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Dynamics of a charged simple fluid with exponential memory and two relaxation times
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The memory function formalism is applied to the study of charge fluctuations in a symmetric simple fluid.
We assume the ions interact through the Rammanathan-Friedman potential. We calculate the distribution
function using the hypernetted-chain approximation and use an exponential form, depending on two relaxation
times, for the second-order memory function. Following this procedure, two algebraic equations for the relax-
ation times are obtained. These can be solved using the fourth- and sixth-order frequency momenta, yielding
expressions for the relaxation times in terms of the characteristic parameters of the system. This approach
allows the analysis of the dynamical structure factor and the dynamical behavior of the charge fluctuations. A
comparison of these results with some recently reported in which the distribution function is calculated via
mean spherical approximation theory, shows clearly the limitations of mean-field formalisms to describe the
dynamics of charged fluids.

PACS numbe(s): 61.20.Lc, 61.20.Qg, 77.22d, 71.45-d

[. INTRODUCTION Most of the theoretical descriptions of charged fluids are
based on the mean spherical approximatig$A) [9]. This
The dynamics of charged fluids is presently a topic ofapproach provides analytical expressions for the relevant
intensive research activity. In the last decade, there has beguantities. However, MSA is a theory for hard-sphere fluids,
significant progress in understanding and describing theonsequently it neglects some important features, which for
static structural properties of these systems. However, witthe description of molten salts, must be considered. There
respect to the dynamical behavior, some fundamental quesrave been some other theoretical approaches that assume
tions still remain. The answers to these questions are relevaniore realistic potentials than the mean-field potential im-
not only in the investigation of charged fluids, but in general,plied in the MSA[14]. Example of these are the soft and the
for strongly correlated particle systems in condensed-mattgsolarizable ion models. These models containing more real-
physics. In charged fluids, the screening and the fluctuationstic potentials provide better accuracy in the description of
of the charge density are features of the system that detefhe dynamics of molten salts. However, their range of prac-
mine the dynamical response to an external field. When thgca| applicability is still quite restricted and the strengths and
system is in equilibrium, the long range of the Coulombpositions of the collective modes, as predicted by them, ex-
potential produces an effective screening of the electric fieldgjpit certain error. Nevertheless, these models allow some
and the charge fluctuations become negligide?]. If the  jnsight on the dynamics of simple and complex liquidd].
SyStem is driven out of equilibrium by an external fleld, the|n this paper we used the Mori_ZWanzig memory function
Screening of electrostatic fields is less effective, the Chargﬁ)rmalism as We" as the hypernetted Cha‘-ﬂ\lc) approxi_
fluctuations become relevant, and the charge fluctuations denation to obtain simple analytical expressions for the
termine the features of the dielectric response of the systengharge-charge fluctuations. The theoretical framework is dis-
The dynamical behavior of charged fluids has been studeyssed in the next section. We focus particularly our atten-
ied experimentally by inelastic neutron scatterif®] and  tion on the relaxation processes of charge fluctuations; in this
x-ray and light scattering4]. Some theoretical procedures gnalysis we explore an exponential second-order memory
and techniques have been developed in the search to descrifggction, which depends on two relaxation times. This is
the dynamics of these systems. Most of these theoretical agfiscussed in the third section. Finally, we make a detailed
proaches are based on mean-field approximafish®r on  comparison with results we previously obtairldd] by the
the memory function formalisnh6—9]. However, these ap- yse of MSA, and with other pertinent results. This makes
proaches cannot be extrapolated into the hydrodynamic resyident the limitations of mean-field theories in the descrip-

gime. Computer simulations are nowadays one of the mosion of dynamical properties of charged fluids.
powerful tools in the investigation of complex fluidl&0—

12]. In order to establish a theoretical model, comparisons
between the results given by theories and numerical simula-
tions can be used to improve both of them.

