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Mesoscopic dynamics of microcracks
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The mesoscopic concept is applied to the description of microcracks. The balance equations of the cracked
continuum result in mesoscopic directional balances of mass, momentum, angular momentum, and energy.
Averaging over the length of the cracks gives the corresponding orientational balances. A further averaging
process leads to the macroscopic balance equations of the microcracked continua. Dynamic equations for the
fabric tensors of different order are derived using a multipole moment expansion of the orientational crack
distribution function. The simple example of Griffith cracks is treated. The role of physical assumptions in the
microcrack representations and the different macroscopic internal variable representations of microcracks are
discussed.

PACS numbegps): 62.20.Mk, 46.50+a, 81.40.Np

I. INTRODUCTION tropic interactions with singulariti¢$o mean a challenge for
To find suitable and applicable models for microstruc_the basic principles of statistical physics on an equilibrium

tured mechanical materials is a challenge of contemporar§d @/so a nonequilibrium level. The second large group of
physics, especially of continuum mechanics and statisticabtatistical models is based daitice calculations and simu-
physics. An important particulaiand relatively simpleex-  lations. These models introduce simple interactions between
ample in this respect is to describe the mechanical propertidsttice elementse.g., springsand try to grasp some general
of microcrack systems in elastic materials. The two basigjualitative properties of the phenomena with statistical meth-
model levels are the continuum, where macroscopic varieds. Some recent numerical and analytical investigations
ables are introduced to characterize the microcrack systersuggest the validity of mean field behavior in the presence of
and the statistical, where the properties and interactions ajuenched disorder in isothermal systefwhich we can ex-
single microcracks or the embedding material are considpect in ordinary experimental situationarguing that failure
ered. due to microcracking can be treated as a first order phase
On the macroscopic, continuum levedntinuum damage transition and the whole process as spinodal nuclegtdn
mechanicdeads to suitable theories. In this phenomenologi-in early investigations spinodal nucleation was discussed as
cal continuum theory thermodynamic internal variables ofa thermally activated process, where the quenched disorder is
different tensorial order are used to calculate the influence afrelevant[5,6]. Some recent treatments claim that it is more
cracks(and other damageon elastic properties of the mate- realistic to consider a situation where a system is effectively
rial and to predict failure. It is important to remark here thatat zero temperature and only the quenched disorder is rel-
the different continuum theories are far from being able toevant[7,8]. All these investigations concentrate on the ava-
propose a single model fall important phenomena con- lanchelike behavior of microfracturing and calculate the scal-
nected with crackingmultiaxial loading conditions, material ing properties. However, the mean field behavior observed in
stability, dynamics, etg. The competing theories use differ- numerical simulations of lattice models supports the view
ent macroscopic mechanical and thermodynamic conceptthat phenomenological internal variable models can charac-
The most important aspects discussed are the naéuge, terize the material, especially when we are far from the qua-
tensorial order, physical meaningf the proposed macro- sistatic regime.
sopic internal variables and the laws governing their time In this paper we propose an idea to bridge the gap be-
development, i.e., the corresponding macroscopic dynamicélveen the microscopic-statistical approach and the
laws. We do not want to analyze the situation on the macromacroscopic-phenomenological one. We introduce a level of
scopic level, but want to emphasize here that the lack ofmodeling that we calinesoscopicbecause we go under the
understanding at this level, that is, a macroscopic phenonzontinuum level and use the statistical distribution function
enological model for the experimental observatioag., in  of the microcracks. However, instead of detailed microscopic
the framework of irreversible thermodynamicis a serious modeling, general ideas are used to get the governing equa-
disadvantage in statistical physical modeling. tions of the different distribution functions. The suggested
On the other hand, microcracking is an important problenmethod can be used to derive different macroscopic internal
in statistical physics and is treated with two different ap-variable models that are compatible with the statistical de-
proachesMicromechanicduilds from detailed properties of scription and to incorporate micromechanical information
single cracks and extends the results with the help of statisrom single microcracks, thus connecting the statistical and
tical methodq1]. The “microscopic laws” for a crack em- phenomenological approaches.
bedded in an ideal elastic continuum are well treated and Taking into account directional data distributiofs.g.,
known[2,3] and are difficult enougltlong range, tensorial, normal vectors of planar microcragkkanatani[9] treated
aniso- different possible statistical descriptions of directional data
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and found a coordinate independent description in the form What can we say about damaged materials? Here the
of generalized Fourier series, which is a coordinate indeperdamage can have a more complicated microscopic structure
dent form of the multipole moment expansion known fromthan in liquid crystals, but we can restrict ourselves to the
classical electrodynamicglO]. Kanatani called the corre- simple and frequently investigated case of planar microc-
sponding moments of the directional data distribution theracks. Now the damage consists of small planar surface ele-
fabric tensors. So we can get a statistically founded classifiments embedded in an elastic or elastoplagircany kind
cation of the macroscopic internal variables without any in-of) background material. In this case a crack can be repre-
formation on the possible dynamic properties. After that, dif-sented by its surface vector. If the cracks are fixed in the
ferent macroscopic thermodynamic methods, which arenaterial, that is, they do not move independently of the ma-
independent of the previous investigations, are used to geerial elements, then we can apply the mesoscopic concept to
dynamic equations for the macroscopic variables. describe the microstructure. Therefore a characteristic mate-
However, in the case of another important family of mi- rial element of the microcracked continuum is a crack to-
crostructured continua, liquid crystals, the same moment sagether with the containing base material.
ries expansion is successfully applied to get not only the Let us observe the difference between liquid crystals and
possible macroscopic thermodynamic variables but alsmicrocracks somewhat more closely. With a mesoscopic
some general information about their dynamic equationsheory we intrude into the representative volume element of
[11-18. Here balance equations are applied to the microthe continuum description and instead of a homogenization
structured continuum and by using them we can get somprocedure(from where we would arrive at the continuum
information on the mesoscopic dynamics and also derive dytheory we suppose that the macroscopic fields themselves
namic equations for the macroscopic variables. These madepend on the microstructure and therefore we consider the
roscopic variables are the same moments of the orientatiostatistical distribution of the orientations. In liquid crystals
of liquid crystal molecules that are used for microcrackedthe shape of the molecules represents the microstructure and
continua; however, here they are called alignment tensors.therefore the representative volume elements of the orienta-
In this paper we apply the mesoscopic theory to get theion and the other fieldéespecially magscan be the same.
dynamic equations of the mesoscopic variables, to introducelowever, in the case of microcracks the status of the micro-
macroscopic variables, and to obtain the general form ostructural information is different, because they can be con-
their dynamic equations. These considerations give a goosidered to be embedded in an elastc viscoelastic, or any-
possibility for comparing the macroscopic consequences ahing but continuousbase material. In this case we are using
the mesoscopic approach with other macroscopic theoriesljfferent representative volume elements for the meso-micro
for example, with rational thermodynamic theories of micro-transition and the macro-micro transition.
structured continua, where the derivation of “micromomen- In this paper we give a mesoscopic model of a continuum
tum balances” is based on a particular application of matethat contains several randomly distributed microcracks. The
rial frame indifferencg19-21. On the other hand, we can microcracks are supposed to be two dimensional and flat;
introduce specific single crack properti@ghich is impos-  every microcrack is characterized by its surface “vector”
sible in the case of liquid crystalgo solve the dynamic |el/\E and spacetime positiane M. Therefore the domain
equation for the distribution function and get information far of all field quantities of the mesoscopic theory is interpreted
from the quasistatic range that is comparable with that fronon a subset of thispace For example, thelirectional den-
micromechanical and lattice models. S|ty; Of the Continuum iS given as

