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Dynamics of a charged simple fluid with exponential memory and two relaxation times

J. E. Flores-Mena and J. L. Carrillo
Instituto de Fı´sica de la Universidad Auto´noma de Puebla, Apartado Postal J-48, Puebla 72570, Puebla, Mexico

~Received 14 July 1999!

The memory function formalism is applied to the study of charge fluctuations in a symmetric simple fluid.
We assume the ions interact through the Rammanathan-Friedman potential. We calculate the distribution
function using the hypernetted-chain approximation and use an exponential form, depending on two relaxation
times, for the second-order memory function. Following this procedure, two algebraic equations for the relax-
ation times are obtained. These can be solved using the fourth- and sixth-order frequency momenta, yielding
expressions for the relaxation times in terms of the characteristic parameters of the system. This approach
allows the analysis of the dynamical structure factor and the dynamical behavior of the charge fluctuations. A
comparison of these results with some recently reported in which the distribution function is calculated via
mean spherical approximation theory, shows clearly the limitations of mean-field formalisms to describe the
dynamics of charged fluids.

PACS number~s!: 61.20.Lc, 61.20.Qg, 77.22.2d, 71.45.2d
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I. INTRODUCTION

The dynamics of charged fluids is presently a topic
intensive research activity. In the last decade, there has
significant progress in understanding and describing
static structural properties of these systems. However, w
respect to the dynamical behavior, some fundamental q
tions still remain. The answers to these questions are rele
not only in the investigation of charged fluids, but in gener
for strongly correlated particle systems in condensed-ma
physics. In charged fluids, the screening and the fluctuat
of the charge density are features of the system that de
mine the dynamical response to an external field. When
system is in equilibrium, the long range of the Coulom
potential produces an effective screening of the electric fie
and the charge fluctuations become negligible@1,2#. If the
system is driven out of equilibrium by an external field, t
screening of electrostatic fields is less effective, the cha
fluctuations become relevant, and the charge fluctuations
termine the features of the dielectric response of the sys

The dynamical behavior of charged fluids has been s
ied experimentally by inelastic neutron scattering@3# and
x-ray and light scattering@4#. Some theoretical procedure
and techniques have been developed in the search to des
the dynamics of these systems. Most of these theoretica
proaches are based on mean-field approximations@5# or on
the memory function formalism@6–9#. However, these ap
proaches cannot be extrapolated into the hydrodynamic
gime. Computer simulations are nowadays one of the m
powerful tools in the investigation of complex fluids@10–
12#. In order to establish a theoretical model, comparis
between the results given by theories and numerical sim
tions can be used to improve both of them.

Due to their wide variety of applications and to the im
portant basic physical problems involved, molten salts h
been studied extensively during the last decades@13#. The
understanding of these Coulombic systems has great
evance for several branches of the natural sciences. Altho
our treatment can, in principle, be applied to study so
other simple charged fluids, in this paper we focus our att
tion in the analysis of symmetric molten salts.
PRE 621063-651X/2000/62~1!/631~9!/$15.00
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Most of the theoretical descriptions of charged fluids a
based on the mean spherical approximation~MSA! @9#. This
approach provides analytical expressions for the relev
quantities. However, MSA is a theory for hard-sphere flui
consequently it neglects some important features, which
the description of molten salts, must be considered. Th
have been some other theoretical approaches that as
more realistic potentials than the mean-field potential i
plied in the MSA@14#. Example of these are the soft and th
polarizable ion models. These models containing more r
istic potentials provide better accuracy in the description
the dynamics of molten salts. However, their range of pr
tical applicability is still quite restricted and the strengths a
positions of the collective modes, as predicted by them,
hibit certain error. Nevertheless, these models allow so
insight on the dynamics of simple and complex liquids@14#.
In this paper we used the Mori-Zwanzig memory functi
formalism as well as the hypernetted chain~HNC! approxi-
mation to obtain simple analytical expressions for t
charge-charge fluctuations. The theoretical framework is
cussed in the next section. We focus particularly our att
tion on the relaxation processes of charge fluctuations; in
analysis we explore an exponential second-order mem
function, which depends on two relaxation times. This
discussed in the third section. Finally, we make a deta
comparison with results we previously obtained@15# by the
use of MSA, and with other pertinent results. This mak
evident the limitations of mean-field theories in the descr
tion of dynamical properties of charged fluids.