Due to their wide variety of applications and to the im-  In the primitive model for a molten salt, the setMfions
portant basic physical problems involved, molten salts havare modeled by charged hard spheres. For this discontinuous
been studied extensively during the last decddé8. The  potential, it is not possible to use a frequency momenta ex-
understanding of these Coulombic systems has great repansion to calculate the charge-charge fluctuat[di$ To
evance for several branches of the natural sciences. Althougivoid this difficulty and in order to obtain analytical expres-
our treatment can, in principle, be applied to study somesions for the even frequency momenta, we adopt a
other simple charged fluids, in this paper we focus our attenRammanathan-Friedman potential with the following repre-
tion in the analysis of symmetric molten salts. sentation16]:

Il. THEORETICAL FRAMEWORK
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1/a a NOTmpvAt) 1 .
vaﬁ(r)=§ ﬁ F +ZaZB F . (1) Ek(t):izl I +§JE¢I Vij(rij) glk-rit) (9)
In the limit n—cc, the hard-sphere approach is recoveredgnq
We use Eq.(1) to calculate the pair-correlation function
g4p(r) within the HNC approximation. For comparisons, we KgT?
also consider the primitive model for a molten salt and deal C, (k)= (TZ) : (10
k

with the hard-sphere term using Perram’s algorifHi#] to
calculate the electric contribution of the distribution function These dynamical variables may be considered as the compo-

applying the zone expansion within MSAS]. nents of the vector
We use the projection-operator formalism to describe the
dynamics of a molten salt. After Gianquing al. [8], we pr(t)
select the following microscopic set of conserved variables: Jl'i"(t)
the density of masp(t), the longitudinal density current of
massJ}(t), the density of charg®,(t), the longitudinal At ={ Tu(®) |. 11
density current of chargéf?(t), and the temperaturg,(t) Qu(t)
[19]. These quantities are defined as follows JE(t)
N
p(t)= 21 m;e'k i, 2) The equation of motioi\(t) is the following:
' dAD)

N

— T QA1) + (t—s)A(s)ds=Ry(1),
J&”(t)=21 mju}(t)e' i, 3 QAL f M . ’
=

t
dt 0
(12)

N ior () where Q, is the frequency matrixM(t) is the memory
Qk(t)=]_§=:1 gje” (4)  function matrix, andR,(t) is the random force vectd0].
From the above equation-of-motion and the Fourier-Laplace

0 N | . transform definition, the correlation function matrix
Jk(t)=j21 qyj(t)e’ i, () €aa(k,2) can be expressed in the form
1 [Z1 —iQ+M(k,2)]Can(k,2) = Can(k,0). (13
T = =15 [Ex(D) ~ O1(K)pi(1) = Ox(K)Qu(D) ], (6) o o _
o(K) The relationship between the susceptibility matrix
where xaa(k,z) andCaa(k,2) is a well-known result of the linear-
response theory
~ (Exp-i0{QuQ -1 —(ExQ-1){ Qup 1)
O, (k)= { - . - 1 s
PP -1 Q-1 — (PKQ-1){(Qup—k) xan(k2)=<[Caa(k 0 +izCan(ki2)]. (14
B
- (ExQ-){prp—1) — (Exp—1){(PkQ-1)
2(K) = (prp - HQAUQ_ 1) — (P Q- N Qo) ® The explicit representation of the matrices of this relation

can be considerably simplified if one applies usual symmetry
E\(1) is the energy density expressed in terms of the interioperationg21]. As an example, for a symmetric molten salt,

onic potentialV;; , andC, (k) is the heat capacity at constant if in addition one considers the charge conjugation symmetry

volume. These quantities are, respectively, given by operation the frequency matrix can be cast into the form
|
0 ik 0 0 0
dJy
ikpkgT Tk
< P B> 0 < dt T—"> 0 0
PP —k — =
(TkT i)
o dJ¥,
Lo Tkt 0 0 ol (19
B pkBT
0 0 0 0 ik
H 2
0 O IkwpkBT 0

