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The paper presents a qualitative analysis of an array of diffusively coupled identical continuous time
dynamical systems. The effects of full, partial, antiphase, and in-phase—antiphase chaotic synchronizations are
investigated via the linear invariant manifolds of the corresponding differential equations. The existence of
various invariant manifolds, a self-similar behavior, and a hierarchy and embedding of the manifolds of the
coupled system are discovered. Sufficient conditions for the stability of the invariant manifolds are obtained via
the method of Lyapunov functions. Conditions under which full global synchronization cannot be achieved
even for the largest coupling constant are defined. The general rigorous results are illustrated through examples
of coupled Lorenz-like and Rwsler systems.

PACS numbdps): 05.45-a

I. INTRODUCTION has now shifted toward the analysis of coupled continuous

time systems, since they have a more direct relation to the

Since the pioneering works by Fujisaka and Yamfida  properties of real physical systems. The purpose of the

Afraimovich et al. [2], and Pecora and Carrdi], synchro-  present paper is to proceed with a more analytical approach

nization of chaotic systems has attracted a rapidly growind0 & description of different types of partial synchronization

interest in theoretical physics and other fields of scienc®f identical continuous time oscillators that are coupled in an
[1-26]. Related to weak attractors and complicated basins offay with simple scalar diffusive couplirigearest neighbor
attraction, the concept of chaotic synchronization is nownteraction. The main problem in this study is finding dif-

considered one of the basic concepts in the theory of couplef§rent émbedded invariant linear manifolds corresponding to
dynamical systems full, partial, and antiphase synchronization, and obtaining

The phenomenon of chaotic synchronization has man§or|1r(]jltlrc])igs g)ret?(\a/\:as(t:?)?\gitgér only identical synchronization
different applications, e.g., in engineering where it is studied IS pape ; nily 10 Y ,
S . . .. ““dynamical regimes defined by invariant manifolds, and omit

as a tool for transmitting information by using chaotic sig-

. - cases of generalized, phase, and lag synchronization usually
nals[3,15,23. Numerous StUd'e.S of the dynamics of COUpI_edarising in the presence of a parameter mismatch between the
chaotic systems have found different types of synchroniz

. i ) ) i 5scillators. In addition to full and partial identical synchro-
tion phenomena, |ncl_ud|_ng the most_ interesting cases of fu'hization, we studyantiphaseand in-phase-antiphasesyn-
and partial synchronizatiofor clustering[19,21-23), gen-  chronization of identical coupled dynamical systems defined
eralized [12,13, lag [30], and phase synchronization py the existence of stablinear transversal invariant mani-
[28,29, riddled basins of attractioi31], attractor bubbling  fo|ds. Suchantiphase synchronizatiois observed in a sys-
[32], andon-off intermittency 33]. tem of two coupled oscillators where all corresponding vari-
In arrays of coupled identical systems the main types ohbles of the two individual oscillators are equal with opposite
synchronized regimes afall and partial (cluster)synchro-  sign. Inin-phase-antiphase synchronizatipmne set of the
nization. Infull chaotic synchronizatiofiL—7], all oscillators  corresponding variables is equal, whereas the other is equal
of the array acquire identical chaotic behaviors even thouglwith opposite signs.
their initial conditions are differenPartial synchronization In this paper we study the following-dimensional dy-
[20—-24 is observed where only some oscillators synchronizenamical system, that is composed of diffusively coupled os-
and others do not. Oscillators with identical temporal dynam-<illators.
ics form a cluster.

Analytical studies of full and partial synchronization in Xi=P(Xi,Yi) +e(Xi+1— 2%+ X 1),
large ensembles of coupled systems meet some problems, (1.7
due essentially to the multidimensional phase space of the yi=Q(x,yi), 1=1,2,...N,

coupled system. Therefore, phenomena of cluster synchroni-

zation in coupled chaotic continuous time systems are uswwith zero flux ko=x;, XNy=Xn+1) Or periodic &o=Xy,

ally investigated through numerical analyg2?2]. Xn+1=X1) boundary conditions. In systefd.1), x;e R! is a
Until recently most studies of cluster synchronizationscalar variable, and;e R™ ! a vector. P:R™—R! and

were concerned with coupled map lattiddd,19-21,2%or Q:R™—R™ ! are continuous and smooth scalar and vector

systems of globally coupled map&9,23, but the interest functions, respectivelye>0 is a coupling parametei
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=Nmis the dimension of the coupled oscillator system, and (gradH - X)|_o=0, (2.2
m is the dimension of the subsystem.

Denoting the vectors U;=(x;,y;) and G(U;) implying that the vector field2.1) is tangent toV.
=(P(x;,Yi),Q(x;,yi)), we introduce the single subsystemin  In the phase spade® of system(1.1) we consider linear

vector form: manifoldsMy 4,
U=G(U), UeR™ (1.2 Myg={ClU=0, i=1,2,...p}, (2.3
System(1.1) represents an array of nonlinear multidimen- where ;;,Cis, ... Cim)', i=1,2,...p are constant vec-

sional systems of differential equations with the simplesttors, and T denotes transposition. Obviously, diy 4
scalar version of diffusive coupling. The phenomena of full=d-m, whered=N—p.
and partial synchronization of diffusively coupled oscillators
is intimately related to invariant manifolds of systefn1). A. Existence of invariant manifolds
We will discover the existence of various embedded linear . . )
manifolds related to partial synchronization in in-phase, an- SYStem(1.1) has an invariant ma‘f"f_OWN,lzﬂ{UFUZ
tiphase, and in-phase—antiphase modes. Depending in an és:*=Un} Which is known as the “diagonal.” Full local
sential way on the number of oscillatdésand on the bound- Synchronization takes place i\, is stable in the sense of
ary conditions, these manifolds have an ordering thatyapunov, and full global synchronization takes place if
generates a specific hierarchy of synchronous and antiphadén.1 S globally asymptotically stable. Dynamics My, is
oscillations. generated by the single systeth.2) for each cell of the
We determine the dimension and stability of the partially@rray. Hence, if the s'ingle system has a strange attractor then
synchronized states and discuss their order of appearan€B@otic synchronization arises. _
(stabilization with increasing coupling. Also, we obtain ~_Below we study the existence of invariant manifoMg
some conditions under which full global synchronization ofWith d>1, whered=dimMy,q/m represents the number of
diffusively coupled oscillators is impossible even for the constrained variables; in My q, or in other wordsd is the
largest coupling constarthereafter we use the tergiobal number of clusters of _synchronlzed elements of an array con-
synchronization for full synchronization arising froaif ini-  t&ining N coupled oscillators. _
tial conditions. We consider two separate cases of stability ~Definition 2 Let an invariant manifoldVy 4 be globally
conditions:(1) when det+0 for all xe R! andyeR™ 1,  asymptotically stable, and let the diagoihdy, ; be unstable.
and there exists implicit functiong=q(x), andQ(x,q(x))  1hen the flow inMy, 4 defines partial synchronization of di-
=0; and (2) when deQ)’, changes sign a=x,, and the mension=d. We a_ls_o consider the pompleme_ntary numbe_:r
functiony=gq(x) has a singularity at,. In the first case we p=N-—d characterizing the penetration of partial synchroni-

determine sufficient conditions for systef.1) to be glo- Zation(hereafter, the penetration

bally synchronized and to have globally stable invariant 'neorem 1Let system(1.1) have either zero flux or pe-
manifolds. In the second case we state that the singularity dfodic boundary conditions. Then the following hold.
the functionsy=q(x) leads to the lack of full global syn- (1) For odd N=2n+1, system(1.1) has an invariant
chronization even for the largest coupling parameteiote ~ Manifold Mnn+1=1U2n+1=U1,Uz=Ug, ... Unig
that this property is related to an active medium which is=Yn-1:Un+2=Un}. Dynamics inMy ., is defined by the
represented by the single systéin2) having, for example, asymmetric systems

in the simplest casen=2, a Van der Pol ternQ(X,y)
=Q(x,0)— a(x?—1)y with a characteristic threshold value
for x.