II. THEORETICAL FRAMEWORK

In the primitive model for a molten salt, the set ofN ions
are modeled by charged hard spheres. For this discontinu
potential, it is not possible to use a frequency momenta
pansion to calculate the charge-charge fluctuations@11#. To
avoid this difficulty and in order to obtain analytical expre
sions for the even frequency momenta, we adopt
Rammanathan-Friedman potential with the following rep
sentation@16#:
631 ©2000 The American Physical Society
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vab~r !5
e2

a F1

n S a

r D n

1zazbS a

r D G . ~1!

In the limit n→`, the hard-sphere approach is recover
We use Eq.~1! to calculate the pair-correlation functio
gab(r ) within the HNC approximation. For comparisons, w
also consider the primitive model for a molten salt and d
with the hard-sphere term using Perram’s algorithm@17# to
calculate the electric contribution of the distribution functi
applying the zone expansion within MSA@18#.

We use the projection-operator formalism to describe
dynamics of a molten salt. After Gianquintaet al. @8#, we
select the following microscopic set of conserved variab
the density of massrk(t), the longitudinal density current o
massJk

M(t), the density of chargeQk(t), the longitudinal
density current of chargeJk

Q(t), and the temperatureTk(t)
@19#. These quantities are defined as follows

rk~ t !5(
j 51

N

mje
ik•r j (t), ~2!

Jk
M~ t !5(

j 51

N

mjv j
l ~ t !eik•r j (t), ~3!

Qk~ t !5(
j 51

N

qje
ik•r j (t), ~4!

Jk
Q~ t !5(

j 51

N

qjv j
l ~ t !eik•r j (t), ~5!

Tk~ t !5
1

Cv~k!
@Ek~ t !2O1~k!rk~ t !2O2~k!Qk~ t !#, ~6!

where

O1~k!5
^Ekr2k&^QkQ2k&2^EkQ2k&^Qkr2k&

^rkr2k&^QkQ2k&2^rkQ2k&^Qkr2k&
, ~7!

O2~k!5
^EkQ2k&^rkr2k&2^Ekr2k&^rkQ2k&

^rkr2k&^QkQ2k&2^rkQ2k&^Qkr2k&
. ~8!

Ek(t) is the energy density expressed in terms of the int
onic potentialVi j , andCv(k) is the heat capacity at consta
volume. These quantities are, respectively, given by
.

l

e

:

i-

Ek~ t !5(
i 51

N Fmivi
2~ t !

2
1

1

2 (
j Þ i

N

Vi j ~r i j !Geik•r i (t) ~9!

and

Cv~k!5
KBT2

^Tk
2&

. ~10!

These dynamical variables may be considered as the com
nents of the vector

Ak~ t !5S rk~ t !

Jk
M~ t !

Tk~ t !

Qk~ t !

Jk
Q~ t !

D . ~11!

The equation of motionAk(t) is the following:

dAk~ t !

dt
2 i VkAk~ t !1E

0

t

M k~ t2s!Ak~s!ds5Rk~ t !,

~12!

where Vk is the frequency matrix,M k(t) is the memory
function matrix, andRk(t) is the random force vector@20#.
From the above equation-of-motion and the Fourier-Lapl
transform definition, the correlation function matr
C̃AA(k,z) can be expressed in the form

@zI2 i Vk1M̃ ~k,z!#C̃AA~k,z!5CAA~k,0!. ~13!

The relationship between the susceptibility mat
x̃AA(k,z) andC̃AA(k,z) is a well-known result of the linear
response theory

x̃AA~k,z!5
1

kBT
@CAA~k,0!1 izC̃AA~k,z!#. ~14!

