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Small-world networks: Links with long-tailed distributions
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Small-world networks~SWN!, obtained by randomly adding to a regular structure additional links~AL !, are
of current interest. In this paper we explore~based on physical models! a new variant of SWN, in which the
probability of realizing an AL depends on the chemical distance between the connected sites. We assume a
power-law probability distribution and study random walkers on the network, focusing especially on their
probability of being at the origin. We connect the results to Le´vy flights, which follow from a mean-field
variant of our model.

PACS number~s!: 05.40.Fb, 05.60.2k, 71.55.Jv
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I. INTRODUCTION
Recently, a lot of interest has centered on the so-ca

small-world networks~SWN! @1,2# where an underlying
regular lattice is supplemented with additional links~bonds!,
a fact which drastically reduces the minimal distances~the
so-called chemical distances in the fractal literature! between
pairs of points on the lattice@1,3–8#. This question is of the
utmost importance for general network structures, e.g., In
net links @9#, and for the spreading of diseases@3,10–13#,
topics which depend on the minimal distances. On the o
hand, other questions are possible for such structures
example, random transport@14,15#; this requires solving
diffusion-type problems, which are mathematically describ
by the Laplacian on the structure@16# and the corresponding
eigenvalues and eigenvectors@17#. Examples of such prob
lems are anomalous transport of charges and of excitat
over networks@18,19#. Most recent SWN studies center on
one-dimensional chain supplemented with additional lin
~AL !, which connect sites that are arbitrarily far from ea
other on the underlying lattice. While this is the simple
SWN that can be envisaged, there are situations in wh
links between distant sites occur naturally; however, th
lengths are then not necessarily uniformly distributed: C
sidering a polymer chain in solution, monomers which a
far apart along the backbone can be quite close to each o
in real space so that, for instance, energy transfer over
structure may take cross cuts along sites close to each o
in space@18#. Now the probability of having such clos
monomer pairs is related to the return to the origin of rand
walks, possibly under self-avoiding constraints. In this ca
the probabilityp( l ) that two sites far apart along the bac
bone come close together in space is approximately an
verse power law of their mutual chemical distancel @20#:

p~ l !5
a

l a
. ~1!

In this work, we will focus on networks constructed as in t
SWN case, while, however, letting the additional bonds
distributed according to Eq.~1!. We call these structures gen
eralized small-world networks~GSWN!. Clearly, the original
SWN is recovered from the GSWN by lettinga→0. On the
PRE 621063-651X/2000/62~5!/6270~5!/$15.00
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other hand, in GSWNs witha@1, practically only sites that
are already very close on the chain get to be connected;
GSWNs have~apart from disorder! properties similar to the
underlying regular lattice. Most interesting are GSWNs w
0<a<3, which show a wealth of features, because of
long-range character of the additional links.

In this paper, we will study random walks over GSWN
and especially the probabilityP0(t) of the walker being~still
or again! at the origin; as discussed in previous wor
@14,21#, this quantity reflects many of the properties of t
density of eigenvalues of the underlying structure, and
easily obtainable by very effective, easy-to-program num
cal procedures.

Our paper is structured as follows. In the next sect
~Sec. II! we discuss the construction of GSWN in more d
tail. In Sec. III, we study the behavior of random walkers
GSWN. We find that fora well below 2, we have a behavio
qualitatively similar to that of walkers over the SWN. How
ever, fora larger than 2 we move towards another regim
quite reminiscent of random walks on regular lattices. T
transition appears to happen arounda'2, which prompts us
to consider transient versus recurrent walks in Sec. IV.
this section we determine analyticallyP0(t) for a mean-field
variant of the GSWN model, which we then compare w
the numerical findingsP0(t) on GSWN. It turns out that the
mean-field approach is related to Le´vy flights and Lévy
walks. Finally, we close our paper by summarizing our co
clusions in Sec. V.

