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Quantum recurrences: Probe to study quantum chaos
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We study the phase space of periodically modulated gravitational cavity by means of quantum recurrence
phenomena. We report that the quantum recurrences serve as a tool to connect phase space of the driven system
with a spectrum in the quantum domain. With the help of quantum recurrences we investigate the quasienergy
spectrum of the system for a certain fixed modulation strength. In addition, we study transition of spectrum
from discrete to continuum as a function of modulation strength.

PACS number~s!: 05.45.Mt, 03.75.2b, 03.65.2w, 47.52.1j
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What are the generic properties of quantum chaos wh
provide a firm understanding of chaos in the quantu
mechanical domain? In the young field of quantum ch
this question has occupied the researchers right from the
beginning@1–5#. In this paper we suggest a partial answer
this question. We study the wave packet dynamics in a p
odically driven system and probe the chaotic phase spac
means of quantum recurrences.

Discreteness of quantum mechanics manifests itself in
phenomenon of quantum recurrences@6#. In one degree of
freedom systems quantum recurrences have been studie@7#
and has been applied in vast variety of subjects from fem
second chemistry@8# to isotope separation@9#. In higher de-
gree of freedom systems, the study of quantum recurrenc
a new subject@10#. The presence of quantum recurrences
some such systems has been pointed out earlier@1–5,10,11#.
We establish numerically that the phenomena of quan
recurrences or quantum revivals together with fractional
vivals are generic to the higher dimensional systems ex
iting quantum chaos. Moreover, by probing classical ph
space with the help of quantum revival phenomena we re
that ~i! quantum evolution is different for different initia
conditions and~ii ! quantum revivals carry the information o
the underlying quasienergy spectrum.

In this paper, we consider the dynamics of cold ato
moving under the influence of gravity and bouncing off
evanescent wave mirror@12#. We provide an external peri
odic modulation to the mirror by means of an acousto-op
modulator@13#. The Schro¨dinger equation

i k̄
]c

]t
5Fp2

2
1z1V0exp@2k~z2l sint !#Gc ~1!

controls the dynamics of an atom moving in the modula
gravitational cavity@14#. The dimensionless coordinatesz
and p are scaled by using the frequency of the exter
modulationv, mass of the atomM, and gravitational con-
stant g as z5 z̃v2/g, p5 p̃v/Mg, where z̃ and p̃ are real
coordinates. These scaled coordinates satisfy the comm
tion relation @z,p#5v3/Mg2@ z̃,p̃#5 i\v3/Mg25 i ik. Here,
V0 andk indicate the height and the steepness of the ex
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nential potential, respectively. Moreover, we express the
mensionless strength of the external spatial modulation, p
vided by an acousto-optic modulator to the gravitation
cavity, byl5av2/g, wherea is the amplitude of the modu
lation.

The classical evolution of this system follows Liouvill
equation@10#. We study the classical dynamics with the he
of Poincare´ surface of section obtained for 25 atoms prop
gated in gravitational cavity in the presence of an exter
modulating field of strengthl50.3, as shown in Fig. 1. In
the upper right corner of the Poincare´ section, we show area
of a unit cell in quantum domain.

For the sake of clarity, we have investigated the quant
evolution for two different sets of initial conditions in phas
space: The first set is comprised of$(14.5,1.45),(15,0),
(15,21),(15,22)%. We label these phase points asa,b,c,d,
respectively. In phase space we represent these points as
ters of circles approximately aroundz515 line, as in Fig. 1.
Phase space pointa sits, approximately, at the center of pr
mary resonance 2:1, andb at the edge of the same resonanc
The other two phase pointsc and d correspond to the sto
chastic sea. We have confirmed the location of phase po

FIG. 1. The Poincare´ surface of section for the modulation am
plitudel50.3. The phase space displays overlap of the resonan
The centers of the circles correspond to the chosen phase point
the size of each circle corresponds to the size of the wave packe
the right upper corner we display the unit size, which is 2p k̄, of the
quantum space by the dark box.
6308 ©2000 The American Physical Society
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by calculating the Lyapunov exponent. Fora andb we find
zero Lyapunov exponent, whereas in case ofc and d, we
have nonzero positive exponents which show an expone
divergence for these initial conditions. The second set
phase space points investigates the effect of secondary
nances on quantum dynamics in the modulated gravitatio
cavity. For this purpose we choose our initial conditions
$(10,0),(25,0)%, which are at the left and at the right ofz
515 line, respectively, and again express centers of circ
as shown in Fig. 1. We label them ase andf. The Lyapunov
exponents, corresponding to these phase points, are zer

We propagate an initially well localized atomic wav
packetc(0) starting from each of the phase point of the tw
sets and note its evolution. The initial size of the atom
wave packet satisfies minimum uncertainty relationship
is expressed by the circles around each of the phase po
as shown in Fig. 1. In order to study the dynamics of
wave packet in the modulated gravitational cavity we cal
late square of autocorrelation function

C25 z^c~0!uc~ t !& z2, ~2!

wherec(t) is the atomic wave function after an evolutio
time t in the driven system.