The explicit representation of the matrices of this relati
can be considerably simplified if one applies usual symme
operations@21#. As an example, for a symmetric molten sa
if in addition one considers the charge conjugation symme
operation the frequency matrix can be cast into the form
i Vk51
0 ik 0 0 0

ikrkBT

^rkr2k&
0 K dJk

M

dt
T2kL

^TkT2k&

0 0

0
2

K Tk

dJ2k
M

dt L
rkBT

0 0 0

0 0 0 0 ik

0 0 0
ikvp

2kBT

4p^QkQ2k&
0

2 . ~15!
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In this way, the quantitiesrk , Jk
M , andTk are decoupled

in Qk andJk
Q . From the expression~13! we obtain the vari-

ous correlation functions.
The dynamic charge-charge self-correlationS̃QQ(k,z) is

given by

S̃QQ~k,z!5^QkQ2k&

3 S z1
k2^Jk

QJ2k
Q &/^QkQ2k&

z1R̃55~k,z!/^Jk
QJ2k

Q &
D 21

, ~16!

where R̃55(k,z) is the second-order memory in its parti
fraction series representation for the charge-charge s
correlation. Obviously, an explicit expression for this qua
tity cannot be obtained from this formalism.

The following two expressions are well known and use
in the context of linear-response theory. The first one is
relationship between the charge-charge self-correla
S̃QQ(k,z) and the dynamic charge-charge structure facto

SQQ~k,v!5
1

p
ReS̃QQ~k,z!. ~17!

The second is the relation between the statistical sus
tibility xQQ(k,v) and the longitudinal dielectric function
e(k,v):

1

e~k,v!
511

4pq2

k2
xQQ~k,v!. ~18!

We wish to calculate the dynamic structure factor asso
ated to the charge-charge fluctuationsSQQ(k,v). Since, this
theoretical framework is unable to provide an explicit for
for the memory function, we propose an heuristic express
for the memory functionR̃55(k,z). In order to explain this
approximation, let us consider the relation

R̃55~k,z!

^Jk
QJ2k

Q &
5

R55~k,0!

^Jk
QJ2k

Q &
Ñ~k,z!, ~19!

where Ñ(k,z)5R̃55(k,z)/R55(k,0) is the normalized
memory function. By using the projection-operator form
ism and the symmetry properties we can write,

R55~k,0!

^Jk
QJ2k

Q &
5v1l

2 2
v0

2~ze!2r

SQQ~k!
, ~20!

where the frequencyv1l
2 is given by the general Abram

expression@22#. This expression is valid for continuous po
tentials. We have used here the soft sphere potential, Eq~1!,
with n59 anda52.34 Å @20#.

For a symmetric molten salt the expression forv1l
2 ac-

quires the form
lf-
-

l
e
n

p-

i-

n

-

S v1l

vp
D 2

53S v0

vp
D 2

1
2

3
1

1

16p (
a

(
b

zazbH 1

naE gab~r !

3~12coskz!
d2

dz2 S a

r D n

drW1zazbE @gab~r !21#

3~12coskz!
d2

dz2 S 1

r DdrWJ 1
1

12panE g12~r !

3¹2S a

r DdrW. ~21!

In Eqs. ~20! and ~21!, the frequencyv0 is given by v0
5(zk)2kBT/m and in Eq.~20!, SQQ(k) is the static charge-
charge fluctuation that is directly related to the static str
ture factorSzz(k),

SQQ~k!5~ze!2rSzz~k!. ~22!

The normalized Fourier-Laplace transformed memo
function Ñ(k,z) has the form

Ñ~k,z!5
m~k!

t1
211z

1
n~k!

t2
211z

, ~23!

that was obtained assuming an exponential approximat
Through this expression we wish to incorporate in our th
retical description the possibility of exploring the influen
on the response function of relaxation processes with dif
ent relaxation times. We shall associatet01 and t02 with
precesses with short and long relaxation times, respectiv

III. APPROXIMATION WITH TWO RELAXATION TIMES

In a previous work, we have reported an analysis of
charge-charge fluctuations in a simple charged fluid@15#,
considering an exponential memory function depending o
single relaxation time. This is a suitable memory approxim
tion for the long-times regime@23#. In that work we have
found that the results for the charge-charge fluctuations
tained within that scheme are qualitatively good for the mo
erately high-frequency regime. However, in that approa
there exists an inconsistency in the calculation of the st
properties of the system, since on the one hand, the distr
tion function is obtained via MSA considering a hard-sphe
potential, and on the other hand, the Abramo expression
the frequencyv1l

