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Generalized Chapman-Kolmogorov equation: A unifying approach to the description
of anomalous transport in external fields
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The generalized Chapman-Kolmogorov equafign M. Kenkre, E. W. Montroll, and M. F. Shlesinger, J.
Stat. Phys9, 45 (1973] is discussed. It is demonstrated that this equation unifies recently proposed kinetic
equations of fractional order that describe anomalous transport in external fields, as well as continuous time
random walks. The conditions under which the individual models can be established are discussed.

PACS numbe(s): 05.40.Fb, 05.60-k, 02.50.Ey

I. INTRODUCTION Brownian motion [13], as described through the
Chapman-Kolmogorov equatidi) is subject to the central
The Chapman-Kolmogorov equation describes the probdimit theorem and therefore exhibits the linear time depen-
bilistic transition from a given state of a stochastic process talence
another state, via all the possible intermedidtes5)]. Its
formulation dates back to Bachelier's treatises of stock mar- (x(1)2) = 2Kt 3)
ket speculatiorf6], Smoluchowski’'s work on colloidal par-
ticles[7], Chapman'’s studies of the diffusion of grains in a
nonuniform fluid[8], and Kolmogorov's probability theoret- of the force-free mean squared displacement, in one dimen-
ical investigation [9]. Consequently, the Chapman- sion. The diffusion constantK is of dimension [K]
Kolmogorov equation is often credited to Bachelier or =cn?sec ! [14,15.
Smoluchowski. It is called a chain equation by Montroll and  There exists a growing number of systems for which de-
West[10]. The Chapman-Kolmogorov equation is necessarviations from the classical patte(B) are reported5,16-21.
ily fulfilled by a Markov proces$11]. In the following, we concentrate on such systems exhibiting
In the following, we employ Chandrasekhar’s notationforce-free anomalous diffusion defined through
[12] according to which the Chapman-Kolmogorov equation

takes on the form (X(1)D)=2K*t*, a#1, (4)

where « is called the anomalous diffusion exponent. The

generalized diffusion constark’ has dimension[KZ ]
XW(x—Ax,v—Av;Ax,Av) (1) =cnPsec . According to the value of, one distinguishes

slow or subdiffusion (&<@<1), and enhanced or superdif-

in phase(position-velocity space. Equatiofil) describes the  fusion (&> 1), which includes the intermediatsubballistic,

temporal evolution of the probability density functigpdf) 1<a<?2) range.

W(x,v,t) through the incremental transition frordV(x The description of anomalous diffusion in the absence and

—Ax,v—Av,t) to W(x,v,t+At) during the average time presence of an external force field has received considerable

step At. The transfer kernel in Eq(l) is thereby given attention, and among the applied approaches one finds frac-

W(X,v,t-l—A'[)=Jjo d(AX)J’jO d(Av)W(x—Ax,v—Av,t)

through[12] tional Brownian motion[22], generalized master equations
[23], continuous time random walk theof24], generalized
W (x—AX,v—Av;AX,Av)=¢(v—Av;Av) S(AX—vAt). Langevin equation$25], or generalizedy thermostatistics

2 [26], just to name a few. In what follows, we concentrate on
systems that are nonlocal in time, i.e., that display self-
The kernel® and its factorized counterpat describe the similar memory effects, that are linear, and that equilibrate
distribution of transitions with the velocity incremeat for ~ toward the thermal Gibbs-Boltzmann equilibrium
the field variablesy andx where the position increment is
connected with the mean time stap throughAx=vAt. W,=N exp(— BE), 5)
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—[*F(x')dx’, the external potential. It has been argueddom walk scheméLévy walks, Levy flights, etc), and the
thatsuch systems can be conveniently modeled in terms afeneralized master equation.

fractional kinetic equationf27-40. We also discuss the re- Our considerations are based on the generalized
lation of the fractional approach to the continuous time ran-Chapman-Kolmogorov equatidi39]

W(x,v,t)zJotdt’ﬁ0 d(Ax)f_oo d(Av)W(x—Ax,v—Av,t" )V (x—AX,v —Av;AX,Av)w(t—t") + H(t) Wy(X,v),
(6)

which is the phase-space generalization of the force-free geme., both moments are proportional Ad [44].

eralized master equation established for the continuous time Combining Eq.(7) with Eq. (9), one arrives at the kinetic
random walk in Ref[41]. Accordingly, in Eq.(6), the quan- equation for the pdfW(x,v,t), the deterministic Klein-
tity w(t) is the waiting time pdf that controls the time elaps- Kramers equatioif4,12,45,4%

ing between any two successive jump events, AR@x,v)

=lim_ o, W(x,v,t) is the initial condition that persists with 5\ 9 9 F(X)| 7kgT &2
a temporally decaying amplitudg(t)=1— [{dt’w(t’) des- i &v+ 5( nu — T) m o W(x,v,t).
ignating the probability distribution of having encountered dv (10

no jump event up to timé&[42]. Through the choice of spe-
cial forms for the waiting time pdfn(t) and the transfer ) . . .
kernel W (x— Ax,v— Av:Ax,Av), we recover some models Here and in the following, we make use of the Einstein re-
discussed in literature and are able to dwell on their relation/tion K=KkgT/(m%), connecting the friction and diffusion
After a primer on the classical Chapman-KoImogorovCO”Sta”tSU ar_de [15]._E_quat|on(10)_ is a blvarlat_e Fokker-_
equation(1) and its related kinetic equations of physical sto- Planck equation describing the motion of a passive Brownian
chastic processes, we discuss the connection to some &St particle of massn under the influence of an external

cently reported fractional models. Here and in what follows,force field F(x) in phase(position-velocity space. On the
we restrict the discussion to the one-dimensional case. right-hand side of Eq.10), the first term describes the spatial
drift due to the velocity of the test particle, the second term

accounts for the friction and external force feedback to the
velocity as expressed through the corresponding Langevin
equation, and the third term represents the velocity diffusion,