II. CONSTRUCTION OF GSWN

The construction of GSWN at first follows the SWN pro
cedure closely: We start from a ring ofN sites~i.e., a closed,
regular one-dimensional lattice!. Then we consider each sit
consecutively, and let it sprout with probabilityq an addi-
tional bond, which connects it to another site; see Fig. 1.
now letp( l ) in Eq. ~1! be the conditional probability that thi
bond gets attached to a site at the~minimal! chemical dis-
tance l from the sprouting site, measured along the rin
Here, given our periodic boundary conditions, the chemi
distancel lies between 1 and int(N/2), where int(x) denotes
the largest integerX such thatX<x ~see Fig. 1!. Note that
through p( l ) our model differs from the standard SWN
6270 ©2000 The American Physical Society
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where nol dependence is accounted for. In Eq.~1!, the con-
stanta normalizes the distribution so that

2 (
l 51

int(N/2)

al2a51. ~2!

Now the exponenta in Eq. ~1! is a parameter of the mode
and will be varied in the following. For a finite system w
can choose it freely. In fact, the choicea50, i.e., p( l )
51/(N21), recovers one of the basic constructions of
SWN, by which connections to all sites but the source
equiprobable. For an infinite network, on the other hand, c
has to be taken; in order to keep Eq.~1! normalizable, one
has to havea.1.

We now turn to the basic procedure, in which the stru
ture of the model enters through its connectivity matrixA.
Now A is defined as follows: The off-diagonal elements
A, namelyAi j with iÞ j , equalminus the number of links
between the sitesi and j of the network. The diagonal ele
mentsAii count the total number of bonds connected toi.
Hence the connectivity matrix is symmetric and one h
( iAi j 50. Furthermore, det(A)50 and exactly one eigen
value ofA, sayE1, vanishes. One should note that from t
spectrum of theA matrix one can determine, e.g., the diff
sion and vibrational properties of the structure, as well as
behavior in external fields@17,21#. The spectrum ofA for the
SWN (a50) has been recently studied by Monasson@16#;
among his findings was the existence of a pseudogap in
density of states, a property which affects the long-time d
fusion properties@21#. We note thatA can be viewed as
arising from two sources: One term,A(1), is deterministic
and is due to the underlying regular lattice~here the ring!.
Another one,A(2), is stochastic and arises from the random
added links. ThusA5A(1)1A(2). Now formally Aii 61

(1)

521, Aii
(1)52, andAi j

(1)50 otherwise, where we identify
siteN11 with 1 ~periodic boundary conditions!. The entries
in Ai j

(2) are random, and foriÞ j they are equal to 0,21, or
22. In fact, lettingl be the chemical distance betweeni and
j ( iÞ j ), one has for the probabilityPl(c) that Ai j

(2)52c,

Pl~c!5S 2

cD ~qal2a!c~12qal2a!22c. ~3!

FIG. 1. Illustration of the small-world network. In this exampl
two additional links are added, with the corresponding distan
given in the figure.
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The diagonal elements are, as before, determined from
requirement that( iAi j

(2)50. We close on a small note o
caution by remarking that, due to our prescription, even
j P$1, . . . ,i 21%, the elementsAi j

(2) are not independent o
each other. Thus ifAi j

(2)522 for iÞ j , then fork¹$ i , j % one
cannot haveAik

(2)522; a nondiagonal element having
value of 22 implies both forj and for k that one of their
additional bonds has started ati. By construction, however,i
can only be the source of one additional bond. For decre
ing q and increasingN, however, we expect such correlation
between theAi j

(2) to be less and less important.

III. PROBABILITY OF BEING AT THE ORIGIN

As a simple dynamical problem on the underlying stru
ture, we focus now on the probability for a random walker
be~still or again! at the origin of its walk at a later time. Thi
quantity is fundamental for fractal lattices, where it lea
directly to the spectral~harmonic! dimension@15#, a quantity
of much importance@22#. As we have shown in a previou
work, determining this quantity through a numerical cellu
automaton procedure is quite straightforward and very
vealing for SWN@14#. We look at the probabilityP( i ,tum)
for the walker to be at sitei at time t, given that it started at
site m at time t50. One notes first thatP( i ,tum) obeys the
following master equation:

]P~ i ,tum!

]t
52s(

j 51

N

Ai j P~ j ,tum!, ~4!

where s is a transition rate. In vector notationP(m)(t)
[„P(1,tum), . . . ,P(N,tum)… this relation reads

]P(m)~ t !

]t
52sAP(m)~ t ! ~5!

and has the formal solution

P(m)~ t !5exp~2sAt !P(m)~0!. ~6!