4m(QrQ_y)
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In this way, the quantitiep,, J{l" , andT, are decoupled wy |2 wo|2 2 1 1
in Q, andJ2. From the expressiofi.3) we obtain the vari- (w—) = (w— + §+ 16m > > Z,Zg EJ Jap(r)
ous correlation functions. P P “
The dynamic charge-charge self—correlat%@Q(k,z) is d2 /a\" _
given by ><(1—coskz)d—22 T dr+zazﬁf [Gap(r)—1]
Soo(k,2)= _ d? (1) . 1
Sqq(k,2) (QQ-w . X(l—coskz)d—zz(F)dr] + m[ g1r)
N k2<JSJ9k>/<QkQ_k>) 6
z+Rss(k,2)/(JRI ) <72 E)d;_ (21)
r

where Rs(k,2) is the second-order memory in its partial " EQS. (20) and (21), the frequencyw, is given by wg
fraction series representation for the charge-charge self= (ZK“KeT/m and in Eq.(20), Sqqo(k) is the static charge-
correlation. Obviously, an explicit expression for this quan_charge fluctuation that is directly related to the static struc-
tity cannot be obtained from this formalism. ture factorS, £k),

. The following two expressions are well knOV\_/n and u;eful Soof K)=(26)2pS, (k). (22)

in the context of linear-response theory. The first one is the h i . | f

relationship between the charge-charge self-correlation 1he normalized Fourier-Laplace transformed memory

Soo(k,2) and the dynamic charge-charge structure factor, functionN(k,z) has the form
~ m(k n(k
- N(k )= kL, 1 23
Soolk,w)=—ReSyq(k,2). 17 Ttz Ttz
m that was obtained assuming an exponential approximation.
Through this expression we wish to incorporate in our theo-
The second is the relation between the statistical suscepetical description the possibility of exploring the influence
tibility xqo(k,w) and the longitudinal dielectric function On the response function of relaxation processes with differ-
e(k,w): ent relaxation times. We shall associatg and 7y, with
precesses with short and long relaxation times, respectively.

2
e(kla)) =1+ 4’”-2q XQQ(k,w)_ (18 IIl. APPROXIMATION WITH TWO RELAXATION TIMES

In a previous work, we have reported an analysis of the
charge-charge fluctuations in a simple charged fluif],

We wish to calculate the dynamic structure factor associconsidering an exponential memory function depending on a
ated to the charge-charge fluctuatidhso(k, ). Since, this  single relaxation time. This is a suitable memory approxima-
theoretical framework is unable to provide an explicit formtion for the long-times regimé23]. In that work we have
for the memory function, we propose an heuristic expressiofiound that the results for the charge-charge fluctuations ob-
for the memory functiorRsg(k,z). In order to explain this t@ined within that scheme are qualitatively good for the mod-

approximation, let us consider the relation erately high-frequency regimg. However, in. that approach
there exists an inconsistency in the calculation of the static

_ properties of the system, since on the one hand, the distribu-
Rss(k,2)  Res(k,0) tion function is obtained via MSA considering a hard-sphere
<‘]8‘]9k> a <JkQJ9k>' (k.2), (19 potential, and on the other hand, the Abramo expression for
the frequencyw?, is obtained through expressi¢21), using
~ ~ ) ) a soft-sphere potential, E€L). In order to correct this incon-
where  N(k,z)=Rsg(k,2)/Rs5(k,0) is the normalized gigtency in this paper we calculate the radial distribution
memory function. By using th_e prOJectlon-operator formal'function, by means of the HNC approximatif®4] and the
ism and the symmetry properties we can write, Abramo expression for the frequeney?,, both within the
same potential model, expressi@h. It is worthy to com-
Res(k,0) ) w(z)(ze)zp ment that thg results discussed in REE5], in_the low-
00\ @ SoqK) (200 frequency regime of the charge-charge fluctuations spectrum,
(IKI=0 Q in general, exhibit a poor agreement with the results obtained
by molecular dynamic$MD). This deficient description can
where the frequency?, is given by the general Abramo be associated with the intrinsic limitations of MSA. Under
expressiorf22]. This expression is valid for continuous po- dynamical conditions one may expect that some information
tentials. We have used here the soft sphere potentiallEq. beyond a mean-field interaction would improve our results.
with n=9 anda=2.34 A[20]. Thus, it is clear that mean-field theories are not capable to
For a symmetric molten salt the expression &, ac-  describe properly the physics of charged fluids in the hydro-
quires the form dynamic limit. More detailed information about nearest-
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neighbors interactions and associated fluctuations is needed D2=372‘2—275172‘1+ by +k2\,, (30)

