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Small-world networks: Links with long-tailed distributions
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Small-world network§SWN), obtained by randomly adding to a regular structure additional liAks, are
of current interest. In this paper we expldtesed on physical modéla new variant of SWN, in which the
probability of realizing an AL depends on the chemical distance between the connected sites. We assume a
power-law probability distribution and study random walkers on the network, focusing especially on their
probability of being at the origin. We connect the results oyl dights, which follow from a mean-field
variant of our model.

PACS numbes): 05.40.Fb, 05.66-k, 71.55.Jv

[. INTRODUCTION other hand, in GSWNs witly>1, practically only sites that

Recently, a lot of interest has centered on the so-calledre already very close on the chain get to be connected; such
small-world networks(SWN) [1,2] where an underlying GSWNs haveapart from disorderproperties similar to the
regular lattice is supplemented with additional link®nds, underlying regular lattice. Most interesting are GSWNs with
a fact which drastically reduces the minimal distan@th® O<a=<3, which show a wealth of features, because of the
so-called chemical distances in the fractal literatinetween long-range character of the additional links.
pairs of points on the latticel,3—8. This question is of the In this paper, we will study random walks over GSWN,
utmost importance for general network structures, e.g., Interand especially the probability,(t) of the walker beingstill
net links[9], and for the spreading of diseades10-13, or again at the origin; as discussed in previous works
topics which depend on the minimal distances. On the othgrl4,21], this quantity reflects many of the properties of the
hand, other questions are possible for such structures; fatensity of eigenvalues of the underlying structure, and is
example, random transpoftl4,15; this requires solving easily obtainable by very effective, easy-to-program numeri-
diffusion-type problems, which are mathematically describectal procedures.
by the Laplacian on the structuf#&6] and the corresponding Our paper is structured as follows. In the next section
eigenvalues and eigenvectdrs7]. Examples of such prob- (Sec. 1) we discuss the construction of GSWN in more de-
lems are anomalous transport of charges and of excitationtail. In Sec. I, we study the behavior of random walkers on
over networkg18,19. Most recent SWN studies center on a GSWN. We find that foer well below 2, we have a behavior
one-dimensional chain supplemented with additional linksgualitatively similar to that of walkers over the SWN. How-
(AL), which connect sites that are arbitrarily far from eachever, for« larger than 2 we move towards another regime,
other on the underlying lattice. While this is the simplestquite reminiscent of random walks on regular lattices. The
SWN that can be envisaged, there are situations in whiclransition appears to happen arounst 2, which prompts us
links between distant sites occur naturally; however, theito consider transient versus recurrent walks in Sec. IV. In
lengths are then not necessarily uniformly distributed: Conthis section we determine analytical(t) for a mean-field
sidering a polymer chain in solution, monomers which arevariant of the GSWN model, which we then compare with
far apart along the backbone can be quite close to each othgite numerical finding®,(t) on GSWN. It turns out that the
in real space so that, for instance, energy transfer over th@ean-field approach is related to weflights and Ley
structure may take cross cuts along sites close to each oth@falks. Finally, we close our paper by summarizing our con-
in space[18]. Now the probability of having such close clusions in Sec. V.
monomer pairs is related to the return to the origin of random
walks, possibly under self-avoiding constraints. In this case,
the probabilityp(l) that two sites far apart along the back-
bone come close together in space is approximately an in- The construction of GSWN at first follows the SWN pro-

Il. CONSTRUCTION OF GSWN

verse power law of their mutual chemical distaid@0]: cedure closely: We start from a ring Wfsites(i.e., a closed,
regular one-dimensional latticeThen we consider each site
a consecutively, and let it sprout with probabilityan addi-
p(l)= - (1) tional bond, which connects it to another site; see Fig. 1. We

' now letp(l) in Eq. (1) be the conditional probability that this
bond gets attached to a site at tfminimal) chemical dis-

In this work, we will focus on networks constructed as in thetance | from the sprouting site, measured along the ring.