In the absence of any modulation, that is forl50, the
wave packet displays well investigated quantum revivals
one degree of freedom systems@7,15# for all initial condi-
tions. As we switch on the external modulation, the net s
tem is comprised of two degrees of freedom. We find that
behavior of revival phenomena changes drastically. We
a complete disappearance of the quantum revivals for
atomic wave packet originating approximately around
center of the primary resonancea. In contrast, this atomic
wave packet displays almost a complete revival after cla
cal revival time, as shown in Fig. 2~a!. We calculate the
classical revival time asTcl54p by approximating the po-
tential of the gravitational cavity by a triangular well pote
tial @10#. The analytical result agrees well with the nume
cally obtained classical period.

We may understand this interesting property by not
that a resonance can be expressed effectively by pendu
Hamiltonian@10#

H52
]2

]w2
1V0 cosw. ~3!

Therefore, whenw!1, the effective Hamiltonian of the sys
tem is

H'2
]2

]w2
2

V0

2
w2, ~4!

of a harmonic oscillator. This effective Hamiltonian contro
the evolution of an atomic wave packet placed close to
center of the resonance. This analogy provides us an
dence that if an atomic wave packet is placed initially arou
the center of a resonance it will always observe revivals a
each classical period, as in case of a harmonic oscillator

In addition, this analogy provides an information abo
level spacing around the center of a resonance in the dr
gravitational cavity. Since in the case of a harmonic osci
ial
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tor the spacing between successive levels is always equa
conclude that the spacing between quasienergy level
equal around the center of resonance in a periodically dri
system.

If we place the atomic wave packet at an edge of
primary resonance, it follows classical trajectory in its ea
evolution, and exhibits periodic recurrences after the cla
cal period,Tcl . However, in the long time dynamics w
observe the emergence of the quantum revivals, as we s
in Fig. 2~b!. We explain this behavior in the light of ou
earlier discussion, that is, away from the center of the p
mary resonance, the nonlinearity of the original poten
contributes to the effective harmonic potential of the re
nance. As a result, we find the appearance of quantum re
als in presence of external modulation, together with
classical periodic motion.

In order to elaborate the effect of stochastic region
propagate the atomic wave packet centered at the p
pointsc andd. On calculating the square of the autocorre
tion function for the two initial conditions, we find that eve
after a time much larger than Ehrenfest’s time, there occ
no revival phenomena, as shown in Figs. 2~c! and 2~d!. We
conjecture that in the stochastic region the quasienergy s
trum makes a quasicontinuum, therefore, causing the abs
of quantum recurrences.

In order to provide a detailed investigation of revival ph
nomena we take the phase pointse andf which belong to the
secondary resonances at the left and at the right of the z515
line, respectively, as shown in Fig. 1. We keep all the p
rameters the same as before and propagate the wave pa
centered at these phase points. At the phase space pointe, the

FIG. 2. The change in revival phenomena for the wave pac
originating from different initial condition in the phase space. W
display the revival structures of the initial Gaussian wave packet
a modulation strengthl50.3. The initial wave packet originate
from ~a! the center of the primary resonance~14.5, 1.45! and from
the phase points~b! ~15,0!, ~c! ~15,21!, ~d! ~15,22!. For the wave
packet originating at the center of the resonance we find revi
after classical period, whereas, for the wave packet sitting initia
at the edge of the resonance we find the quantum revivals. H
ever, the revival structures disappear if the wave packet origin
from the stochastic region, as we find in cases,~c! and~d!. We have
consideredV051, k51 and the effective Planck’s constant ask̄
51.
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initial wave packet sits mostly inside the island region. T
quantum revivals occur but the process of collapse and
revival of the atomic wave packet is rather slow. Howev
for the phase pointf the size of the initial wave packet is o
the order of the stable island and therefore the effect of
nonlinearity is more significant than the earlier case of ph
space pointe. Hence, we see that the wave packet initiati
from this initial condition has very pronounced collapses a
revivals, as we display in Fig. 3.

