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Phase-space structure of a thermoreceptor

Wolfgang Braun,1 Bruno Eckhardt,1 Hans A. Braun,2 and Martin Huber3
1Fachbereich Physik, Philipps Universita¨t Marburg, D-35037 Marburg, Germany

2Institut für Physiologie, Philipps Universita¨t Marburg, D-35033 Marburg, Germany
3Klinik für Psychiatrie, Philipps Universita¨t Marburg, D-35032 Marburg, Germany

~Received 4 June 1999; revised manuscript received 13 July 2000!

We analyze the phase-space structure of a model for thermoreceptors in fish and mammals. As a function of
the temperature we identify a period doubling scenario at low temperatures, a regime where an unstable
stationary fixed point collides with the attractor and blocks the thermoreceptor, and a transition from period
n11 to periodn as the temperature is further increased. The period reduction phenomenon is due to an
autoresonance between fast and slow ion channels and shows the features typical for mode locking.

PACS number~s!: 05.45.Ac, 05.45.Tp, 87.19.La, 87.19.Nn
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I. INTRODUCTION

Sensory neurons translate continuous input into sp
trains which are transmitted along axons to other neur
that process the information further. The response of sen
receptors in fish@1,2# and mammals@3,4# to various stimuli
~electrical, thermal, sharp transition or gradual transition! has
been studied in a series of experiments by Braunet al. The
relation between temperature change and impulse patt
was found not to be monotonic, but to be influenced by n
linear and chaotic responses of the sensor as well as noi
the system. Typical impulse patterns show regular sin
spike activity and rhythmic groupings of spikes into bursts
well as irregular activity with multimodal spike interval dis
tributions. The experiments have stimulated the developm
of methods to identify signatures of chaos in signals with
considerable amount of noise, and specific methods to
tract periodic orbits have been proposed@5#. Motivated by
these investigations and the existence of a model@6# that can
account for most observed features in the temperature de
dent changes of cold receptor activity, we here propose
analysis of the model from a nonlinear dynamics point
view.

The cold receptor model has four dynamically active d
grees of freedom, and is thus capable of nontrivial and
tentially chaotic dynamics. The external parameter is
temperature, the measured signal the interval between sp
in the voltage across the cell membrane. The details of
model will be given in the next section. The model is d
signed to describe temperature dependent changes of th
pulse patterns. Figure 1 compares experimental data and
from the model with a certain amount of noise added. F
most of the temperature range shown noise leads just
smearing of interspike intervals. However, for high tempe
tures the noise is responsible for occasional skipping of sp
formation. This multimodal interspike interval distribution
the upper temperature range can only be reproduced
noise.

Our focus here is on the dynamics without noise, wh
the model produces the interspike intervals shown in Fig
for slowly increasing~top! and decreasing~bottom! tempera-
ture. While this looks on first sight like the usual bifurcatio
diagram there are a number of conspicuous features
PRE 621063-651X/2000/62~5!/6352~9!/$15.00
e
s
ry

rns
-
in

le
s

nt
a
x-

en-
n

f

-
-

e
es
e

-
im-
ata
r
a

-
e

ith

e
2

on

which we would like to focus in the following. First, ther
are some differences between the two diagrams~marked by
the label A!: The points where the period 2 orbits split o
and where they coalesce, respectively, are different and
shape of the curve is not square-root-like, as expected for
period doubling scenario. Second, for higher temperatu
~B! the maximum of the interspike interval increases and
upper limit is recognizable. The absence of an upper li
means that the spike encoder ceases to function. Third,
dynamics in this temperature range is largely chaotic
with a clear accumulation of interspike intervals near tw
values, the lower one being close to 150 ms and the up
one decreasing from about 1000 ms at 8 °C to 650 ms n
13 °C ~indicated by the label C!. At slightly higher tempera-
tures strongly hysteretic differences in behavior between
creasing and decreasing temperatures can be observed~D!. A
fourth and perhaps most interesting observation is the t
sition from periodn11 to periodn behavior when increas
ing the temperature from about 15 °C upward~E,F,G!.