In the Brownian case, the Chapman-Kolmogorov equai.e., the spreading of the pd¥/(x,v,t) on the k,v) field in
tion (1), together with the definitior(2) of the belonging the course of time.
transfer kernel, is readily integrated with respect to the posi- The distribution in velocity space, related to Ef0) and
tion incrementAx. The integration over the velocity changes without the external potential, is governed by the Rayleigh
Av is possible after a Taylor expansion of both the pdf equation[3,47,49
and the kernely in powers of Av so that the final result
reads[12] AW P keT 2

i +— —|W(v,t) 11

II. BROWNIAN CASE: KLEIN-KRAMERS,
FOKKER-PLANCK, AND RAYLEIGH EQUATIONS

—U
oW 9 dv m g2
W(x,v,t) +AIW = ( 1—- %<Av>
with the corresponding Langevin equatiav/dt=— nv
+I'(t). The Rayleigh equation controls the diffusion of the
)W(x,v,t). (7)  test particle in velocity space that is confined by the
Ornstein-Uhlenbeck termy(d/dv)vW(x,v,t) corresponding
to the velocity damping term nv in the Langevin equation.
Equation(11) thus describes the relaxation of the Mifv,t)
toward the stationary Maxwell distributioWg(v), Eq. (5),
with E=mp?/2 andN=\/8m/27.
dx In the high-friction limit, one may neglect the inertial
=—pm——+F(X)+mI(t), (8)  termin the corresponding stochastic differential equat®n
dt to obtaindx/dt=F(x)/m»n+ (1/%)I'(t), or the monovariate

) ) Fokker-Planck equation, often referred to as the Smolu-
whereI'(t) denotes as-correlated Gaussian noise. Accord- chowski equation|3,4,7,49,50

ingly, one findg[12]

((Av)?)y
2 o2

J’_

The necessary information about the velocity increments
moments{Av) and((Av)?) is obtained from the stochastic
Langevin equatiof43]

d?x
m_
dt?

2
sT7 oW 1 d

F(x) w_ 1/ 4
At, (9) ot _mn( aXF(X)JFkBT

(Av)= —( n+ (T)At, ((Av)?)= k

E) W(x,t). (12
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Equation(12) determines the diffusion of the test particle in for further study are specific choices for the waiting time
position space under the influence of the external force fielgpdf w(t), and for the transfer kerneW. For our pur-
F(x). Formally, the stationary solutiolWg(x) of the poses, we concentrate on such kernels that acquire the gen-
Fokker-Planck equatiofil2) given by Eq.(5) for E=V(x) eral form

can be obtained from the equilibrium solutig(x,v) of

the Klein-Kramers equatiofiL0) by integration over the ve-

locity variable. However, in passing from the Klein-Kramers

equation(10) itself to the Fokker-Planck equatic?), the ¥ (X=AX,0 =Av;AX,Av) = (v —Av;Av) p(AX|[)w(t),

additional telegrapher’s term (&) (9°W/dt?) occurs, which (13
can only be neglected in the long-time, high-friction lirhit
>n~'[51]. - " y
where thea priori conditional probabilityp(Ax|t) connects
Il GENERALIZED CHAPMAN-KOLMOGOROV the posmon |ncremenzgx with the elapsed waiting timé
EQUATION According to the continuous time random walk theory as

developed in Ref[42]! the waiting time pdf and conse-
Let us now turn to the generalized Chapman-Kolmogorowjuently p(Ax|t) as well, enter in the following convolution
equation(6). As mentioned before, two crucial ingredients fashion:

W(x,v,t)=f0tdt’ f_x d(Ax)j_x d(Av)W(Xx—AX, v —Av,t") (v —Av;Av)p(AX|t—t" )w(t—t') + (1) S(x) S(v). (14)

For the underlying random walk process, this implies that the t o

walker gets stuck in a certain position for a time span drawn W(X,t)zf dt'f dx' W(x";x=x",t")

from the waiting time pdf(Sec. V), or locks onto a given 0 o

velocity mode for a random time determined Wyt) (Secs. XW(x":x—Xx")W(t—t")+ p(t)Wy(x), (18)

VI and VII). Moreover, we chose the initial condition to be
Wy(X,v) = 8(X) 8(v).

In generaL the genera“zed Chapman_Ko|mogorov equaWhiCh is equivalent to the generalized master equation
tion describes a non-Markovian process due to the presence
of the time convolution, a typical manifestation of memory AW(X.) . "
[52,53. The Brownian limit is nevertheless contained in Eq. ! :f dt’f dx'W(x' t)K(x—x',x";t—t")
(6) through the choice of the sharply peaked waiting time pdf at o J-=

(19

w(t)=8(t—At), (15
with the kernelK(x—x’,x";t—t"), which depends on both
in connection with the conditional probability the distancex—x’ and the departure site’. Equivalently,
we can write &(x,x";t—t")=K(x—x',x";t—t"), K being

fi i f
o(AX|t) = 8(AX—vt) 16 defined in terms o

so thatw(t)p(Ax|t) = 8(t— At) S(Ax—vAt). Indeed, if one £ (XX :U) = uw(u) W(x,x")—d(x—x")
only considers the long-time limit, any narrow waiting time B 1—w(u) '
distribution possessing a finite characteristic waiting time

(20

. In Ref. [37], we demonstrated that the choick(x,x")
TEJ tw(t)dt (17) E)\(.x—x’)[A(x’)@o'(—x’)nLB(x’)@(x’—?()], where\ is

0 the jump length distribution and the coefficiedtsindB are
the local weights for going right or left, leads to the frac-
tional Fokker-Planck equatiofb0) discussed below. More-
over, in the isotropic limiA(x) = B(x), Eq.(19) corresponds
to the standard continuous time random walk model with
The connection to the generalized master equation and the WV (x,x")=A(x—x") [41,42.

continuous time random walk model

leads back to the Brownian description.