to describe the system collective modes and its correspond-

ing dynamic response. Da=(1; =1, (75 2+ K3\, +bn)—by 5, (3D
As mentioned above, it has been shown that the exponen- 1, -1

tial memory depending on one relaxation time provides a Dy=—bin7, (17— 7 7), (32

suitable description for the charge-charge fluctuations in th?de

long-times regimd23]. In order to improve the description

in the hydrodynamic limit, here we explore an exponential M =(QQ_y), (33

memory depending on two relaxation times. This expression 1010

(23) is a generalization of the usual expression depending on N2=(IKI=0/(QQ-1 (34)

one single relaxation timeN(k,z)=(7"*+2z)"%. In the by=Rss(k,0/(IQI2,). (35)

short-times regime a Gaussian form for the second-order

memory provides better results than an exponential one, b(to obtain the complete inverse Fourier-Laplace transform
an exponential form has the advantage of yielding an anafrom Eq. (25), it is necessary to know the roots of the fol-
lytical expression for its Fourier-Laplace transform. Hence lowing fourth-degree algebraic equation:

in our studies, we calculate the static properties, i.e., the 4 3 9 _

pair-correlation function and second-order frequency mo- Z°+D12°+Dyz°+ D3z + Dy =0. (36)

mentum, using a charged soft-sphere potential, and an EXPeis equation can be solved, in principle, in terms of radicals

nential form for the second-order memory, depending on th?nvolving a hard-handling algebra work, alternatively, here

relaxation times corresponding to the short- and Iong-time%e find an approximate solution. Notice that whes-0 the
regimes, respectively. We analyze in particular the dynamic?; '

;)f”a symmetric two—gclolr]nponlen't mhﬁlte2338ag6specified by thejgrtr; geg;etﬁirz(_]g;';?;e c;or;yggmvxilgltte_rnh ng tihnet;(i)fi:?r(ﬂzt) the
ollowing parameter§l1]: molarity M = 23.866, temperature Y s '
T=1267 K, coefficient of soft sphemre=9, and ionic radius ootz of Eq. (36) can be expressed in the form
a=234 A . Zo=agn+ byn?. (37)

The projection operator formalism itself is not capable to o ] ]
provide an expression for the second-order memory, consalsing this in the fourth-degree equation and comparing the
quently we explore the following alternative expression: ~ coefficients of equal powers af we obtain

N(k,t)=me Y14+ ne V2, (24) by (ryt-mh)

Q= - = -
(1 =1 (13 2+ K2 ) — by 7y

(38)

We assume that; and 7, correspond to characteristic relax-

ation times in the short- and long-times regimes, respecznq

tively. Due to the definition of the memory function, which

is a normalized quantitjsee expressiofl9)] the amplitudes b2r, Yy t= Y27, 3=ty 2+ KA 1]

m and n satisfym+n=1. Notice that we have suppressed Po=— 1 1., -2 .2 1.3

the wave vector dependence of the amplitudesxdm. To [(r1 7= 75 ) (75 "+ kN p) =Dy 7, 7] -

determine this dependence we would need an additional con- (39

dition. We take this to be the seventh-order momentum, The partial fractions representation of the Fourier-Laplace

which would provide an algebraic equation with a higher-yransform of Eq(25) is given by

order polynomial. The amplitudes and m, in general, de-

pend on the wave vectdr We assume here a certain depen-  Foo(k.t) =A€7 Aje™ %'+ Aae 2"+ Abe 2!

dence and use these amplitudes together with the restriction + Ace %] (40)

n+m=1 to construct a trial function for the second-order '

memory function. _ __wherez,, z,, andzz, are the roots of the third-degree equa-
From the inverse Fourier-Laplace transform of expressioRjgn

(24), we obtain for the correlation of the charge-charge fluc-

tuations 23+ D22+ Dgpz+ Doa=0. (41)
KO = h et 2%+ N;Z%+N,z+Ng The relations for the coefficienBg;, Dgp, Do3, andDg
Faalk)=A\.e £ 24+ D,28+ D,2%+ D47+ D, ' are given by expression29)—(32), in the following form:
(25) D01: Dl+ Zo, (42)
where