We illustrate our analytical results through examples of
arrays of coupled Lorenz-like systems and of coupled
Rossler systems, and finally we discuss the extension of our
results to two- and three- dimensional lattices of coupled
oscillators and to coupled map lattices with linear and non-
linear symmetrical coupling.

X1=P(X1,y1) +&(Xa—Xq),
Y1=Q(X1,Y1),

X;=P(X;,Y)) +e(Xj+1— 2% +X;_1),
: _ (2.4
Vi=Q(Xj.y)), =23,...n,

Xnt1=P(Xn+1,Yn+1) T2(Xn—Xn11),

II. LINEAR INVARIANT MANIFOLDS

Vn+1=Q(Xn+1, ).
AND PARTIAL SYNCHRONIZATION Ynea= Q01 Ynia

First we recall the definition of an invariant manifold fora . (2) For evenN=2n system(1.1) has an invariant mani-

i i i i ’ fold Mnn={Un+1=Un,=Upi2=Up-q, ... Ugng
general system of ordinary differential equatid@DE’s) —U,,Upn=Us}. Dynamics inMy is defined by system
x=X(x), xeRY, X:RN-RN, (2.1 (LD for N=n, with zero-flux boundary conditionst,
EU]_ andUn+1EUn.
Consider a vector equatidd(x) =0, H=(hy,h,,...,hy), p Proof. The assertions follow in a straightforward manner
<N, generating a manifoldM of codimensionp, dimM from condition(2.2), which is fulfilled both forMy 41 and
=N-p. My n With respect to systenfil.1). Equations(2.4) and the

Definition 1 Manifold M is an invariant manifold of Eq. equations for the second case are obtained by subtracting the
(2.0 if equations of the manifolds in systefh.1).
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We say that the vectors in the manifolééy ., and variant manifolds besides the diagomdk ;. The manifold
My have a centra‘mirror” ) symmetry with respect to the M3, defines synchronization between the first and third os-
middle of the array. In the case of odd=(2n+1), the cillators.
dynamics inMy ;. defines a spatiotemporal regime under Example 3 For N=5, system(1.1) has the invariant
which the elements of the chain are synchronized in pairsnanifold Mg ;={Us=U;,U,=U,}, which has the forms
relative to the middle if+ 1)th element, i.e., the first oscil-

lator is synchronized with the last one, the second oscillator X1=P(X1,y1) te(Xe—X1),  ¥1=Q(X1.,Y1),
is synchronized with the next to the last oscillator, and so o .
forth. The middle G+1)th oscillator remains unsynchro- X2=P(X2,¥2) te(X3=2XatX1),  ¥2=Q(X2,Y2),

nized. For the case of evéth=2n all elements are synchro- (2.6

gszig.m pairs symmetrically to the imaginary middle of the Xa=P(Xa,Ya)+26(Xo—X3), Va=Q(Xa,Ys).

Corollary 1.1 In the case of_ periodic boundary conditions |t js easy to verify by exhaustive search that systers) has
(BC’s) for N=2n+1 (respectively,N=2n), each element ng linear invariant manifolds besidé4: ;.
of the chain may be considered as the first one and, due to Example 4Let N=6. Due to theorem 1 systefit.1) has
theorem 1, the systertl.1]) has 21(2n—1) other invariant the invariant manifoldM g ;={U;=Ug,U,=Us,Us=U,}.

manifolds. _ Due to theorem 2 there also exist two invariant manifolds
Next, we introduce a particular property of systéinl) MS,={U;=Uz=U,=Uq,U,=Us} and M2,={U,;=U,
with periodic BC's for everN=2n. =Ug,U,=Uz=Ug. Note that the vectors in manifold 62

Proposition 1 With periodic BC’s and eveil=2n, sys-
tem (1.1) has an invariant manifoldMy,={Uj_1
=U;,Uy=U,,j=2,... n} with system(1.1) for N=2 and
the BC'sUy=U, andUz=U, init.

have the central symmetry, and in manifditf , they define
the alternating symmetry.

The significant feature of theorems 1 and 2 is the recur-
T - rence due to the self-similarity of invariant manifold dynam-
This simple assertion follows from Ref14], and was ics as well as the permutation of cofactord\biin theorem 2.

o_ri_ginally st_ated for on_e-dimensional coupled maps. PropoThus we may generate sequences of embedded manifolds.
sition 1 defines the existence of two-cluster synchronization

of coupled oscillators in a ring. Note that the two last asser-
tions may be applied to the study of travelling waves via a
space shift. Let us consider the existence of other linear in-
variant manifolds of the general systdrhl) for zero-flux First we consider the case whe\¥iés a prime number, and
BC's and a factorizable number of elements. zero-flux BC'’s are applied. Due to theorem 1 systém), in
Theorem 2Let the number of elementé=p-q, wherep  addition toMy ;, has the asymmetrical invariant manifold
andq are arbitrary integers. Then systéinl) has the invari- Myp1041. Example 3 shows that foN=5 there are no

B. Embedding of manifolds and hierarchy of dimension
of partial synchronization

ant manifold Mg ={Ui=Uj, 2, j=1.2,...,Inf(p  otherlinear manifolds, and exhaustive search shows that sys-
—1)/2] and Uj=U_j 1,5, [j=12,...Int(p/2), i tem (1.1) for N=7 has only two invariant manifoldM; ;
=1,2,...4}, where Int§) is the integer part of. andMy 4.

Proof. Similar to that of theorem 1. We conjecture that for priménon-factorizable N=2n

Corollary 2.1 For the same numbe\ written in the re- +1 we have only the embedding
verse ordeN=q-p, we obtain the similar manifol ,, , , K
and the chain is decomposed it@r q equal subchains and M2nt1,1CM2ni10+1CRY, 2.7

each subchain is identical. Then, within these subspace(sihd the penetration ordering-n— 2n has wo large gaps
theorem 1 can be applied, and thus smaller subspaces P ge gaps.