We here want to study the above mentioned features f
the vantage point of dynamical system theory@7,8#. We
search for periodic orbits, calculate their stability, and follo

FIG. 1. Experimental data from a peripheral cold receptor
cats~top! and data from the model with additive noise~bottom!.
6352 ©2000 The American Physical Society



l b

ou
rio
in
w

io
s
rio

s
ica
e

th
f

ls
o
lo
e
o

n-

n
o
h

tate,

its
-

uld

-

th
to st

s

PRE 62 6353PHASE-SPACE STRUCTURE OF A THERMORECEPTOR
their development under changes of parameters. As wil
shown, this allows us to explain the dynamical response
the system rather well. In particular, we can connect the f
observations mentioned above to the sweeping of a pe
doubling bifurcation, the presence of an unstable fixed po
the shape of the return map, and an autoresonance bet
fast and slow ion channels, respectively.

The outline of the paper is as follows. In the next sect
we describe the model and the numerical methods. Thi
followed by a discussion of the period doubling scena
~Sec. III!, the divergence of the interspike intervals~Sec. IV!,
and the accumulation of points~Sec. V!. Finally, we address
the period decreasing transitions for higher temperature
Sec. VI. In a concluding section we discuss the physiolog
relevance of the various phase-space features found her

II. MODEL AND NUMERICAL METHODS

The model for the thermoreceptors is based on
Hodgkin-Huxley model@9#. It uses a simplified version o
the classical spike-generating conductances~e.g., without in-
activation! but is extended for two additional slow channe
activated at lower potentials to account for slow subthresh
potential oscillations which are assumed to underlie the s
rhythms of impulse generation. A temperature dependenc
introduced mainly by scaling of the rate constants and, t
lesser extent, by scaling of the maximum conductances.

The principal observable is the potential differenceV
~measured in millivolts! across the membrane, which is co
trolled by five currents according to

CM

dV

dt
52I Na2I K2I sd2I sr2I l , ~1!

whereCM is the capacitance of the membrane. The curre
on the right hand side fall into three groups. The first tw
I Na and I K , are the fast sodium and potassium currents t
generate the action potentials,

FIG. 2. Interspike intervals for increasing~top! and decreasing
~bottom! temperature. The plots were obtained by changing
temperature by 0.0015 °C after every spike. This corresponds
temperature gradient of about60.003 °C/ms. The labels A–G
point to the various features discussed in the text.
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I Na5rgNaaNa~V2VNa!, ~2!

I K5rgKaK~V2VK!, ~3!

where theg’s are the conductances and thea’s contain the
switching characteristics of the channels. In the steady s

aNa,̀ 5aK,`5
1

11exp@20.25~V125 mV!#
~4!

~see Fig. 3!. The sodium channel is assumed to relax to
steady state immediately,aNa5aNa,̀ , but the potassium cur
rent relaxes exponentially,

daK

dt
52

f

tK
~aK2aK,`!. ~5!

The dimensionless factorsr and f contain the temperature
dependence,

r5expS T2T0

10 °C
ln 1.3D , ~6!

f5expS T2T0

10 °C
ln 3.0D , ~7!

where the reference temperatureT0525 °C. We here follow
the model as developed by Braunet al., but it is clear that for
the limited temperature range studied the exponential co
be replaced by a linear function forr and a quadratic poly-
nomial for f.

The next two currents in Eq.~1! describe the slow sub
threshold oscillator proposed by Braunet al. @1,2,4,6#. They
are given by

I sd5rgsdasd~V2Vsd!, ~8!

I sr5rgsrasr~V2Vsr!, ~9!

e
a FIG. 3. Equilibrium states of the activation curves for the fa
ion channels (aNa5aK,` , solid line! and the polarization channel
(asd,` , dashed line!.
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where the indicessd andsr stand for ‘‘slow depolarization’’
and ‘‘slow repolarization.’’ They are assumed to relax a
cording to

dasd

dt
52

f

tsd
~asd2asd,`!, ~10!

dasr

dt
5

f

tsr
~2aI sd2basr!, ~11!

where

asd,`5
1

11exp@20.09~V140 mV!#
. ~12!