2 is obtained through expression~21!, using
a soft-sphere potential, Eq.~1!. In order to correct this incon-
sistency, in this paper we calculate the radial distribut
function, by means of the HNC approximation@24# and the
Abramo expression for the frequencyv1l

2 , both within the
same potential model, expression~1!. It is worthy to com-
ment that the results discussed in Ref.@15#, in the low-
frequency regime of the charge-charge fluctuations spectr
in general, exhibit a poor agreement with the results obtai
by molecular dynamics~MD!. This deficient description can
be associated with the intrinsic limitations of MSA. Und
dynamical conditions one may expect that some informat
beyond a mean-field interaction would improve our resu
Thus, it is clear that mean-field theories are not capable
describe properly the physics of charged fluids in the hyd
dynamic limit. More detailed information about neares
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neighbors interactions and associated fluctuations is ne
to describe the system collective modes and its corresp
ing dynamic response.

As mentioned above, it has been shown that the expon
tial memory depending on one relaxation time provides
suitable description for the charge-charge fluctuations in
long-times regime@23#. In order to improve the descriptio
in the hydrodynamic limit, here we explore an exponen
memory depending on two relaxation times. This express
~23! is a generalization of the usual expression depending
one single relaxation time,Ñ(k,z)5(t211z)21. In the
short-times regime a Gaussian form for the second-o
memory provides better results than an exponential one,
an exponential form has the advantage of yielding an a
lytical expression for its Fourier-Laplace transform. Hen
in our studies, we calculate the static properties, i.e.,
pair-correlation function and second-order frequency m
mentum, using a charged soft-sphere potential, and an e
nential form for the second-order memory, depending on
relaxation times corresponding to the short- and long-tim
regimes, respectively. We analyze in particular the dynam
of a symmetric two-component molten salt specified by
following parameters@11#: molarity M523.866, temperature
T51267 K, coefficient of soft spheren59, and ionic radius
a52.34 Å .

The projection operator formalism itself is not capable
provide an expression for the second-order memory, co
quently we explore the following alternative expression:

N~k,t !5me2t/t11ne2t/t2, ~24!

We assume thatt1 andt2 correspond to characteristic rela
ation times in the short- and long-times regimes, resp
tively. Due to the definition of the memory function, whic
is a normalized quantity@see expression~19!# the amplitudes
m and n satisfy m1n51. Notice that we have suppresse
the wave vector dependence of the amplitudesn andm. To
determine this dependence we would need an additional
dition. We take this to be the seventh-order momentu
which would provide an algebraic equation with a high
order polynomial. The amplitudesn and m, in general, de-
pend on the wave vectork. We assume here a certain depe
dence and use these amplitudes together with the restric
n1m51 to construct a trial function for the second-ord
memory function.

From the inverse Fourier-Laplace transform of express
~24!, we obtain for the correlation of the charge-charge flu
tuations

FQQ~k,t !5l1e2t/t2L21H z31N1z21N2z1N3

z41D1z31D2z21D3z1D4
J ,

~25!

where

N15t1
2122t2

21 , ~26!

N25t2
222t1

21t2
211b1 , ~27!

N35b1n~t1
212t2

21!, ~28!

D15t1
2123t2

21 , ~29!
ed
d-

n-
a
e

l
n
n

er
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a-
,
e
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s
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e-

c-

n-
,

-

-
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n
-

D253t2
2222t1

21t2
211b11k2l2 , ~30!

D35~t1
212t2

21!~t2
221k2l21b1n!2b1t2

21, ~31!

D452b1nt2
21~t1

212t2
21!, ~32!

and

l15^QkQ2k&, ~33!

l25^Jk
QJ2k

Q &/^QkQ2k&, ~34!

b15R55~k,0!/^Jk
QJ2k

Q &. ~35!

To obtain the complete inverse Fourier-Laplace transfo
from Eq. ~25!, it is necessary to know the roots of the fo
lowing fourth-degree algebraic equation:

z41D1z31D2z21D3z1D450. ~36!

This equation can be solved, in principle, in terms of radic
involving a hard-handling algebra work, alternatively, he
we find an approximate solution. Notice that whenn→0 the
fourth-degree equation can be written in the formzP3(z)
50, i.e., a third-degree polynomial. Thus, in this limit th
root z0 of Eq. ~36! can be expressed in the form

z05a0n1b0n2. ~37!

