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Short-time dynamics of an Ising system on fractal structures
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The short-time critical relaxation of an Ising model on a Sierpinski carpet is investigated using Monte Carlo
simulation. We find that when the system is quenched from high temperature to the critical temperature, the
evolution of the order parameter and its persistence probability, the susceptibility, and the autocorrelation
function all show power-law scaling behavior at the short-time regime. The results suggest that the spatial
heterogeneity and the fractal nature of the underlying structure do not influence the scaling behavior of the
short-time critical dynamics. The critical temperature, dynamic expomeahd other equilibrium critical
exponentsB and v of the fractal spin system are determined accurately using conventional Monte Carlo
simulation algorithms. The mechanism for short-time dynamic scaling is discussed.

PACS numbgs): 64.60.Ht, 47.53tn, 02.70.Lq, 05.70.Jk

[. INTRODUCTION Intuitively, we would expect that neaf., the system
feels the effect of the underlying fractal structure less since
The order-disorder phase transitions on structures exhighe spin-spin correlation lengthtends to infinity at the late
iting self-similarity have attracted much attention in the paststage of ordering. At the early stage of kinetics when the
two decades in the research fields of statistical physics aneprrelation lengthé is small, we should expect the largest
materials science. A typical example is the growth of pre-impact of the inhomogeneous fractal structure on the domain
cipitates and transient phases or atomic clusters, where cegrowth. As a result, the correlation function should not show
tain newly formed phases grow into structures with self-dynamical scaling at the early stage. Therefore, the short-
Simi|arity_ This includes ordering processes in phaséime kinetics could serve as a Stringent test case for under-
separation or solidificatiofiL], liquid-to-glass transition, and standing how fractal structure affects phase transitions.
condensation or aggregation of nanosized particles. There are The model system we use in this work is an Ising model
some other examples, such as catalytic process on a frac@l Tc embedded in a Sierpinski carpet. To the best of our
surface[2,3], reaction diffusion on porous med[4], and knowledge, there has been no work done to investigate the
spinodal decomposition on a fumed silica netwi@k where dynamical relaxation at temperatufes T, in this model. In
the underlying structures supporting the processes are moi&is temperature region, the relaxation time of the fractal spin
evident in their fractal characteristics. In the growing phasesystem is known to be extremely long, which imposes a tre-
that forms a fractal as well as the physical processes takingiendous burden for simulations. As a consequence, neither
place on foreign fractal objects, the influence of the underlyihe T, nor the dynamic exponeathas been well determined
ing fractal structure on material processing and final proper[9]. Our immediate goal, therefore, is to determine these
ties is significan{1-5]. Therefore, how the fractal structure properties. The method we use is the short-time dynamic
affects the kinetics of such phase transitions is a fundament&caling [10]. The short-time scaling regime was first pre-
issue that is worthy of serious consideration. To date, howdicted by Jassen, Schaub, and Schmittmgkdj using the
ever, the exact mechanism is still an open question and itéeld-theoretic and renormalization-group methods, and was
theoretical understanding is very limit¢tl—3]. confirmed subsequently by many computer-simulation stud-
Recently, it was found that the ordering process depend®s [11-14. At the critical temperature, the evolution of
on the fractal structure to which the system is confinedphysical quantities at early times is shown to obey power-
[5-7. On a finitely ramified fractal structure such as law dynamic scaling10]. For instance, the order parameter,
diffusion-limited aggregated cluste§] or a Sierpinski gas- €.9., the magnetizatioM (t), undergoes a dynamic initial
ket [6], the kinetics of domain growth is shown to obey increase at an early time scale,
dynamical scaling and universality. On an infinitely ramified
fractal structure such as a Sierpinski carpet, dynamical scal- M (t) ~mgtF (17" #?m,), 1)
ing is found to be no longer valid because the growing inter-
face is pinned by the depleted holes of the fractal structura&vheremy=M(0) is small and is a new universal exponent.
[7]. However, this kinetic mechanism found in the numericalThe scaling functiorF(x)~1 for x—0 andF(x)~ 1/x for
simulations is not consistent with statistical mechanics studx—o. There is an initial increase at an eattpacroscopit
ies of the phase transition on a fractal structure where théme scale at<t., wheret. measures the crossover from the
model system, e.g., an Ising model, on an infinitely ramifiedinitial growth to the well-known decay relaxation. The posi-
fractal structure has a well-defined ordered phase below &ve m, leads to the initial growth of the up-spin domain
nonzero critical temperatur€. [8]. This apparent inconsis- [14], and the correlation function displays the scaling behav-
tency in the aforementioned work is the main motivation ofior [10,15
this work to understand how the fractal structure influences
the dynamic behavior of the transition. C(r,t;7)=r P2k (r?t,r7"), (2
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where 7=(T.—T)/T, and D is the spatial dimension. Al- % PR :
though the exact mechanism for such a general mechanism is
still not fully emerged, the apparent success of the short-time
scaling, as seen in many cases studied by various means
[10-15, makes the approach very attractive for our work.
Another practical advantage of the short-time dynamics is
that we can use the scaling exponents calculated from the
short-time regime to determine the equilibrium critical expo-
nents[11,14]. This gives us a convenient way to study the
ordering process and critical phenomena in systems with an
extremely long relaxation time.