. fus we surmise that in this case there may exist only two
obtained. spatiotemporal dynamical regimes of identical in-phase syn-
Note that for N=2n-q the vectors in the manifold cﬁronizatign' re ?/mes of fullgs nchronization andpof arti)::ll

My,q have the central symmetry, and differently for - reg y P

=(2n+1)-q the vectors in the manifolt¥ 4 have no cen- synchronization with i + 1) clusters.

: For the case oN composed of two prime numberbh|
tral symmetry and are related to afternating symmetry. .
i . . =(2n+1)(2m+ 1), we conjecture by reference to theorems
Now, as examples, we list the important manifolds For

. : 1 and 2 that instead of the embeddiri€g. (2.7)] we have
=2, 3, 5, and 6 in the case of zero-flux BC's. X ! . ; i
Example 1ForN=2, system(1.1) has a unique invariant only an embedding such that the dimension of partial syn

manifold M, ; with the single systenil.2) in it. chronization has a hierarchy

Example 2 Let N=3. Due to theorem 1 there exists the S (2n+1) . n4l

invariant manifoldM 3 ,={U3;=U,} with the following sys- Ve N
tem in it: (2n+1)(2m + 1) - Cnal(@mi+l 1
]
| | N Vs
X1=P(X1,y1) +e(Xa—=X1),  Y¥1=Q(X1.Y1), N (@m+1) - m+l
(2.9 (2.8
Xo=P(X2,Y2) +2e(X1—X2), ¥2=Q(X2,Y2). and the penetration ordering has three large gaps.

Consider now the case of evéh=(2n+1)2X n=0, k
Obviously, this asymmetrical system has no other linear in>0. First we present the existence of invariant manifolds for
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the extreme case dfi=2%(n=0). Due to Theorem 1 the If system(1.1) possesses another type of symmefior
system defining the dynamics My, coincides with the example, an axial onehenin-phase-antiphasesynchroni-
initial system(1.1) under the changl— N/2. Hence, system zation may be observed. In terms of invariant manifolds cha-
(1.1 has completeself-similarityand its invariant manifolds otic in-phase—antiphase synchronization of two coupled os-

Mok ., Whered;= 21, j=0,1,2... k—1 are embedded as cillators may be determined as a chaotic attractor lying in the
: invariant ~ manifold ~ A={x;=—x,,y{V= -y y{
Mzkychzk'2CM2k22C...CMzkvzkflCRK, (29) :_y(zz),...,yg_l):_y(zl),yg_l+1):y(2|+l),...,yg_m_1)

=y{m=11 where &; ,yj(l),...,y](m_l)), j=1,2 is the vector
and for partial synchronization we have the dimension douof variables of each individual oscillator.

bling hierarchy Existence of the manifold\ and hence of a dynamical
regime is possible only in the case when the func-
N=2Kk—2K 1 22521, (210  tions P(x;,y;) and Q(x;,y;) are invariant under the
change yW, ... y®O yi+D  ym=Dy_(—x —y®
Written in the opposite direction, the penetratipﬁzzk(l —y® y(+1 " y(Mm=1)y * Chaotic in-phase—antiphase syn-
—2711) also has increasing ordering. chronization may take place in the case of coupled Lorenz

In the caseN=(2n+1)2", n>0, k>0, due to theorems 1 systems since the Lorenz system has an axial symmetry. In
and 2 we obtain an embeddlng such that the dimension @ec_ V, examp|e A, we will give an examp|e of two Coup|ed

partial synchronization has the following ordering: Lorenz-like systems which demonstrate in-phase—antiphase
synchronized oscillations.
N — (2n+ 1)2’“‘1 — ... Theorem 3(existence of antiphase synchronized oscilla-

tions). Let system(1.1) with zero-flux BC'sUy=U,, and
Uyn=Upz 1 have the odd functios(U).
5 ] 1 (1) For an even numbeX=2n the system has an invari-
L — (2n+ 1)2 / ( n+ ) - (n+ ) \ 1. ant manifold MZn,n:{UZHZ_U.l!UZH—l:_UZl"'!Un+1
\, 2 o = —l_Jn} _tra_ns_versa! to the manifolilly ,, su_ch that the dy-
namics in it is defined by systerfi.1) for i=1,2,...n,
(21D with the BC'sUy=U, andU, ,,=—U,,.
(2) For an odd numbeN=2n+1 the system has an in-

Here the first path via the prime §2-1) corresponds to the
central symmetry as determined by theorem 1, and the se®ariant manifold My, 1,={Un;1=0Uzn,1=—U;,Uy,
ond path through “2” is defined by the second alternating=—U,....Un.,=—U,} transversal to the manifold
symmetry via theorem 2. For composed21, embedding My n+1, Such that the dynamics in it is defined by system

(2.11) is continued. (1.1 for i=1,2,...n, with the BC'sUy=U; and U,
Let N=rpX, wherep is a prime number andis an arbi- =0. N '
trary integer. Applying theorem 2 recurrently withtaking Proof. Theorem 3 follows from condition&.2) valid for

the valueq,p, whereq;=rp* 1, q.p, qzzrpk*Z,___,qu, Eqg.(1.1). The lastn equations in Eqg(1.1) for both even and
q;= rp*~J, andqg,=r, we obtain an embedding of the mani- 0dd numbers become the firsh equations after the change

folds with alternating symmetry whose dimension of partialof both variables and sign.

synchronization has the following ordering: The dynamics in the manifolt , defines a spatiotem-

poral regime where each pair of oscillators which are sym-
rpk—rpktorpf o, (2.12  metrical with respect to the middle of the chain is antiphase

synchronized.

Forr=1 this ordering is similar to Eq2.10 for any prime Example 5Let N=4. Then the dynamics of the manifold

nurEPerkzp=3,5l,Z ... . Finally |n. the general caseN M, ,={U,=—U;,Us=—U,} is defined by the system

=py P p,', wherep; are prime numbers, theorem 2 _

is similarly applied wherp is taken for any cofactor ofl. X1=P(X1,y1) T e(Xa—Xy1),

C. Transversal manifolds: antiphase and in-phaseantiphase Y1=Q(X1,Y1),

chaotic oscillations (2.13

We define antiphase synchronized chaotic oscillations of X2=P(Xz,¥2) T&(x1=3%2),

two coupled subsystems of systéfinl) with odd symmetry .