Using this in the fourth-degree equation and comparing
coefficients of equal powers ofz, we obtain

a05
b1t2

21~t1
212t2

21!

~t1
212t2

21!~t2
221k2l2!2b1t2

21
~38!

and

b052
b1

2t2
21~t1

212t2
21!2@2t2

232t1
21t2

221k2l2t1
21#

@~t1
212t2

21!~t2
221k2l2!2b1t2

21#3
.

~39!

The partial fractions representation of the Fourier-Lapla
transform of Eq.~25! is given by

FQQ~k,t !5l1e2t/t2@A0e2z0t1Aae2z1t1Abe2z2t

1Ace2z3t#, ~40!

wherez1 , z2, andz3, are the roots of the third-degree equ
tion

z31D01z
21D02z1D0350. ~41!

The relations for the coefficientsD01, D02, D03, andDs
are given by expressions~29!–~32!, in the following form:

D015D11z0 , ~42!

D025z0~D11z0!1D2 , ~43!

D0352D4 /z0 . ~44!

The coefficients of exponential terms are given by

a5
~z1

21N01z11N02!~z22z3!

DS
, ~45!
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b5
~z2

21N01z21N02!~z32z1!

DS
, ~46!

c5
~z3

21N01z31N02!~z12z2!

DS
~47!

with

DS5z1
2~z32z2!1z2

2~z12z3!1z3
2~z22z1! ~48!

and

N015B/A, ~49!
d
th
t

n
on
of
w

n

N025C/A. ~50!

The parametersA0 , A, B, andC, are given by

A05
z0

31N1z0
21N2z01N3

z0
31z0

2D011z0D021D03

, ~51!

A5
z0

2~D012N1!1z0~D022N2!1~D032N3!

z0
31z0

2D011z0D021D03

, ~52!
B5
z0

2~D022N2!1z0~D031N1D022N2D012N3!1~N1D032N3D01!

z0
31z0

2D011z0D021D03

, ~53!

C5
z0

2~D032N3!1z0~N1D032N3D01!1~D03N22D02N3!

z0
31z0

2D011z0D021D03

. ~54!
-

one

-
is
The charge-charge fluctuations given by Eq.~40! in terms
of the quantitiesA0 , A, a, b, c, z0 , z1 , z2, and z3 can be
written in terms of the relaxation timest1 andt2. However,
these relaxation times are undetermined yet. We wish to
rive some expressions for the relaxation times in terms of
characteristic parameters of the system. To do this we use
conditions given by the frequency momenta@20#. The infor-
mation of the first four frequency momenta is already co
tained in Eq.~40! through the partial fractions representati
for the self-correlation~16!. Thus, we need to make use
higher-order momenta. From the fifth-order momentum
have

f 1t01
211 f 2t01

21t02
221 f 3t01

22t02
211 f 4t02

2150 ~55!

and from the sixth-order momentum

g1t01
21t02

231g2t01
22t02

221g3t02
221g4t01

221g5t01
221g650,

~56!

where the coefficients are given as follows:

f 152ma; f 2522m; f 35n; f 452na;

g15
12mb

a
; g252

nb

a
; g35nb; g45mb; ~57!

g55
n2b2

a
; g652Fg21

1

v0
2vp

4 Fd6FQQ~k,t !

dt6
G

t50
G ;

b5S g22
j2re2

SQQ~k! D ; a5
j2re2

SQQ~k!
.

Expressions~55! and~56! can be solved for the relaxatio
times yielding fort01:
e-
e
he

-

e

t01
215

2~ f 11 f 2t02
22!2A~ f 11 f 2t02

22!224 f 3f 4t02
22

2 f 3t02
21

.

~58!

The relaxation timet02 can now be obtained from the fol
lowing eight-degree algebraic equation

H1t02
281H2t02

261H3t02
241H4t02

221H550. ~59!

From the eight roots of this equation we must select the
with physical meaning fort02. It has been found that the
value oft02 is of the order of ten@25# ~frequencies are nor
malized to vp). We have calculated the root around th
value numerically.