Besides testing the dynamic scaling of the fractal Ising
model, another very desirable outcome from this wok, as we
discussed earlier, is to see whether or not the short-time scal-
ing [10] works in this special case. The short-time scaling
behavior is verified only in the systems in Euclidean space
[11-14. It is not clear if it is still valid on a fractal structure
whose critical temperatur€; is nontrivial. In systems with-
out translational invariance, such as a Sierpinski carpet, there
are entire length scales of hole space on which no spins can (a)
be placed, and therefore the model has no definition. Any
finite correlation length is expected to result in the nonuni-
versal behavior of an initial increase of the order parameter.
The same question has been asked for systems with impuri-
ties or random defec{45,16|.

In this paper, we study the Ising model on a Sierpinski
carpet at the critical temperature using extensive Monte |
Carlo simulations. Our emphasis is on the effect of a fractal
structure on the short-time kinetics. The critical temperature,
equilibrium exponents, and dynamic exponent will be deter-
mined. In Sec. Il, the model system and the dynamic short-
time scaling relation are introduced. In Sec. Ill, Monte Carlo
simulation results in the fractal systems with various sizes
will be presented. In Sec. IV, we discuss the mechanism of
short-time scaling on the fractal structures.

Il. MODEL AND CRITICAL SHORT-TIME DYNAMICS

A. Ising model on a Sierpinski carpet

We consider a system witN spinsS;=*1, which are
placed on the vertices of a Sierpinski fractal structure. The

Sierpinski carpet is generated with the following procedure: 5 1. pomain structures of the Ising model embedded on the
A full square of length_ is divided intob? equal squares; Sierpinski carpet after the quench to temperatur@ T=T/2, (b)
squares are chosen out of these squares and removed. In fhﬁo.ch. The system size it =729. The up(down) spins are
next iteration, each of the small squares left are divided agaifenoted by blackwhite). The depleted area of the Sierpinski carpet
into b? squares and of these squares located at the sames in patterned graym,=0, t=100 000 MCS.

positions as in the first iteration are removed. The fractal

dimension of the remaining area after iterations isd  two nearest-neighbor spid, =J if the bond is common to
=In(b®>—1)/In(b) when the number of iterationsis large. In  two iterative elementary squares. If the edge is a wall of a
this work we use the Sierpinski carpet with=3 andl=1.  noniterative area, we sdt=J,,, whereJ,,#J. Since we are
As shown in Fig. 1, the holg) of the squares at the center interested only in the effect of a fractal structure on short-
are removed in each iteration. It is proven that wimer6  time dynamics, and the heterogeneityJip as presented by
(L=2187), the topology of this fractal is determined and thethe differenty’s may come into effecf16], we setJ,=J,,

(b)

effect of the boundary condition can be negledt&d]. =J in this work. T is temperature in units af/kg.
The Hamiltonian of the system is written E&) The model described by E€) is solved in Ref[8] using
the Migdal-Kadanoff renormalization-group technique, and
N the critical temperature and exponents are calculated
H= J S, 3 ) i . .
; “@Zj) S @ proximately The dynamic exponerttis also determined by

the dynamical renormalization-group metH@d. The Monte
where (i,j) denotes the sum extending over all nearest-Carlo simulation and the expansion were used for this
neighbor spins. J, (>0) is the coupling constant between model systenj17-21l.
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There are some difficulties in the Monte Carlo simulationHere() denotes the average over the replica of initial states.
in calculating the critical temperature and critical exponents# is a new dynamic exponent that characterizes the short-
The first, and the most important, is a critical slowing down.time evolution ands,v are equilibrium critical exponents. If
The relaxation time of a fractal system is much larger tharthe system evolves from a totally ordered statg€ 1), the
that of a Euclidean system. Due to limited simulation time, itfollowing equations hold:
is difficult to get accurate results for fractal spin systems
using the conventional Monte Carlo simulation. Second, al- (M(t)>~t‘ﬁ’”, (5d)
though the cluster algorithms can improve the efficiency of
the Monte Carlo simulation considerably for large systems d .