The model for the repolarization current differs from that f
the depolarization current in that it includes an activat
term that is directly related to the slow depolarizing curre
This reflects the general finding that slow repolarization
often carried by potassium currents which are activated
sodium or calcium currents~for experimental evidence in
peripheral cold receptors, see@10#!.

The temperature dependence is controlled by the s
factorsr andf as above.

Finally, the model is completed by a passive leak curre

I l5gl~V2Vl !. ~13!

The values of all the parameters that appear in the ab
equations are

Membrane capacitance CM51 (mF/cm2)

Conductances (mS/cm2)

gNa51.5 gK52.0
gsd50.25 gsr50.4
gl50.1

Time constants (ms)

tK52.0
tsd510 tsr520

Reversal potentials (mV)

VNa5Vsd550
VK5Vsr5290

Vl5260
~14!

and a50.012 mA and b50.17 ~dimensionless!. For the
simulations shown in Fig. 1 white noise is added to Eq.~1!.

Typical time series for different temperatures are sho
in Fig. 4. For low temperatures the time series consists
sharp spikes reaching to high voltage followed by lower a
less pronounced secondary peaks. For high tempera
there are still sharp spikes but their amplitude is lower a
the interspike modulations are more pronounced. The sh
peaks are due to the fast Na and K channels, the slo
modulations due to the de- and repolarization currents.

The highest spikes describe the generation of a pulse
the axon and thus the time between such spikes is the ph
ologically relevant signal. It can be extracted as the ti
interval between two successive crossings of a surface
-
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section, defined by crossing a certain voltage level in a fix
direction. The voltage level has to be higher than the o
obtained in a side maximum~to avoid overcounting! and
lower than the lowest maximum~so that no spikes are
missed!. We work with Vcross5220 mV; the requirement

V̇.0 then fixes the orientation of the crossing.
The numerical method used to follow a periodic orbit us

the surface of section map, the linearization in the surface
section and in the parameter, here the temperature. An o
is first found dynamically in a temperature range where i
stable and is then followed into the region where it is u
stable usingPITCON, the Pittsburgh continuation program
@11#. The required derivatives are found by numerical in
gration of the corresponding variational differential equ
tions @12#. For completeness we give some of the relev
expressions in the Appendix.

Since there are four differential equations the monodro
is a 434 matrix. From the translation invariance along t
trajectory one eigenvalue is 1, and the numerical lineari
tions reproduce this eigenvalue with high accuracy. A sec
eigenvalue is of the order of 1, but the other two eigenval
turn out to be extremely small, of the order of 10212 and
10216. These estimates are based on integrations of the e
tions of motions in 128 bit precision, but no further effor
where put into determining these eigenvalues with hig
accuracy. The smallness of these two eigenvalues imp
that if the dynamics becomes chaotic the attractor will ha
only a minimal extension in the direction of these two e
envectors. Application of center manifold or other projecti

FIG. 4. Spike trains for several temperatures. The ordinate
the boxes always cover the voltage range from2100 mV to
150 mV, so that the absolute amplitudes can be compared.
length of the time interval shown is 15 s. AtT56.0 °C and 7.2 °C
the spike activity is regular, of period 1 and 2, respectively. T
trains atT59.0 °C and 11.5 °C are irregular with narrow groups
spikes separated by long spikeless intervals~one is marked by an
asterisk!. At T520.0 °C the train has period 3, i.e., three spik
separated by a somewhat longer interval in which the slow osc
tions of the membrane potential are visible. The train atT
522.5 °C is taken from the transition region between a perio
and a period 3 region and shows an irregular sequence of two
three spike bursts. AtT533.0 °C the signal is a regular train wit
single spikes on top of a regular oscillation.
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techniques might allow one to obtain an effective model w
three degrees of freedom, but this was not attempted.

