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Short-time dynamics of an Ising system on fractal structures

Guang-Ping Zheng and Mo Li
Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Marylan

~Received 28 June 2000!

The short-time critical relaxation of an Ising model on a Sierpinski carpet is investigated using Monte Carlo
simulation. We find that when the system is quenched from high temperature to the critical temperature, the
evolution of the order parameter and its persistence probability, the susceptibility, and the autocorrelation
function all show power-law scaling behavior at the short-time regime. The results suggest that the spatial
heterogeneity and the fractal nature of the underlying structure do not influence the scaling behavior of the
short-time critical dynamics. The critical temperature, dynamic exponentz, and other equilibrium critical
exponentsb and n of the fractal spin system are determined accurately using conventional Monte Carlo
simulation algorithms. The mechanism for short-time dynamic scaling is discussed.

PACS number~s!: 64.60.Ht, 47.53.1n, 02.70.Lq, 05.70.Jk
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I. INTRODUCTION

The order-disorder phase transitions on structures ex
iting self-similarity have attracted much attention in the p
two decades in the research fields of statistical physics
materials science. A typical example is the growth of p
cipitates and transient phases or atomic clusters, where
tain newly formed phases grow into structures with se
similarity. This includes ordering processes in pha
separation or solidification@1#, liquid-to-glass transition, and
condensation or aggregation of nanosized particles. There
some other examples, such as catalytic process on a fr
surface@2,3#, reaction diffusion on porous media@4#, and
spinodal decomposition on a fumed silica network@5#, where
the underlying structures supporting the processes are
evident in their fractal characteristics. In the growing pha
that forms a fractal as well as the physical processes ta
place on foreign fractal objects, the influence of the unde
ing fractal structure on material processing and final prop
ties is significant@1–5#. Therefore, how the fractal structur
affects the kinetics of such phase transitions is a fundame
issue that is worthy of serious consideration. To date, h
ever, the exact mechanism is still an open question and
theoretical understanding is very limited@1–3#.

Recently, it was found that the ordering process depe
on the fractal structure to which the system is confin
@5–7#. On a finitely ramified fractal structure such a
diffusion-limited aggregated clusters@5# or a Sierpinski gas-
ket @6#, the kinetics of domain growth is shown to obe
dynamical scaling and universality. On an infinitely ramifi
fractal structure such as a Sierpinski carpet, dynamical s
ing is found to be no longer valid because the growing int
face is pinned by the depleted holes of the fractal struc
@7#. However, this kinetic mechanism found in the numeri
simulations is not consistent with statistical mechanics st
ies of the phase transition on a fractal structure where
model system, e.g., an Ising model, on an infinitely ramifi
fractal structure has a well-defined ordered phase belo
nonzero critical temperatureTc @8#. This apparent inconsis
tency in the aforementioned work is the main motivation
this work to understand how the fractal structure influen
the dynamic behavior of the transition.
PRE 621063-651X/2000/62~5!/6253~7!/$15.00
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Intuitively, we would expect that nearTc , the system
feels the effect of the underlying fractal structure less sin
the spin-spin correlation lengthj tends to infinity at the late
stage of ordering. At the early stage of kinetics when
correlation lengthj is small, we should expect the large
impact of the inhomogeneous fractal structure on the dom
growth. As a result, the correlation function should not sh
dynamical scaling at the early stage. Therefore, the sh
time kinetics could serve as a stringent test case for un
standing how fractal structure affects phase transitions.

The model system we use in this work is an Ising mo
at Tc embedded in a Sierpinski carpet. To the best of o
knowledge, there has been no work done to investigate
dynamical relaxation at temperatureT<Tc in this model. In
this temperature region, the relaxation time of the fractal s
system is known to be extremely long, which imposes a
mendous burden for simulations. As a consequence, ne
theTc nor the dynamic exponentz has been well determine
@9#. Our immediate goal, therefore, is to determine the
properties. The method we use is the short-time dyna
scaling @10#. The short-time scaling regime was first pr
dicted by Jassen, Schaub, and Schmittmann@10# using the
field-theoretic and renormalization-group methods, and w
confirmed subsequently by many computer-simulation st
ies @11–14#. At the critical temperature, the evolution o
physical quantities at early times is shown to obey pow
law dynamic scaling@10#. For instance, the order paramete
e.g., the magnetizationM (t), undergoes a dynamic initia
increase at an early time scale,