[17,18, it may not be applicable to the systems that obey S LINM () =0~ (5€)
Glauber dynamics. The finite-size scaling for the cluster al-

gorithms may exhibit behavior inconsistent with that follow- 54

ing the Glauber dynamid®2]. Third, the dynamic exponent

z, which is an essential quantity for the kinetic process, could (M2(1))
not be accurately determined. As a reszhias not been well U(t)= M2~ 1~t¥2, (5f)
determined in a fractal system by both simulati¢®8,21] (M(1)

and the renormalization-group methg. In this paper, we

study the critical dynamics of this model system in the short—Equaﬂons(S) are valid before the evolution changes to the

time regime in order to avoid the critical slowing down. As Iatg—time relaxation k”?e.“cs- Using the dynamic scaling re-
we show later, dynamic critical phenomena can be studie&at'ons (53)_(50’ the critical temp_erature'and the exponents
using the conventional Monte Carlo method in the short-time&2" .be determined at the short-time regime, so that comput-
regime, and as a result the wanted critical temperature an{9 time can be dramatically reduced.

critical exponents can be determined accurately.

107
T,=2.0340

L=2187

B. Universal scaling for critical relaxation 3
When an Ising system is quenched from high temperature g
to its critical temperaturd , it is well known that the order
parameteiM (t) decays to zero by a power lay4], M(t)
~t P2 at late times. The relaxation timg~L? becomes
infinite asL—oc0. Therefore, strictly speaking, this kind of
critical relaxation can never be observed in numerical simu-
lations. In the past decade, new critical kinetics was discov- 10?
ered for the critical quench, and the corresponding new dy-

m(t)

TG T

,=0.005
namic exponents which are independeniBpfy, andz were a :o=o.oz
introduced. In the following, we briefly describe the short- ST ‘ R
time dynamics and the critical exponents. 10 100

(a) t(mcs)
Short-time dynamics [11]

The kth moment of magnetization has the scaling relation af

M®(t,L; 7,mg) =b "M (bZ%t,bL;b~ " 7,b~Omy),
4 ’

whereb is the scaling factor of the system sizeg=M(0)
andx, measures its dimension. When quenched from disor-
dered statesnf,=0), in a large system and short time, Eq.
(4) yields the following power-law scaling relations:

_
d
E=)
=

bl
[

2t

M(t)

N 0.7l
(M(t)>5<$21 Si>~t9, (5a) 10 t(f:gg) 1000

102
10 100

(b) t(mcs)

1 N 2
Ni:l Si) >Nt[d—2ﬁlv]/2, (Sb)

X(t)=<M2(t)>E<

FIG. 2. (a) The log-log plot of the total magnetization at early
times at critical temperature after quenching from initial magneti-
and zationmy. The system size is=2187. The solid lines are the fits
to power-law curves. (b) The evolution of magnetizatiokl,, and

1 N Mw in log-log scalemy=0.004. The inset shows those whexg
(C(t))y= < Nzl S(t)Si(0)> ~tdiz— 0. (50 I:V%l L=2187 andT=T,. The solid lines are the fits to the power
1= .
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TABLE I. The scaling exponend for initial slip.
mq 0.02 0.01 0.004
L=729 0.167 0.173 0.186
L=2187 0.188 0.196 0.205

M(t)

Persistence probability of critical quench

The probabilityp(t) that the global order parameter has
not changed sign in timefollowing a quench to the critical
temperature was found to obey the power-law scaling in a
nonconserve®(N) model in the largeN limit and the Ising

model using the Monte Carlo simulati¢g3], @
a

p(t)~t~7, (6)

where 6’ is another new nontrivial exponent for the critical
dynamics.

