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Generalized Chapman-Kolmogorov equation: A unifying approach to the description
of anomalous transport in external fields
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The generalized Chapman-Kolmogorov equation@V. M. Kenkre, E. W. Montroll, and M. F. Shlesinger, J.
Stat. Phys.9, 45 ~1973!# is discussed. It is demonstrated that this equation unifies recently proposed kinetic
equations of fractional order that describe anomalous transport in external fields, as well as continuous time
random walks. The conditions under which the individual models can be established are discussed.

PACS number~s!: 05.40.Fb, 05.60.2k, 02.50.Ey
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I. INTRODUCTION

The Chapman-Kolmogorov equation describes the pro
bilistic transition from a given state of a stochastic proces
another state, via all the possible intermediates@1–5#. Its
formulation dates back to Bachelier’s treatises of stock m
ket speculation@6#, Smoluchowski’s work on colloidal par
ticles @7#, Chapman’s studies of the diffusion of grains in
nonuniform fluid@8#, and Kolmogorov’s probability theoret
ical investigation @9#. Consequently, the Chapman
Kolmogorov equation is often credited to Bachelier
Smoluchowski. It is called a chain equation by Montroll a
West @10#. The Chapman-Kolmogorov equation is necess
ily fulfilled by a Markov process@11#.

In the following, we employ Chandrasekhar’s notati
@12# according to which the Chapman-Kolmogorov equat
takes on the form

W~x,v,t1Dt !5E
2`

`

d~Dx!E
2`

`

d~Dv !W~x2Dx,v2Dv,t !

3C~x2Dx,v2Dv;Dx,Dv ! ~1!

in phase~position-velocity! space. Equation~1! describes the
temporal evolution of the probability density function~pdf!
W(x,v,t) through the incremental transition fromW(x
2Dx,v2Dv,t) to W(x,v,t1Dt) during the average time
step Dt. The transfer kernel in Eq.~1! is thereby given
through@12#

C~x2Dx,v2Dv;Dx,Dv !5c~v2Dv;Dv !d~Dx2vDt !.
~2!

The kernelC and its factorized counterpartc describe the
distribution of transitions with the velocity incrementDv for
the field variablesv and x where the position increment i
connected with the mean time stepDt throughDx5vDt.
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Brownian motion @13#, as described through th
Chapman-Kolmogorov equation~1! is subject to the centra
limit theorem and therefore exhibits the linear time depe
dence

^x~ t !2&52Kt ~3!

of the force-free mean squared displacement, in one dim
sion. The diffusion constantK is of dimension @K#
5cm2 sec21 @14,15#.

There exists a growing number of systems for which d
viations from the classical pattern~3! are reported@5,16–21#.
In the following, we concentrate on such systems exhibit
force-free anomalous diffusion defined through

^x~ t !2&52Ka* ta, aÞ1, ~4!

where a is called the anomalous diffusion exponent. T
generalized diffusion constantKa* has dimension@Ka* #
5cm2 sec2a. According to the value ofa, one distinguishes
slow or subdiffusion (0,a,1), and enhanced or superdi
fusion (a.1), which includes the intermediate~subballistic,
1,a,2) range.

The description of anomalous diffusion in the absence
presence of an external force field has received consider
attention, and among the applied approaches one finds
tional Brownian motion@22#, generalized master equation
@23#, continuous time random walk theory@24#, generalized
Langevin equations@25#, or generalizedq thermostatistics
@26#, just to name a few. In what follows, we concentrate
systems that are nonlocal in time, i.e., that display s
similar memory effects, that are linear, and that equilibr
toward the thermal Gibbs-Boltzmann equilibrium

Wst5N exp~2bE!, ~5!

whereN is a normalization factor,b[(kBT)21 is the Boltz-
mann factor, andE5V(x)1T(v) denotes the energy, with
T(v)5(m/2)v2 representing the kinetic energy andV(x)5

sti-
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2*xF(x8)dx8, the external potential. It has been argu
thatsuch systems can be conveniently modeled in term
fractional kinetic equations@27–40#. We also discuss the re
lation of the fractional approach to the continuous time r
ge
tim

s-

ed
-

s
io
ov
to

s

ua

s
s

t

ts
c

d-
of

-

dom walk scheme~Lévy walks, Lévy flights, etc.!, and the
generalized master equation.

Our considerations are based on the generali
Chapman-Kolmogorov equation@39#
W~x,v,t !5E
0

t

dt8E
2`

`

d~Dx!E
2`

`

d~Dv !W~x2Dx,v2Dv,t8!C~x2Dx,v2Dv;Dx,Dv !w~ t2t8!1f~ t !W0~x,v !,

~6!
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which is the phase-space generalization of the force-free
eralized master equation established for the continuous
random walk in Ref.@41#. Accordingly, in Eq.~6!, the quan-
tity w(t) is the waiting time pdf that controls the time elap
ing between any two successive jump events, andW0(x,v)
[ limt→01W(x,v,t) is the initial condition that persists with
a temporally decaying amplitudef(t)[12*0

t dt8w(t8) des-
ignating the probability distribution of having encounter
no jump event up to timet @42#. Through the choice of spe
cial forms for the waiting time pdfw(t) and the transfer
kernelC(x2Dx,v2Dv;Dx,Dv), we recover some model
discussed in literature and are able to dwell on their relat

After a primer on the classical Chapman-Kolmogor
equation~1! and its related kinetic equations of physical s
chastic processes, we discuss the connection to some
cently reported fractional models. Here and in what follow
we restrict the discussion to the one-dimensional case.

II. BROWNIAN CASE: KLEIN-KRAMERS,
FOKKER-PLANCK, AND RAYLEIGH EQUATIONS

In the Brownian case, the Chapman-Kolmogorov eq
tion ~1!, together with the definition~2! of the belonging
transfer kernel, is readily integrated with respect to the po
tion incrementDx. The integration over the velocity change
Dv is possible after a Taylor expansion of both the pdfW
and the kernelc in powers ofDv so that the final resul
reads@12#

W~x,v,t !1Dt
]W

]t
5S 12

]

]v
^Dv&

1
^~Dv !2&

2

]2

]v2D W~x,v,t !. ~7!