The coefficients of the above equation are given by

H154 f 3
2G1G2 ,

H254G1@2 f 3f 4G324 f 3
2G5#G5 ,

H3524 f 1f 3
2g3G324 f 1f 3f 4G1G724g6f 3

2@ f 1G11 f 2G3#

14 f 2f 3G6G518 f 3
2G8G5 ,

H4528 f 3f 4G3G612 f 1f 3G5G614 f 1f 3f 4G7G3

24 f 1f 3
2g6G314 f 2f 3f 4G7G624 f 2f 3

2g6G6

18 f 3
2f 4g6G724 f 3

2@ f 4G71 f 3
2g6

2#,

H5524 f 1f 3
2g6G6 , ~60!

with

G15 f 2g22 f 3g1 ; G25 f 4g12 f 2g3 ;

G35 f 1g21 f 2g41 f 2g5 ; G45 f 2g61 f 1g3 ;
~61!

G55 f 4g22 f 3g3 ; G65 f 1g41 f 1g5 ;

G75g41g5 ; G85 f 3g62 f 4g42 f 4g5 .
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We have assumed that the discriminant of Eq.~41! is less
than zero. To solve this equation it is necessary to take
account an explicit expression for the sixth-order mom
tum. It is possible to obtain this expression from the dis
bution function theory, appearing in terms of the thre
particle distribution function@26#. Therefore, we follow an
alternative procedure to solve Eqs.~55! and~56! for t01 and
t02. We propose an expression for the sixth-order mom
tum, that corresponds to an interpolation of the well-kno
expressions valid for the extreme limitska@1 andka!1.
These correspond to the so-called free particle and hydro
namic limits, respectively.

In the hydrodynamic limit, we may consider the followin
relationship between the memory function and the static c
ductivity s @8#:

lim
k→0

lim
v→0

R̃55~k,z!

^Jk
QJ2k

Q &
5

vp
2

4ps
. ~62!

Assuming an exponential memory and using the above r
tion, one can obtain the expression for the relaxation timet02
in the hydrodynamic limit as

t02
21~H !54ps0Fg22

j2re2

SQQ~k!G , ~63!

where we have the relationss5s0vp , g5v1l /vp , andj
5v0 /vp .
re
e

bl
x-
fo
y

Eq
c
x
q.

w

to
-
-
-

-
n

y-

n-

a-

Equation~63! can be generalized to be valid for smallk,
namely, the generalized hydrodynamics regime. In this c
one has the relation

t02
21~GH!54ps l

0~k!
@g22j2re2/SQQ~k!#

j2re2/SQQ~k!
, ~64!

wheres l
0(k)5 limv→0s l(k,v)/vp . By substituting Eq.~64!

in Eq. ~56!, one obtains

H 1

v0
2vp

4 Fd6FQQ~k,t !

dt6
G

t50
J

HG

5
b

a
$12mt01

21~GH!t02
22~GH!2nt01

22~GH!t02
22~GH!

1n2bt01
22~GH!%1b$nt02

22~GH!1mt01
22~GH!%2g4.

~65!

The relaxation timet01(GH), according to Eq.~58!, is
related witht02(GH) through
t01
21~GH!5

2@ f 11 f 2t02
22~GH!#2A@ f 11 f 2t02

22~GH!#224 f 3f 4t02
22~GH!

2 f 3t02
21~GH!

. ~66!
ture
ur
in

cle
On the other hand, in the free particle limit, there a
some proposed expressions for the relaxation time. On
the most commonly used is due to Lovesey@27#, wheret is
written in terms of a density correlation, and is a suita
approximation for the description of neutral fluids with e
ponential type memory. Assuming a generalization
charged fluids, we propose for a symmetric molten salt s
tem the following expression for thet02(F) relaxation time,

t02
21~F !5

2

Ap
Ag22

j2re2

SQQ~k!
. ~67!