III. SWEEPING PERIOD DOUBLING TRANSITIONS

For temperatures below about 6.75 °C the thermorece
oscillates with a single period that increases slightly w
temperature. Above that temperature a period 2 orbit ta
over, then a period 4, indicative of a period doubling tran
tion to chaos. These orbits are shown in Fig. 5. The transi
from period 1 to 2 appears atT'6.7668 °C~Fig. 6!. In the
sweeping record of Fig. 2 this transition appears at a so
what higher temperature when going up and at a somew
lower temperature when going down. This phenomenon
discussed earlier in connection with phase transitions@13#
and is connected with the marginal stability of the orbit at

FIG. 5. The period 1, 2, and 4 orbits, superimposed on
temperature trace of Fig. 2 up to 12.0 °C. The return times of
period 1 and 2 orbits diverge nearT510.9 °C andT511.2 °C,
respectively, due to an encounter with a stationary point of
system.

FIG. 6. Magnification of the bifurcation from period 1 to perio
2. In the lower half the largest eigenvalue of the Jacobian is plo
for both orbits. The slope of the period 1 eigenvalue isa5
21.321 67 °C21.
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point of bifurcation. The transition between the two sta
depends very much on the rate of change of the Lyapu
exponent when going through the critical region. The fas
the sweep the further the trajectory will follow the old orb
before moving away.

In order to demonstrate the applicability of this model w
compare the trajectories derived from a linearization of
map with the full trajectories in Fig. 7. We took an initia
disturbanceF0 in the bifurcation point and computed th
disturbance in the next temperature step using the itera
formula

Fn1152Fn~11anDT!, ~15!

wherea is the slope of the largest eigenvalue of the perio
orbit with temperature~taken from Fig. 6! and DT is the
temperature increase per spike that was used in the nume
simulations. At the point of bifurcation the eigenvalue i
21, so thatFn1152Fn as is typical for a pitchfork bifur-
cation. Thus the absolute value of the expression in pa
theses in Eq.~15! is the Lyapunov exponent of the orbitn
temperature steps away from the bifurcation point. The o
fit parameter for the comparison with the full simulations
the initial disturbanceF0. The two curves agree very we
until the attraction of the period 2 orbit takes over.

The general scaling of the point of deviation with th
sweeping speed can be estimated from the continuum
sion of Eq.~15!. We write this as an equation of time, a
suming a constant sweeping speeds, such thatDT5sDt and
nDt5t. The alternation in sign is removed with the defin
tion F̃n5(21)nFn . Then

F̃~ t1Dt !2F̃~ t !

Dt
5astF̃~ t ! ~16!

and

F8 5ãtF̃, ã5as, ~17!

e
e

e

d

FIG. 7. Simulation of a temperature sweep through the bifur
tion from period 1 to period 2. The crosses mark the data from
full calculation, the open circles the data from the approxim
linear map. The temperature stepDT is 0.001 °C.
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with solution F̃(t)5F̃(0)exp(ãt2/2). The time to reach a

fixed threshold inF scales like 1/Aã @note that ã as the
variation of a Lyapunov exponent with time has dimensio
(time)22].

As in the period doubling scenario of the quadratic m
there are windows of stable orbits beyond the accumula
point of the period doubling cascade. Some of these or
have also been calculated and will be discussed below
connection with the accumulation of interspike intervals.

IV. DIVERGING INTERSPIKE INTERVALS

Following the period 1 orbit to higher temperatures lea
to a turning point at 10.878 °C. Another turning point a
pears at 10.742 °C with a period time of about 2500 m
Similarly, the period 2 orbit shows a turning point
11.16 °C. This increase coincides with the appearance
very large interspike intervals for temperatures betwe
10 °C and 14 °C. As the distribution of points in Fig.
shows, they are rare but apparently unbounded. The left
per boundary seems to be given by the interspike interval
the period 5 orbit, which takes off to larger intervals
slightly lower temperatures than the period 1 orbit. Wh
following the dynamics one notes that the phase-space
locity slows down considerably in a certain part of pha
space, indicating the presence of a stationary point. Ind
such a stationary point exists for all temperatures, as we
now show.

All time derivatives in the equations of motion have
vanish at a stationary point. This fixes all currents to th
equilibrium values and leaves us with a single equation
the determination of the potentialV0 at the fixed point,

I Na~V0!1I K~V0!1I sd~V0!1I sr~V0!1I l~V0!50. ~18!