The necessary information about the velocity incremen
moments,̂ Dv& and^(Dv)2& is obtained from the stochasti
Langevin equation@43#

m
d2x

dt2
52hm

dx

dt
1F~x!1mG~ t !, ~8!

whereG(t) denotes ad-correlated Gaussian noise. Accor
ingly, one finds@12#

^Dv&52S hv1
F~x!

m DDt, ^~Dv !2&5
kBTh

m
Dt, ~9!
n-
e

n.

-
re-
,

-

i-

’

i.e., both moments are proportional toDt @44#.
Combining Eq.~7! with Eq. ~9!, one arrives at the kinetic

equation for the pdfW(x,v,t), the deterministic Klein-
Kramers equation@4,12,45,46#

]W

]t
5F2

]

]x
v1

]

]v S hv2
F~x!

m D1
hkBT

m

]2

]v2GW~x,v,t !.

~10!

Here and in the following, we make use of the Einstein
lation K5kBT/(mh), connecting the friction and diffusion
constantsh andK @15#. Equation~10! is a bivariate Fokker-
Planck equation describing the motion of a passive Brown
test particle of massm under the influence of an externa
force field F(x) in phase~position-velocity! space. On the
right-hand side of Eq.~10!, the first term describes the spati
drift due to the velocity of the test particle, the second te
accounts for the friction and external force feedback to
velocity as expressed through the corresponding Lange
equation, and the third term represents the velocity diffusi
i.e., the spreading of the pdfW(x,v,t) on the (x,v) field in
the course of time.

The distribution in velocity space, related to Eq.~10! and
without the external potential, is governed by the Rayle
equation@3,47,48#

]W

]t
5hS ]

]v
v1

kBT

m

]2

]v2D W~v,t ! ~11!

with the corresponding Langevin equationdv/dt52hv
1G(t). The Rayleigh equation controls the diffusion of th
test particle in velocity space that is confined by t
Ornstein-Uhlenbeck termh(]/]v)vW(x,v,t) corresponding
to the velocity damping term2hv in the Langevin equation
Equation~11! thus describes the relaxation of the pdfW(v,t)
toward the stationary Maxwell distributionWst(v), Eq. ~5!,
with E5mv2/2 andN5Abm/2p.

In the high-friction limit, one may neglect the inertia
term in the corresponding stochastic differential equation~8!,
to obtaindx/dt5F(x)/mh1(1/h)G(t), or the monovariate
Fokker-Planck equation, often referred to as the Smo
chowski equation,@3,4,7,49,50#

]W

]t
5

1

mh S 2
]

]x
F~x!1kBT

]2

]x2D W~x,t !. ~12!
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Equation~12! determines the diffusion of the test particle
position space under the influence of the external force fi
F(x). Formally, the stationary solutionWst(x) of the
Fokker-Planck equation~12! given by Eq.~5! for E5V(x)
can be obtained from the equilibrium solutionWst(x,v) of
the Klein-Kramers equation~10! by integration over the ve
locity variable. However, in passing from the Klein-Krame
equation~10! itself to the Fokker-Planck equation~12!, the
additional telegrapher’s term (1/h)(]2W/]t2) occurs, which
can only be neglected in the long-time, high-friction limitt
@h21 @51#.

III. GENERALIZED CHAPMAN-KOLMOGOROV
EQUATION

Let us now turn to the generalized Chapman-Kolmogo
equation~6!. As mentioned before, two crucial ingredien
th
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for further study are specific choices for the waiting tim
pdf w(t), and for the transfer kernelC. For our pur-
poses, we concentrate on such kernels that acquire the
eral form

C~x2Dx,v2Dv;Dx,Dv !5c~v2Dv;Dv !p~Dxut !w~ t !,
~13!

where thea priori conditional probabilityp(Dxut) connects
the position incrementDx with the elapsed waiting timet.
According to the continuous time random walk theory
developed in Ref.@42#,1 the waiting time pdf and conse
quently p(Dxut) as well, enter in the following convolution
fashion:
W~x,v,t !5E
0

t

dt8E
2`

`

d~Dx!E
2`

`

d~Dv !W~x2Dx,v2Dv,t8!c~v2Dv;Dv !p~Dxut2t8!w~ t2t8!1f~ t !d~x!d~v !. ~14!
c-
-

ith
For the underlying random walk process, this implies that
walker gets stuck in a certain position for a time span dra
from the waiting time pdf~Sec. V!, or locks onto a given
velocity mode for a random time determined byw(t) ~Secs.
VI and VII!. Moreover, we chose the initial condition to b
W0(x,v)5d(x)d(v).

In general, the generalized Chapman-Kolmogorov eq
tion describes a non-Markovian process due to the pres
of the time convolution, a typical manifestation of memo
@52,53#. The Brownian limit is nevertheless contained in E
~6! through the choice of the sharply peaked waiting time

w~ t !5d~ t2Dt !, ~15!

in connection with the conditional probability

p~Dxut !5d~Dx2vt ! ~16!

so thatw(t)p(Dxut)5d(t2Dt)d(Dx2vDt). Indeed, if one
only considers the long-time limit, any narrow waiting tim
distribution possessing a finite characteristic waiting time

T[E
0

`

tw~ t !dt ~17!

leads back to the Brownian description.

The connection to the generalized master equation and the
continuous time random walk model

Integration of the generalized Chapman-Kolmogor
equation~6! over velocity leads, after changing the dumm
variable, to
e
n

a-
ce

.
f

W~x,t !5E
0

t

dt8E
2`

`

dx8W~x8;x2x8,t8!

3C~x8;x2x8!w~ t2t8!1f~ t !W0~x!, ~18!

which is equivalent to the generalized master equation

]W~x,t !

]t
5E

0

t

dt8E
2`

`

dx8W~x8,t8!K~x2x8,x8;t2t8!

~19!

with the kernelK(x2x8,x8;t2t8), which depends on both
the distancex2x8 and the departure sitex8. Equivalently,
we can writeK(x,x8;t2t8)[K(x2x8,x8;t2t8), K being
defined in terms of

K ~x,x8;u!5uw~u!
C~x,x8!2d~x2x8!

