.878 °C. Another turning point ap-terfere with the dynamics only in the interval between about
pears at 10.742°C with a period time of about 2500 ms10°C and 15°C.
Similarly, the period 2 orbit shows a turning point at Physiologically, the presence of this fixed point is rather
11.16°C. This increase coincides with the appearance dnteresting as it can cause a blocking of the sensor for some
very large interspike intervals for temperatures betweeriime. Note that there is more than a factor of 10 between the
10°C and 14°C. As the distribution of points in Fig. 2 shortest and largest interspike intervals. Thus the response of
shows, they are rare but apparently unbounded. The left ughe sensor shows a large intrinsic variability in this tempera-
per boundary seems to be given by the interspike intervals dfire range.
the period 5 orbit, which takes off to larger intervals at
slightl_y lower temperatures than the period 1 orbit. When \, AccUMULATION OF INTERSPIKE INTERVALS
following the dynamics one notes that the phase-space ve-
locity slows down considerably in a certain part of phase Next we turn to the accumulation of interspike intervals
space, indicating the presence of a stationary point. Indeedhear an almost constant lower value of about 150 ms and an
such a stationary point exists for all temperatures, as we willipper one that decreases from about 1000 ms to 650 ms for
now show. temperatures between 10°C and 14°C. We will give two
All time derivatives in the equations of motion have to explanations of this behavior.
vanish at a stationary point. This fixes all currents to their The first is a statistical analysis of the interspike intervals
equilibrium values and leaves us with a single equation fothat appear in periodic orbits. Fig. 9 shows the orbits with
the determination of the potentisl, at the fixed point, periods up to 7 in the temperature range up to 12 °C. Most of
the branches cluster in the lower fourth of the time scale,
Ina(Vo) +1k(Vo) +1s4(Vo) + (Vo) +11(Vg)=0. (18)  some branches lie above about 800 ms, and only a few visit
the intermediate region. To connect this distribution of inter-
As Fig. 8 shows, this sum of currents crosses the zero line fogpike intervals in periodic trajectories to the invariant er-
all temperatures; hence the stationary point exists over thgodic density, we have to appeal to periodic orbit theory
full temperature range. Between 10 °C and 15 °C the station-15,16]. The trajectories of a dynamical system fill up most
ary point is a hyperbolic saddle, with one positive and oneof the phase space and their densities and instabilities can be

IV. DIVERGING INTERSPIKE INTERVALS
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2000 . As mentioned, the dynamics of the voltage across the

membrane is controlled by two pairs of currents, the fast
channels that make the spikes and a slower channel for the
polarizations across the membrane. The individual periods
can be estimated from the limit cycles in the spiking sub-
system,

1500

1000 | CuV=—Ina=lk=1=lgr, (19

and in the slow oscillating subsystem,

Return time t,, [msec]

500 .
CuV=—lsg—Ils—1, (20)

where the currents and numerical constants for the full sys-
tem are used. An additional current has to be added to drive
the spiking system. The periods can again be obtained from a
surface of section, with a lowered crossing volt&ge, s for

FIG. 10. First return map af=11°C. The large arrows indi- the slow oscillator. The period of both oscillators in isolation
cate the order of the mapping by the three branches. decreases with increasing temperature, but it decreases faster

for the slower process.

used to characterize the invariant phase-space density. Spe-In this approximation of two independent oscillators the
cifically, if there is not much variation in the instability of Slow one modifies the potential difference and thus the level
orbits (as is the case herethe density of periodic points at which the firing of the fast oscillator is triggered. Thus in
directly indicates the invariant density. The accumulation ofeach polarization period there is a time window near the
periodic points in the two mentioned are@ee Fig. 9thus ~ maximum of the depolarization where spike generation is