Integration of the generalized Chapman-Kolmogorov
equation(6) over velocity leads, after changing the dummy lin essence, our notatiop(Ax|t)w(t) is equivalent to the con-
variable, to tinuous time random walk notatiog(x,t) for the jump pdf.
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IV. FRACTIONAL RAYLEIGH EQUATION: A Wo(v) J KT 52
GENERALIZED CHAPMAN-KOLMOGOROV PROCESS W(v,u)— o (_U + B — | 7*W(v,u),
WITH A LONG-TAILED WAITING TIME u du m v
DISTRIBUTION (27)
Under the condition that the position increments are  with
not distributed in a pathological way, the position average of
Eq. (14) can be performed to result in the monovariate gen- T 1 a
eralized Chapman-Kolmogorov equation = [7*]=sec™. (28)
W(o,t)= ftdt’ jw d(Av)W(v—Au,t) The Laplace inversion of E427) whose right-hand side
’ 0 — ' contains the formu™*W(v,u) can be performed recalling

) the definition of a fractional integral according to Riemann
X ip(v—Av;Av)w(t—t")+ H(t)S(v) (21 and Liouville[55],

for the pdfW(v,t). The aforementioned Taylor expansion in 1 [t
powers of Av up to second order, and evaluation of the oD; *W(v,t)= Jdt'
belonging integral leads to Ila)Jo™ ¢

W(v,t")
t_tl)l—uz’

(29

¢ P (Av)?) 32 which possesses the important property
W(v,t)=f dt’ 1—%<Av)+ > 2
0

9 2 o
v c{ oD{“W(v,t)}Ef dte "D, *W(v,t)=u"“W(v,u).
0

XW(v,t")w(t—t")+ ¢(t)S(v). (22 (30
Let us now consider a waiting time pdf of the one-sided
Lévy stable typew(t)=L_ (t/7) [18,54, or, more general,

of the long-tailed form

Thus, we recover the convolution integral equation

a+kBT 52 Wit
oM op2 (v,1),

0<a<l, (23 (31)

W(v,t) = Wo(v)= oDy “7*

w(t)~ -,
t o
which by definition of the fractional differential operator
which corresponds to a divergence of the characteristic wait-
ing time T due to the “relatively frequent occurrence of very
long waiting times.” For the appropriate choice of the con-
stant A,, the pdf w(t) thus displays the following
asymptotic  behavior in  Laplace  space,w(u) can be recast into the fractional Rayleigh equafi®@®,40

= [ow(t)e Udt:

1-a J —a
oD: EEODt (32

IW d kgT &2

w(u)~1—(ur)“. (24) W:ODSQW*(EU"‘?E W(v,t). (33

We will call 7, or 7%, the internal waiting time scale, i.e., We Ngte that this is the fractional generalization of the Ornstein-
will regard it as the scaling unit of the waiting time process. jnjenbeck process.

A further ingredient we need to evaluate in E2Q) is the
special form of the moments &v. Let us assume for the
time being that, in the force-free limit, they are given
through Let us first point out that the limiw—1 of Eq. (33
corresponds to the Brownian Rayleigh equati&y. (11)].
This relates to the fact that for the e stable formw(t)
=L/ (t/7), this very limit «—1 leads back to thé form
(15) with characteristic waiting tim@ = r=At. In the long-
with the “interaction time” constant™, on the meaning of time limit, the same holds true for the Poissonian form

Discussion of the fractional Rayleigh equation

(Boy=—- o, Qo= (25

which we will comment below. w(t)=7"te V", or any waiting time pdf with finiteT.
Putting together Eq<$22), (24), and(25), we arrive at the The velocity moments belonging to the fractional Ray-
Laplace space equation leigh equation can be calculated directly from E§3) by
integration. Thus, forf“ .vdv-, one obtains the fractional

keT 32 relaxation equation
5 7]7*—2 W(v,u)w(u) .
Jv

J
=1+ — o+
W(v,u) 1 7 nT

d l1-a_*x _
+(u)8(v). (26) Grv )+ oD 7% (u(1)=0, (34)

Noting that¢(u) =[ 1—w(u)]/u and neglecting terms of or- the Laplace transform of whicksee Oldham and Spanier
der O(72%), we obtain the equation [55]) reveals[56]
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equilibration toward the Maxwell distribution, irrespectively
(35 of the conditional probabilityp(Ax|t). In that sense, the
Mittag-Leffler relaxation acquires a universal character in
which in turn defines the Mittag-Leffler functidi®7,58 anom.alc.)us trap .spor.t of such types that feature a scale-free,
self-similar waiting time pdf.

©

— *tan
<U(t)>=UOEa(—77*ta)EE( 7" t%)

n=o I'(1+an)’ (36

V. “LE' VY SNEAKING”: SLOW TRANSPORT PROCESS
The Mittag-Leffler function is thus a natural generalization GOVERNED BY TRAPPING

of the exponential function. ForQa<1 itis strictly mono- Let us now include the position space dynamics into the
tonic, and interpolates between the initial stretched exponeryiscssjon. We start off with the consideration of a process

tial pattern whose force-free limit describes subdiffusion, Ed) with
7t 0<a<1. This process corresponds to a multiple trapping
(v(t))~vg exp — =7 (37 scenario where the test particle moves Brownian style in ac-
I'l+a) - - ’ 7 )
cordance to the Langevin equation with white Gaussian
and the final inverse power-law decay noise, Eq.(8), and gets successively immobilized in traps
whose mean distance 8= (v?),7* [39]. As it is supposed
(o)~ 7*tT(1— )] L, (39) that the trapping is strong, the time spans spent in the immo-

bilized state are ruled by the stable waiting time 3.