12w~u!
. ~20!

In Ref. @37#, we demonstrated that the choiceC(x,x8)
[l(x2x8)@A(x8)Q(x2x8)1B(x8)Q(x82x)#, wherel is
the jump length distribution and the coefficientsA andB are
the local weights for going right or left, leads to the fra
tional Fokker-Planck equation~50! discussed below. More
over, in the isotropic limitA(x)5B(x), Eq.~19! corresponds
to the standard continuous time random walk model w
C(x,x8)[l(x2x8) @41,42#.

1In essence, our notationp(Dxut)w(t) is equivalent to the con-
tinuous time random walk notationc(x,t) for the jump pdf.
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IV. FRACTIONAL RAYLEIGH EQUATION: A
GENERALIZED CHAPMAN-KOLMOGOROV PROCESS

WITH A LONG-TAILED WAITING TIME
DISTRIBUTION

Under the condition that the position incrementsDx are
not distributed in a pathological way, the position average
Eq. ~14! can be performed to result in the monovariate g
eralized Chapman-Kolmogorov equation

W~v,t !5E
0

t

dt8E
2`

`

d~Dv !W~v2Dv,t8!

3c~v2Dv;Dv !w~ t2t8!1f~ t !d~v ! ~21!

for the pdfW(v,t). The aforementioned Taylor expansion
powers of Dv up to second order, and evaluation of t
belonging integral leads to

W~v,t !5E
0

t

dt8S 12
]

]v
^Dv&1

^~Dv !2&
2

]2

]v2D
3W~v,t8!w~ t2t8!1f~ t !d~v !. ~22!

Let us now consider a waiting time pdf of the one-sid
Lévy stable type,w(t)5La

1(t/t) @18,54#, or, more general,
of the long-tailed form

w~ t !;
Aa

t11a
, 0,a,1, ~23!

which corresponds to a divergence of the characteristic w
ing timeT due to the ‘‘relatively frequent occurrence of ve
long waiting times.’’ For the appropriate choice of the co
stant Aa , the pdf w(t) thus displays the following
asymptotic behavior in Laplace space,w(u)
[*0

t w(t)e2utdt:

w~u!;12~ut!a. ~24!

We will call t, or ta, the internal waiting time scale, i.e., w
will regard it as the scaling unit of the waiting time proces

A further ingredient we need to evaluate in Eq.~22! is the
special form of the moments ofDv. Let us assume for the
time being that, in the force-free limit, they are give
through

^Dv&52hvt* , ^~Dv !2&5
2kBTh

m
t* , ~25!

with the ‘‘interaction time’’ constantt* , on the meaning of
which we will comment below.

Putting together Eqs.~22!, ~24!, and~25!, we arrive at the
Laplace space equation

W~v,u!5S 11
]

]v
hvt* 1

kBTh

m
t*

]2

]v2D W~v,u!w~u!

1f~u!d~v !. ~26!

Noting thatf(u)5@12w(u)#/u and neglecting terms of or
der O(t2a), we obtain the equation
f
-

it-

-

.

W~v,u!2
W0~v !

u
5u2aS ]

]v
v1

kBT

m

]2

]v2D h* W~v,u!,

~27!

with

h* [h
t*

ta
, @h* #5sec2a. ~28!

The Laplace inversion of Eq.~27! whose right-hand side
contains the formu2aW(v,u) can be performed recalling
the definition of a fractional integral according to Riema
and Liouville @55#,

0Dt
2aW~v,t ![

1

G~a!
E

0

t

dt8
W~v,t8!

~ t2t8!12a
, ~29!

which possesses the important property

L$ 0Dt
2aW~v,t !%[E

0

`

dte2ut
0Dt

2aW~v,t !5u2aW~v,u!.

~30!

Thus, we recover the convolution integral equation

W~v,t !2W0~v !5 0Dt
2ah* S ]

]v
1

kBT

m

]2

]v2D W~v,t !,

~31!

which by definition of the fractional differential operator

0Dt
12a[

]

]t 0Dt
2a ~32!

can be recast into the fractional Rayleigh equation@39,40#

]W

]t
5 0Dt

12ah* S ]

]v
v1

kBT

m

]2

]v2D W~v,t !. ~33!

Note that this is the fractional generalization of the Ornste
Uhlenbeck process.

Discussion of the fractional Rayleigh equation

Let us first point out that the limita→1 of Eq. ~33!
corresponds to the Brownian Rayleigh equation@Eq. ~11!#.
This relates to the fact that for the Le´vy stable formw(t)
5La

1(t/t), this very limit a→1 leads back to thed form
~15! with characteristic waiting timeT5t5Dt. In the long-
time limit, the same holds true for the Poissonian fo
w(t)5t21e2t/t, or any waiting time pdf with finiteT.

The velocity moments belonging to the fractional Ra
leigh equation can be calculated directly from Eq.~33! by
integration. Thus, for*2`

` vdv•, one obtains the fractiona
relaxation equation

d

dt
^v~ t !&1 0Dt

12ah* ^v~ t !&50, ~34!

the Laplace transform of which~see Oldham and Spanie
@55#! reveals@56#
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^v~u!&5
v0

u1h* u12a
, ~35!

which in turn defines the Mittag-Leffler function@57,58#

^v~ t !&5v0Ea~2h* ta![ (
n50

`
~2h* ta!n

G~11an!
. ~36!

The Mittag-Leffler function is thus a natural generalizati
of the exponential function. For 0,a,1 it is strictly mono-
tonic, and interpolates between the initial stretched expon
tial pattern

^v~ t !&;v0 expS 2
h* ta

G~11a! D ~37!

and the final inverse power-law decay

^v~ t !&;@h* taG~12a!#21. ~38!