Do2=29(D1+29) + Dy, (43

N,=7; =271, (26)
Doz=—Dy/z. (44)

No=r7,%— 7,1 '+ by, 27)

The coefficients of exponential terms are given by
Ny=b.n(7r; 1 —7,1), (28)
(Z3+Noiz; +Nop) (2, 25)
D=7, 1—37, ", (29 a= AS ' (45)
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b (Z%'f' N0122+ N02)(23_Zl) 46 N02: C/A (50)
5 The parameterd, A, B, andC, are given by
(z3+ No1zg+ No2) (21— 25)
= AS @7 3 N 72
A o+ N1z5+Nyzp+ N3 51
with ® 23+ 22D g;+ 20Dopt Dos’
AS=7{(23-2)) +25(21-23) + Z3(2,-21)  (49)
2
Z5(Dg1—N1) +2Zo(Dgo—Ny) +(Dg3— N3)
and A 200 3120 02— N2 03 3' (52)
No;=B/A, (49) Z5t 25D 01+ 2oD o2t Dog
|
B 25(D gz~ Na) +2o(Dog+ N1Dgo— NaDog— Ng) + (N1 Dgg—N3Doy) 53
Z3+ 22D g1+ 20D oo+ Dog ’
c 25(D g3~ N3) +Zo(N1D gz~ N3Dop) + (DoaNa— DoNs) (5
Z3+ 23D g1+ ZoD oo+ Dog '
|
The charge-charge fluctuations given by E) in terms (it Fori2y = J(Fat For D) 2— Afaf 72
of the quantitiesAy, A, a, b, ¢, z5, z;, z,, andz; can be Tgllz (fatfamo;) vy 712 o) SR
written in terms of the relaxation times and 7,. However, 2f37g;
these relaxation times are undetermined yet. We wish to de- (58

rive some expressions for the relaxation times in terms of thg,o rejaxation timerg, can now be obtained from the fol-
characteristic parameters of the system. To do this we use th@wing eight-degree algebraic equation

conditions given by the frequency momeng4]. The infor-
mation of the first four frequency momenta is already con-

i in Eq.(40) th h th ial fracti i . . .
tained in Eq(40) through the partial fractions representation From the eight roots of this equation we must select the one

for the self-correlation16). Thus, we need to make use of with physical meaning forrg,. It has been found that the

Eggvheer-order momenta. From the fifth-order momentum WSalue of 702 is of the order of terj25] (frequencies are nor-

malized to w,). We have calculated the root around this

Hyol+ Horol + Haoy + Hamo 2+ Hs=0.  (59)

firor+foTor o2+ faTor Ton + Ta7gr=0 (55
and from the sixth-order momentum

1 -3 2 2 -2 -2 -2 _
91701 To2 T 92701 Toz T 93702 +9aTor 95701 T96=0,

(56)
where the coefficients are given as follows:
fi=—ma; f,=-2m; fz=n; f,=—nq;
12mp ng
91=— 7 927~ % 93=NB g4=mB; (57
g :—nZ'BZ' ge=—| >+ ! d6FQQ(k’t) :
©oa P wgwé dt® t:O'
, &pe &pe?
B=| "~ e g o
Sqa(k) Sqq(k)

Expressiong55) and(56) can be solved for the relaxation

times yielding forrg,:

value numerically.
The coefficients of the above equation are given by

H,=4f3G,G,,
H,=4G4[ - f3f463_4f365]G5,
Hay=—4f,f395G3—4f1f5f4,G1G,—404f3[ 161+ f,Gs]
+4f,f3GGs+ 8f2GGs,
H,=—8f5f,G3Gg+2ff3GsGg+ 4f 1 5f, GG
— 41, 1396G5+4f ,f 3T ,G,Gg— 4 ,f396Gs
+8f3f496G7— 413[ 4G+ F3g5],

Hs=—4f13g6Ge, (60)
with
G1=f20,—1301; Go=149:—f203;
G3=f10>+ 204+ 205, Ga=f206+1103;
(61)