0 500 1000 1500 2000
Return time t, [msec]

is direct evidence for an increased invariant density. very likely (resulting in a sequence of narrowly spaced
The second explanation for the gap in the density of in-spikes, while in passing through the minimum of the oscil-
terspike intervals is based on the first return mgp; vst,,  lation spike generation is mostly suppressed. The width of

a typical example of which is shown in Fig. 10 fat  this time window and the period time of the spike generator
=11°C. In the return map three branches are discerniblegssentially determine the number of spikes in one oscillation
one starting near the diagonal and diverging near 175 ms, Reriod. When both resonators are combined, the nonlinear
second part starting near the divergence and leveling off nediteractions cause the spike generation to lock exactly into
about 1000 ms, and a third part that maps large interspikéome periodic limit cycle. To test this resonance picture we
intervals to short ones. Note that the last two overlap. Thidiave calculated the total period of the spike trains in the
ambiguity is resolved by the observation that large time invarious temperature intervals and compared it with the pe-
tervals induced by branch 1 are mapped by branch 2 antiod of the polarization systert20). As shown in Fig. 11 the
large time intervals derived from branch 2 are mapped byotal period and that from the polarization system are very
branch 3. close, and the small deviations can be attributed to interac-
Essential for the spike accumulation is the second brancfiion effects. Since the two oscillators that are in resonance
which has a flat plateau in the time interval 250 to 1000 msare both part of the system we call this effect an autoreso-
Should any interspike time fall in this interval, it is followed nance.
by another of about 820 ms and then one with about 75 ms. The resonance picture suggests labeling the states in the
This large interval thus gets mapped on a much smaller on@mperature regions marked by E, F, and G in Fig. 2 as 3:1,
in one time step. Similarly, the probability of entering this 2:1, and 1:1 resonances, respectively, since there are 3, 2,
interval requires special precursor interspike intervals. As &nd 1 spikes within one period of the polarization system.
result, the invariant density has high values near the boundvore generally, we would define an:m resonance ifn
ary and very low ones in the middle. A similar effect is spikes fit intom intervals of the polarization current.
familiar from the quadratic map, where also the density ac- The standard model of interacting resonators and mode
cumulates at the boundaries because of the flat derivative ¥cking is the circle magp17]. If the coupling between reso-
the maximum. Here it is more pronounced since the map igators is weak there is a hierarchy of resonances whose

rather flat over most of the interval. width is determined by their order.m. The present model,
however, seems to be far from the weak coupling behavior,
VI. AUTORESONANCES since then:1 resonances are very prominent and leave only

small parameter intervals for other resonances, and also since

For higher temperatures the system shows limit cycle dyin the regions between these prominent resonances others
namics with periods decreasing in steps of 1 from period 4eem to coexist.
nearT=15°C to period 1 forfT>28°C. The transition re- Between the maim:1 resonances the behavior is more
gion between periods+ 1 andn is narrow, but full of com- complicated, with many transitions in a tiny interval. In par-
plicated dynamical behavior. As we will show now the ori- ticular, this is the case in the transition region between the
gin of this behavior is what might be called an autoresonanc@:1 resonance and the 1:1 resonance, near a temperature of
between fast and slow currents. 28°C. As the temperature increases, the size of the time
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FIG. 11. Resonances between the polarization/depolarizatior 0.50 . :
currents and the spike generator in the interval between 10 °C ant
35 °C. As the temperature increases the period changes from 4 to @
then from 3 to 2, and then to 1. Between these wide and distin-
guished intervals there are small regions with more complicated 0.00 - ]
dynamics. The continuous lines give tr_le p(_arlod of the polarlz_atlong Period 4 Period 5
system and of the sum ofconsecutive time intervals in the period g Period 3 | \ Period 6
n intervals. 2 |
2 _050 - / ' Period 7
g
window decreases, but is still too large for a single spike. g
Thus, the system combines two periods of the slow oscillator”
and fits in three spikes, creating a 3:2 resonance. This pro  -1.00
cess continues, giving rise to 4:3,5:4,6:5. resonances, as \
shown in the magnifications in Fig. 12 and Fig. 13.
-1.50 ' '
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VII. CONCLUDING REMARKS

Temperature [°C]

(b)
Application of methods from dynamical system theory

has helped to understand many details in the dynamics of a ' 'C: 13- Magnification of the box in Fig. 12. The periodic orbits
thermoreceptor. The system shows a rich variety of dynamit " Periodsn up to 7 indicated correspond twi(n—1) reso-
nances. The Lyapunov exponents in the lower frame show that

cal responses to temperature changes. The accumulation fhble resonances coexist, indicating that in relation to the circle

map one is in the strong perturbation region.
300

spike intervals, the blocking due to the fixed point, and the
period decreasing transitions at higher temperatures should
be features robust enough to survive slight modifications in
the model and the addition of weak noise. The effects of
noise on the intermittency near the divergence of the inter-
spike interval have already been studied by Felatedl.