_ _ ) As shown in Ref[39], this process can be modeled by the
The second velocity moment of the fractional Rayleighgngditional probability

process shows the Mittag-Leffler equilibration

kgT
(VD) =VEEL(~ 27, + 1= E,(=27,)], P(AX|t)=p(Ax)= 8(Ax—v7*), (43)
(39
toward the stationary thermal valge?),=kgT/m. which thus leads to a decoupled formulation in the sense that

Introducing the separation ansat?,(v,t)=T,(t)¢n(v) p does not involve the waiting time explicitly, as it does in
for the eigenvaluex,, of index n [27,35,36, the velocity —the processes discussed in Secs. VI and VII. Only for short
eigenequation is equivalent to the one obtained in thdimes,p=3J5(Ax—uvt). Itis shown in Ref[39] that this initial
Brownian case, see, e.g., Ref4], and the temporal behavior can be neglected in the long-time limit.
eigenequation corresponds to the fractional relaxation equa- With a small error only in concern of this long-time limit,
tion (34) that determines the Mittag-Leffler relaxation the governing generalized Chapman-Kolmogorov equation

of this process takes on the fofr89]
Ta() =Ea(—\pt?) (40)

for the relaxation of the mode with eigenvaluen, . . "
The observed Mittag-Leffler relaxation of moments and W(X,v,t)=f dt'J d(Av)W(x—v7*,0—Av,t")
modes is closely related to the Laplace space rescaling 0 —w
7 7 X (v —Av;Av)w(t—t")+ d(t) 5(X) 8(v).
Wa(v,u)=—*u“1W1(v,—*u“> (41) (44)
n n

fulfilled by the solutions of the fractional Rayleigh equation

(33) labeled W,(v,u), and the solution of the Brownian The velocity increment integration can be performed once
Rayleigh equation(11), W,(v,u). Consequently, the frac- the corresponding means are determined. As the trapping
tional solution is positivg40], and the exponential relaxation events are(kinetic energy-preservinginterruptions of the

so typical for Brownian processes turns into the Mittag-Langevin controlled proces$), these moments are given
Leffler pattern that can easily be seen from the analogouthrough

rescaling of the velocity moment,

UO/ 7 rescaling Vo . F(X)
- =— +
Truly — Ll (42 (Av) nT o

L{voe™ "=

ksT7
* . 2\ _ *
™; ((Av)*)=2 ek
(49
and comparison with the definitiai35).
Concluding this section, we remark thatl processes
based upon the generalized Chapman-Kolmogorov equationhere 7, the mean time between successive trapping

(14), governed by a broad waiting time pdf of the ty{&8),  events, enters linearly in both expressions. Readily, the inte-
with diverging characteristic time, lead to a Mittag-Leffler gration overAv leads to
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L 0 F(x)

*—_

ax m

Jd Jd
™ —+ —qpur*+

W =|1—
(X,v,u) v P

Reshuffling terms and inverting tcanalogously to the steps
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kgT
5 777'*—2 W(X,v,u)w(u)+
Jv

+(U)WO(X,U).

(46)

free process is described by the fractional Rayleigh equation

in the preceding Section, one arrives at the fractional Klein{33) derived in the preceding section, as it should be.

Kramers equatioiFKKE)

dW Dl-a 4 N al F*(x)
ot ot Cox T T T m
n*kBT 2
o | WX, (47)

wherev* =v 7% /7 with [v* |=cmsecC ¢, »* = 57"/ 7% with
[n*]=sec®, and F*(X)=F(XxX)7*/7* with [F*]
=cmgsecl ® Note that the Stokes operatord/gt
+vdldx) from the standard Klein-Kramers equatidhO)
[12] is replaced by the operatop/t+ (D}~ “v* d/x) that
shows the nonlocal drift response.

A. Discussion of the fractional Klein-Kramers equation
describing “Levy sneaking”

In the FKKE (47), the entire Klein-Kramers operator in
the square brackets acts non-locally in time, i.e., drift, fric-

B. The associated fractional Fokker-Planck equation
of the “Le vy sneaker”

Let us now turn toward the overdamped limit of the
FKKE (47). Using the same steps as in the Brownian case
(see Ref[51]), the integration of the FKKE47) over veloc-
ity [*..dv-, andv times Eq.(47) over velocity [”  vdv-
leads to two independent equations, the combination of
which produces the kinetic equation

IW 92

ot

d F(x)
ax my,

a

)W(x,t)
(49)

1
+oDife—w= Dl ¢ - —
o+t 77* oYt axz

from which, in the high-friction limit, one is led to the frac-
tional Fokker-Planck equatiofFFPB

1

IW 92

ot

d F(x)

17
t JxX mpy,

=9 +K“ﬁ> W(x,t), (50

tion, and diffusion terms are under the time convolution andvhich was discussed in detail in R¢86], and was derived

thus affected by the memory. Consequently,
(x,v)-averaged positio(x(t))) is related to its velocity
counterpart through the non-Newtonian relation

d T*
Gi{(x®)=—oDi ((u(1))), (48)
T

which seems to contradict the Brownian relation
(drdt)({x(t))y=((v(t))). This “violation” results entirely
from the camouflaging effect of the introduction of the long-
tailed waiting time pdfw(t). Indeed, in the underlying
Langevin equatiori8) governing the nontrapping regimes of

thefrom a generalized master equation and a nonhomogeneous

random walk, in Refs[37,38. The constantsy, and K,
introduced in this derivation are now defined as