Gs=140,—1303; Ge=f104+110s;
G7=0410s; Gg=Tf306—f40,4—40s.
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We have assumed that the discriminant of &j) is less Equation(63) can be generalized to be valid for smill
than zero. To solve this equation it is necessary to take intmamely, the generalized hydrodynamics regime. In this case
account an explicit expression for the sixth-order momen-one has the relation
tum. It is possible to obtain this expression from the distri-
bution function theory, appearing in terms of the three-
particle distribution functior{26]. Therefore, we follow an o o o
alternative procedure to solve Eq55) and(56) for 7o; and 7o (GH)=4m00(k) [v"— & pe/Sqq(k)] (64)
T92. We propose an expression for the sixth-order momen- 02 ' §2pe2/SQQ(k) ’
tum, that corresponds to an interpolation of the well-known
expressions valid for the extreme limikg>1 andka<1.

These correspond to the so-called free particle and hydrody- 0 ] o
namic limits, respectively. whereay (k) =lim,, o0 (k, )/ w, . By substituting Eq(64)

In the hydrodynamic limit, we may consider the following in Ed. (56), one obtains

relationship between the memory function and the static con-
dGFQQ(k,Ul ]
dt® -0 ng

ductivity o [8]:

B - _ - _
Assuming an exponential memory and using the above rela- =Z{1Zn7-011(G H) 705 (GH) =N 752 (GH) 75, (GH)
tion, one can obtain the expression for the relaxation tigpe
in the hydrodynamic limit as

1

ﬁ k,Z a)2 [ 2 4
lim |im5g(—Q)=—". (62) @
k—00—0(JQI%y)  4To

+n?B7o (GH)}+ B{nTer (GH) + M7y (GH) } — »*.

(65)
T (H)=4700| v2— ﬁ (63
02 SQQ(k) '
where we have the relations= U'pr, y=wq /oy, and§ The relaxation timery;(GH), according to Eq(58), is
=wolwp. related withro,(GH) through
_ —[f1+ o0 (GH) 1= V[ 1+ fo705 (GH) P —4f5f 475 (GH)
7or (GH) = : (66)

2f3755 (GH)

On the other hand, in the free particle limit, there are 4 1
some proposed expressions for the relaxation time. One of ={ oY
the most commonly used is due to Love$@y], wherer is Wowp -0 | @o®p
written in terms of a density correlation, and is a suitable
approximation for the description of neutral fluids with ex- ( (koga)? )

d®Foo(k,t)
de® ],

dGFQQ(k,t)] ]
6
dt o

ponential type memory. Assuming a generalization for 2 2
_ ; (koa)“+ (ka)
charged fluids, we propose for a symmetric molten salt sys-

tem the following expression for the),(F) relaxation time, [ 1 dGFQQ(k't)l ]
X
2 4 6
Wy dt =0) na
2 £2pe’
70 (F)= =\ V~5 o (67) 1 | d°Foqkt)
o \/; Sqq(k) VT2 a dté :
(x)o(l)p t=0 F

From Eq.(56) we can obtain an expression analogous to Eq. (68)

(65) for the sixth-order momentum. Here we must replacewe use this expression to calculate the dynamic structure
GH by F to indicate the free particle regime. For the relax-factor. We expect that this approximation may improve our

ation time 7yy(F), we obtain an expression similar to Eq. description of charge correlations, for frequency values in

(66), whereHG must be changed bly. Hence, by interpo- the vicinities of both the hydrodynamic and the free particle

lating the behavior of both regimes, we propose the follow-imits. The dynamical structure fact&q(k,w) can now be

ing expression for the sixth-order frequency momentum:  written in the form
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-1 -1 -1 -1 _-1 -1 -1
7Sqq(K, w) o {Xzaﬁ(nToz +M7y )+ BTy Top (M7, + N7}