M ~ t !;m0tuF~ tu1b/nzm0!, ~1!

wherem0[M (0) is small andu is a new universal exponen
The scaling functionF(x);1 for x→0 andF(x);1/x for
x→`. There is an initial increase at an early~macroscopic!
time scale att,tc , wheretc measures the crossover from th
initial growth to the well-known decay relaxation. The pos
tive m0 leads to the initial growth of the up-spin doma
@14#, and the correlation function displays the scaling beh
ior @10,15#

C~r ,t;t!5r 2D1zuF~r z/t,r tn!, ~2!
6253 ©2000 The American Physical Society
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where t5(Tc2T)/Tc and D is the spatial dimension. Al-
though the exact mechanism for such a general mechanis
still not fully emerged, the apparent success of the short-t
scaling, as seen in many cases studied by various m
@10–15#, makes the approach very attractive for our wo
Another practical advantage of the short-time dynamics
that we can use the scaling exponents calculated from
short-time regime to determine the equilibrium critical exp
nents@11,14#. This gives us a convenient way to study t
ordering process and critical phenomena in systems with
extremely long relaxation time.

Besides testing the dynamic scaling of the fractal Is
model, another very desirable outcome from this wok, as
discussed earlier, is to see whether or not the short-time s
ing @10# works in this special case. The short-time scali
behavior is verified only in the systems in Euclidean sp
@11–16#. It is not clear if it is still valid on a fractal structure
whose critical temperatureTc is nontrivial. In systems with-
out translational invariance, such as a Sierpinski carpet, t
are entire length scales of hole space on which no spins
be placed, and therefore the model has no definition. A
finite correlation length is expected to result in the nonu
versal behavior of an initial increase of the order parame
The same question has been asked for systems with im
ties or random defects@15,16#.

In this paper, we study the Ising model on a Sierpin
carpet at the critical temperature using extensive Mo
Carlo simulations. Our emphasis is on the effect of a frac
structure on the short-time kinetics. The critical temperatu
equilibrium exponents, and dynamic exponent will be det
mined. In Sec. II, the model system and the dynamic sh
time scaling relation are introduced. In Sec. III, Monte Ca
simulation results in the fractal systems with various si
will be presented. In Sec. IV, we discuss the mechanism
short-time scaling on the fractal structures.

II. MODEL AND CRITICAL SHORT-TIME DYNAMICS

A. Ising model on a Sierpinski carpet

We consider a system withN spins Si561, which are
placed on the vertices of a Sierpinski fractal structure. T
Sierpinski carpet is generated with the following procedu
A full square of lengthL is divided intob2 equal squares;l
squares are chosen out of these squares and removed.
next iteration, each of the small squares left are divided ag
into b2 squares andl of these squares located at the sa
positions as in the first iteration are removed. The frac
dimension of the remaining area aftern iterations is d
5 ln(b22l)/ln(b) when the number of iterationsn is large. In
this work we use the Sierpinski carpet withb53 and l 51.
As shown in Fig. 1, the hole~s! of the squares at the cente
are removed in each iteration. It is proven that whenn>6
(L>2187), the topology of this fractal is determined and t
effect of the boundary condition can be neglected@17#.

The Hamiltonian of the system is written as@8#

Ĥ52(
a

Ja(
^ i , j &

SiSj , ~3!

where ^i,j& denotes the sum extending over all neare
neighbor spins. Ja (.0) is the coupling constant betwee
is
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two nearest-neighbor spin.Ja5J if the bond is common to
two iterative elementary squares. If the edge is a wall o
noniterative area, we setJa5Jw , whereJwÞJ. Since we are
interested only in the effect of a fractal structure on sho
time dynamics, and the heterogeneity inJa as presented by
the differentJ’s may come into effect@16#, we setJa5Jw
5J in this work.T is temperature in units ofJ/kB .

The model described by Eq.~3! is solved in Ref.@8# using
the Migdal-Kadanoff renormalization-group technique, a
the critical temperature and exponents are calculatedap-
proximately. The dynamic exponentz is also determined by
the dynamical renormalization-group method@9#. The Monte
Carlo simulation and the« expansion were used for thi
model system@17–21#.