TelL)

I1l. Monte Carlo simulation studies

The Monte Carlo simulation was carried out in the system
described by HamiltoniafB). Periodic boundary conditions
are used. As discussed in Sec. Il, the boundary condition dic
not affect the fractal nature of the system when the systerr b
size was large. The initial configuration of the system is pre-
pared with a definiten,. The update of each spin is carried
out using the heat-bath algorithm. An attempt to update all
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spins is defined to be one Monte Carlo styfCS). Physical
guantities are measured at tinteand are averaged over
samples with different initial configurations white, is kept

constant. As a comparison, we also used the Metropolis al
gorithm for updating spins. The results were found to be theg

same at the time scate-ts. t is typically 10 MCS. There-
fore, the following calculation was based on the datd at
>t,.
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FIG. 4. (a) Log-log plots of the evolution of total magnetization
from an initial ordered statenf,=1) atT=2.032, 2.036, and 2.037
(from above, solid lines The dashed line is that &t.=2.0344,
which is determined by finding the minimum square derivation
from power-law fits, as shown in the inset(b) Finite-size scaling
for the critical temperatur@.(L) (open circles The solid line is
the best fit to Eq(7). (c) Finite-size effect on the magnetization at
T. (mpy=1). The solid line is that af ;(«2) =2.0334. The plots are
in log-log scale.

A. Critical initial slip and persistence probability

Figure 2 shows the initial increase of magnetization from

FIG. 3. Log-log plots of the persistence probability of spins afterdifferent my at T.=2.03. We have checked the finite-size

being quenched t®,. my=0. The solid line is the fits to the power
law. Finite-size effect is shown.

effect on the evolution and found that it diminishes las
>729.
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tmes) FIG. 6. Log-log plot of the second moment of magnetization at

FIG. 5. The scaling of Binder cumulabl_ for a pair of lattices ~ Tc- The system started fromy=0.
(L1,L5). The solid lines ardJL for systems in sizé,, the open
symbols are those for systems in sizg. The time is rescaled by TC(L)—TC(so)~|_*1’V, 7
the factor of {,/L,)* The system evolves frommy=1 atT,.

Figure 4b) shows the scaling relation. The critical tempera-

The magnetization of the fractal Ising system is found toture for this system is found to bE,(«)=2.0334+ 0.0005.
be inhomogeneous. We consider two regions on the carpéthis value agrees with the equilibrium Monte Carlo simula-
and calculate their mean magnetizationd4,,= (2 o;)/N,,  tion resultT,=2.03[20], but with higher accuracy. Figure
andM ,,,= (S ui)/N,. Herea; are the spins on the internal 4(c) shows the finite-size scaling fovi(t) at T;(>) using
walls bordering the eliminated areas avgl is the total num-  the relation Eq.(4) with me=1. Corresponding exponents
ber of these spins.u; are the spins that are not on the Blv andz can also be determined. Equati@h together with
internal walls andN,,,,= N—N,, is the number of them. The Ed. (7) can be used to calculafg(=), B, », andz self-
equilibrium critical exponents foM,, andM ,,, are found to  consistently with high accuracy.
be different[24]. Figure Zb) showsM,, andM,,,,. We can
see that asmy—0, the evolution ofM(t), M,(t), and C. Dynamic critical exponentz
M (1) increases with the power law in time. The exponents determined by finite-size scaling

can be determined by linear extrapolatiormig=0, and the Once T, is found, the dynamic critical exponent can be

exponents are nearly the same. Table | lists the results fro'Hetermined by finite-size scaling from the Binder cumulant.

the fitting. It is interesting to see that ;he fractal _structureAt T (=), the cumulant of magnetization follows the scaling
does not affect the exponeftand short-time dynamic scal- relation

ing is universal for an Ising system on a fractal structure. It
seems that this kinetics of initial slip is not the same as the U(t,L;)=U(tb?L,), (8)
evolution of the system that starts from an ordered state

(mp=1), which follows Eq.(5d). As shown in the inset of
Fig. 2(b), the difference in exponents is found fiv (t),

M, (1), andM,(1).