(03

,
Ha= 1, [p,]=se¢ 2
7_*
kgT
= mBn . [K,]=cn? sec . (51)

These relations show that the generalized coefficients are
based on the proper dynamical quantitigsm, and 7* and

the Levy sneaking process, the noise average is in full accorthat the fractional dimensions emanate from the rescaling

dance with Newton’s laws: m(d?/dt®)(x)r=— 7(v)r

with 7%, or, in other words, through the introduction of the

+F(x). It is solely the averaging over the sequence of trapfractal waiting time distribution, Eq(23). Moreover, the
ping and nontrapping events plus the dominance of the traggeneralized Einstein-Stokgs9] relation connecting,, with

ping regimes due to the long-tailed waiting time [28) that
brings about the behavig48).

Moreover, the FKKE47) is separable in the sense that a
separation ansatz decouples the equation into a temporal a

7, now follows directly from the derivation.
As pointed out in Ref[36], the fractional solution of the
FFPE (50) can be connected to its Brownian counterpart

a spatial eigensolution so that the fractional Klein-Kramers

mode relaxation in the lwy sneaking problem follows the
Mittag-Leffler pattern39].

Na

X, —u“
7

titfough the scaling relation

W, (x,u) = %u“lwl<

As the multiple trapping process described by the FKKE

(47) is assumed to be kinetic energy conserving, single re
laxation events- v 7 due to friction, i.e., due to the effec-
tive interaction of the particle with its environment, are dis-
tributed such that the separating time intervals are distribute
according to the waiting time pd23). Therefore, the equili-
bration of the velocity pdiW(v,t) of the associated force-

which is equivalent to Eq(41) belonging to the fractional
Ornstein-Uhlenbeck process, in turn formally a special case
of the FFPE(50). Accordingly, the mode relaxation of the
BFPE(50) is given through the same Mittag-Leffler pattern
TL(t)=E_(—\,t%) as derived for the corresponding FKKE
(47).
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The force-free mean-squared displacement that corre- o[ ,
sponds to the FFPE50) reads W(X,t)ZJOdt f_md(AX)W(X—AX,t )
2oy 2Ka 53 ><35(|Ax|—vo(t—t'))w(t—t')+¢(t)5(x)
(x*(1))= Ti+a) (53 2
(57)
which is equal to Eq(4) with K=K, /T'(1+ a). which by change of convolution variables and relabeling of
the dummy variablé\x can be recast to
VI. LE VY WALKS AND THEIR GENERALIZATION:
ENHANCED TRANSPORT WITH LE VY TYPE L , ,
TRAJECTORIES W(x,t)=f0dt f_mdx W(X' t")p(x—x",t—t")
In this section, we investigate the relation of the general- + (1) 8(x) (58)
ized Chapman-Kolmogorov framework to the viyewalk
model that is defined in continuous time random walk theorywith the jump pdf
[42]. According to the latter, a lwy walk is governed by the
jump pdfr(x,t) =w(t) p(x|t) that determines the step length
and waiting time for the belonging random walk process. WXt = 16(|x|—v0t)w(t) (59)

The conditional probabilityp(x|t) introduces a time cost that
penalizes long jumps by a high time cost. This is the crucial
difference that sets the’ g walk process apart from the which is exactly eqUIvaIent to the’ g walk definition in the
Markovian Levy flight. The former exhibits a finite mean- jump picture given in Refl42].
squared displacement and thus delivers a physically sensible For the waiting time pdf with finite characteristic tinfe
theory for a massive test particle whereas the latter possess@dt infinite second moment, such as
a diverging second moment. It is of interest to show the
connection o,f our generalized Chapman-Kolmogorov equa- A
tion to the Lery walk, as the phase-space formulation, in w(t)~ —2, 1<B<2, (60)
principle, allows for an extension of this g walk model tith
for nontrivial velocity distributions and in the presence of
external force fields. Here we concentrate on suclkryLe it can be shown that the associated mean-squared displace-
walks for which the spatiotemporal coupling is linear, i.e.,ment follows[42]
wherep(x|t) = 8(x—uvt). Note that the following reasoning
can be extended to the general coupling described in Ref.
[42], or beyond.

Starting off with the generalized Chapman-Kolmogorov
equation(14), we choose th& coupling

((t))ect37 (62)

which describes subballistic superdiffusion and is not to be

confused with the scaling results discussed in the connection

with Leévy flights [60].

1 A striking quality of Levy walks is that their trajectory
p(AXx|t)= 55(|X| —vot), (54)  resembles a veritable ks flight, i.e., a process where each
jump length is distributed in Ty stable fashion, with a di-
verging second moment. This similarity stems from the fact
where the absolute value is necessary as we additionally réhat for increasing time the allowed jump length window in
quire the sharp velocity distribution the Levy walk model grows, i.e., the penalizing time con-
sumption for long jumps becomes less relevant. The same
phenomenon is observed for the propagator whose wings
AL _ _ more and more approach a truéwepdf, except for the
Ylo—AviAv)=6(Av—vo). ©9 cutoff & spikes that correspond to particles locked onto the
vo mode[42].