FIG. 1. Domain structures of the Ising model embedded on
Sierpinski carpet after the quench to temperature:~a! T5Tc/2, ~b!
T50.9Tc . The system size isL5729. The up~down! spins are
denoted by black~white!. The depleted area of the Sierpinski carp
is in patterned gray.m050, t5100 000 MCS.
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There are some difficulties in the Monte Carlo simulati
in calculating the critical temperature and critical exponen
The first, and the most important, is a critical slowing dow
The relaxation time of a fractal system is much larger th
that of a Euclidean system. Due to limited simulation time
is difficult to get accurate results for fractal spin syste
using the conventional Monte Carlo simulation. Second,
though the cluster algorithms can improve the efficiency
the Monte Carlo simulation considerably for large syste
@17,18#, it may not be applicable to the systems that ob
Glauber dynamics. The finite-size scaling for the cluster
gorithms may exhibit behavior inconsistent with that follow
ing the Glauber dynamics@22#. Third, the dynamic exponen
z, which is an essential quantity for the kinetic process, co
not be accurately determined. As a result,z has not been wel
determined in a fractal system by both simulations@18,21#
and the renormalization-group method@9#. In this paper, we
study the critical dynamics of this model system in the sho
time regime in order to avoid the critical slowing down. A
we show later, dynamic critical phenomena can be stud
using the conventional Monte Carlo method in the short-ti
regime, and as a result the wanted critical temperature
critical exponents can be determined accurately.

B. Universal scaling for critical relaxation

When an Ising system is quenched from high tempera
to its critical temperatureTc , it is well known that the order
parameterM (t) decays to zero by a power law@14#, M (t)
;t2b/nz, at late times. The relaxation timet0;Lz becomes
infinite asL→`. Therefore, strictly speaking, this kind o
critical relaxation can never be observed in numerical sim
lations. In the past decade, new critical kinetics was disc
ered for the critical quench, and the corresponding new
namic exponents which are independent ofb, n, andz were
introduced. In the following, we briefly describe the sho
time dynamics and the critical exponents.

Short-time dynamics [11]

Thekth moment of magnetization has the scaling relat

M ~k!~ t,L;t,m0!5bkb/nM ~k!~bzt,bL;b21/nt,b2x0m0!,
~4!

whereb is the scaling factor of the system size.m05M (0)
andx0 measures its dimension. When quenched from dis
dered states (m050), in a large system and short time, E
~4! yields the following power-law scaling relations:

^M ~ t !&[K 1

N (
i 51

N

Si L ;tu, ~5a!

x~ t !5^M2~ t !&[K S 1

N (
i 51

N

Si D 2L ;t @d22b/n#/z, ~5b!

and

^C~ t !&[K 1

N (
i 51

N

Si~ t !Si~0!L ;td/z2u. ~5c!
.
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Here^ & denotes the average over the replica of initial stat
u is a new dynamic exponent that characterizes the sh
time evolution andb,n are equilibrium critical exponents. I
the system evolves from a totally ordered state (m051), the
following equations hold:

^M ~ t !&;t2b/nz, ~5d!

]

]t
@ ln^M ~ t !&#t50;t1/nz, ~5e!

and

U~ t ![
^M2~ t !&

^M ~ t !&221;td/z. ~5f!

Equations~5! are valid before the evolution changes to t
late-time relaxation kinetics. Using the dynamic scaling
lations ~5a!–~5f!, the critical temperature and the exponen
can be determined at the short-time regime, so that com
ing time can be dramatically reduced.

FIG. 2. ~a! The log-log plot of the total magnetization at ear
times at critical temperature after quenching from initial magne
zationm0 . The system size isL52187. The solid lines are the fit
to power-law curves. ~b! The evolution of magnetizationMw and
Mnw in log-log scale.m050.004. The inset shows those whenm0

51. L52187 andT5Tc . The solid lines are the fits to the powe
law.
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Persistence probability of critical quench

The probabilityp(t) that the global order parameter h
not changed sign in timet following a quench to the critica
temperature was found to obey the power-law scaling i
nonconservedO(N) model in the large-N limit and the Ising
model using the Monte Carlo simulation@23#,

p~ t !;t2u8, ~6!

whereu8 is another new nontrivial exponent for the critic
dynamics.