[14]. The sequence of higher periodic resonances between
then:1 resonances presumably is less observable because of
the tiny widths of the parameter intervals. It would be nice to
have further experiments testing the features of the model; in

n
o
(=]
T
I

Time interval [msec]

e
[=]
o
T
I

SR particular, it seems worthwhile to look for parameters that
allow manipulation of the location and stability of the sta-
o ‘ ‘ ‘ ‘ tionary point in phase space and thus study of the conditions
27.5 27.6 27.7 27.8 279 28.0

under which the sensor can be blocked.
The autoresonance between the fast and slow ion channels
FIG. 12. Magnification of the transition region between the pe_is also of interest. Since there are many channels with similar
riod 1 and period 2 regimes. To the left is the 2:1 resonance, to théharacteristics crossing a membrane it seems worthwhile to
right the 1:1 resonance. In between there is a period 3 state whicheck other membrane models for autoresonance behavior as
corresponds to a 3:2 resonance. The small box indicated in tha function of some external parameter. For instance, it might
upper middle is magnified in Fig. 13. also appear in the response of isolated and connected recep-

Temperature [°C]
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tors to external periodic driving, as in the studies on paddle Variations of parameters can be calculated in a similar

fish [18]. fashion, the relevant differential equations being

The rather complicated response of the sensor as a func-
tion of temperature raises the question of just how the tem- E %) _ ﬁ_fi X ‘9_fi (A2)
perature is encoded in the spike trains, especially as the firing dtl on X OXg N O\

rate vs temperature relation is not monotonic and therefore

cannot provide unambiguous information. One possible scelhe reduced map from the surface of section back to the
nario is that the spike trains are integrated over some timgurface requires that the final points also come to lie in the
interval. Assuming that synaptic transduction becomes morgurface of section. Going around a periodic orbit, a perturba-
effective with an increased number of short intervals within ation starting in the surface of section will not be mapped
given group of impu|sesi the fibers would sense “C0|dness”baCk into the surface of Section, it will come to lie S|Ight|y
when the temperature is lowered in the range above 10°cbefore or after the surface of section. Therefore, the per-
Lower skin temperatures are generally perceived as rathdprbed trajectory has to be integrated for a slightly changed
strange sensations, and may be painful. It is still uncleatime interval. Since all changes are infinitesimal, this modi-
whether this is due to additional activation of low tempera-fication can be accomplished by linear transformation with
ture or unspecific receptors. Perhaps also the transition th¢ phase-space velocity. Specifically, let the surface of sec-
chaotic patterns and transient blocking of the dischargeion be defined by, =c andx,>0, and letéx; be a varia-
might contribute to such strange sensations. Further experiion in a direction in the surface of section. After one period

ments are needed to clarify this issue. of a periodic orbit it will be mapped b into a variation
ACKNOWLEDGMENT OXj =Mij OXj , (A3)
We have greatly benefited from discussions with B. Lani-where typicallysx; # 0. Following the trajectory for a small
Wayda on the mathematical aspects of the model. time 6t will change the point into
APPENDIX: LINEARIZATIONS AND SURFACES O =Mi; o + ot . (A4)
OF SECTIONS The requirementx} =0 fixes
In this Appendix we give some details for the calculation M.
of the entries for the surface of section maps. To simplify the St=— f—lj 8X; . (A5)
notation, letx, . .. X, be the four variables anid(x; ,\) be 1

the right hand sides of the differential equations; they depengsompining this reasoning for all possible variations in the

on all variables and a parametey here the temperature. gy face of section allows one to define a reduced monodromy
The monodromy matri for linearizations in initial con- 1, 5trix

ditions solves
f,

of, m;i=M; — —My; (AB)
LMy (A1) L PR

that describes the mapping of deviations in the surface of
with initial conditions M;; = &;; . When integrated along a section. In this reduced map the indices run through
periodic orbit, this matrix has one eigenvalue 1 with eigen-=2,3,4 since the surface of section coordinatiedd.. Simi-
vector equal to the phase-space velocity, the right hand sidar transformations are applied to the variations in parameter

of the differential equation. (which also change the period of the ojbit
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