SWN case, while, however, letting the additional bonds beHere, given our periodic boundary conditions, the chemical

distributed according to Eq1). We call these structures gen- distance lies between 1 and in/2), where int&) denotes

eralized small-world network&GSWN). Clearly, the original  the largest integeK such thatX<x (see Fig. 1L Note that

SWN is recovered from the GSWN by letting—0. On the  through p(l) our model differs from the standard SWN,
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12 The diagonal elements are, as before, determined from the
requirement thats;A{?)=0. We close on a small note of
caution by remarking that, due to our prescription, even for
je{l,...i—1}, the elementA{”) are not independent of
each other. Thus iAi(jz)= —2 fori#j, then forke {i,j} one
cannot haveA{?)=—2; a nondiagonal element having a
value of —2 implies both forj and fork that one of their
additional bonds has startediaBy construction, however,

can only be the source of one additional bond. For decreas-
ing g and increasingN, however, we expect such correlations
between theA{”) to be less and less important.

19 1 2 Ill. PROBABILITY OF BEING AT THE ORIGIN

FIG. 1. lllustration of the small-world network. In this example, ~ As a simple dynamical problem on the underlying struc-
two additional links are added, with the corresponding distancesure, we focus now on the probability for a random walker to
given in the figure. be (still or again at the origin of its walk at a later time. This

quantity is fundamental for fractal lattices, where it leads
where nol dependence is accounted for. In Ef), the con-  directly to the spectralharmoni¢ dimension15], a quantity
stanta normalizes the distribution so that of much importancg22]. As we have shown in a previous
work, determining this quantity through a numerical cellular
. automaton procedure is quite straightforward and very re-

2 Z’l al”“=1. (2 vealing for SWN[14]. We look at the probability (i ,t|m)

for the walker to be at siteat timet, given that it started at
Now the exponentr in Eq. (1) is a parameter of the model site m at timet=0. Ong notes first tha®(i,t|m) obeys the
and will be varied in the following. For a finite system we following master equation:
can choose it freely. In fact, the choice=0, i.e., p(l) .
=1/(N—1), recovers one of the basic constructions of the dP(i,tfm)
SWN, by which connections to all sites but the source are ot
equiprobable. For an infinite network, on the other hand, care ) N )
has to be taken: in order to keep Hd) normalizable, one Where o is a transition rate. In vector notatioR™(t)
has to havar>1. =(P(1tlm), ... ,P(N,tm)) this relation reads

We now turn to the basic procedure, in which the struc- oPM(1)
ture of the model enters through its connectivity matkix - 7
Now A is defined as follows: The off-diagonal elements of at
A, namelyA;; with i#]j, equalminusthe number of links
between the sitesand] of the network. The diagonal ele-
mentsA;; count the_t(_)tal num_be_r of bonds _connected.to P(M () =exp( — o-At)P™(0). (6)
Hence the connectivity matrix is symmetric and one has
2jA;j=0. Furthermore, det()=0 and exactly one eigen- Now the initial condition isP™M(0)=(0, ... ,1,...,0)with
value of A, sayE;, vanishes. One should note that from thea single nonzero element an. The probability that the
spectrum of the\ matrix one can determine, e.g., the diffu- walker is again am at timet reads
sion and vibrational properties of the structure, as well as its
behavior in external fieldsl7,21. The spectrum of\ for the

int(N/2)

N
=—aj§l A P(j tlm), 4)

=—gAPM(t) (5)

and has the formal solution

=7 p(m = — T p(m) :
SWN (a¢=0) has been recently studied by Monas§bf]; P(m,tm) =[P (1) I 2 [exp( = oAl Im[ PT(0)];
among his findings was the existence of a pseudogap in the
density of states, a property which affects the long-time dif- =[exp(— o At) Jmm- (7)

fusion propertie§21]. We note thatA can be viewed as
arising from two sources: One term(!), is deterministic
and is due to the underlying regular lattideere the ring
Another one A, is stochastic and arises from the randomly N N
added links. ThusA=A®M+A®). Now formally A, > P(mitm)= iTr[exp(—(rAt)]= 1 S e Eiot
=—-1, A{’=2, andA{’=0 otherwise, where we identify m=1 N =1