[with the odd function®(x;,y;) andQ(x;,y;)] as a chaotic ¥2=Q(Xz,Y2)-
attractor lying in the invariant manifol1, ,={U,=—-U
(here the szr” denotes a manifold transi)leré{ahdllq ). V\zl}é B Example 6 Let N=5. Then the dynamics of the manifold
emphasize that the property of systefh.l) with odd Ms,={U3=0Us=—U;,Us;=—Uy} is defined by system
P(x;,y;) andQ(x;,y;) to be invariant under the involution (2.13 with the term &; —3x;) changed toX; —2x,) in the
(x,y)—(—x,—y) allows the system to have a manifold third equation. .
transversal to the manifollfl ;. As examples of such sys- Remark It is obvious that the transversal manifolill, 4
tems we can mention, for the case of differential equationsaccompany each embedded maniftblg, 4 when the system
Chua’s circuit 26], and for mappings, the standard m@g].  in My 4 is similar to Eq.(1.1).
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lll. GLOBAL STABILITY OF INVARIANT MANIFOLDS whose time derivative along trajectories of E8.1) is nega-

. tive definite if the quadratic form
Assuming that deQ, #0, xe R, andye R™ 1, we con- q

sider the global asymptotic stability of the invariant manifold N_1
My 1={Un=Uy-1="--=U,}, corresponding to full global ~ 2
synchronization of systerfi.1). Using the notation Q= 21 (2vX7=2XiXi 1)

Xi=Xi=Xi+1, Yi=Yi~Vit1, . . o . o .
with Xy=0, is positive definite, which is true under condi-
we derive the variational equations tion (3.5).
) Note, that the meaning of the parame#fr>0), which
Xi=Py(U1)- X+ (Py(U)"-Yi+e(Xip 12X+ X 1), replacesP, that may change sign, is the minimal damping of
variablex needed to make syste(8.2) globally asymptoti-

Yi=Qu(Uz)- X+ Q)(Uz) - Y, (3.1 cally stable.
Corollary 3.1 The sufficient conditiong3.4) and (3.5
i=1,2,...N-1 make clear physical sense: in order to provide full global

synchronization, a large couplingis required, with an in-
with the BC X,=Xy\=0. Here, the derivativ®;, is a scalar creasing number of elements in the array. It is also interest-
function ofU,;, Py andQy are (m—1) column vector func-  ing to note that the larger the damping necessary to stabilize
tions, Q)’/ is an (M—1)X(m—1) Jacobi matrix, and the auxiliary system, the larger the coupling has to be to
Uy, (k,I=1,2) are values coming from the Lagrange mean-achieve full global synchronization.
value theorem. These values are time dependent via the so- Recall that systent1.1) for N=(2n+1)2* has the self-
lutions U;(t) and U, (t) of Eq. (1.1). Note that for infini- ~similar ~ embedded  manifolds My i-1CMya, ]
tesimalX; andY; system(3.1) becomes a variational system, =1,2, ... K, with a dynamics inMy 5 that is of the same
where U, (k,|=1,2) are the coordinates of the manifold form as in Eq.(1.1) but for N=(2n+1)2). Hence, due to

My 1, Which are driven by the single system. this self-similarity we obtain the following assertion.
We introduce the auxiliary system Corollary 2. For N=(2n+1)2!, conditions (3.4 and
(3.5 become conditions of global stability of manifold ;
X=—aX+(a(t)TY, within the manifoldM y 20+ 12i-
(3.2) Observe, that Eq.3.5) is the only condition of theorem 4
Y=c(t)X+B(1)Y, related to the number of oscillatoks Then introducing con-

dition (3.5 for the stability of manifold My, along
where a=const-0, a(t)=Pj(Ui (1)), c(t)=Qx(Up(t)),  Mn,n+1)2)
and B(t) =Qy(Ux,(t)). This system is identical to system
(3.1, except thatP,(Uy,) is changed to—a. Denoteb (2n+1)2/<Int(/arccos), (3.7
=max,.grmPy(U), and the value

26— (a+th) we obtain an increasing sequence of bifurcation vakjgs
= (3.3 j=1,2,...Kk, corresponding to the increasing dimension of
manifolds attracted by ;, which thus confirms the con-
clusion regarding the process of acquiring full global syn-
chronization dimension with increasing parameterOne
may observe the similar picture foi=rp¥, wherep is a
prime number. The next assertion is related to the stability of
the invariant manifoldsviy 4, d>1.

Theorem 5(sufficient conditions of global stability of

V(X,Y)=(X?+YTHY)/2, (3.4  Monn, andMpqyq544). System(3.1) with N—1 replaced
by n, becomes a system of variational equations.

with some symmetrical matri¥d, such that the derivative (@ My, ,, with BC's Xo=X; and X,,;=—X,. Here

14 2¢ .
Similar to our results in previous publicatiof6,16], the
next assertion holds.

Theorem 4(sufficient conditions of full global synchroni-
zation). Assume that there exists a positive definite Lya-
punov function

with respect to syster8.2) is negative definite for any func- X;=X;—Xon, Xo=Xo—Xon-1, - - + » Xp=Xp—Xn+1-
tion a(t), c(t), or B(t) that is generated by solutions of Eq.  (b) Mop4 1041, With BC's Xg=X; and X, ;=0. In this
(3.1). Then for caseX1=X1—Xon+1, Xo=Xo—Xop, « -+, Xn=Xn—Xp12-
If the conditions of theorem 4 hold far changed tov,
0<v<1l and NsInt(w/arccos); (35  =y-1/2, and forN changed ton+1, then the invariant
manifoldsM,,, , andM,,,, 1 541 are globally asymptotically
v=1 and any N>1 stable. ’ ’

Proof. Calculation of variational equations for the consid-
ered manifolds is straightforward.
The condition that the time derivative of the Lyapunov

the manifoldM\ ; is globally asymptotically stable.
Proof. Consider the function

N1 function (3.6) along trajectories of the system of variational
W= > (X2+YTHY)), (3.6  equations must be negative definite is valid when the qua-
231 dratic form
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~ n equilibria of single systerl.2). Equation(3.8) is associated
Q1=2, (21 X2=2XXi1 1), with the “spatial” two-dimensional[34,14 (x;,z=X;_,)
=1 —(Xi+1,Zi+1), Whose family of trajectories

with Xo=X,,.1=0, is positive definite. That is true under
conditions(3.5), where v and N take the values/; andn F={(X1,X1) = (X2,Xy)— -
+ 1 respectively. Note that the change franto v, is the (3.9
result of a rough approximation of the quadratic form, with — (X XN 1) — (X X) b
the asymmetrical matrix by a symmetrical matrix with in
the main diagonal.

Remark Similar conditions may formally be derived for

. boundary conditions.
the transversal manifoldsly 4. y

. TN . For a fairly smalle a subsef,, of the familyF lies in the
We admit that the sufficient conditions of theorems 4 andembedded manifolds, and its massive complerfaRt, lies