The second velocity moment of the fractional Raylei
process shows the Mittag-Leffler equilibration

^v~ t !2&5v0
2Ea~22hata!1

kBT

m
@12Ea~22hata!#,

~39!

toward the stationary thermal value^v2& th[kBT/m.
Introducing the separation ansatzWn(v,t)5Tn(t)wn(v)

for the eigenvalueln of index n @27,35,36#, the velocity
eigenequation is equivalent to the one obtained in
Brownian case, see, e.g., Ref.@4#, and the tempora
eigenequation corresponds to the fractional relaxation eq
tion ~34! that determines the Mittag-Leffler relaxation

Tn~ t !5Ea~2lnta! ~40!

for the relaxation of the moden with eigenvalueln .
The observed Mittag-Leffler relaxation of moments a

modes is closely related to the Laplace space rescaling

Wa~v,u!5
h

h*
ua21W1S v,

h

h*
uaD ~41!

fulfilled by the solutions of the fractional Rayleigh equatio
~33! labeled Wa(v,u), and the solution of the Brownian
Rayleigh equation~11!, W1(v,u). Consequently, the frac
tional solution is positive@40#, and the exponential relaxatio
so typical for Brownian processes turns into the Mitta
Leffler pattern that can easily be seen from the analog
rescaling of the velocity moment,

L$v0e2ht%5
v0 /h

11u/h
→

rescaling v0

u1h* u12a
~42!

and comparison with the definition~35!.
Concluding this section, we remark thatall processes

based upon the generalized Chapman-Kolmogorov equa
~14!, governed by a broad waiting time pdf of the type~23!,
with diverging characteristic time, lead to a Mittag-Leffl
n-

e

a-

-
s

on

equilibration toward the Maxwell distribution, irrespective
of the conditional probabilityp(Dxut). In that sense, the
Mittag-Leffler relaxation acquires a universal character
anomalous transport of such types that feature a scale-
self-similar waiting time pdf.

V. ‘‘LÉ VY SNEAKING’’: SLOW TRANSPORT PROCESS
GOVERNED BY TRAPPING

Let us now include the position space dynamics into
discussion. We start off with the consideration of a proc
whose force-free limit describes subdiffusion, Eq.~4! with
0,a,1. This process corresponds to a multiple trapp
scenario where the test particle moves Brownian style in
cordance to the Langevin equation with white Gauss
noise, Eq.~8!, and gets successively immobilized in tra
whose mean distance isD5^v2& tht* @39#. As it is supposed
that the trapping is strong, the time spans spent in the im
bilized state are ruled by the stable waiting time pdf~23!.

As shown in Ref.@39#, this process can be modeled by th
conditional probability

p~Dxut ![p~Dx!5d~Dx2vt* !, ~43!

which thus leads to a decoupled formulation in the sense
p does not involve the waiting time explicitly, as it does
the processes discussed in Secs. VI and VII. Only for sh
times,p5d(Dx2vt). It is shown in Ref.@39# that this initial
behavior can be neglected in the long-time limit.

With a small error only in concern of this long-time limi
the governing generalized Chapman-Kolmogorov equa
of this process takes on the form@39#

W~x,v,t !5E
0

t

dt8E
2`

`

d~Dv !W~x2vt* ,v2Dv,t8!

3c~v2Dv;Dv !w~ t2t8!1f~ t !d~x!d~v !.

~44!

The velocity increment integration can be performed on
the corresponding means are determined. As the trap
events are~kinetic energy-preserving! interruptions of the
Langevin controlled process~8!, these moments are give
through

^Dv&52hvt* 1
F~x!

m
t* ; ^~Dv !2&52

kBTh

m
t* ,

~45!

where t* , the mean time between successive trapp
events, enters linearly in both expressions. Readily, the i
gration overDv leads to
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W~x,v,u!5S 12vt*
]

]x
2

F~x!

m
t*

]

]v
1

]

]v
hvt* 1

kBTh

m
t*

]2

]v2D W~x,v,u!w~u!1
12w~u!

u
W0~x,v !. ~46!
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Reshuffling terms and inverting tot analogously to the step
in the preceding Section, one arrives at the fractional Kle
Kramers equation~FKKE!

]W

]t
5 0Dt

12aF2v*
]

]x
1

]

]v S h* v2
F* ~x!

m D
1

h* kBT

m

]2

]v2GW~x,v,t !, ~47!

wherev* [vt* /ta with @v* #5cm sec2a,h* [ht* /ta with
@h* #5sec2a, and F* (x)[F(x)t* /ta with @F* #
5cm g sec212a. Note that the Stokes operator (]/]t
1v]/]x) from the standard Klein-Kramers equation~10!
@12# is replaced by the operator (]/]t1 0Dt

12av* ]/]x) that
shows the nonlocal drift response.

A. Discussion of the fractional Klein-Kramers equation
describing ‘‘Lévy sneaking’’

In the FKKE ~47!, the entire Klein-Kramers operator i
the square brackets acts non-locally in time, i.e., drift, fr
tion, and diffusion terms are under the time convolution a
thus affected by the memory. Consequently,
(x,v)-averaged position̂ ^x(t)&& is related to its velocity
counterpart through the non-Newtonian relation

d

dt
^^x~ t !&&5

t*

ta 0Dt
12a^^v~ t !&&, ~48!

which seems to contradict the Brownian relati
(d/dt)^^x(t)&&5^^v(t)&&. This ‘‘violation’’ results entirely
from the camouflaging effect of the introduction of the lon
tailed waiting time pdfw(t). Indeed, in the underlying
Langevin equation~8! governing the nontrapping regimes
the Lévy sneaking process, the noise average is in full acc
dance with Newton’s laws: m(d2/dt2)^x&G52h^v&G

1F(x). It is solely the averaging over the sequence of tr
ping and nontrapping events plus the dominance of the t
ping regimes due to the long-tailed waiting time pdf~23! that
brings about the behavior~48!.

Moreover, the FKKE~47! is separable in the sense that
separation ansatz decouples the equation into a tempora
a spatial eigensolution so that the fractional Klein-Kram
mode relaxation in the Le´vy sneaking problem follows the
Mittag-Leffler pattern@39#.

As the multiple trapping process described by the FK
~47! is assumed to be kinetic energy conserving, single
laxation events2hvt* due to friction, i.e., due to the effec
tive interaction of the particle with its environment, are d
tributed such that the separating time intervals are distribu
according to the waiting time pdf~23!. Therefore, the equili-
bration of the velocity pdfW(v,t) of the associated force
-

-
d
e

r-

-
p-

nd
s

-

-
d

free process is described by the fractional Rayleigh equa
~33! derived in the preceding section, as it should be.