site N+ 1 with 1 (periodic boundary conditionsThe entries 8
in A{?) are random, and fdr# j they are equal to 01, or
—2. In fact, lettingl be the chemical distance betweieand

j (i#]), one has for the probabilitp(c) thatA{”=—c,

This expression simplifies by averaging over all starting
points, since then

Z|r

holds, where Tr denotes the trace operation &hdwith

1<i<N are the eigenvalues of tisymmetrig connectivity

matrix A. Note that in Eq(8), because of the averaging over

all initial points, only the eigenvalues enter. Furthermore,

(qal~)%(1—qal~*)%~°. &) one can now readily average over different realizations, ob-
taining (sinceE;=0)

2
P|<c>=(c
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FIG. 2. The probability of being at the origiPy(t), for g FIG. 3. Same as Fig. 2, but for a choicegpf 0.8. From above

=0.05 ande=3,2,1.5,1.25,1,0.5, and 0.0 from above. The curvesone has¢=5.0,3.0,2.2,2.1,2.0,1.9,1.8,1.7,1.5,1.0,0.5, and 0.0; the
for =2 anda=3 are hardly distinguishable in the figure. curve fora=2 is indicated by dots.

1 1/XN 1 change the curves significantly. The curves are also more
PO(t)EN+N<Z eEi‘”> =N+J p(E)e E'dE (9)  spread out in the short-time domain than in the cgse
=2 =0.05. This is due to the fact that the quasi-one-dimensional
behavior of the walk is mainly felt on distances of the order
of 1/q, this being a measure of the mean distance between
branching point§14]. We hasten to note that for very small
times(not displayed in Fig. B the curves for differen& do

- R coincide. Despite these differences, the qualitative behavior
diagonalize it, and employ E¢B) to evaluatePy(t). We use of the curves in Fig. 2 and Fig. 3 is comparable. Further-

for each choice ofxr andq 100 realizations to average over more, the crossover behavior =2 (shown as a dotted
the structural disorder. In Fig. 2, we display on double Ioga-"ne) é ears even more clearl Tn Fia. 3 the curves with
rithmic scalesPy(t) versus the dimensionless time for PP y 9. o

q=0.05 and fora ranging from 0 to 3. First we note that for a>2 follow power-law decays closely, while the curves for

very long timesPy(t) reaches the constant valuéNlAvhich <2 are partly concave, thus displaying a faster-than-
arises due to the eigenvalig=0. Increasing the size of the power-law decay.

small-world network(i.e.,N) pushes the long-time plateau to

lower values, but, as we have shown in an earlier work for IV. TYPOLOGY OF RANDOM WALKS

a=0[14], leaves thePo(t) curves above the plateau practi- | et ys briefly recall some terminology from the theory of
cally unaffected. This is also what we find here for generakandom walks. A random walk is said to be recurrent if it
a; this allows us to infer the qualitative featuresRy(t) in  returns with probability 1 to the origin at some later time.
the limit N—ce. _ . _ Otherwise the walk is called transient. For a walk to be tran-
Turning now to the discussion of the results, we note firskjent requires an infinite system, because in finite systems all
that for a=0 they agree perfectly with our previous small- yaiks (disregarding situations with traps, mortal walkers,

world network analysig14], which was based not on the etc) are recurrent. On homogeneous lattices, a walk is tran-
diagonalization ofA but on a cellular automaton method. sjent if and only if

The decay ofPy(t) follows at early times a power law,

which turns at later times into a stretched exponential behav- *

ior. Asymptotically, the decay obeys to leading order 'Efo dt Po(t) (10
the form expt-Ct¥3) [14,21 (with C a constant which

f0”0_V\i/52 from thgllspectral density of Refl16], p(E) s finite. In line with this, we could expect walks on the
~E~"%exp(—~C’'E""%). Note that in Fig. 2, the curves flatten GSWN with small @ to be transient, given that for a

with increasinga, a sign that with growingy, a walker is  stretched exponential behavigg$ 0)
less prone to go far away from its starting site. At early times

with p(E) being the spectral density f&>0.