5 seem to be far from the real bifurcation values under which ", phase spaddly,  outside of the manifolds. With in-
full global synchronization arises. Nevertheless, they are use: :

ful £ h estimai £ th f t h creasing coupling strength the invariant manifold of the larg-

u?for a roug estlmatlpn of the range o coupiing strengt Sest dimensionM nd, becomes globally stable, and the

for global synchronization as well as for solving the problem Y1 T ) o

of whether full global synchronization occurs with increasingComplementary part of equilibrig\Fy disappears via bifur-

coupling or not. cations of I_Eq.(3.9). N
We present two alternative routes of transition to full glo- _ Further increase of (up to the values for global stability

bal synchronization, considering, for the sake of simplicity,f the next low dimensional manifolidy 4,) yields the dis-

only prime numberdN. Due to our conjecture for this case appearance of the part of equilibria settlecMrﬂ],dl which is
there exist only two embedded invariant manifoMs,,,;  the complement to equilibria iMy q,, and so forth. When

andMoni1p1- i ati _ A Iy

I_n the first _scenari_o of transi_tion to full global synchr_oni- ];)uu”tsgi:joeb %Ifi)t/]réczirggéz:;ﬁ E fﬁ;%l:’d?gapézggggl?/ir;atlj)i/fISr%a-
zation W'th. increasing - coupling . from 0, the ma.nlfolld tions of map(3.9). In this connection the following problem
Man:1n+1 first becomes asy_mptotlcally stable but, _Iymg N ariseswhat is the relation between the bifurcations in which
I, the. dlqgona[M 2n+1,1 F€Mains uns'FabIe, and partial SYN" the equilibria of Eqg. (1.1) disappear and the bifurcations of
chronization with (+1) clusters arises. With further in- yho gnset of global stability of the cluster synchronization
creased coupling, the diagonilly, . ,, becomes stable in- 0 hito1ds7Section IV demonstrates additional aspects of the
sideMj,110+1, and hence becomes globally asymptotlcallyCommexity of this problem.
stable. All trajectories of systerflL.1) lie in the basin of
M,n41.1, and global synchronization of all oscillators of the
array arises. IV. IMPOSSIBILITY OF FULL GLOBAL

In the second alternative scenario, with increasing cou- SYNCHRONIZATION
pling the diagonaM ,, . ; ; first becomes stable with respect

to the trajectories lying in the manifold on. 1.1 while the systems of differential equations, full global synchronization

manifoldMan 1+ 1S till unstable with respect to the tra- oo \ih increasing coupling, and remains up to infinite
jectories lying in the phase space outside of it. This implies . 9 piing, . P
that under a further increase of the coupling the manifoldsCoupllng strength. This typical transition occurs through a

Mans1ni1 @nd Mons1; become globally stable simulta- sequence of bifurcations corresponding either to a decrease

o . . of the dimension of the partial synchronization or to the en-
neously, and full global synchronization arises right away. : . X .
' - > . largement of the basin of attraction for the diagonal manifold
Depending on initial conditions it may occur that the system

s about to atainif+1) clusters; however, his regime of |5y £ T BN TEECEL 2 STETLS SRR
“many cluster freedom” decays and gradually develops in. b

L . : . individual array oscillator, and for the place of diffusive sca-
time into a single spatially homogeneous cluster defining fuIIIar coupling in Eq.(1.1), such that the latter bifurcational
synchronization. Note that, within this scenario, the embed- piing q.43.4),

dings of invariant manifolds for different numbek such scenario is broken and full global synchronization cannot be
as, for example, Eq2.9), are related to the ordering of the achlevedheven for_lthe Ir?rgest coupling strength. f hai
enlargement of the basin of the diagomal, with in- Note that a similar p enomenon was obse_r_ved ora chain
creasing coupling n+1l of coupled Rasler systems in which the stability of the syn-

Now consider the gquestion of the arrangement of equilib_chronlzatlon regime was lost with an increase of coupling

fia and invariant manifolds of systefd.1) via the problem [7,10. These desynchronization bifurcations were called

" X N : short-wavelength bifurcatiornd].
of global Stab'“ty.' The family of gqumbrla of syste.]) is The reason for the absence of full global synchronization
defined by the difference equations

in our criteria is the existence of equilibria outside the diag-

is the set of equilibria of systeifi.1l), and satisfies zero-flux

For a large number of examples of diffusively coupled

P(Xi,Yi) +e(Xi+1— 2% +X;-1) =0, onal My ; which remain for any large coupling due to pecu-
(3.9 liarities of system(1.1). In this case the behavior of system
Q(x,y))=0, i=12,...N ' (1.1 depends essentially on whether these equilibria are a

unique limiting set or if they have some neighboring attractor
which for a finite numbeN has a finite numbelk, of solu-  outside the diagonal. Assume that the systdmi) has the
tions that is usually less thdlﬁ‘, wherel, is the number of following properties.
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(1) EquationQ(x,y)=0 has a real solution, with respect
to y, in the form of an explicit functiony=q(x):R?
—R™ 1 in some interval o={|x| < &,}, such thag(x) has a
singularity atx=0 because deQ;,(x,y) changes sign at
=0.

(2) The function

f(x)=—P(x,q(x))

has a singularity at=0, and satisfies the conditions

4.1

lim f(x)=oo,
X—=*0
f(x)>0

for —§p<x0,f(X)<0 for 0<x<dy.

4.2)

BELYKH, BELYKH, AND HASLER
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FIG. 1. The functionsp,(X;) and¢,(x41) and the inverse func-
tions ¢; *(x,) and ¢, *(x,). The two points of their intersection
give thex coordinates of the equilibrium points; andE, of sys-

Note that any singularity may be shifted to zero without losstem (1.2).

of generality.

A. Two coupled oscillators

First consider two coupled oscillators of forth.1) under
conditions(4.2):

Xi=P(x;,yi) +e(Xir1—X),

4.3

Yi:Q(Xi vyi)! i:1121 X3:Xl'

This system has an invariant manifoM, ;={x,=X1,y>

X1=P(X1,y1) +e(Xa—X1), ¥1=Q(Xq,Y1),

. . 45
X2=P(X2,Y2) +2e(X1—=X2), Y2=Q(X2,Y2).
This system again has a submanifoldls;={x;=x,
=X3,Y1=Y2=Y3}, M31:CMj3,, such that if bothM;, and
M3 ; are globally asymptotically stable then systét) for
N=3 is globally synchronized.

We consider the relative stability dfl 3 ; with respect to
the trajectories of4.5 in the manifoldM3,. Equilibria of

=y,}, whose global asymptotic stability is equivalent to the Egs.(4.5) are given by the system
global synchronization of the two systems. Equilibria of Eqgs.

(4.3) are the solutions of

X=X, + uf(X) 2 (Xy),
(4.4
X=X+ uf(X2) =@~ 1(xy),

whereu=¢"1>0, ande ! is the inverse function of.

Lemma 1 If system (4.3) satisfies condition4.2) then
there exists a valugy,>0 such that fore > ¢4 the individual
systems of Eq(4.3) cannot be globally synchronized.

Proof. Due to Eq.(4.2) the functionx,= ¢(x4) for small
pm is close to x,=x; for xq;&(lg,l4), where 1,
={|x|<81(p)}, 0< 62 (n) <o, and lim,_ 8;(1) =0, and
¢o(x4) satisfies Eq(4.2) for x;el;.

Hence the functionp(x;) has two branchesp(x)>x;
for x4<0 and¢,(x1)<x; for x;>0. On the other hand, the
functionx; = ¢~ 1(X,) in Eq. (4.4) as the inverse function for
¢(x4) has the same properties a$x,), symmetrical with
respect to the diagongk,=Xx,}. Thus there exists p,>0
such that for u<ug(e>egy) the branchese,(x;) and
@5 1(X2) [@2(x1) and @1 (x,)] have an intersection at a
point E;(x{? ,x{Y) & {x;=x,} [in the symmetrical point
Ex(—x{M,—x8), respectively. Hence, a€, , are equilib-
ria of Egs.(4.3) outsideM,; (see Fig. 1 so fore>¢g, the
invariant manifoldM , ; of system(4.3) cannot be globally
asymptotically stable.