Namely, if we choose The calculation of a kinetic equation corresponding to the
Levy walk Chapman-Kolmogorov equatiof8) is not as
straightforward as in the case of \yesneaking, exactly due

Wo(x,0) = 8(X) 8(v —vy), (56) to the possibly very long sojourns coming into play, and
creating the approaching to a long-tailed pdf. As shown be-
low, this forbids a truncation in the belonging Fourier space

nominally no changes in the apparent velocity of the tesexpansion that is always taken in the continuous time ran-
particle occur, which has now to be expressed through thdom walk, but only for the calculation of the first two mo-
choice(54). ments and not for the associated pdf. Otherwise, all terms of

Then, the integration over the velocity incremefts and  the Fourier expansion have to be carried along, in a Kramers-
over the velocityy reveals Moyal type expansion.
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VII. “LE VY RAMBLING": SUBBALLISTIC ROVING coupling of the form(54). Moreover, we define the moments
IN THE SMALL WAVE-NUMBER LIMIT of the velocity increments through

In this section, we introduce a new process whose defini-
tion exactly draws this small wave-number limit in the Fou- F(x) KT
- . : . B! 7
rier representation that is not commensurate witiylwalks (Avy=—nur*+ —1; ((Av)2> =2—— 7. (62
(see above In this process, the particle is assumed to stay m m
fixed in a given propagation mode, but the length of the
belonging excursions is truncated. The associated processBy this definition, we assume that the influence of the fric-
interesting in its own way, and we will argue that it might tion and the entropic parts enter through the effective “inter-
prove to be an interesting variant for the description of sub-action time” scaler* whereas the force constantly acts upon
ballistic, enhanced transport in an external force field, andhe test particle. Choosing a long-tailed waiting time distri-
with finite moments. Indeed, this process is closer to théution with a diverging mean-squared displacement, the fi-
wave equation than to the diffusion equation, as we willnite 7* becomes negligibly small and can be interpreted as a
show. The force-free position space analog of this procespointlike interaction. Comparing to the physical picture of a
has been investigated in Rdb61], where its physical rel- collision model, these assumptions are physically sensible
evance was noted by analogy to results obtained for Richard62]. The final and crucial definition, the small wave-number
son diffusion. limit, is introduced below.

The basic definition of “Ley rambling” is very similar Putting all the ingredients together, we arrive at the gen-
to the Levy walk, i.e., we have an explicit spatiotemporal eralized Chapman-Kolmogorov equation

t b b F(x KeT 52
W(X,v,t)=f0 1+E7]UT*—E(T)(I—V + anr* E)
XW(X—v(t—t"),v,tIW(t—t")+ ¢(t) 8(x) (v), 63)

where the operataf/ dv acts solely on the second argumenVéfx—v(t—t"),v,t’). For the further evaluation we introduce
a Fourier transformation, recovering

1+ —qpvr*— — —(t—t")+
) dp M m

t
W(k,v,t)zJ dt’
0

H? .
* F) W(k'v’t/)elkv(t—t/)w(t_t/)+ (1) 8(v), (64)
1

where we note that the fordeshould actually be written in a Fourier convolution with We prefer to suppress the explicit
occurrence of this, however. Note that in the last step we made use of the translation tfi¢orem)— e'*2f(k) of the
Fourier transformation. With the equivalent theorem for the Laplace transformation, we arrive at the equation

P F kgTy *ﬂ_z)Wk ) —ikv)+ )8(v) (65)
b ogum T Tm Tz Wk wwu—ike) + (w)8(v),

W(k,v,u)=

where 4/Hu solely acts upon the functiow(u—ikv), and  whereas all the remaining terms in the round brackets are

we employ the theorertg(t) — (d/du)g(u). only combined withw(u), due to the observation that the
It is at this point where we introduce the small wave- neglected terms are of higher order concerning the combina-
number limit, namely, through the approximation tion of the wave numbek and the corresponding Fourier
quantity for the velocity
w(u—ikv)~1—(Un %y ik Observing that
ikv\“« ikv
=1-(un*1-—| ~1-(un*1—a— d
u u W= —arfue i+ O(), (67)
~w(u)+ ar®ikou®?, (66)

which we terminate after the first order knIn addition, we  E9- (69 is recast into

have to specify which terms we will take along in our long-

time, small wave-numbsdtong-wave limit. Multiplying ex-

pression(66) with the operators in the round brackets in Eq. ?Note that this rule results from the typical diffusion limt
(65), we take both terms in Eq66) along with the “1,” —0,u—0 in Fourier-Laplace spadd2].
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d F
W(k,v,u)= W(u)+a7“ikvu“*1+w(u)%771)7'* +arus =

With the usual differentiation theoremikf(k)—
—(d/dx)f(x), we find the integral form of the vy ram-
bling fractional Klein-Kramers equation

W 1% —-W, v)+agD 1 v—+ _(X) — W v
(Xy 1t) 0(X1 ) oYt ax m ) (X1 1t)
=4D n —0u+ __2 W v,t 69
ot I m 2 (X1 ’ ) ( )

through Fourier and Laplace inversion.
Differentiation in respect tbleads to the differential form

W AW F(X) oW
_J’_ JR— N
a U ox TYm oo
pi-apx| 2 keT & W(x,v,t
- oMt 7 aUU m 2 (vay )

(70

Through a possible rescaling of the position variable (
—x/a) and the force F— aF), we arrive at the final form
of the Levy rambling FKKE,

AW W F(x) oW
ot JIX m Jv
pi-apx| 2 L KeT > W(x,v,t
— oYt n avv m (?1)2 (vay )1

(71)

which is equivalent to the equation introduced by Barkai and

Silbey in Ref.[40].

A. Discussion of the fractional Klein-Kramers equation (71)
describing “Lévy rambling”

The stationary solution of Eq(71) being defined via
dW/9t=0, is obtained by requiring both expressions

v IWI IX+[F(x)/m](dW/dv)
and

[9ldvv + (KgT/m)(9?1 dv?) IW(X,v,t)

GENERALIZED CHAPMAN-KOLMOGOROV EQUATION: A...
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N keTnr* 92 WK +1—W(u)5
e w(u) — P (ko ,u)+ ———8).
(68)

[31,32, and which also characterize wewalks. Moreover,
the pdfW(x,v,t) decays exponentially so that the associated
trajectory in position space isot of the Levy type (compare

to Ref.[63]).