III. Monte Carlo simulation studies

The Monte Carlo simulation was carried out in the syst
described by Hamiltonian~3!. Periodic boundary condition
are used. As discussed in Sec. II, the boundary condition
not affect the fractal nature of the system when the sys
size was large. The initial configuration of the system is p
pared with a definitem0 . The update of each spin is carrie
out using the heat-bath algorithm. An attempt to update
spins is defined to be one Monte Carlo step~MCS!. Physical
quantities are measured at timet and are averaged ove
samples with different initial configurations whilem0 is kept
constant. As a comparison, we also used the Metropolis
gorithm for updating spins. The results were found to be
same at the time scalet.ts . ts is typically 10 MCS. There-
fore, the following calculation was based on the data at
.ts .

FIG. 3. Log-log plots of the persistence probability of spins af
being quenched toTc . m050. The solid line is the fits to the powe
law. Finite-size effect is shown.

TABLE I. The scaling exponentu for initial slip.

m0 0.02 0.01 0.004

L5729 0.167 0.173 0.186
L52187 0.188 0.196 0.205
a

id
m
-

ll

l-
e

A. Critical initial slip and persistence probability

Figure 2 shows the initial increase of magnetization fro
different m0 at Tc52.03. We have checked the finite-siz
effect on the evolution and found that it diminishes asL
.729.

r

FIG. 4. ~a! Log-log plots of the evolution of total magnetizatio
from an initial ordered state (m051) atT52.032, 2.036, and 2.037
~from above, solid lines!. The dashed line is that atTc52.0344,
which is determined by finding the minimum square derivati
from power-law fits, as shown in the inset.~b! Finite-size scaling
for the critical temperatureTc(L) ~open circles!. The solid line is
the best fit to Eq.~7!. ~c! Finite-size effect on the magnetization
Tc (m051). The solid line is that atTc(`)52.0334. The plots are
in log-log scale.
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The magnetization of the fractal Ising system is found
be inhomogeneous. We consider two regions on the ca
and calculate their mean magnetizations:Mw5(Ss i)/Nw

andMnw5(Sm i)/Nnw . Heres i are the spins on the interna
walls bordering the eliminated areas andNw is the total num-
ber of these spins.m i are the spins that are not on th
internal walls andNnw5N2Nw is the number of them. The
equilibrium critical exponents forMw andMnw are found to
be different@24#. Figure 2~b! showsMw andMnw . We can
see that asm0→0, the evolution ofM (t), Mw(t), and
Mnw(t) increases with the power law in time. The expone
can be determined by linear extrapolation tom050, and the
exponents are nearly the same. Table I lists the results f
the fitting. It is interesting to see that the fractal structu
does not affect the exponentu, and short-time dynamic sca
ing is universal for an Ising system on a fractal structure
seems that this kinetics of initial slip is not the same as
evolution of the system that starts from an ordered s
(m051), which follows Eq.~5d!. As shown in the inset of
Fig. 2~b!, the difference in exponents is found forM (t),
Mw(t), andMnw(t).

The persistence probabilityp(t) of the magnetization of
the system is shown in Fig. 3. The evolution is found
follow Eq. ~6! as L.729 with the persistence exponentu8
50.210(7).

B. Critical temperature determined by short-time dynamics

At critical temperature, when the system decays from
order state (m051), the magnetization follows a power-la
scaling relation described by Eq.~5d!. This scaling behavior
can be used to determineTc (L5`) in the thermodynamic
limit by finding the critical temperature of the finite-size sy
temTc(L) at which the decay follows the power law. Figu
4~a! shows the decay of magnetization at different tempe
tures. For a system with lengthL, Tc(L) is calculated by
finding the smallest error of the power-law fit forM (t), as
shown in the inset in Fig. 4. The critical temperature is th
determined by finite-size scaling,

FIG. 5. The scaling of Binder cumulantUL for a pair of lattices
(L1 ,L2). The solid lines areUL for systems in sizeL1 , the open
symbols are those for systems in sizeL2 . The time is rescaled by
the factor of (L2 /L1)z. The system evolves fromm051 at Tc .
et
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Tc~L !2Tc~`!;L21/n. ~7!

Figure 4~b! shows the scaling relation. The critical temper
ture for this system is found to beTc(`)52.033460.0005.
This value agrees with the equilibrium Monte Carlo simu
tion resultTc52.03 @20#, but with higher accuracy. Figure
4~c! shows the finite-size scaling forM (t) at Tc(`) using
the relation Eq.~4! with m051. Corresponding exponent
b/n andz can also be determined. Equation~4! together with
Eq. ~7! can be used to calculateTc(`), b, n, and z self-
consistently with high accuracy.