B. Three coupled oscillators

Now consider three coupled oscillatdigg. (1.1)]. This
system has an invariant manifols ;= {X3=X;,y3=Yy1} on
which the dynamics is given by

X1 =X+ uf(X2)=@(Xy),
(4.6)

Xo=X1+ uf(X1)=e(Xy),

whereu=¢"1>0 andf is defined by Eq(4.1).

Lemma 2 Let conditions(4.2) hold. Then there exists a
valuegy>0 such that for > ¢ the invariant manifolM 5 ;
cannot be absolutely stable, and systdm) for N=3 can-
not be globally synchronized.

Proof. The functions in Eqs(4.6) are not the inverse of
each other. Nevertheless we prove the existence of two
asymmetric equilibrium pointélyzqs M3 in a straightfor-
ward manner as for lemma (5ee Fig. 1, and thus obtain
assertion of the lemma.

Remark 1 In contrast toM3;, the (2<xm)-dimensional
invariant manifoldM 3 , can be globally asymptotically stable
because it contains the diagordk ; and the two equilibria
E.,, and, hence, partial synchronization is possible in the
case when de(D)’,(O,y) =0. In the following we demonstrate
this through examples of arrays of coupled Lorenz-like sys-
tems and of coupled Rsler systems.

C. N coupled oscillators

Theorem 6 Let conditions(4.2) hold. Then all oscillators
of the array(1.1), for the numberN divisible by 2 or by 3,
cannot be globally synchronized.

Proof. Recall that forN=N'-2 and N=N"-3, system
(1.1) has an invariant manifoldy , which contains the
manifold My ;. In accordance with lemmas 1 and 2, the
diagonalMy ; is not globally asymptotically stable il ,,
and therefore all individual subsystems of systéinl)
can not be globally synchronized.
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Remark 2 The conclusions of theorem 6 allow the diag- X
onalMy , to be locally stable, and full local synchronization
may arise(see Sec. VI, example)B E VZ Lix)

Finally we note that the role of the equilibria, , in the a ! g 2
process of desynchronization depends on the behavior of its
unstable manifoldd3V'(E; ). That is, if WY(E,,) are en- 0 /L(Xl)
tirely attracted by the diagona¥ ; then the existence of a M E»
equilibria E; , may be considered as unessential for the pro- /’}
cess of synchronization. A completely different situation
arises whertW"(E, ,) are attracted by both the diagonal and
by some other attractor, say, by an attracting orbit enclosing T 0 a X
My.1. In this case the existence of these equilibria has direct
relation to the mechanism of desynchronization.

FIG. 2. The curvesx,=L(x;) (solid line) and x;=L(x,)
(dashed ling like the curves of Fig. 1 but for the concrete system
(5.2). The intersections give the coordinates of the equilibria for
system(5.1). Equilibria E; and E, exist for any coupling, and lie

Let us illustrate the main theorems and assumptions b§utside the diagonad; =x,.

V. EXAMPLE A

examples.
o X
Xo=Xgt —| X1~ p—12> =L(Xy),
A. Two coupled Lorenz-like systems 2 (c+1b)xi—h
We consider the following two coupled systems of differ- « 5.3
ential equations: o=yt L o pXa —L(x
7220 617 (c+1b)x5—h (X2).

X1= =0 (X1— Y1) +&(Xp—X1),
The solutions of Eqgs(5.3) are the period-2 cycles of the

V1=px1—(CXE—h)y;—x12;, following mapping:

S— SN { P S

z,=—bz;+x1y4, X=L(X)=X+ —| X— ——F7—7—]|.

+ —
(5.1) € (c+1/Mb)x“—h
Xo= =0 (Xa—Y2) T e(X1—X2), These solutions are defined by the points of intersection of
the curvesx,=L(x;) andx;=L(X,) on the planeX;,x,). It

Vo= pXo— (CXe—h)Yo—XoZy, is obvious that they are symmetrical with respect to the di-

agonalx;=x,.
_ In contrast to the case of coupled original Lorenz systems,
2= —bz+Xzy;. the second terms in Egé.3) do not vanish even with infi-
nite coupling due to a singularity of the functidnin the
System (5.1) is an example of two diffusively coupled points x;,=*a, where a=h/(c+1/b). According to
Lorenz-like systems but with a Van der Pol—like term. Ac-lemma 1, and due to the existence of the two equilibrium
tually, for c=0 andh=—1 we have two coupled conven- points, there is no global synchronization in the system.
tional Lorenz systems. In Fig. 2 the curvex,=L(x;) andx;=L(X,) are shown.
As follows from theorem 5 and, for example, from Refs. They have intersection points not only on the diagonal but
[2,16], the coupled original Lorenz systems exhibit full glo- also outside of it. The equilibrig; andE, are preserved for
bal chaotic synchronization with increasing coupling. Theany value of the coupling parameter. They are saddle points.

invariant manifold M, ;:{x;=X,,y1=Y,,2;=2,} becomes In Fig. 3 it is shown that there is no global synchroniza-
globally asymptotically stable, and attracts all trajectories oftion regime with increasing coupling parameter Figure
the system fot—ce. 3(a) presents a one-dimensional bifurcation diagram for the

Now let us study the behavior of the coupled modifieddifferencex; —x, on the changing coupling. The difference
Lorenz systeng5.1). Coordinates of the equilibria of the sys- between the corresponding variableg @ndx,) of the os-
tem (5.1 are defined by the system of equations cillators is plotted vertically500 point$ for each fixede and

for fixed initial conditions &;#Xx,) at each step of (the

X number of preiterates equals 20000 paginfBhe nonsyn-
g(xz—xl)Z(r(Xl— # , chronized regimex; # X,) is preserved up to infinite. Fig-
(c+1b)xi—h ure 3b) shows a projection of a typical non-synchronized

(5.2 chaotic trajectory on the plane{,x,) for a largee.
pX, System(5.1) has an axial symmetry, as does the original
—2) Lorenz system. This means that systébl) is invariant
(c+1b)xz—h under the involutionX,y,z)— (—X,—Y,z). This fact allows
the system to havim-phase-antiphasesynchronized oscilla-
which can be rewritten as tions. Being in good accordance with the theory, numerical

8(X1_X2):O'( X2_
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FIG. 3. Two Lorenz-like systemga) Bifurcation diagram for FIG. 4. In-phase—antiphase synchronizati@hBifurcation dia-
the dependence of the differengg—x, on the couplinge. The gram for the dependence of +x, on . The line (;+x,=0)
difference betweer; andx, of the subsystems is plotted vertically corresponds to antiphase synchronizgdand x, for e<1.25. (b)
(500 points for each fixede for fixed initial conditions &; #x,) at Bifurcation diagram[(z;—2,),e]. The coordinateg, and z, are
each step ofe (20000 preiteratgs The other parameters are in-phase synchronized up to=1.25.
=10, p=28,¢c=0.2,h=20, andb=1.6. (b) Projection of the cha-
otic attractor on the planex(,x,) for e =110. In this paper we do not discuss details of how the impos-
sibility of full global synchronization depends on the place
analysis shows that for some interval offrom smalle up  and type of coupling. We only note that the displacement of
to e~1.25), in-phase—antiphase synchronization is indeethe same coupling term of systef®.1) to the second equa-
observed in the system. tions of the subsystems eliminates the singularity in the func-
Corresponding to these solutions, the maniféle-{x,  tion (4.1), and full global synchronization arises.
=—X,,Y1= —V2,Z1=2,} exists, and attracts all trajectories
except the stable manifolds of the saddigsandE,. After B. Three coupled Lorenz-like systems
e~1.25 this in-phase—antiphase mode loses its stability, and
only chaotic behavior exists. Figure 4 illustrates this process.