As Fig. 8 shows, this sum of currents crosses the zero line
all temperatures; hence the stationary point exists over
full temperature range. Between 10 °C and 15 °C the stat
ary point is a hyperbolic saddle, with one positive and o

FIG. 8. The equilibrium values of the currents for different te
peratures, decreasing in steps of 2 °C from left to right. Cross
the zero line indicates the presence of a stationary point. Note
the voltage values are rather low.
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negative real eigenvalue and two complex conjugate o
with small positive real parts. The escape from the fix
point is thus in spirals, but since the frequency is small o
has to start very close to the fixed point to detect it.
discussed in@14#, the dynamics in the neighborhood of th
collision with the fixed point is more complicated as the
are additional saddle node and homoclinic bifurcatio
nearby, which also lower the critical temperature for the o
currence of infinite interspike intervals slightly.

The fixed point becomes dynamically noticeable only
the trajectories come close to the stable manifold. Th
while it exists in the full temperature range, it seems to
terfere with the dynamics only in the interval between ab
10 °C and 15 °C.

Physiologically, the presence of this fixed point is rath
interesting as it can cause a blocking of the sensor for so
time. Note that there is more than a factor of 10 between
shortest and largest interspike intervals. Thus the respons
the sensor shows a large intrinsic variability in this tempe
ture range.

V. ACCUMULATION OF INTERSPIKE INTERVALS

Next we turn to the accumulation of interspike interva
near an almost constant lower value of about 150 ms and
upper one that decreases from about 1000 ms to 650 m
temperatures between 10 °C and 14 °C. We will give t
explanations of this behavior.

The first is a statistical analysis of the interspike interv
that appear in periodic orbits. Fig. 9 shows the orbits w
periods up to 7 in the temperature range up to 12 °C. Mos
the branches cluster in the lower fourth of the time sca
some branches lie above about 800 ms, and only a few
the intermediate region. To connect this distribution of int
spike intervals in periodic trajectories to the invariant e
godic density, we have to appeal to periodic orbit theo
@15,16#. The trajectories of a dynamical system fill up mo
of the phase space and their densities and instabilities ca

g
at

FIG. 9. Same region as Fig. 5 but with all periodic orbits th
could be identified up to period 7. In the regions where most ti
intervals lie one notes also a higher density of periodic orbits. Si
larly, there are no periodic orbits~up to this period! in the less dense
region.
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used to characterize the invariant phase-space density.
cifically, if there is not much variation in the instability o
orbits ~as is the case here!, the density of periodic points
directly indicates the invariant density. The accumulation
periodic points in the two mentioned areas~see Fig. 9! thus
is direct evidence for an increased invariant density.

The second explanation for the gap in the density of
terspike intervals is based on the first return map,tn11 vs tn ,
a typical example of which is shown in Fig. 10 forT
511 °C. In the return map three branches are discerni
one starting near the diagonal and diverging near 175 m
second part starting near the divergence and leveling off n
about 1000 ms, and a third part that maps large intersp
intervals to short ones. Note that the last two overlap. T
ambiguity is resolved by the observation that large time
tervals induced by branch 1 are mapped by branch 2
large time intervals derived from branch 2 are mapped
branch 3.

Essential for the spike accumulation is the second bran
which has a flat plateau in the time interval 250 to 1000 m
Should any interspike time fall in this interval, it is followe
by another of about 820 ms and then one with about 75
This large interval thus gets mapped on a much smaller
in one time step. Similarly, the probability of entering th
interval requires special precursor interspike intervals. A
result, the invariant density has high values near the bou
ary and very low ones in the middle. A similar effect
familiar from the quadratic map, where also the density
cumulates at the boundaries because of the flat derivativ
the maximum. Here it is more pronounced since the ma
rather flat over most of the interval.

VI. AUTORESONANCES

For higher temperatures the system shows limit cycle
namics with periods decreasing in steps of 1 from perio
nearT515 °C to period 1 forT.28 °C. The transition re-
gion between periodsn11 andn is narrow, but full of com-
plicated dynamical behavior. As we will show now the o
gin of this behavior is what might be called an autoresona
between fast and slow currents.