We @10,11# may calculate the time of the quantum revi
als as

Tl5T0F12
1

8 H l

E0
J 2 3~12r !21a2

@~12r !22a2#3G , ~5!

wherer[(EN /E0)1/2 anda[r 2
ik/4E0. Here,T0 corresponds

to the time of revival@15#

T05
16E0

2

p ik
, ~6!

in the absence of any modulation. Moreover,E0 is the aver-
age energy of the initially excited wave packet andEN is the
energy of theNth resonance.

Looking at the different behaviors of quantum revivals f
the wave packets originating from different initial cond
tions, we conclude that the quasienergy spectrum posses
quasicontinuum structure in the stochastic region of ph
space causing the disappearance of revival structures. H
ever, we find a local discrete spectrum in the region of re
nances leading to periodic revivals and collapses of the w
function. Therefore, the discrete spectrum at zero modula
develops band structures in presence of external modula
field comprising local quasi continuum separated by disc
levels.

Now, we come across another interesting question: W
happens to the quantum revivals of a driven system by v
ing the strength of the external modulation? As we discus
earlier, in the absence of any external modulation we fi
revival phenomenon for all the initial conditions. We ca
calculate the corresponding revival time for undriven gra
tational cavity from Eq.~6!. As we switch on the modulation
these revivals change significantly depending upon the in
condition of the propagated wave packet in phase sp
From our numerical investigations, we find that the atom

FIG. 3. Comparison of revivals for the wave packet originati
from secondary resonances. The wave packet originates from
phase points~top! ~25,0! and ~bottom! ~10,0!. We kept all the pa-
rameters the same as in Fig. 2.
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wave packet placed around the center of a resonance sh
almost complete revival after each classical period. Thus
initial phenomenon of quantum revivals which occurs forl
50, disappears completely in the presence of nonzero mo
lation and the wave packet displays almost a complete re
rence after a classical period. In case the initial wavepac
is around a separatrix, the revival phenomena occur only
very small modulation strengthl'0, and vanish abruptly
going beyond these values and we do not see any recurre
at all.

In order to study general modification of the revival ph
nomena as a function of modulation strengthl, we calculate
the square of the auto correlation function for the wave fu
tion originating from the phase pointf and study its change
with increasing modulation strength. We find that in pre
ence of the external modulation the revival time reduces w
the rising modulation, as shown in Fig. 4. We can calcul
revival time for the driven system using Eq.~5!. We find that
the revival structures survive together with the fractional
vivals for smaller values of the external modulation. Ho
ever, on increasing the modulation strengthl, first the frac-
tional revivals and then the quantum revivals reduce
magnitude.

In the modulated gravitational cavity above a critic
value of the modulation strengthl5lu , quantum diffusion
sets in@14#. At this critical value the spectrum of the syste
undergoes a phase transition and changes from point s
trum to a continuum spectrum@7–20#, and as a consequenc
we find quantum diffusion. We can identify thi

he

FIG. 4. Change in revival phenomena with the rising modu
tion. We have considered the casesl5(a) 0, ~b! 0.15, ~c! 0.2, ~d!
0.3, ~e! 0.35, ~f! 0.7. The atomic wave packet originates from t
phase point~10,0!. We find that for smaller modulation strength
the revival and fractional revivals are evident. However, the qu
tum revivals gradually fade away with rising modulation streng

Above the critical valuelu5Aik/250.5 we observe no reviva
structures into the system. We have consideredV051, k51 and
the effective Planck’s constant asik51.
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transition of the spectrum by noting that the quantum rev
als disappear completely as the modulation strength exc
the critical modulation strength.

By probing phase space with the help of revival pheno
ena, we conjecture that the quantum-mechanical initially d
crete spectrum of the unmodulated system changes to a
structure in the presence of external modulation. It keeps
discreteness in the vicinity of resonance with almost eq
level spacing at the center, and develops a quasicontinuu
stochastic region. However, level spacing gradually redu
with the rising modulation and disappears completely ab
the quantum diffusion limit, i.e.,l5lu . Hence, we find a
change in the spectrum from discrete spectrum atl50, to
on
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the band spectrum for modulation strength smaller than
critical modulation strengthlu , and then to continuum spec
trum abovelu . In this way we can probe all the three re
gimes of the spectrum by looking at the revival phenome
of the atomic wave packet as a function of modulati
strength. Moreover, the revival structures also help to diff
entiate the local quasicontinuum from local discrete sp
trum occurring for modulations smaller than the critic
modulation strength.
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