Due to its derivation that distinguishes the drift terms on
the left-hand side of E(.71) from the friction and diffusion
terms on its right-hand side where the latter are under the
fractional operator, the macroscopically averaged position is
of Newtonian character, i.e.,

SO = (). 72

This observation sets the FKK&1) clearly apart from the
FKKE (47). For the latter, the analogous relati¢fB) high-
lights the non-Newtonian character brought about by the
camouflaging waiting time averaging in which the broadly
distributed trapping times win out in the competition with the
Langevin dominated nontrapping motion events, an indi-
vidual of these events lasting for the finite average tirfie
Here we encounter the different case that, according to the
assumption that the test particle, never being trapped, con-
stantly responds to the external force fi€l¢x) that is mir-
rored in the moment&2). Apparently, this property is pre-
served in the small wave-number lini&6).

Note that due to this different quality in the temporal evo-
lution separating the phase spatial derivatives on either side
of the FKKE (71), the associated process does not separate
into the product of a purely temporal and a phase spatial part
as it was observed in Sec. V.

B. The associated fractional Fokker-Planck equation
of the “L€ vy rambler”

Applying Davies’s recipg51] of velocity integration to
the FKKE (71), we obtain the fractional telegrapher’s type
equation

1, 7
_*ODt W+ —2W= ODta - 5 "
i ot mzn

62
+ Kz_aﬁ W(x,t)

to vanish simultaneously. Otherwise, due to the fractionalVith the generalized diffusion constant

differentiation \D{ ~“1x=t*~ 1 of a constant, one side would

be explicitly time-dependent. With the product ansatz

We(X,v)=X(x)V(v), we find the Gibbs-Boltzmann form
(5).

The FKKE (71) thus governs the relaxation toward Gibbs-

Boltzmann equilibrium. Accordingly, it differs from the non-
equilibrium stationary solution obtained for e flights

kgT

* !

Koo [K,_, ]=cn? se¢ 2. (74)

mmn

For short times, this process is governed through the equa-

tion
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1 d F(x) 9? Z (= apt2Y)

— —W=| —— +Koo ,— | W(X,1), 75 T,(D)= _—
e R =2, T+ (= ai)

(82

highlighting the ballistic motion that is to be expected for can be inferred. Note that for the belonging Mittag-Leffler
times before velocity changes occur, and for which the parindex 2—a>1 there is no theorem for the long-time asymp-
ticles thus all move in their given original direction. This is totics. Wiman showe{58,64 that there is an odd number of
most obvious in the force-free limit in which E¢75) re- negative zeroes, which holds for our case. Special represen-

duces to the wave equation tations can be obtained for rational numbers, e.g., dor
=1/2 one gets
9 @ B
—W=0—W(x1), 76 3 N
at? ax? x0 78 exp(—)\ﬁ”‘t +2 co{
3o 2 2
~ . Eal —\nt¥)= N
wherev=7n*K,_,. Note that such a behavior can also be 3 exp( n )
obtained in the ey sneaking model described in Sec. V if 2
one avoids drawing the long-time limit.
. - S . . 5 7 3 \t3
In the usual high-friction limit, one finds the fractional AN 132 F (1._ 2. 0n )
Fokker-Planck equation nt 13 g2 27
a
92 We D¢ 9 F(x) K 9 w .
a2 7t ax may* 2ma g2 0. (77 and one clearly recognizes superimposed oscillations that are

typical for anya e[0,1) in Eq.(81).
Note the second-order time derivative on the left-hand side, The investigation of the FFP&?7) in the force-free limit
indicating that it is essentially a subballistic motion. In this leads to interesting consequences, as shown in[B&J. In
model, the generalized friction coefficients in both the FKKEthe presence of an external force, the behavior of (@)
(71) and the FFPE77) are given byz*. The force-free requires special attention, especially in respect to the positiv-
mean-squared displacement belonging to &q) is given ity of the belonging pdiN(x,t). This is topic of a forthcom-

through ing investigation 65].
2K, VIIl. LE VY FLYING: RANDOM MOTION BEYOND
2 _ ¥ 22—«
(x(V)= r(g_a)t , (78) FINITE MOMENTS

In this final section, we address the determination of the
FKKE for a Levy flight process. In the continuous time ran-
dom walk framework such a process is defined in terms of a
Poissonian waiting time pdiv(t)=7"1! exp(~t/7), or EQq.
(15), and the jump length pdf is vy stable, i.e., the jump
pdf is given througt 18,54

which corresponds to Eq4) with K*=K,_,/T'(3—«a),
and issues the typical g walk behavior displayed in Eq.
(61). This equivalence originates in the full validity of the
small wave-number limit corresponding to the truncated rep
resentation of the ey walk propagator in Ref.42] for the
calculation of the mean-squared displacement.

