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Quantum recurrences: Probe to study quantum chaos
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We study the phase space of periodically modulated gravitational cavity by means of quantum recurrence
phenomena. We report that the quantum recurrences serve as a tool to connect phase space of the driven system
with a spectrum in the quantum domain. With the help of quantum recurrences we investigate the quasienergy
spectrum of the system for a certain fixed modulation strength. In addition, we study transition of spectrum
from discrete to continuum as a function of modulation strength.

PACS numbes): 05.45.Mt, 03.75-b, 03.65-w, 47.52+j

What are the generic properties of quantum chaos whiclential potential, respectively. Moreover, we express the di-
provide a firm understanding of chaos in the quantum-imensionless strength of the external spatial modulation, pro-
mechanical domain? In the young field of quantum chaowvided by an acousto-optic modulator to the gravitational
this question has occupied the researchers right from the veavity, by =aw?/g, wherea is the amplitude of the modu-
beginning[1-5]. In this paper we suggest a partial answer tolation.
this question. We study the wave packet dynamics in a peri- The classical evolution of this system follows Liouville
odically driven system and probe the chaotic phase space gquation 10]. We study the classical dynamics with the help
means of quantum recurrences. of Poincaresurface of section obtained for 25 atoms propa-

Discreteness of quantum mechanics manifests itself in thgated in gravitational cavity in the presence of an external
phenomenon of quantum recurrendé$ In one degree of modulating field of strengtih =0.3, as shown in Fig. 1. In
freedom systems quantum recurrences have been sfidied the upper right corner of the Poincasection, we show area
and has been applied in vast variety of subjects from femtoef a unit cell in quantum domain.
second chemistr{8] to isotope separatiof®]. In higher de- For the sake of clarity, we have investigated the quantum
gree of freedom systems, the study of quantum recurrences évolution for two different sets of initial conditions in phase
a new subjecf10]. The presence of quantum recurrences inspace: The first set is comprised §f14.5,1.4%,(15,0),
some such systems has been pointed out eqlies,10,11.  (15,—-1),(15-2)}. We label these phase pointsab,c,d,

We establish numerically that the phenomena of quantumespectively. In phase space we represent these points as cen-
recurrences or quantum revivals together with fractional reters of circles approximately aroumze= 15 line, as in Fig. 1.
vivals are generic to the higher dimensional systems exhibPhase space poiatsits, approximately, at the center of pri-
iting quantum chaos. Moreover, by probing classical phasenary resonance 2:1, atdht the edge of the same resonance.
space with the help of quantum revival phenomena we repoffhe other two phase pointsandd correspond to the sto-
that (i) quantum evolution is different for different initial chastic sea. We have confirmed the location of phase points
conditions andii) quantum revivals carry the information of

H

the underlying quasienergy spectrum. 10

In this paper, we consider the dynamics of cold atoms
moving under the influence of gravity and bouncing off an
evanescent wave mirrgd2]. We provide an external peri- p
odic modulation to the mirror by means of an acousto-optic
modulator[13]. The Schrdinger equation

2
ik_i—ltﬂ= p74—2+V0exr[—;<(z—)\sint)] ¥ (1) °

controls the dynamics of an atom moving in the modulated
gravitational cavity[14]. The dimensionless coordinates

and p are scaled by using the frequency of the external
modulationw, mass of the atonM, and gravitational con- -10 ¢

~ ~ ~ ~ ) 5
stantg as z=Zw?/g, p=pw/Mg, whereZ andp are real 0 z 0

coordinates. These scaled coordinates satisfy the commuta-

] ) 3 o= = 3 9 . FIG. 1. The Poincarsurface of section for the modulation am-
tion relation [z,p]=w°/Mg[z,p]=ihw’/Mg"=ik. Here, pjtudex=0.3. The phase space displays overlap of the resonances.
V, and « indicate the height and the steepness of the eXporhe centers of the circles correspond to the chosen phase points and
the size of each circle corresponds to the size of the wave packet. In
the right upper corner we display the unit size, which 182 of the
*Email address: saif@physik.uni-ulm.de guantum space by the dark box.