Now the initial condition isP(m)(0)5(0, . . . ,1, . . . ,0)with
a single nonzero element atm. The probability that the
walker is again atm at time t reads

P~m,tum!5@P(m)~ t !#m5(
j

@exp~2sAt !#m j@P(m)~0!# j

5@exp~2sAt !#mm. ~7!

This expression simplifies by averaging over all starti
points, since then

1

N (
m51

N

P~m,tum!5
1

N
Tr@exp~2sAt !#5

1

N (
i 51

N

e2Eist

~8!

holds, where Tr denotes the trace operation andEi with
1< i<N are the eigenvalues of the~symmetric! connectivity
matrix A. Note that in Eq.~8!, because of the averaging ove
all initial points, only the eigenvalues enter. Furthermo
one can now readily average over different realizations,
taining ~sinceE1[0)

s
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P0~ t ![
1

N
1

1

N K (
i 52

N

e2EistL 5
1

N
1E r~E!e2EtdE ~9!

with r(E) being the spectral density forE.0.
We turn now to our calculations, by which we determi

numericallyP0(t) for different choices ofa andq. For sys-
tems of sizeN51001, we construct the connectivity matri
diagonalize it, and employ Eq.~8! to evaluateP0(t). We use
for each choice ofa andq 100 realizations to average ove
the structural disorder. In Fig. 2, we display on double log
rithmic scalesP0(t) versus the dimensionless timest for
q50.05 and fora ranging from 0 to 3. First we note that fo
very long times,P0(t) reaches the constant value 1/N, which
arises due to the eigenvalueE150. Increasing the size of th
small-world network~i.e.,N) pushes the long-time plateau
lower values, but, as we have shown in an earlier work
a50 @14#, leaves theP0(t) curves above the plateau prac
cally unaffected. This is also what we find here for gene
a; this allows us to infer the qualitative features ofP0(t) in
the limit N→`.

Turning now to the discussion of the results, we note fi
that for a50 they agree perfectly with our previous sma
world network analysis@14#, which was based not on th
diagonalization ofA but on a cellular automaton metho
The decay ofP0(t) follows at early times a power law
which turns at later times into a stretched exponential beh
ior. Asymptotically, the decay obeys to leading ord
the form exp(2Ct1/3) @14,21# ~with C a constant!, which
follows from the spectral density of Ref.@16#, r(E)
;E21/2exp(2C8E21/2). Note that in Fig. 2, the curves flatte
with increasinga, a sign that with growinga, a walker is
less prone to go far away from its starting site. At early tim
P0(t) is little affected by variations ina, since at very short
times it does not matter whether the AL bring the walke
very far away or not. The transition to pure power-law b
havior appears to happen roughly arounda52.

Moving on to largerq to examine whether this transitio
depends onq, we plot in Fig. 3 the results forq50.8. In this
case there are more AL, and the results are more sensitiv
the value ofa: in Fig. 3 the casesa53.0 anda55.0 are
easily distinguished. However, increasinga further does not

FIG. 2. The probability of being at the origin,P0(t), for q
50.05 anda53,2,1.5,1.25,1,0.5, and 0.0 from above. The curv
for a52 anda53 are hardly distinguishable in the figure.
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change the curves significantly. The curves are also m
spread out in the short-time domain than in the caseq
50.05. This is due to the fact that the quasi-one-dimensio
behavior of the walk is mainly felt on distances of the ord
of 1/q, this being a measure of the mean distance betw
branching points@14#. We hasten to note that for very sma
times~not displayed in Fig. 3!, the curves for differenta do
coincide. Despite these differences, the qualitative beha
of the curves in Fig. 2 and Fig. 3 is comparable. Furth
more, the crossover behavior ofa52 ~shown as a dotted
line! appears even more clearly in Fig. 3: the curves w
a.2 follow power-law decays closely, while the curves f
a,2 are partly concave, thus displaying a faster-tha
power-law decay.