FIG. 10. First return map atT511 °C. The large arrows indi-
cate the order of the mapping by the three branches.
pe-

f

-

e,
, a
ar
e

is
-
d

y

h,
.

s.
e

a
d-

-
at
is

-
4

e

As mentioned, the dynamics of the voltage across
membrane is controlled by two pairs of currents, the f
channels that make the spikes and a slower channel for
polarizations across the membrane. The individual peri
can be estimated from the limit cycles in the spiking su
system,

CMV̇52I Na2I K2I l2I dr , ~19!

and in the slow oscillating subsystem,

CMV̇52I sd2I sr2I l , ~20!

where the currents and numerical constants for the full s
tem are used. An additional current has to be added to d
the spiking system. The periods can again be obtained fro
surface of section, with a lowered crossing voltageVcross for
the slow oscillator. The period of both oscillators in isolatio
decreases with increasing temperature, but it decreases f
for the slower process.

In this approximation of two independent oscillators t
slow one modifies the potential difference and thus the le
at which the firing of the fast oscillator is triggered. Thus
each polarization period there is a time window near
maximum of the depolarization where spike generation
very likely ~resulting in a sequence of narrowly spac
spikes!, while in passing through the minimum of the osc
lation spike generation is mostly suppressed. The width
this time window and the period time of the spike genera
essentially determine the number of spikes in one oscilla
period. When both resonators are combined, the nonlin
interactions cause the spike generation to lock exactly
some periodic limit cycle. To test this resonance picture
have calculated the total period of the spike trains in
various temperature intervals and compared it with the
riod of the polarization system~20!. As shown in Fig. 11 the
total period and that from the polarization system are v
close, and the small deviations can be attributed to inte
tion effects. Since the two oscillators that are in resona
are both part of the system we call this effect an autore
nance.

The resonance picture suggests labeling the states in
temperature regions marked by E, F, and G in Fig. 2 as
2:1, and 1:1 resonances, respectively, since there are 3
and 1 spikes within one period of the polarization syste
More generally, we would define ann:m resonance ifn
spikes fit intom intervals of the polarization current.

The standard model of interacting resonators and m
locking is the circle map@17#. If the coupling between reso
nators is weak there is a hierarchy of resonances wh
width is determined by their ordern:m. The present model
however, seems to be far from the weak coupling behav
since then:1 resonances are very prominent and leave o
small parameter intervals for other resonances, and also s
in the regions between these prominent resonances o
seem to coexist.

Between the mainn:1 resonances the behavior is mo
complicated, with many transitions in a tiny interval. In pa
ticular, this is the case in the transition region between
2:1 resonance and the 1:1 resonance, near a temperatu
28 °C. As the temperature increases, the size of the t
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6358 PRE 62BRAUN, ECKHARDT, BRAUN, AND HUBER
window decreases, but is still too large for a single spi
Thus, the system combines two periods of the slow oscilla
and fits in three spikes, creating a 3:2 resonance. This
cess continues, giving rise to 4:3,5:4,6:5, . . . resonances, a
shown in the magnifications in Fig. 12 and Fig. 13.

VII. CONCLUDING REMARKS

Application of methods from dynamical system theo
has helped to understand many details in the dynamics
thermoreceptor. The system shows a rich variety of dyna
cal responses to temperature changes. The accumulatio

FIG. 11. Resonances between the polarization/depolariza
currents and the spike generator in the interval between 10 °C
35 °C. As the temperature increases the period changes from 4
then from 3 to 2, and then to 1. Between these wide and dis
guished intervals there are small regions with more complica
dynamics. The continuous lines give the period of the polariza
system and of the sum ofn consecutive time intervals in the perio
n intervals.