B. The associated fractional Fokker-Planck equation
of the ‘‘Lé vy sneaker’’

Let us now turn toward the overdamped limit of th
FKKE ~47!. Using the same steps as in the Brownian ca
~see Ref.@51#!, the integration of the FKKE~47! over veloc-
ity *2`

` dv•, and v times Eq.~47! over velocity*2`
` vdv•

leads to two independent equations, the combination
which produces the kinetic equation

]W

]t
1 0Dt

11a 1

h*
W5 0Dt

12aS 2
]

]x

F~x!

mha
1Ka

]2

]x2D W~x,t !

~49!

from which, in the high-friction limit, one is led to the frac
tional Fokker-Planck equation~FFPE!

]W

]t
5 0Dt

12aS 2
]

]x

F~x!

mha
1Ka

]2

]x2D W~x,t !, ~50!

which was discussed in detail in Ref.@36#, and was derived
from a generalized master equation and a nonhomogen
random walk, in Refs.@37,38#. The constantsha and Ka
introduced in this derivation are now defined as

ha[
hta

t*
21, @ha#5seca22;

Ka[
kBT

mha
, @Ka#5cm2 sec2a. ~51!

These relations show that the generalized coefficients
based on the proper dynamical quantitiesh, m, andt* and
that the fractional dimensions emanate from the resca
with ta, or, in other words, through the introduction of th
fractal waiting time distribution, Eq.~23!. Moreover, the
generalized Einstein-Stokes@59# relation connectingKa with
ha now follows directly from the derivation.

As pointed out in Ref.@36#, the fractional solution of the
FFPE ~50! can be connected to its Brownian counterp
through the scaling relation

Wa~x,u!5
ha

h
ua21W1S x,

ha

h
uaD , ~52!

which is equivalent to Eq.~41! belonging to the fractiona
Ornstein-Uhlenbeck process, in turn formally a special c
of the FFPE~50!. Accordingly, the mode relaxation of th
FFPE~50! is given through the same Mittag-Leffler patte
Tn(t)5Ea(2lata) as derived for the corresponding FKK
~47!.
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The force-free mean-squared displacement that co
sponds to the FFPE~50! reads

^x2~ t !&5
2Ka

G~11a!
ta, ~53!

which is equal to Eq.~4! with Ka* [Ka /G(11a).

VI. LÉ VY WALKS AND THEIR GENERALIZATION:
ENHANCED TRANSPORT WITH LE´ VY TYPE

TRAJECTORIES

In this section, we investigate the relation of the gene
ized Chapman-Kolmogorov framework to the Le´vy walk
model that is defined in continuous time random walk the
@42#. According to the latter, a Le´vy walk is governed by the
jump pdfc(x,t)5w(t)p(xut) that determines the step leng
and waiting time for the belonging random walk proce
The conditional probabilityp(xut) introduces a time cost tha
penalizes long jumps by a high time cost. This is the cruc
difference that sets the Le´vy walk process apart from th
Markovian Lévy flight. The former exhibits a finite mean
squared displacement and thus delivers a physically sen
theory for a massive test particle whereas the latter posse
a diverging second moment. It is of interest to show
connection of our generalized Chapman-Kolmogorov eq
tion to the Lévy walk, as the phase-space formulation,
principle, allows for an extension of this Le´vy walk model
for nontrivial velocity distributions and in the presence
external force fields. Here we concentrate on such L´vy
walks for which the spatiotemporal coupling is linear, i.
wherep(xut)5d(x2vt). Note that the following reasoning
can be extended to the general coupling described in
@42#, or beyond.

Starting off with the generalized Chapman-Kolmogor
equation~14!, we choose thed coupling

p~Dxut ![
1

2
d~ uxu2v0t !, ~54!

where the absolute value is necessary as we additionally
quire the sharp velocity distribution

c~v2Dv;Dv ![d~Dv2v0!. ~55!

Namely, if we choose

W0~x,v !5d~x!d~v2v0!, ~56!

nominally no changes in the apparent velocity of the t
particle occur, which has now to be expressed through
choice~54!.

Then, the integration over the velocity incrementsDv and
over the velocityv reveals
e-

l-

y

.

l

le
ses
e
-

,

f.

e-

t
e

W~x,t !5E
0

t

dt8E
2`

`

d~Dx!W~x2Dx,t8!

3
1

2
d„uDxu2v0~ t2t8!…w~ t2t8!1f~ t !d~x!,

~57!

which by change of convolution variables and relabeling
the dummy variableDx can be recast to

W~x,t !5E
0

t

dt8E
2`

`

dx8W~x8,t8!c~x2x8,t2t8!

1f~ t !d~x! ~58!

with the jump pdf

c~x,t !5
1

2
d~ uxu2v0t !w~ t !, ~59!

which is exactly equivalent to the Le´vy walk definition in the
jump picture given in Ref.@42#.

For the waiting time pdf with finite characteristic timeT
but infinite second moment, such as

w~ t !;
Ab

t11b
, 1,b,2, ~60!

it can be shown that the associated mean-squared disp
ment follows@42#

^x2~ t !&}t32b, ~61!

which describes subballistic superdiffusion and is not to
confused with the scaling results discussed in the connec
with Lévy flights @60#.

A striking quality of Lévy walks is that their trajectory
resembles a veritable Le´vy flight, i.e., a process where eac
jump length is distributed in Le´vy stable fashion, with a di-
verging second moment. This similarity stems from the f
that for increasing time the allowed jump length window
the Lévy walk model grows, i.e., the penalizing time co
sumption for long jumps becomes less relevant. The sa
phenomenon is observed for the propagator whose w
more and more approach a true Le´vy pdf, except for the
cutoff d spikes that correspond to particles locked onto
v0 mode@42#.