Now we consider three diffusively coupled oscillators

A bifurcation diagram for the dependencexqft+x, on ¢ is Xi=—a(Xi—Yi) + (X1~ 2%+ X_1),
presented in Fig. @). The line k;+X,=0) corresponds to

antiphase synchronized andx, for e<1.25. A bifurcation Vi=pX;— (cxiz— h)yi— Xz, (5.4)
diagram[(z;—z,),&] is shown in Fig. 4b). The coordinates

z, andz, are in-phase synchronized up to the same value of zi=—bz+xy,, 1=1,23,

e. Thus the subsystems of Ed5.1) are in-phase—antiphase
synchronized. with zero-flux BC'sxy=X; andX,=Xs.
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30

15

20

Xo 20 20 X1

FIG. 5. Globally stable manifol 3, in the spaceX;,X,,X3).
We show the chaotic trajectory of E(.4), and the two saddle foci
E,; and E, that lie in it. e=30, and the other parameters are the
same as in Fig. 3.

30

According to theorem 6, the individual subsystems of
Egs. (5.4 cannot be globally synchronizedhe invariant
manifold M 3 ; is not globally stable because of the existence 20
of the equilibria outside the diagonal'he unstable diagonal
M3, with the equilibriaE; and E, lies in the manifold 10+
M3 ,={X1=X3,Y1=Y3,2;=23} Which can be stable. In our
caseMj, is indeed stable, so that partial synchronization >|<m 0
takes place. e

A projection of the stable manifoltl; , onto the space
(X1,X2,X3) is shown in Fig. 5M 3, attracts all trajectories of
system(5.4). Corresponding to the absence of full global
synchronization, a chaotic attractor lieshty , together with
two saddle fociE; andE,.

Figure Ga) shows a one-dimensional bifurcation diagram

for x;—X, with respect to changing. There is no synchro- _300 10 20 30 40 50
nization between the variables of the first and the second €
oscillators of Eqs(5.4) for any e. (b)

It is illustrated in Fig. 6b) that partial synchronization
occurs in systen{5.4). For e~19 the manifoldM3, be- FIG. 6. Three Lorenz-like system&) Bifurcation diagram for
comes stable, and the first and third oscillators start to bethe dependence of; —x, on changinge. There is no synchroniza-
came globally synchronized. tion regime for any. (b) Bifurcation diagram fox; — x5 on chang-

We emphasize that for the two and three coupled Lorenzing e. For e~19, partial synchronization appears, and is preserved
like systems, unstable manifolds of the equilibBa, are  for infinite e.
attracted by a complicated attractor lying outside the diago-
nal. Hence in such cases the existence of these equilibria Yo=X,+ays,,
with this arrangement of their unstable manifolds may serve
as a criterion of desynchronization. .
Z,=b+(X,—0C)z,.

VI. EXAMPLE B , )
As in example A, the function& (x;) and L(x,) have a

A. Two coupled Rassler systems singularity at the pointx, ,=c, and therefore two equilib-
We now consider two diffusively coupled ‘Beler sys- lum pointsE; and E, exist out of the diagonal and are
tems preserved for anyg.
A bifurcation diagram for the dependence xaf—x, on
X1=—(y1+21) +e(Xy—Xq), the coupling parametee is shown in Fig. 7a). For ¢
~0.16 the diagonaM, ; becomes locally stable and attracts
yi=X;+ay, all trajectories, except the stable manifolds of the two saddle
(6.1) foci E; andE,. Under further increase of this synchro-
z,=b+(x;—0)zy; nized regime is preserved up to~1.9, but fore>1.9 the

diagonal loses its local stability and an unsynchronized re-
Xo=—(Yo+25) +&(X1—Xp), gime appears.
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FIG. 7. Two Raesler systems(a) Bifurcation diagram for the FIG. 8. Three Resler systemga) Bifurcation diagram for the

dependence af; —x, on ¢. (b) Projection of the nonsynchronized dependence of; —x, on . (b) Bifurcation diagram for the depen-
trajectory on the plane,,x,. Saddle foci with one-dimensional dence ofx;—x5; on changings. For £ >1.38, partial synchroniza-
unstable manifoldst; andE, are symmetrical with respect to the tion occurs. The other parameters are0.2,b=0.2, andc=4.7.

diagonal.

ii=b+(xi—C)Zi y i:l,2,3,

As in the above mentioned figures, the difference between
corresponding variablex{ andx,, for examplg of the sub-  with zero-flux BC’sxy=x%; andx,=Xs.
systems is plotted vertically for each fixed value effor Similarly to example A, and in accordance with theorem
fixed initial conditions &;#X,) at each step ot. Figure 6, the individual subsystems of Eg$.2) cannot be globally
7(b) presents a projection of a nonsynchronized chaotic trasynchronized.
jectory of Eqg.(6.1) on the plane X;,x,) for parametersa As in the case of the two coupled &sler systems, with
=0.2,b=0.2,c=5.7, ande =2.2. increasinge the diagonalM 3, becomes locally stabléor

B. Three coupled R®sler systems

£~0.2), and attracts all trajectories besides the stable mani-
folds of the two saddle fodt, andE,. Becoming stable, the
invariant manifoldM 3 , contains the diagona¥i; ; and the

Now we consider three diffusively coupled 8&er sys-  equilibria. All trajectories of syster(6.2) in a neighborhood

tems

Xi=—(Yitz)+e(Xir1— 2% +Xi-1),

of M3 1 in M3, reach the diagond¥l;;. M3, remains stable
up toe~1.38. Fore>1.38 it loses its stabilityas shown in
Fig. 8@)], butM 3, remains stablésee Fig. &)], and in this
case we have the phenomenon of partial synchronization.

yi=x;+ay,, (6.2 Figure 9 shows the stable invariant manifols ,={x;
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FIG. 9. (a) Projection of a chaotic trajectory into the stable

invariant manifoldM 3 , [M 3 ; lost its stability with increasing cou- FIG. 10. Established cluster synchronizat_ion In the chain of
pling (= 1.4)]. seven diffusively coupled Rssler systems. Oscillators of the array

are synchronized in pairs symmetrically around the midftiarth)