1063-651X/2000/6(5)/63084)/$15.00 PRE 62 6308 ©2000 The American Physical Society



PRE 62 QUANTUM RECURRENCES: PROBE TO STUDY ... 6309

by calculating the Lyapunov exponent. Foand b we find i
zero Lyapunov exponent, whereas in casecaind d, we @
have nonzero positive exponents which show an exponential
divergence for these initial conditions. The second set of
phase space points investigates the effect of secondary reso- 0 500
nances on quantum dynamics in the modulated gravitational
cavity. For this purpose we choose our initial conditions as
{(10,0,(25,0)}, which are at the left and at the right af
=15 line, respectively, and again express centers of circles,
as shown in Fig. 1. We label them asndf. The Lyapunov o ©
exponents, corresponding to these phase points, are zero.
We propagate an initially well localized atomic wave
packety(0) starting from each of the phase point of the two
sets and note its evolution. The initial size of the atomic @
wave packet satisfies minimum uncertainty relationship and
is expressed by the circles around each of the phase points, i
as shown in Fig. 1. In order to study the dynamics of the 0 t 2000
wave packet in the modulated gravitational cavity we calcu-
late square of autocorrelation function

(b)

FIG. 2. The change in revival phenomena for the wave packet
originating from different initial condition in the phase space. We
C2= |< #(0)] 1//(t)>|2, 2) display the revival structures of the initial Gaussian wave packet for
a modulation strengtih =0.3. The initial wave packet originates
where y(t) is the atomic wave function after an evolution from (&) the center of the primary resonanat.5, 1.43 and from
time t in the driven system. the phase_ pom_téo) (15,0, (c) (15,-1), (d) (15,—2). For th_e wave
In the absence of any modulation, that is for0, the packet originating at the center of the resonance we find revivals

wave packet displays well investigated quantum revivals f°i?fr:edsjsﬁﬂfr)tigo?ésg:;iaes’ fgrf.t:§ t"r\]'gve zifk;t féttllngllsm?_iacl)ly_
one degree of freedom systerig15] for all initial condi- ge = We find The quantu vivars. How
. . . ever, the revival structures disappear if the wave packet originates
tions. As we switch on the external modulation, the net sys: . ; A
tem i ised of two d ffreed We find that th from the stochastic region, as we find in cagesand(d). We have
€m IS comprised of two degrees of freedom. Ye Nind tat &, qjqeredy,=1, k=1 and the effective Planck’s constant Tas
behavior of revival phenomena changes drastically. We find_
a complete disappearance of the quantum revivals for the
atomic wave packet originating approximately around thetor the spacing between successive levels is always equal, we
center of the primary resonanee In contrast, this atomic conclude that the spacing between quasienergy levels is
wave packet displays almost a complete revival after classiequal around the center of resonance in a periodically driven
cal revival time, as shown in Fig.(®. We calculate the system. _
classical revival time a3, =4 by approximating the po- If we place the atomic wave packet at an edge of the
tential of the gravitational cavity by a triangular well poten- Primary resonance, it follows classical trajectory in its early
tial [10]. The analytical result agrees well with the numeri- €volution, and exhibits periodic recurrences after the classi-
cally obtained classical period. cal period, T.. However, in the long time dynamics we
We may understand this interesting property by notingoPserve the emergence of the quantum revivals, as we show
that a resonance can be expressed effectively by penduluffi Fig. 2b). We explain this behavior in the light of our

Hamiltonian[10] earlier discussion, that is, away from the center of the pri-
mary resonance, the nonlinearity of the original potential

52 contributes to the effective harmonic potential of the reso-
H=——+V,cose. (3 nance. As a result, we find the appearance of quantum reviv-

de als in presence of external modulation, together with the

classical periodic motion.

In order to elaborate the effect of stochastic region we
propagate the atomic wave packet centered at the phase
pointsc andd. On calculating the square of the autocorrela-
He— — — 22, (4) tion fungtion for the two initial conditions, we find that even

2 after a time much larger than Ehrenfest’s time, there occurs
no revival phenomena, as shown in Fig&)2and 2d). We
of a harmonic oscillator. This effective Hamiltonian controls conjecture that in the stochastic region the quasienergy spec-
the evolution of an atomic wave packet placed close to therum makes a quasicontinuum, therefore, causing the absence
center of the resonance. This analogy provides us an evisf quantum recurrences.
dence that if an atomic wave packet is placed initially around In order to provide a detailed investigation of revival phe-
the center of a resonance it will always observe revivals aftenomena we take the phase poiatandf which belong to the
each classical period, as in case of a harmonic oscillator. secondary resonances at the left and at the right of +h5z

In addition, this analogy provides an information aboutline, respectively, as shown in Fig. 1. We keep all the pa-
level spacing around the center of a resonance in the driverameters the same as before and propagate the wave packets
gravitational cavity. Since in the case of a harmonic oscilla-centered at these phase points. At the phase spaceeptiet

Therefore, wherp<1, the effective Hamiltonian of the sys-
tem is
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FIG. 3. Comparison of revivals for the wave packet originating
from secondary resonances. The wave packet originates from the
phase pointstop) (25,0 and (bottom (10,0. We kept all the pa-
rameters the same as in Fig. 2.