The calculation of a kinetic equation corresponding to
Lévy walk Chapman-Kolmogorov equation~58! is not as
straightforward as in the case of Le´vy sneaking, exactly due
to the possibly very long sojourns coming into play, a
creating the approaching to a long-tailed pdf. As shown
low, this forbids a truncation in the belonging Fourier spa
expansion that is always taken in the continuous time r
dom walk, but only for the calculation of the first two mo
ments and not for the associated pdf. Otherwise, all term
the Fourier expansion have to be carried along, in a Kram
Moyal type expansion.
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VII. ‘‘LE´ VY RAMBLING’’: SUBBALLISTIC ROVING
IN THE SMALL WAVE-NUMBER LIMIT

In this section, we introduce a new process whose de
tion exactly draws this small wave-number limit in the Fo
rier representation that is not commensurate with Le´vy walks
~see above!. In this process, the particle is assumed to s
fixed in a given propagation mode, but the length of t
belonging excursions is truncated. The associated proce
interesting in its own way, and we will argue that it mig
prove to be an interesting variant for the description of s
ballistic, enhanced transport in an external force field, a
with finite moments. Indeed, this process is closer to
wave equation than to the diffusion equation, as we w
show. The force-free position space analog of this proc
has been investigated in Ref.@61#, where its physical rel-
evance was noted by analogy to results obtained for Rich
son diffusion.

The basic definition of ‘‘Le´vy rambling’’ is very similar
to the Lévy walk, i.e., we have an explicit spatiotempor
e-

g-

q

i-

y
e

is

-
d
e
ll
ss

d-

coupling of the form~54!. Moreover, we define the momen
of the velocity increments through

^Dv&52hvt* 1
F~x!

m
t; ^~Dv !2&52

kBTh

m
t* . ~62!

By this definition, we assume that the influence of the fr
tion and the entropic parts enter through the effective ‘‘int
action time’’ scalet* whereas the force constantly acts up
the test particle. Choosing a long-tailed waiting time dist
bution with a diverging mean-squared displacement, the
nite t* becomes negligibly small and can be interpreted a
pointlike interaction. Comparing to the physical picture of
collision model, these assumptions are physically sens
@62#. The final and crucial definition, the small wave-numb
limit, is introduced below.

Putting all the ingredients together, we arrive at the g
eralized Chapman-Kolmogorov equation
e

it
W~x,v,t !5E
0

tS 11
]”

]”v
hvt* 2

]”

]”v

F~x!

m
~ t2t8!1

kBTh

m
t*

]” 2

]”v2D
3W„x2v~ t2t8!,v,t8…w~ t2t8!1f~ t !d~x!d~v !, ~63!

where the operator]” /]”v acts solely on the second argument ofW„x2v(t2t8),v,t8…. For the further evaluation we introduc
a Fourier transformation, recovering

W~k,v,t !5E
0

t

dt8S 11
]”

]”v
hvt* 2

]”

]”v

F

m
~ t2t8!1

kBTh

m
t*

]” 2

]”v2D W~k,v,t8!eikv(t2t8)w~ t2t8!1f~ t !d~v !, ~64!

where we note that the forceF should actually be written in a Fourier convolution withW. We prefer to suppress the explic
occurrence of this, however. Note that in the last step we made use of the translation theoremf (x2a)→eikaf (k) of the
Fourier transformation. With the equivalent theorem for the Laplace transformation, we arrive at the equation

W~k,v,u!5S 11
]”

]”v
hvt* 1

]” 2

]”v]”u

F

m
1

kBTh

m
t*

]” 2

]”v2D W~k,v,u!w~u2 ikv !1f~u!d~v !, ~65!
are
e
ina-
r

where ]” /]”u solely acts upon the functionw(u2 ikv), and
we employ the theoremtg(t)→(d/du)g(u).

It is at this point where we introduce the small wav
number limit, namely, through the approximation

w~u2 ikv !;12~ut!auu2 ikv

512~ut!aS 12
ikv
u D a

;12~ut!aS 12a
ikv
u D

;w~u!1ataikvua21, ~66!

which we terminate after the first order ink. In addition, we
have to specify which terms we will take along in our lon
time, small wave-number~long-wave! limit. Multiplying ex-
pression~66! with the operators in the round brackets in E
~65!, we take both terms in Eq.~66! along with the ‘‘1,’’
.

whereas all the remaining terms in the round brackets
only combined withw(u), due to the observation that th
neglected terms are of higher order concerning the comb
tion of the wave numberk and the corresponding Fourie
quantity for the velocity.2

Observing that

d

du
w~u!52ataua211O~t2a!, ~67!

Eq. ~65! is recast into

2Note that this rule results from the typical diffusion limitk
→0,u→0 in Fourier-Laplace space@42#.



W~k,v,u!5S w~u!1ataikvua211w~u!
]

hvt* 1ataua21
F ]

1w~u!
kBTht* ]2 D 3W~k,v,u!1

12w~u!
d~v !.
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]v m ]v m ]v2 u
~68!
(

n

na
d
t

s-
-

ted

on

the
n is

the
ly
e
di-

the
on-

-

o-
side
rate
part

e

ua-
With the usual differentiation theorem ik f (k)→
2(d/dx) f (x), we find the integral form of the Le´vy ram-
bling fractional Klein-Kramers equation

W~x,v,t !2W0~x,v !1a 0Dt
21S v

]

]x
1

F~x!

m

]

]v DW~x,v,t !

5 0Dt
2ah* S ]

]v
v1

kBT

m

]2

]v2D W~x,v,t ! ~69!

through Fourier and Laplace inversion.
Differentiation in respect tot leads to the differential form

]W

]t
1av

]W

]x
1a

F~x!

m

]W

]v

5 0Dt
12ah* S ]

]v
v1

kBT

m

]2

]v2D W~x,v,t !.

~70!

Through a possible rescaling of the position variablex
→x/a) and the force (F→aF), we arrive at the final form
of the Lévy rambling FKKE,

]W

]t
1v

]W

]x
1

F~x!

m

]W

]v

5 0Dt
12ah* S ]

]v
v1

kBT

m

]2

]v2D W~x,v,t !,

~71!

which is equivalent to the equation introduced by Barkai a
Silbey in Ref.@40#.