We turn now to our calculations, by which we determine
numericallyP(t) for different choices oftx andq. For sys-
tems of sizeN=1001, we construct the connectivity matrix,

Po(t) is little affected by variations i, since at very short o

times it does not matter whether the AL bring the walkers '”f dtexp(—CtF)<e. 11
very far away or not. The transition to pure power-law be-

havior appears to happen roughly around 2. Moreover, in the opposite limit of large, we observe that

Moving on to largerg to examine whether this transition Pgy(t) follows a power-law decay with the exponent being
depends o, we plot in Fig. 3 the results fay=0.8. In this  nearly —1/2. It follows that for largea we havel =«, an
case there are more AL, and the results are more sensitive indication that the walk is recurrent. As we discuss in detail
the value ofa: in Fig. 3 the casesxr=3.0 anda=5.0 are in the following, for walks on an infinite regular linear chain
easily distinguished. However, increasiagurther does not whose steps are long-ranged and obey @g.for the step
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lengths, the transition between recurrence and transience ot ' ' ' ' '
curs ata=2 [24]. It is now tempting to try to explain our
findings of Sec. Ill along such lines. Such a connection is
achieved by replacing the random small-world network
structure under investigation here by a regular menean-
field-type approach and letting the transition rates reflect
the underlying statistics of the link®3]. In this way the
probability of taking a step of length>1 is proportional to
[~ . However, as we show in the following, this regularizing
approach is not particularly successful, since it does not de
scribePy(t) well for small and moderate.

We start now from the so-called Riemann walksf],
which are symmetric random walks on the linear chain, 0.001 F
where each step of the walk can extend over the lehgith 1
probability

z
=)
o

0.01

10 100 1000 10000 100000

ot

FIG. 4. Comparison of the mean-field theory predictidull
curves with the numerical datddotted curvesfor q=0.05. The
Such walks are recurrent far=2 and transient fow<2  values of« are, from aboveg=3, a=1.5, anda=0. Good agree-
[24]. Riemann walks are examples from the more generalent is found only for larger, herea=3.
class of Ley flights and Lery walks [25—27]. Turning now
to the problem of averaging both the GSWN structures and
the random walks over them, we simply replace in Ej.
A® (remember that\=A®+ A?) by its average(A®)
over all GSWN. For the averaging we may use Ej.and
obtain

a()~1"9  a>1. (12)

V. CONCLUSION

In this work, we have studied a new variant of the small-
world network (SWN) model which takes into account the
fact that the probability of adding links can depend on the
chemical distance between the connected sites. Exemplary,
here we have taken the probability distribution to be a power
law (with exponenta) of the chemical distance, see Efj).

We have focused on random walks and especially on the
probability Py(t) of a random walker to be at its origin.
Depending on the value af, we have found qualitatively

(AP =2al"“g=c(l), (13
wherel is the chemical distance betweeandj. By doing
this we have now as connectivity matrix= A+ (A2,
whose eigenvalueg, are readily found; they reatfor N

odd) different behaviors. Specifically, we found clues indicating
that in the infinite system limit, random walks on GSWN
(N-1)/2 may change from being transient to being recurrentpas
Ey=2—2 cog27k/N)+2 2 [1—cog27mkj/N)]c(j), crosses the marginal value of 2 from below. Moreover, we
=1

have shown that our model is related tovidlights and to
Riemann walks. We also found that a simple mean-field
regularization of the GSWN problem gives poor results for
small . Overall, it follows that GSWN witha<<2 are ob-
jects whose dynamical properties differ significantly from
those of regular lattices.

14

wherek=0---N—1. Now Eq.(14) can be used to deter-
mine numericallyP(t) via Eq. (9).

In Fig. 4, we compare forN=1001, q=0.05, and
a=3, a=1.5, anda=0 the results of the two approaches.
For a= 3 the two methods lead to a nice agreement; it seems
that for &« around or larger than 3 the fluctuations due to the
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