From Eq.~56! we can obtain an expression analogous to
~65! for the sixth-order momentum. Here we must repla
GH by F to indicate the free particle regime. For the rela
ation time t01(F), we obtain an expression similar to E
~66!, whereHG must be changed byF. Hence, by interpo-
lating the behavior of both regimes, we propose the follo
ing expression for the sixth-order frequency momentum:
of

e

r
s-

.
e
-

-

1

v0
2vp

4 Fd6FQQ~k,t !

dt6
G

t50

5H 1

v0
2vp

4 Fd6FQQ~k,t !

dt6
G

t50
J

F

1S ~k0a!2

~k0a!21~ka!2D
3F H 1

v0
2vp

4 Fd6FQQ~k,t !

dt6
G

t50
J

HG

2H 1

v0
2vp

4 Fd6FQQ~k,t !

dt6
G

t50
J

F

G .

~68!

We use this expression to calculate the dynamic struc
factor. We expect that this approximation may improve o
description of charge correlations, for frequency values
the vicinities of both the hydrodynamic and the free parti
limits. The dynamical structure factorSQQ(k,v) can now be
written in the form
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pSQQ~k,v!

SQQ~k!
5

vp
21$x2ab~nt02

211mt01
21!1abt01

21t02
21~mt02

211nt01
21!%

x81S1x61S2x41S3x21S4

, ~69!
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where

S15t01
221t02

2222g2,

S25t01
22t02

221g422a~t01
221t02

22!22b~mt02
221nt01

22!,

S3522at01
22t02

221a2~t01
221t02

22!1b2~mt02
211nt01

21!2

12ab~mt02
221nt01

22!,

S45a2t01
22t02

22 . ~70!

Note that in the expression for the dynamical struct
factor, the denominator is an eighth-degree polynom
whereas, if we consider a second-order memory with a sin
relaxation time, the dynamic structure factor is given
terms of a fourth-degree polynomial@15#.

IV. RESULTS AND COMMENTS

In this section, we discuss results for the charge-cha
dynamic structure factorSQQ(k,v) obtained by expression
~69!. We compare these results with those obtained by
use of MSA and a single relaxation time second-or
memory@15#. A discussion is also presented for the charg
charge correlation functionFQQ(k,t) obtained from expres
sion ~40!.

In the calculation of the structure factor~69!, we have
used the HNC approximation to obtain the pair-correlat
function gab(r ) of a soft-spheres system@24#. We wish to
separate the effects resulting from the improved descrip
of the static properties of the system using HNC~instead of
MSA!, from those associated with the second-order mem
with one or two relaxation times. To do so, we discuss fi
the results obtained with HNC and an exponential seco
order memory with one single relaxation time~EHNC1!.

Figure 1 shows a comparison of our calculations EHN
for the dynamic structure factor with others reported for
same system@11#, @15#. The figure displays results obtaine
by the fitting with an exponential memory~HE!, MD calcu-

FIG. 1. The dimensionless dynamic structure fac
2SQQ(k,v)/SQQ(k) vs v/vp . Comparison of the results of thre
different approximations with one relaxation time~see the text!, and
molecular dynamics.
e
l,
le

e

e
r
-

n

n

ry
t
d-

1
e

lations@11#, and our results with one relaxation time memo
and MSA ~EMSA! @15#. As expected, the three approxim
tions exhibit a good agreement with the MD results in t
high-frequency regime, but the disagreement is evident in
low-frequency regime. Notice also that the HNC theory p
vides a better description than a mean-field approxima
like MSA. This improvement is observed in the hydrod
namic limit as well as in the region of low frequencies. W
remark that, except for intermediate frequencies~approxi-
mately 0.1<v/vp<0.6) the results of EHNC1, are closer
those of MD, even though in our calculation of EMSA an
EHNC1, we have used the same approximation for
second-order memory function.

We also have calculated the dynamic structure fac
SQQ(k,v) @Eq. ~69!#, using HNC to obtaingab(r ) and as-
suming an exponential second-order memory with two rel
ation times@Eq. ~24!#. These times are given by Eqs.~55!
and ~56!. The sixth-order frequency momentum, was o
tained by an interpolation~68! as explained above. Thes
results are denoted by EHNC2 in Figs. 2 and 3. The appr
mations EHNC1 and EHNC2 are compared in Fig. 2. It
observed that the assumption of a second-order memory
pending on two relaxation times, only provides a slight im
provement of the results compared with those obtained w
a single relaxation time in the memory function. Howev
the dependence of the memory function on the amplituden
andm, offers the possibility of a more detailed analysis abo
the influence of each one of the relaxation times on the
namic behavior of the system. It has been shown that in
short-times regime, the Gaussian approximation for
second-order memory is better than an exponential one@25#.
However, the Gaussian representation has a disadvantag
nonanalytical Fourier-Laplace transform. To facilitate a co
parative analysis, we have chosen the simplified analyt
expressions provided by the exponential approximation
the second-order memory with one or two relaxation time