A. Discussion of the fractional Klein-Kramers equation „71…
describing ‘‘Lévy rambling’’

The stationary solution of Eq.~71! being defined via
]W/]t50, is obtained by requiring both expressions

v]W/]x1@F~x!/m#~]W/]v !

and

@]/]vv1~kBT/m!~]2/]v2!#W~x,v,t !

to vanish simultaneously. Otherwise, due to the fractio
differentiation 0Dt

12a1}ta21 of a constant, one side woul
be explicitly time-dependent. With the product ansa
Wst(x,v)5X(x)V(v), we find the Gibbs-Boltzmann form
~5!.

The FKKE~71! thus governs the relaxation toward Gibb
Boltzmann equilibrium. Accordingly, it differs from the non
equilibrium stationary solution obtained for Le´vy flights
d

l

z

@31,32#, and which also characterize Le´vy walks. Moreover,
the pdfW(x,v,t) decays exponentially so that the associa
trajectory in position space isnot of the Lévy type ~compare
to Ref. @63#!.

Due to its derivation that distinguishes the drift terms
the left-hand side of Eq.~71! from the friction and diffusion
terms on its right-hand side where the latter are under
fractional operator, the macroscopically averaged positio
of Newtonian character, i.e.,

d

dt
^^x~ t !&&5^^v~ t !&&. ~72!

This observation sets the FKKE~71! clearly apart from the
FKKE ~47!. For the latter, the analogous relation~48! high-
lights the non-Newtonian character brought about by
camouflaging waiting time averaging in which the broad
distributed trapping times win out in the competition with th
Langevin dominated nontrapping motion events, an in
vidual of these events lasting for the finite average timet* .
Here we encounter the different case that, according to
assumption that the test particle, never being trapped, c
stantly responds to the external force fieldF(x) that is mir-
rored in the moments~62!. Apparently, this property is pre
served in the small wave-number limit~66!.

Note that due to this different quality in the temporal ev
lution separating the phase spatial derivatives on either
of the FKKE ~71!, the associated process does not sepa
into the product of a purely temporal and a phase spatial
as it was observed in Sec. V.

B. The associated fractional Fokker-Planck equation
of the ‘‘Lé vy rambler’’

Applying Davies’s recipe@51# of velocity integration to
the FKKE ~71!, we obtain the fractional telegrapher’s typ
equation

1

h*
0Dt

21aW1
]2

]t2
W5 0Dt

aS 2
]

]x

F~x!

mh*

1K22a

]2

]x2D W~x,t ! ~73!

with the generalized diffusion constant

K22a[
kBT

mh*
, @K22a#5cm2 seca22. ~74!

For short times, this process is governed through the eq
tion
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1

h*

]2

]t2
W5S 2

]

]x

F~x!

mh*
1K22a

]2

]x2D W~x,t !, ~75!

highlighting the ballistic motion that is to be expected f
times before velocity changes occur, and for which the p
ticles thus all move in their given original direction. This
most obvious in the force-free limit in which Eq.~75! re-
duces to the wave equation

]2

]t2
W5 ṽ

]2

]x2
W~x,t !, ~76!

where ṽ[h* K22a . Note that such a behavior can also
obtained in the Le´vy sneaking model described in Sec. V
one avoids drawing the long-time limit.

In the usual high-friction limit, one finds the fractiona
Fokker-Planck equation

]2

]t2
W5 0Dt

aS 2
]

]x

F~x!

mh*
1K22a

]2

]x2D W~x,t !. ~77!

Note the second-order time derivative on the left-hand s
indicating that it is essentially a subballistic motion. In th
model, the generalized friction coefficients in both the FKK
~71! and the FFPE~77! are given byh* . The force-free
mean-squared displacement belonging to Eq.~77! is given
through

^x2~ t !&5
2K22a

G~32a!
t22a, ~78!

which corresponds to Eq.~4! with K* [K22a /G(32a),
and issues the typical Le´vy walk behavior displayed in Eq
~61!. This equivalence originates in the full validity of th
small wave-number limit corresponding to the truncated r
resentation of the Le´vy walk propagator in Ref.@42# for the
calculation of the mean-squared displacement.

Let us introduce the separation ansatzW(x,t)
5T(t)w(x) into Eq. ~77!. This leads to the fractional equa
tion

d2Tn

dt2
52ln 0Dt

aTn~ t ! ~79!

for the temporal eigensolution whereln denotes thenth ei-
genvalue. On taking the Laplace transformation of Eq.~79!,
one has to provide two initial values for which we choo
T(0)51 anddT/dtu t5050. Consequently, we obtain

Tn~u!5
1/u

11lnua22
. ~80!

This result can be back-transformed into thet domain, mak-
ing use of the definition of the Mittag-Leffler function:

Tn~ t !5E22a~2lnt22a! ~81!

from which the series expansion
r-

e,

-

Tn~ t !5(
j 50

`
~2lnt22a! j

G@11~22a! j #
~82!

can be inferred. Note that for the belonging Mittag-Leffl
index 22a.1 there is no theorem for the long-time asym
totics. Wiman showed@58,64# that there is an odd number o
negative zeroes, which holds for our case. Special repre
tations can be obtained for rational numbers, e.g., fora
51/2 one gets

E3/2~2lnt3/2!5

expS 3

2
ln

2/3t D12 cosSA3l2/3t

2 D
3 expS ln

2/3t

2 D

2

4lnt3/2
1F3S 1;

5

6
,
7

6
,
3

2
;
ln

2t3

27 D
3Ap

~83!

and one clearly recognizes superimposed oscillations tha
typical for anyaP@0,1) in Eq.~81!.

The investigation of the FFPE~77! in the force-free limit
leads to interesting consequences, as shown in Ref.@61#. In
the presence of an external force, the behavior of Eq.~77!
requires special attention, especially in respect to the pos
ity of the belonging pdfW(x,t). This is topic of a forthcom-
ing investigation@65#.

VIII. LE´ VY FLYING: RANDOM MOTION BEYOND
FINITE MOMENTS

In this final section, we address the determination of
FKKE for a Lévy flight process. In the continuous time ran
dom walk framework such a process is defined in terms o
Poissonian waiting time pdfw(t)5t21 exp(2t/t), or Eq.
~15!, and the jump length pdf is Le´vy stable, i.e., the jump
pdf is given through@18,54#

c~x,t !5Lm~x!t21e2t/t;
Bm

uxu11m
t21e2t/t, ~84!

where we choose 1,m,2. In Fourier-Laplace space, th
corresponding asymptotic limit reveals

c~k,u!;12ut2smukum. ~85!