C. Dynamic critical exponent z
determined by finite-size scaling

OnceTc is found, the dynamic critical exponent can b
determined by finite-size scaling from the Binder cumula
At Tc(`), the cumulant of magnetization follows the scalin
relation

U~ t,L1!5U~ tbz,L2!, ~8!

where b5L2 /L1 . Figure 5 shows the data collapse

FIG. 6. Log-log plot of the second moment of magnetization
Tc . The system started fromm050.

FIG. 7. Log-log plot of the autocorrelation function atTc . The
system started fromm050.
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U(t,L). The average value of the dynamic critical expone
is z52.38(4).

z can also be calculated from the finite-size scaling
persistence probabilityp(t) @23#, p(t)5L2u8zF(t/Lz), as
shown in Fig. 3. The result is consistent with that determin
by Eq.~8!. It is interesting to find thatu8z is the same as tha
in a pure Ising model@23#.

D. Equilibrium exponents

The equilibrium exponentsb,n can be determined by us
ing the scaling relations~3b!–~3e!. Figure 6 shows the sec
ond moment of magnetization and Fig. 7 shows the auto
relation function. The system evolves from the initial sta
m050. Figure 8 shows the first derivative ofM (t) curves in
Fig. 4~b! with respect to the reduced temperature, which
fitted to Eq.~5e!.

We found that the values ofb andn agree well with the
values calculated by finite-size scaling, as mentioned in S
III A–III C. We list all the exponents computed in this wor
in Table II. For comparison, the corresponding expone
determined by other methods are also tabulated.

IV. DISCUSSION

Our simulation results show that the Ising system on
Sierpinski carpet follows the dynamic scaling at short tim
after it is quenched to the critical temperature. The frac
nature, as represented by all length scales of internal ho
does not affect the power-law dynamic scaling in the sh
time regime. In the time scale of typically 1000 MCS, t
correlation lengthj for spins is not larger than 50. But th
mean magnetization of all spins on the internal walls sho

@1# L. Reinhard and P. E. A. Turchi, Phys. Rev. Lett.72, 120
~1994!.

@2# E. Clement, P. Leroux-Hugan, and P. Argyrakis, Phys. Rev
49, 4859~1994!; Z. Gao and Z. R. Yang,ibid. 60, 2741~1999!.

@3# A. Yu Tretyakov and H. Takayasa, Phys. Rev. A44, 8388

FIG. 8. Log-log plot of the derivative of ln„M (t)… to the reduced
temperaturet. The open boxes are calculated by extrapolation
t50. The solid line is the power-law fits atT5Tc . The system
started fromm051.
t
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universal power-law behavior. This indicates that the str
tural heterogeneity does not affect the kinetics; and sca
exponents for the two regions are the same. Therefore,
dynamic scaling relation~2! may still be valid in the Ising
model embedded on an infinitely ramified fractal structur

In addition, our results show that the initial ordering
the system is not alocal event. If the increase of magnetiza
tion is due to local domain growth in short time and t
thermal fluctuation is not relevant, as pointed out in R
@14#, the short-time scaling regime will be very small~less
than 10 Monte Carlo steps! in the system we studied. If ther
is no activation of local spin clusters, the domain wall will b
pinned by the internal holes. This phenomenon can be s
in Fig. 1.

In heterogeneous systems such as the spin system
which the interactions among spins are not homogene
the validity of the critical short-time dynamics is questio
able@15,16,25#. However, in the system without translation
invariance, we demonstrated in our simulations that sh
time dynamics@Eq. ~5!# is valid. Based on our simulation
results, the theoretical explanation for short-time dynam
proposed in Ref.@14# may need to be reconsidered. Th
calls for further investigation on the underlying physics
short-time dynamics.

V. CONCLUSION

We have studied the critical short-time dynamics of
Ising system on a Sierpinski carpet. Dynamic scaling
found for the short-time evolution and the critical expone
are measured. Using short-time dynamic scaling, we are
to determine the critical temperature and the dynamic crit
and equilibrium exponents. The results are in fairly go
agreement with those calculated by equilibrium techniq
but with higher accuracy.
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