Let us introduce the separation ansaf/(x,t)

=T(t)¢(x) into Eq.(77). This leads to the fractional equa- p(x, =L, (x)7 te VU~ ifleft/r, (84)
tion . x| L H#
d2T, where we choose € <2. In Fourier-Laplace space, the
a2 =—NAnoD{Th(t) (79 corresponding asymptotic limit reveals
P(k,u)~1—ur—a*|k|*. (85)
for the temporal eigensolution whekg, denotes thenth ei-
genvalue. On taking the Laplace transformation of &§), As was discussed by Seshadri and WE2E] and by
one has to provide two initial values for which we choosePeseckiq29], and later in the context of random environ-
T(0)=1 anddT/dt|;,—,=0. Consequently, we obtain ments by Fogedby31] and Honkonen32], this concept
leads to the FKKE
1u
W= e ©0 oW W W9 ke oe Wit
n ATV T Tm G = 7 g v TR D WO b,

This result can be back-transformed into trdomain, mak- (86)

ing use of the definition of the Mittag-Leffler function: where the fractional Wey! operator is defined throgi§a]

Tn(t):EZ—a(_)\nt27Q) (81) 1 X W(X/ v t)
_.D,*W(x,v,t)= —— dx’;, 8
from which the series expansion W ) P(p)) - (x—=x")L7*# 87
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in the definition of which we include a phase factor so that it{(Av)?) that have to be supplied in order to perform the

fulfills the generalized differentiation theorem transition to the belongingfractiona) Klein-Kramers equa-
tion. These moments define the interaction of the test particle
w _ | jkx w with its environment through friction, external forcing, and
f{_“DXW(X’U't)}_f_deé ~=DiWx.o,1) entropy. We have assumegd throughout that these gmoments
are based on a stochastic Langevin dynamics with
= —|kl*W(k,v.t). (88  s-correlated Gaussian noigqt).
Apart from the classical Brownian case, “bye sneak-
Discussion of the Ley flight Klein-Kramers equation and the ing” is possibly the best founded case of the anomalous
associated Fokker-Planck equation models discussed. Its fundamental ingredient, the trapping

mechanism, has been recognized as the mechanism underly-
ing the dispersive charge carrier transport in amorphous
semiconductorg66,67), the motion of excess electrons in

One obtains from the FKKE86) in the usual way the
fractional telegrapher’s-type equation

oW 1 92W J F(x) quuid; [68], gnd _it occurs in the phase-space dynamics of
— == = — — KA DX W(X,p,1) chaotic Hamiltonian systeni§9].
a - a2 gx mny Lévy flights are physically sensible only for a limited

(89 range of problems such as the diffusion in energy space en-
. . . . . . countered in single molecule spectroscg@®]. Otherwise,
;/ii/aeUir:n:ﬁ(gar?wtilor?-.fr'i\cl:(taiglscltilrggt tr;iesizgggé?rsd?;et";:zc(tjiirr:\;?'massive particles are required to have a finite speed. This is
Fokker-PIanclg cquation that, was inferred in RéR9] for especially crucial in the 1wy flight model where extremely

q long jumps are permitted to be performed instantaneously.

{‘hegyéléi’gitlsi:]n Ser;?ggn;ae n¥'r:?snrtnezt’o?nf?a(i't?gngi(:;i?]_fur'Thus, Lavy flight modeling of test particles in real space can
i yp at most be an approximation; compare, however, Refs.

Kramers equation and its related fractional Fokker-PIancIf72 73. Moreover, it might be questioned whether the

egﬁggogf’ tlhee.,nt"nr:aiu?g Eglr?jj %ﬁ’srlc;ig:{(el;?)d% iomthzsdli\éer- Langevin equation description with g noise can hold in
9 q P C respect to the linear friction assumption.

typically found for Levy flights [42,60, and it will not be Two ways out of these problems were described. One is

purNsutedtIr:etr?hfurér&eéE(%) is similar t tion derived the well-known Lery walk that can be generalized to exter-
_Notetnatine IS Similar to an equation derived . fia|4s and phase space through the presented approach.

within a quantum-mechanical picture through a random Maspa second is “[gy rambling” that was derived as the

trix formalism by Kusnezoet al. [33]. small wave-number limit of [ey walking. Both lead to fi-

nite moments of any order and include moving humps or

spikes that lead to the oscillations superimposed to the relax-

We have generalized a formerly proposed Chapmanation behayior. I'_ey_ rambling as WeI_I as the phase-space
Kolmogorov equation to continuous time phase-space dyanalog of L&y walking are to be studied further in a future
namics, employing the Chandrasekhar notation. It has beef{ork. . o .
demonstrated that this new equation is the common footing The Brownian process, “ley sneaking,” and “Ley
for a variety of stochastic models that describe normal and@mbling” are characterized through an equilibration toward
anomalous transport in external fields in the underdamped 48€ classical Gibbs-Boltzmann distributions. The related gen-
well as overdamped limit. eralized Einstein relations as well as the validity of the sec-

Three crucial ingredients have to be supplied to the genoNd Einstein relatiori36—4q are tightly related to this dy-
eralized Chapman-Kolmogorov equation in order to arrive apamlcallbe_hawor cIose_ to classical thermal equilibrium.

a certain model. A ubiquitous behavior for all processes governed by a

(i) The waiting time pdfw(t) that determines the time self-similar waiting time pdf with diverging characteristic
spans between successive velocity changing events. This piiting time is the Mittag-Leffler velocity equilibration ac-
w(t) either describes the time of being trapped at a giverFO“?'”g to the f_ract|onal Rayleigh equation. In th|§ case, the
site, or the time spent in a velocity mode, leading to eithe/Stationary solution corresponds to the Maxwell distribution.

“Lévy sneaking” that corresponds to force-free subdiffu- !t should finally be emphasized that for an appropriate
sion, or to Ley walking or “rambling” from which the choice of the transfer kernel, also mixed forms of the asso-
force-free sub-ballistic motion is derived. In the Markovian Ciated deterministic kinetic equations with nonordinary de-
cases of Ley flights and Brownian motion, the waiting time Tvatives in both space and time can be recovered as they
pdf becomes obsolete and can be replaced by an averalre; for instance, discussed in Ref87,71] on the frac-
time stepAt. ilonal Fokker-Planck level.

(i) The spatiotemporal coupling(Ax|t) relating the cov-

IX. CONCLUSIONS
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