©)

initial wave packet sits mostly inside the island region. The
guantum revivals occur but the process of collapse and then

revival of the atomic wave packet is rather slow. However, O
for the phase point the size of the initial wave packet is of
the order of the stable island and therefore the effect of the Il I

0 500 t 100

nonlinearity is more significant than the earlier case of phase
space poine. Hence, we see that the wave packet initiating
from this initial condition has very pronounced collapses and FIG. 4. Change in revival phenomena with the rising modula-

0

revivals, as we display in Fig. 3. tion. We have considered the cases (a) 0, (b) 0.15,(c) 0.2, (d)
We [10,11] may calculate the time of the quantum reviv- 0.3, (e) 0.35, (f) 0.7. The atomic wave packet originates from the
als as phase point(10,0. We find that for smaller modulation strengths

the revival and fractional revivals are evident. However, the quan-
tum revivals gradually fade away with rising modulation strength.
5 Above the critical value)\u=\/;/2= 0.5 we observe no revival
structures into the system. We have considevger1, k=1 and
the effective Planck’s constant &s=1.

T)\:TO )

1_1(£]2 3(1-r)%+a?
Eo] [(1-r)2-a?]3)

wherer=(Ey/Eo)Y? anda=r2k/4E,. Here, T, corresponds

to the time of revival15] wave packet placed around the center of a resonance shows

almost complete revival after each classical period. Thus the
, 6) initial phenomenon of quantum revivals which occurs Xor
K =0, disappears completely in the presence of nonzero modu-
lation and the wave packet displays almost a complete recur-
in the absence of any modulation. MoreoVgg, is the aver-  rence after a classical period. In case the initial wavepacket
age energy of the initially excited wave packet afdis the is around a separatrix, the revival phenomena occur only for
energy of theNth resonance. very small modulation strength~0, and vanish abruptly
Looking at the different behaviors of quantum revivals for going beyond these values and we do not see any recurrences
the wave packets originating from different initial condi- at all.
tions, we conclude that the quasienergy spectrum possesses aln order to study general modification of the revival phe-
qguasicontinuum structure in the stochastic region of phasaomena as a function of modulation strenythwe calculate
space causing the disappearance of revival structures. Howhe square of the auto correlation function for the wave func-
ever, we find a local discrete spectrum in the region of resotion originating from the phase poifitand study its change
nances leading to periodic revivals and collapses of the waveith increasing modulation strength. We find that in pres-
function. Therefore, the discrete spectrum at zero modulatioence of the external modulation the revival time reduces with
develops band structures in presence of external modulatintpe rising modulation, as shown in Fig. 4. We can calculate
field comprising local quasi continuum separated by discreteevival time for the driven system using E&). We find that
levels. the revival structures survive together with the fractional re-
Now, we come across another interesting question: Whativals for smaller values of the external modulation. How-
happens to the quantum revivals of a driven system by varyever, on increasing the modulation strengtfirst the frac-
ing the strength of the external modulation? As we discussetlonal revivals and then the quantum revivals reduce in
earlier, in the absence of any external modulation we findnagnitude.
revival phenomenon for all the initial conditions. We can In the modulated gravitational cavity above a critical
calculate the corresponding revival time for undriven gravi-value of the modulation strength=X\,, quantum diffusion
tational cavity from Eq(6). As we switch on the modulation sets in[14]. At this critical value the spectrum of the system
these revivals change significantly depending upon the initialindergoes a phase transition and changes from point spec-
condition of the propagated wave packet in phase spacétum to a continuum spectrufii—20], and as a consequence,
From our numerical investigations, we find that the atomicwe find quantum diffusion. We can identify this

16E2
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transition of the spectrum by noting that the quantum revivthe band spectrum for modulation strength smaller than the
als disappear completely as the modulation strength exceedsitical modulation strength,,, and then to continuum spec-
the critical modulation strength. trum above\ . In this way we can probe all the three re-
By probing phase space with the help of revival phenomgimes of the spectrum by looking at the revival phenomena
ena, we conjecture that the quantum-mechanical initially disof the atomic wave packet as a function of modulation
crete spectrum of the unmodulated system changes to a baggtength. Moreover, the revival structures also help to differ-

structure in the presence of external modulation. It keeps thgntiate the local quasicontinuum from local discrete spec-
discreteness in the vicinity of resonance with almost equafrum occurring for modulations smaller than the critical

level spacing at the center, and develops a quasicontinuum i, qulation strength.

stochastic region. However, level spacing gradually reduces

with the rising modulation and disappears completely above We thank G. Alber, I. Bialynicki-Birula, M. Fortunato, R.
the quantum diffusion limit, i.eA=\,. Hence, we find a Grimm, B. Mirbach, W. P. Schleich, F. Steiner, and M. S.
change in the spectrum from discrete spectrumat0, to  Zubairy for many fruitful discussions.
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