Sqq(k) X8+ S,x8+ Syx*+ S;x%+ S, ’ (69
|

where lations[11], and our results with one relaxation time memory

S, = 7'612+ 7622_272: e}nd MSA'(I'EMSA) [15]. As expectgd, the three approxima—

o 2. 4 o ) _2 tions exhibit a good agreement with the MD results in the
S;= 701 Toz TV 2a( 7o+ 7o) —2B(M7g5 +N7p), high-frequency regime, but the disagreement is evident in the
Sy=—2aryl ol + a¥( 1o+ 1) + BA(Mrs + nrg )2 low-frequency regime. Notice also that the HNC theory pro-
vides a better description than a mean-field approximation

+2aB(M7l+n7o2), like MSA. This improvement is observed in the hydrody-

namic limit as well as in the region of low frequencies. We
remark that, except for intermediate frequenciaepproxi-

Note that in the expression for the dynamical structureMately 0.1 w/w,=<0.6) the results of EHNCI, are closer to
factor, the denominator is an eighth-degree polynomialthose of MD, even though in our calculation of EMSA and
whereas, if we consider a second-order memory with a singlEHNC1, we have used the same approximation for the

relaxation time, the dynamic structure factor is given inSecond-order memory function. _
terms of a fourth-degree polynomigl5). We also have calculated the dynamic structure factor

Soa(k, @) [Eq. (69)], using HNC to obtairg,g(r) and as-
suming an exponential second-order memory with two relax-
ation times[Eq. (24)]. These times are given by Eq&5)

In this section, we discuss results for the charge-chargand (56). The sixth-order frequency momentum, was ob-
dynamic structure factoByq(k,w) obtained by expression tained by an interpolatioi68) as explained above. These
(69). We compare these results with those obtained by theesults are denoted by EHNC2 in Figs. 2 and 3. The approxi-
use of MSA and a single relaxation time second-ordemations EHNC1 and EHNC2 are compared in Fig. 2. It is
memory[15]. A discussion is also presented for the charge-observed that the assumption of a second-order memory, de-
charge correlation functioRyq(k,t) obtained from expres- pending on two relaxation times, only provides a slight im-
sion (40). provement of the results compared with those obtained with

In the calculation of the structure fact¢9), we have a single relaxation time in the memory function. However,
used the HNC approximation to obtain the pair-correlationthe dependence of the memory function on the amplitides
function g,4(r) of a soft-spheres systef@4]. We wish to  andm, offers the possibility of a more detailed analysis about
separate the effects resulting from the improved descriptiothe influence of each one of the relaxation times on the dy-
of the static properties of the system using HNiGstead of  namic behavior of the system. It has been shown that in the
MSA), from those associated with the second-order memorghort-times regime, the Gaussian approximation for the
with one or two relaxation times. To do so, we discuss firstsecond-order memory is better than an exponential 2
the results obtained with HNC and an exponential secondHowever, the Gaussian representation has a disadvantageous
order memory with one single relaxation tifieHNC1). nonanalytical Fourier-Laplace transform. To facilitate a com-

Figure 1 shows a comparison of our calculations EHNC1parative analysis, we have chosen the simplified analytical
for the dynamic structure factor with others reported for theexpressions provided by the exponential approximation for
same systeml1], [15]. The figure displays results obtained the second-order memory with one or two relaxation times.
by the fitting with an exponential memofHE), MD calcu- In Fig. 3 we illustrate the possibilities of a second-order

memory function as given by the expressi@d). We notice

S,= azralz 7'522 . (70

IV. RESULTS AND COMMENTS

1.6 T T T
1.6 T T T
- o MD ka=0.751
¥ 12 4 © MD ka=0.751
k<] 2 12 EHNC1
& $
= (o
8 os - <
i‘é 8 o0s
S ¥
QA 04 - g
[7¢]
QA 04
0.0 1
0.0 0.5 1.0 1.5 2.0 0.0
o/0p 0.0 0.5 1.0 1.5 2.0