In Fig. 3 we illustrate the possibilities of a second-ord
memory function as given by the expression~24!. We notice

r
FIG. 2. 2SQQ(k,v)/SQQ(k) vs v/vp , approximations with one

~EHNC1! and two relaxation times~EHNC2!, in comparison to the
results of MD.
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that it is possible ‘‘to modulate’’ the amplitudesn andm to
obtain a better agreement with the MD results in the lo
frequency region. However, we observe in Fig. 3~a! that the
modulation of the amplitudes to produce a better agreem
for low frequencies, also causes deviations from MD res
at frequencies of the order and higher than the plasma
quency. Figure 3~b! reveals that the modulation of the am
plitude n produces a slightly better agreement with MD c
culations for the valuen50.5 than forn50.937. One can
see that our results EHNC2 fits better for this value of
wave vectorka52.809, than for the value corresponding
Fig. 3~a!, and that the effect of the modulation of the amp
tude is less noticeable. This trend of our results to impro
the general agreement for increasing values ofka, and to
lessen the effect of the amplitude modulation, appears m
clearly in Fig. 3~c!; here one observes that the modulation
the amplituden for ka53.753, no longer affects the behavi
of the structure factor.

Under the same considerations as in the previous fig
we have also calculated the charge-charge fluctuations@Eq.
~40!#, this is displayed in Fig. 4. Here we present a compa
son of our results EHNC2 for the charge-charge fluctuati
with those obtained by the HE theory. It is interesting
analyze these results in relation to those depicted in Fig. 3~a!.

FIG. 3. 2SQQ(k,v)/SQQ(k) vs v/vp . Effect of the change of
the amplituden of the second-order memory, and for three differe
values of the wave vectork, as indicated in~a!, ~b!, and~c!.
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ts
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e

re
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Notice that when the EHNC2 curve with (n50.5) for
SQQ(k,v) shows a better agreement with the MD resul
i.e., at low frequencies, the charge-charge correlat
FQQ(k,t) increases. Figure 4, shows that whenn increases,
the amplitude of the correlations shows a clear tendenc
decrease yielding a better agreement with the HE resu
Another clear trend worthy of notice in these figures is t
shift of the oscillation phase.

We conclude that in general the EHNC2 approximati
for the exponential second-order memory with two rela
ation times, together with the HNC approximation for th
pair-correlation function, provide a better description of t
dynamics of a symmetric molten salt than that obtained
fitting with an exponential memory HE, and the descripti
with an exponential memory EMSA. The procedure we u
in this paper can be further improved in the following tw
obvious aspects:~a! by using the hybrid approximation
HNC/MSA for the pair-correlation functiongab(r ) instead
of the pure HNC approximation@28#, and~b! by calculating
the sixth-order frequency momentum using the proced
proposed by de Gennes@26#. In this, the sixth-order momen
tum is evaluated in terms of the three-particle correlat
function. In principle this procedure would provide a bett
approximation than the one provided by expression~68!.
These changes in the procedure followed in this paper wo
provide second-order corrections in the calculation of
dynamical properties of the charged fluid under study.
the other hand, a better approach of the second-o
memory, for instance, assuming the memory proposed
Evelin et al. @25#, would provide a first-order correction t
the results reported in this paper. Finally, we recall that
our EHNC2 approximation, the roots of the fourth-degr
polynomial, Eq.~36!, are obtained numerically. These roo
determine the relaxation times, and consequently the
namical properties of the system. A more detailed analy
on the possibilities offered by the exponential memory w
two relaxation times would be possible if an exact calcu
tion of these roots is performed.
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FIG. 4. Charge-charge correlationFQQ(k,t)/FQQ(k,0) as a
function of the dimensionless frequencyvpt. Effect of the changes
of the amplituden of the second-order memory. Comparison b
tween results of the approximations EHNC2 and HE.
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