FIG. 12. Magnification of the transition region between the p
riod 1 and period 2 regimes. To the left is the 2:1 resonance, to
right the 1:1 resonance. In between there is a period 3 state w
corresponds to a 3:2 resonance. The small box indicated in
upper middle is magnified in Fig. 13.
.
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spike intervals, the blocking due to the fixed point, and
period decreasing transitions at higher temperatures sh
be features robust enough to survive slight modifications
the model and the addition of weak noise. The effects
noise on the intermittency near the divergence of the in
spike interval have already been studied by Feudelet al.
@14#. The sequence of higher periodic resonances betw
then:1 resonances presumably is less observable becau
the tiny widths of the parameter intervals. It would be nice
have further experiments testing the features of the mode
particular, it seems worthwhile to look for parameters th
allow manipulation of the location and stability of the st
tionary point in phase space and thus study of the conditi
under which the sensor can be blocked.

The autoresonance between the fast and slow ion chan
is also of interest. Since there are many channels with sim
characteristics crossing a membrane it seems worthwhil
check other membrane models for autoresonance behavi
a function of some external parameter. For instance, it m
also appear in the response of isolated and connected re

n
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e
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FIG. 13. Magnification of the box in Fig. 12. The periodic orbi
with periods n up to 7 indicated correspond ton:(n21) reso-
nances. The Lyapunov exponents in the lower frame show
stable resonances coexist, indicating that in relation to the ci
map one is in the strong perturbation region.
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tors to external periodic driving, as in the studies on pad
fish @18#.

The rather complicated response of the sensor as a f
tion of temperature raises the question of just how the te
perature is encoded in the spike trains, especially as the fi
rate vs temperature relation is not monotonic and there
cannot provide unambiguous information. One possible s
nario is that the spike trains are integrated over some t
interval. Assuming that synaptic transduction becomes m
effective with an increased number of short intervals withi
given group of impulses, the fibers would sense ‘‘coldnes
when the temperature is lowered in the range above 10
Lower skin temperatures are generally perceived as ra
strange sensations, and may be painful. It is still uncl
whether this is due to additional activation of low tempe
ture or unspecific receptors. Perhaps also the transitio
chaotic patterns and transient blocking of the discha
might contribute to such strange sensations. Further exp
ments are needed to clarify this issue.
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APPENDIX: LINEARIZATIONS AND SURFACES
OF SECTIONS

In this Appendix we give some details for the calculati
of the entries for the surface of section maps. To simplify
notation, letx1 , . . . ,x4 be the four variables andf i(xj ,l) be
the right hand sides of the differential equations; they dep
on all variables and a parameterl, here the temperature.

The monodromy matrixM for linearizations in initial con-
ditions solves

Ṁ i j 5(
k

] f i

]xk
Mk j ~A1!

with initial conditions Mi j 5d i j . When integrated along a
periodic orbit, this matrix has one eigenvalue 1 with eige
vector equal to the phase-space velocity, the right hand
of the differential equation.
er
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le
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ng
re
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Variations of parameters can be calculated in a sim
fashion, the relevant differential equations being

d

dt S ]xi

]l D5(
k

] f i

]xk

]xk

]l
1

] f i

]l
. ~A2!

The reduced map from the surface of section back to
surface requires that the final points also come to lie in
surface of section. Going around a periodic orbit, a pertur
tion starting in the surface of section will not be mapp
back into the surface of section, it will come to lie slight
before or after the surface of section. Therefore, the p
turbed trajectory has to be integrated for a slightly chang
time interval. Since all changes are infinitesimal, this mo
fication can be accomplished by linear transformation w
the phase-space velocity. Specifically, let the surface of s
tion be defined byx15c and ẋ1.0, and letdxj be a varia-
tion in a direction in the surface of section. After one peri
of a periodic orbit it will be mapped byM into a variation

dxi85Mi j dxj , ~A3!

where typicallydx185” 0. Following the trajectory for a smal
time dt will change the point into

dxi95Mi j dxj1dt f i . ~A4!

The requirementdx1950 fixes

dt52
M1 j

f 1
dxj . ~A5!

Combining this reasoning for all possible variations in t
surface of section allows one to define a reduced monodro
matrix

mi j 5Mi j 2
f i

f 1
M1 j ~A6!

that describes the mapping of deviations in the surface
section. In this reduced map the indices run throughi
52,3,4 since the surface of section coordinate isi 51. Simi-
lar transformations are applied to the variations in param
~which also change the period of the orbit!.
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