As was discussed by Seshadri and West@28# and by
Peseckis@29#, and later in the context of random environ
ments by Fogedby@31# and Honkonen@32#, this concept
leads to the FKKE

]W

]t
1v

]W

]x
1

F~x!

m

]W

]v
5hS ]

]v
v1Km

2`Dx
mDW~x,v,t !,

~86!

where the fractional Weyl operator is defined through@55#

2`Dx
2mW~x,v,t !5

1

G~m!
E

2`

x

dx8
W~x8,v,t !

~x2x8!12m
, ~87!
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in the definition of which we include a phase factor so tha
fulfills the generalized differentiation theorem

F$ 2`Dx
mW~x,v,t !%[E

2`

`

dxeikx
2`Dx

mW~x,v,t !

52ukumW~k,v,t !. ~88!

Discussion of the Lévy flight Klein-Kramers equation and the
associated Fokker-Planck equation

One obtains from the FKKE~86! in the usual way the
fractional telegrapher’s-type equation

]W

]t
1

1

h

]2W

]t2
5S 2

]

]x

F~x!

mh
1Km

2`Dx
mDW~x,v,t !

~89!

via v integration. Neglecting the second-order time deriv
tive in the high-friction limit, one recovers the fraction
Fokker-Planck equation that was inferred in Refs.@29# for
Lévy flights in a random environment, and discussed in f
ther detail in Refs.@31,32#. This type of fractional Klein-
Kramers equation and its related fractional Fokker-Pla
equation, i.e., the Le´vy noise approach, leads to the dive
gence of the mean-squared displacement^x(t)2&5`, as is
typically found for Lévy flights @42,60#, and it will not be
pursued here further.

Note that the FKKE~86! is similar to an equation derive
within a quantum-mechanical picture through a random m
trix formalism by Kusnezovet al. @33#.

IX. CONCLUSIONS

We have generalized a formerly proposed Chapm
Kolmogorov equation to continuous time phase-space
namics, employing the Chandrasekhar notation. It has b
demonstrated that this new equation is the common foo
for a variety of stochastic models that describe normal
anomalous transport in external fields in the underdampe
well as overdamped limit.

Three crucial ingredients have to be supplied to the g
eralized Chapman-Kolmogorov equation in order to arrive
a certain model.

~i! The waiting time pdfw(t) that determines the time
spans between successive velocity changing events. This
w(t) either describes the time of being trapped at a giv
site, or the time spent in a velocity mode, leading to eit
‘‘Lé vy sneaking’’ that corresponds to force-free subdiff
sion, or to Lévy walking or ‘‘rambling’’ from which the
force-free sub-ballistic motion is derived. In the Markovia
cases of Le´vy flights and Brownian motion, the waiting tim
pdf becomes obsolete and can be replaced by an ave
time stepDt.

~ii ! The spatiotemporal couplingp(Dxut) relating the cov-
ered distanceDx per motion event with the correspondin
waiting timet. Brownian motion, ‘‘Lévy sneaking,’’ and fly-
ing are modeled through an uncoupled formd(Dx2vt* ),
wheret* is regarded as a small parameter and denote
effective time scale in which the Langevin re´gime governs
the motion of the test particle.

~iii ! The moments of the velocity increments^Dv& and
t

-

-

k

-

-
y-
en
g
d
as

-
t

df
n
r

ge

an

^(Dv)2& that have to be supplied in order to perform t
transition to the belonging~fractional! Klein-Kramers equa-
tion. These moments define the interaction of the test part
with its environment through friction, external forcing, an
entropy. We have assumed throughout that these mom
are based on a stochastic Langevin dynamics w
d-correlated Gaussian noiseG(t).

Apart from the classical Brownian case, ‘‘Le´vy sneak-
ing’’ is possibly the best founded case of the anomalo
models discussed. Its fundamental ingredient, the trapp
mechanism, has been recognized as the mechanism und
ing the dispersive charge carrier transport in amorph
semiconductors@66,67#, the motion of excess electrons i
liquids @68#, and it occurs in the phase-space dynamics
chaotic Hamiltonian systems@69#.

Lévy flights are physically sensible only for a limite
range of problems such as the diffusion in energy space
countered in single molecule spectroscopy@70#. Otherwise,
massive particles are required to have a finite speed. Th
especially crucial in the Le´vy flight model where extremely
long jumps are permitted to be performed instantaneou
Thus, Lévy flight modeling of test particles in real space c
at most be an approximation; compare, however, R
@72,73#. Moreover, it might be questioned whether th
Langevin equation description with Le´vy noise can hold in
respect to the linear friction assumption.

Two ways out of these problems were described. On
the well-known Lévy walk that can be generalized to exte
nal fields and phase space through the presented appro
The second is ‘‘Le´vy rambling’’ that was derived as the
small wave-number limit of Le´vy walking. Both lead to fi-
nite moments of any order and include moving humps
spikes that lead to the oscillations superimposed to the re
ation behavior. Le´vy rambling as well as the phase-spa
analog of Lévy walking are to be studied further in a futur
work.

The Brownian process, ‘‘Le´vy sneaking,’’ and ‘‘Lévy
rambling’’ are characterized through an equilibration towa
the classical Gibbs-Boltzmann distributions. The related g
eralized Einstein relations as well as the validity of the s
ond Einstein relation@36–40# are tightly related to this dy-
namical behavior close to classical thermal equilibrium.

A ubiquitous behavior for all processes governed by
self-similar waiting time pdf with diverging characterist
waiting time is the Mittag-Leffler velocity equilibration ac
cording to the fractional Rayleigh equation. In this case,
stationary solution corresponds to the Maxwell distributio

It should finally be emphasized that for an appropria
choice of the transfer kernel, also mixed forms of the as
ciated deterministic kinetic equations with nonordinary d
rivatives in both space and time can be recovered as
were, for instance, discussed in Refs.@37,71# on the frac-
tional Fokker-Planck level.
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