FIG. 1. The dimensionless dynamic structure factor o/6p
2Sqo(K, )/ Sgo(K) Vs w/w,. Comparison of the results of three FIG. 2. 2S50(k, 0)/Sqo(K) Vs w/ wy,, approximations with one
different approximations with one relaxation tirtsee the text and (EHNCY) and two relaxation time@EHNC2), in comparison to the
molecular dynamics. results of MD.
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1.2 b — EHNC2(n=0.5) T

ka=0.751

.== EHNC2m=0937)  ¥2=0.751
— EHNC2(n=0.5) -

o
o

Foo(x,t)/Foqo(x,0)

opt

i FIG. 4. Charge-charge correlatiofigq(k,t)/Fqoo(k,0) as a
function of the dimensionless frequenayt. Effect of the changes

i of the amplituden of the second-order memory. Comparison be-
tween results of the approximations EHNC2 and HE.

ka=2.809

Notice that when the EHNC2 curve withn€0.5) for
Soo(k,w) shows a better agreement with the MD results,
: i.e., at low frequencies, the charge-charge correlation
10 (C) i Fool(k,t) increases. Figure 4, shows that wheimcreases,
the amplitude of the correlations shows a clear tendency to
8 xa=3.753 - decrease yielding a better agreement with the HE results.
Another clear trend worthy of notice in these figures is the
shift of the oscillation phase.
4L | We conclude that in general the EHNC2 approximation
for the exponential second-order memory with two relax-
2t . ation times, together with the HNC approximation for the
. pair-correlation function, provide a better description of the
0.0 0.5 1.0 1.5 2.0 dynamics of a symmetric molten salt than that obtained by
fitting with an exponential memory HE, and the description
(D/(Dp with an exponential memory EMSA. The procedure we use

in this paper can be further improved in the following two
FIG. 3. 2S5q(k,w)/Sqo(K) Vs w/w, . Effect of the change of . . . . .

the amplituden of the second-order memory, and for three differentObVIOUS aspects(a) k.)y using .the hyb.nd appro.X|mat|0n
values of the wave vectde as indicated ir(@), (b), and(c). HNC/MSA for the pair-correlation functiog,s(r) instead

of the pure HNC approximatiof28], and(b) by calculating
that it is possible “to modulate” the amplitudesand m to the sixth-order frequency momentum .using the procedure
obtain a better agreement with the MD results in the low-Proposed by de Gennga6. In this, the sixth-order momen-
frequency region. However, we observe in Figa)3hat the tum is evaluated in terms of the three-particle correlation
modulation of the amplitudes to produce a better agreemertinction. In principle this procedure would provide a better
for low frequencies, also causes deviations from MD result@PProximation than the one provided by expressi68).
at frequencies of the order and higher than the plasma freLhese changes in the procedure followed in this paper would
quency. Figure @) reveals that the modulation of the am- provide second-order corrections in the calculation of the
plitude n produces a slightly better agreement with MD cal- dynamical properties of the charged fluid under study. On
culations for the value=0.5 than forn=0.937. One can the other hand, a better approach of the second-order
see that our results EHNC?2 fits better for this value of theMe€mory, for instance, assuming the memory proposed by
wave vectorka=2.809, than for the value corresponding to Evelin et al. [25], would provide a first-order correction to

Fig. 3@, and that the effect of the modulation of the ampli- the results reported_ in t_his paper. Finally, we recall that in
tude is less noticeable. This trend of our results to improv@U’ EHNC2 approximation, the roots of the fourth-degree

the general agreement for increasing valuesaf and to ~ Pelynomial, Eq.(36), are obtained numerically. These roots
lessen the effect of the amplitude modulation, appears morg€t€rmine the relaxation times, and consequently the dy-
clearly in Fig. 3c); here one observes that the modulation of@mical properties of the system. A more detailed analysis
the amplituden for ka=3.753, no longer affects the behavior O" the possibilities offered by the exponential memory with
of the structure factor. two relaxation times would be possible if an exact calcula-
Under the same considerations as in the previous figurdon of these roots is performed.

we have also calculated the charge-charge fluctuafiegs
(40)], this is displayed in Fig. 4. Here we present a compari-
son of our results EHNC?2 for the charge-charge fluctuations We acknowledge the partial financial support of CONA-
with those obtained by the HE theory. It is interesting toCyT (México) Grant No. 2064-E. J. E. Flores-Mena ac-
analyze these results in relation to those depicted in k&). 3 knowledges the personal financial support of CONACyT.
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