) . . element, which remains nonsynchronized and defines one separate
=X3,Y1=Y3,21 =23} Which attracts all trajectories of the cjyster. The parameters age=0.2, b=0.2, c=5.7, ands =1.16.
system(6.2). This invariant manifold corresponds to the syn- pitferent shades of gray represent different ranges of amplitudes of
chronization between the first and third oscillators. Lying inx.(t).

it, a chaotic attractor defines the nonsynchronized regime
between the variables of the flr(".he thiro) and second ele- DU:G(U)‘FC(U,]_ U. U-+1) i=1,2,... N
ments. I ' T o (7.1

with zero-flux BC’s, wherdJ, G, andC arem vectors, and

the arbitrary functionC(U,V,W) satisfies the conditions of
Now we consider the case of a prime numbkof diffu-  symmetry

sively x-coupled Rssler systems and zero-flux BC’s. For

definiteness we chod¢=7. C(U,u,u)=0, C(U,Vv,W)=C(W,\V,U). (7.2
Due to theorem 1 and to the embedding equat®®), we ) ) )

have the same phenomenon as for the three coupled systerfi® €xample, functiol may be written both in the form of

Numerical simulation shows that with increasing coupling, linear couplingvector diffusive couplind10])

the full local synchronization regimes loses its stability due

to desynchronization bifurcations. Containing the unstable C=S(Ui-1=2Ui+Ui.q), (7.3

diagonal and remaining globally stab{for some range of

coupling parametek), the invariant manifoldM ,={U;

=U-,,U,=U4,U3=U:} determines the partial synchroniza- _ _

tion7of orfimer?sio% 4, o P g C=S(G(Ui-)=26(U)+G (Ui 1), 74

Figure 10 presents the established cluster synchronizatioghere themxm matrix S picks out the combinations of
regime in the chain. This spatiotemporal pattern, with Cha‘coupled vector coordinates.

otic time dependent amplitudes of the individual oscillators, (3) The symmetries of synchronized oscillations are also

defines four clusters and synchronization in three pairs ofjig for the cases of plane and volume lattices of diffusively
elements. The middléfourth) element is nonsynchronized, coupled continuougor discret¢ time dynamical systems.

C. Seven coupled Rssler systems

and in the form of a nonlinear Kaneko-type couplii®]

and defines a separate cluster. That is, in the case of a two-dimensional lattice, horizontal
and vertical lines of the lattice play the roles of separate
VII. GENERALIZATION oscillators forming the clusters defined by theorems 1-3. In

Let us conclude the present investigation by mentionin he case of a three-dimensional lattice, the separate oscilla-
that our results admit the following generalizations ors involved in the cluster synchronization regime are intro-

; duced by two-dimensional lattices in three volume direc-
(1) Theorems 1-3 and all embeddif@ss.(2.7)—(2.12)] . . .
are valid for systen{1.1), where the time derivative stands tions. Obviously, all the above mentioned cases of coupled

for any linear differential or difference operatbr. In par- systems are subjects for future study.
ticular, whendu; /dt denotes the differenceﬂﬁ —U,), where

Ui is the next iterate ofJ; , system(1.1) becomes an array of
locally coupled maps. We have discovered the family of embedded invariant

(2) Theorems 1-3 and the embeddings are valid for thenanifolds of an array of diffusively coupled identical dy-
system namical systems, and discussed the question of global stabil-

VIIl. CONCLUSIONS
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ity of synchronization manifolds. Obviously these embeddedling [32], when a transversal Lyapunov exponent of a cha-
manifolds come fromthe symmetryof both coupling and otic trajectory lying in the manifold 4 becomes positive.
boundary conditions, independently of the dynamics of thelhen the global stability onset of this manifold may be far
individual element. In phase space they make up a “skelfrom the bifurcational set of equilibria. In general, we con-
eton” defining a strict set of possible modes of cluster synjecture that the solution of the problem of the relation be-
chronization. Realization of these modes depends on the vetween equilibria bifurcations and conditions of global stabil-
tor field of the single system, on whether the concrete formgty of invariant manifolds lies between these extremes.
of both systems in a manifold are self-similar or not, and on Another peculiarity appears when syst¢il) is consid-
the corresponding variational stability equation. ered as a discrete simplified model of spatially extended
The most interesting feature of the embeddings is the egeaction-diffusion system defined by partial differential
sential dependence on the number of oscillatdrg=or N equations
=p*, wherep is a prime number2,3,5 . ..), the straight

self-similar embedding with the ordering of dimensiguts 29 Pxay .

k=1_,... i i _ _—P(X,Y)+_2' _—Q(Xa)’):
—p< *—---—p, as well as asymmetrical terminal enclo at Js ot
surep—(p+1)/2—1, allow us to make the main conclusion (8.1
related to the cluster manifolds embeddinggstem (1.1) aU au
with zero-flux boundary conditions and prime numbers of sl TP s =0
elements plays the role of the basic unit in cluster synchro- s=0 s-a

nization We emphasize that ip is a cofactor ofN, then
system(1.1), with N oscillators, may be considered as a self-

similar extension of itself wittp elements. ... mogeneous solution, and equilibria of systéin), being the
We remark that the problem of manifold stability is inti- yaiectories of Eq.(3.9, become the solutions of the
mately related to the problem of synchronization perSiSte”CBoundary-value problem, for EqE8.1) at 9U/at=0.

under a parameter mismatch between the oscilld@sl - The mode of partial synchronization defined by a sym-

13]. That is, if a manifoldMy 4 is strongly asymptotically  etrical manifold of Eq(1.1) in the case of the syste(8.1)
stable(all Lyapunov exponents are bounded away to the lefig 1o|ated to similar symmetrical solutions satisfying condi-

from zer(_) then this manifold is preserved under a s_n_n’:nlltionS x(s,t)=x(a—s,t). The important case, where system
perturbation gf systerfl.1), and then the pe~rturbed quasilin- (1.1) is self-similar, has an analog for the systééhl) as
ear manifoldMy 4 [such that the distanceM(y 4, Mn.a) IS symmetrical solutions at intervals of some wavelength. For
small] defines the persistence of the cluster synchronizatiogxample, forN=2¥ these lengths are/2l, j=1,2, ... k.
regime of coupled oscillators in the presence of a small paNote that the problem of stability of such solutions of Egs.

rameter mismatch. (8.1) is harder than for systerfi.1).
Finally we present some comments on the problem of the

relation between equilibria and invariant manifolds. In one
extreme case when systefh.1) is gradientlike, it has no
bifurcations besides saddle-node bifurcations of equilibria. 1.B. acknowledges the hospitality of the Department of
Hence for this system the bifurcation of global stability onsetElectrical Engineering of the Swiss Federal Institute of Tech-
of each invariant manifold coincides with the bifurcation of nology (EPFL), and the financial support of the Swiss gov-
some equilibria. ernment. This work was also supported in part by RFFI

Conversely, in another extreme case a globally stabléGrant No. 99-01-01126and by the grant “Universities of
manifold My 4 may lose its local Lyapunov stability via bub- Russia” (No. 1905.

on the interval0, a] of spatial variables. The mode of full
synchronization of the extended systé®nl) becomes a ho-
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