IV. TYPOLOGY OF RANDOM WALKS

Let us briefly recall some terminology from the theory
random walks. A random walk is said to be recurrent if
returns with probability 1 to the origin at some later tim
Otherwise the walk is called transient. For a walk to be tra
sient requires an infinite system, because in finite system
walks ~disregarding situations with traps, mortal walke
etc.! are recurrent. On homogeneous lattices, a walk is tr
sient if and only if

I[E
0

`

dt P0~ t ! ~10!

is finite. In line with this, we could expect walks on th
GSWN with small a to be transient, given that for a
stretched exponential behavior (b.0)

I;E`

dt exp~2Ctb!,`. ~11!

Moreover, in the opposite limit of largea, we observe that
P0(t) follows a power-law decay with the exponent bein
nearly 21/2. It follows that for largea we haveI 5`, an
indication that the walk is recurrent. As we discuss in de
in the following, for walks on an infinite regular linear cha
whose steps are long-ranged and obey Eq.~1! for the step

s
FIG. 3. Same as Fig. 2, but for a choice ofq50.8. From above

one hasa55.0,3.0,2.2,2.1,2.0,1.9,1.8,1.7,1.5,1.0,0.5, and 0.0;
curve fora52 is indicated by dots.
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lengths, the transition between recurrence and transience
curs ata52 @24#. It is now tempting to try to explain ou
findings of Sec. III along such lines. Such a connection
achieved by replacing the random small-world netwo
structure under investigation here by a regular one~a mean-
field-type approach!, and letting the transition rates refle
the underlying statistics of the links@23#. In this way the
probability of taking a step of lengthl .1 is proportional to
l 2a. However, as we show in the following, this regularizin
approach is not particularly successful, since it does not
scribeP0(t) well for small and moderatea.

We start now from the so-called Riemann walks@24#,
which are symmetric random walks on the linear cha
where each step of the walk can extend over the lengthl with
probability

p~ l !; l 2a, a.1. ~12!

Such walks are recurrent fora>2 and transient fora,2
@24#. Riemann walks are examples from the more gene
class of Lévy flights and Lévy walks @25–27#. Turning now
to the problem of averaging both the GSWN structures
the random walks over them, we simply replace in Eq.~4!
A(2) ~remember thatA5A(1)1A(2)) by its averagê A(2)&
over all GSWN. For the averaging we may use Eq.~3! and
obtain

^Ai j
(2)&52al2aq[c~ l !, ~13!

where l is the chemical distance betweeni and j. By doing
this we have now as connectivity matrixA5A(1)1^A(2)&,
whose eigenvaluesEk are readily found; they read~for N
odd!

Ek5222 cos~2pk/N!12 (
j 51

(N21)/2

@12cos~2pk j /N!#c~ j !,

~14!

where k50•••N21. Now Eq. ~14! can be used to deter
mine numericallyP0(t) via Eq. ~9!.

In Fig. 4, we compare forN51001, q50.05, and
a53, a51.5, anda50 the results of the two approache
For a53 the two methods lead to a nice agreement; it see
that fora around or larger than 3 the fluctuations due to
disorder play only a minor role. On the other hand, as exe
plified by a51.5 anda50, for a below 2 the mean-field
approach leads toP0(t) forms that are quite different from
those obtained in Sec. III.
oc-
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,
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V. CONCLUSION

In this work, we have studied a new variant of the sma
world network ~SWN! model which takes into account th
fact that the probability of adding links can depend on t
chemical distance between the connected sites. Exemp
here we have taken the probability distribution to be a pow
law ~with exponenta) of the chemical distance, see Eq.~1!.
We have focused on random walks and especially on
probability P0(t) of a random walker to be at its origin
Depending on the value ofa, we have found qualitatively
different behaviors. Specifically, we found clues indicati
that in the infinite system limit, random walks on GSW
may change from being transient to being recurrent, aa
crosses the marginal value of 2 from below. Moreover,
have shown that our model is related to Le´vy flights and to
Riemann walks. We also found that a simple mean-fi
regularization of the GSWN problem gives poor results
small a. Overall, it follows that GSWN witha,2 are ob-
jects whose dynamical properties differ significantly fro
those of regular lattices.
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FIG. 4. Comparison of the mean-field theory prediction~full
curves! with the numerical data~dotted curves! for q50.05. The
values ofa are, from above,a53, a51.5, anda50. Good agree-
ment is found only for largea, herea53.
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