The persistence probability(t) of the magnetization of
the system is shown in Fig. 3. The evolution is found to
follow Eq. (6) asL>729 with the persistence exponefit i
=0.21Q7). a

where b=L,/L,. Figure 5 shows the data collapse of

T,=2.0340

B. Critical temperature determined by short-time dynamics

c(t)

At critical temperature, when the system decays from an
order state ifip=1), the magnetization follows a power-law
scaling relation described by E(hd). This scaling behavior
can be used to determifig, (L==) in the thermodynamic 102}
limit by finding the critical temperature of the finite-size sys- 3
temT.(L) at which the decay follows the power law. Figure

Lo Ll ) L L L Lol i)

4(a) shows the decay of magnetization at different tempera- “ 10 100
tures. For a system with length, T.(L) is calculated by
finding the smallest error of the power-law fit fof(t), as
shown in the inset in Fig. 4. The critical temperature is then FIG. 7. Log-log plot of the autocorrelation function &t. The
determined by finite-size scaling, system started froomy=0.

t(mcs)
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TABLE IlI. Critical temperatureT, and critical exponenets de-
termined by different methods:(a) renormalization-group method
[16] (an asterisk denotek,=0 using the dynamic renormalization-
group method18]), (b) Monte Carlo simulatioh21], (c) short-time
dynamic scaling, an€d) pure Ising mode[10,25.

&
% T, B v z 9 0'z
= ' @ 311 112 3.915

(b) 2.03+0.02 0.0928 1.09 2.2680.06
(c) 2.0334) 0.1024) 1.054) 2.384) 0.2113) 0.5027)
(d 2.269 0.125 1 2.155 0.191 0.505

10! 102
t(mos) universal power-law behavior. This indicates that the struc-
tural heterogeneity does not affect the kinetics; and scaling
FIG. 8. Log-log plot of the derivative of M (t)) to the reduced  exponents for the two regions are the same. Therefore, the
temperaturer. _Th_e open boxes are caI(_:uIated by extrapolation todynamic scaling relatiori2) may still be valid in the Ising
7=0. The solid line is the power-law fits at=T.. The system  54e| embedded on an infinitely ramified fractal structure.
started frommo=1. In addition, our results show that the initial ordering of
the system is not bbcal event. If the increase of magnetiza-
U(t,L). The average value of the dynamic critical exponenttion is due to local domain growth in short time and the
is z=2.394). thermal fluctuation is not relevant, as pointed out in Ref.
z can also be calculated from the finite-size scaling off14], the short-time scaling regime will be very sméiss
persistence probabilityp(t) [23], p(t)=L~??F(t/L?), as than 10 Monte Carlo stepi the system we studied. If there
shown in Fig. 3. The result is consistent with that determineds no activation of local spin clusters, the domain wall will be
by Eq.(8). It is interesting to find tha#’ z is the same as that pinned by the internal holes. This phenomenon can be seen
in a pure Ising model23]. in Fig. 1.
In heterogeneous systems such as the spin systems in
o which the interactions among spins are not homogeneous,
D. Equilibrium exponents the validity of the critical short-time dynamics is question-
The equilibrium exponentg,» can be determined by us- able[15,16,25. However, in the system without translational
ing the scaling relation§3b)—(3e). Figure 6 shows the sec- invariance, we demonstrated in our simulations that short-
ond moment of magnetization and Fig. 7 shows the autocottime dynamics/Eq. (5)] is valid. Based on our simulation
relation function. The system evolves from the initial stateresults, the theoretical explanation for short-time dynamics
mo=0. Figure 8 shows the first derivative bf(t) curves in ~ proposed in Ref[14] may need to be reconsidered. This
Fig. 4(b) with respect to the reduced temperature, which iscalls for further investigation on the underlying physics of

fitted to Eq.(5e). short-time dynamics.
We found that the values @8 and v agree well with the
values calculated by finite-size scaling, as mentioned in Secs. V. CONCLUSION

!IIA—IIIC. We list all the.exponents computed. in this work  \ye have studied the critical short-time dynamics of an
in Table Il. For comparison, the corresponding exponentsfsmg system on a Sierpinski carpet. Dynamic scaling is

determined by other methods are also tabulated. found for the short-time evolution and the critical exponents
are measured. Using short-time dynamic scaling, we are able
IV. DISCUSSION to determine the critical temperature and the dynamic critical

nd equilibrium exponents. The results are in fairly good
greement with those calculated by equilibrium techniques
ut with higher accuracy.

Our simulation results show that the Ising system on &£
Sierpinski carpet follows the dynamic scaling at short time
after it is quenched to the critical temperature. The fracta
nature, as represented by all length scales of internal holes, ACKNOWLEDGMENTS
does not affect the power-law dynamic scaling in the short-
time regime. In the time scale of typically 1000 MCS, the This work was supported by the Department of Energy
correlation lengthé for spins is not larger than 50. But the (Grant No. DE-FG02-99ER45784nd the Whiting School
mean magnetization of all spins on the internal walls showsf Engineering at The Johns Hopkins University.
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