Il. BASIC FIELDS AND FUNCTIONS P EAEXM—=RY,  (I,r)—~p(l,r),

In liquid crystals molecules of restricted symmetry con- . ) ) )
stitute the material continuum. In nematic liquid crystals theWherel! is a three dimensional Euclidean vector spacetnd

molecules are rodlike; therefore we introduce a quantity thal® the spacetimea structured four dimensional affine space
characterizes the orientation of the molecules. There are twf W€ @re in a nonrelativistic spacetime and do not insist on a
basic possibilities: we can give it as an additional vectoriaff@me independent description we can introduce an inertial
field variable, when thigunit) vector is called the macro- observer@as usual[22]. As a final simplification we will use
scopic director. In this way we can arrive at the Ericksen-Polar vectors mstead Qf axial ones to represent the surfaces
Leslie-Parodi theory of nematics. The other possibility is to®f the cracks, introducing the usual form and symmetry re-
introduce the director as a mesoscopic variable. In this cagduirement for the density function:

the additional orientational informatioi@ unit vectoy plays

a similar role to time and space and becomes a variable of p B XEXTI—=R™, (I,x,t)—p(l,x,t),

the field quantities. In this way we arrive at the mesoscopic

theory of liquid crystals, where all the field quantities are

defined on the extended nematic sp&R& Ex I, whereS? px)=p(=1.x1).

denotes the unit sphere afidandl represent the space and

the time. If the internal structure that we are modeling is The direction, position, and time of the microcracks are
more complicated then the characteristic mesoscopic vardenoted by I,x,t) e, XEXI. The corresponding meso-
ables can be more complicated, too. For example, in the caseopic spacé) X kX[, wherek, andk are three dimensional

of biaxial nematics the molecules have two axes and th&uclidean spaces ards a one dimensional oriented vector
resulting symmetry is best described by quaternions. space, will be called thdirection spaceln the following we
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suppose that the directional number density of the cracks has At the end of this section let us remark that a mesoscopic
a finite support, that is, we consider a finite piece of materiatheory formally resembles a mixture theory that uses the con-
where the maximum length of the cracks is limited by thetinuous directional or orientational “index? or n for the

size of the sampléfor example. Let us denote this maximal “components” instead of a discrete one. This analogy can be

length byl a. _ _ . a help in the interpretation of the directional and orienta-
A further important quantity can be introduced if we de- tjonal “component” equations.

compose the directiohinto a lengthl e R* and an orienta-

tion ne S? asl=In, wheren is a unit vector 6?=1). Now 1. MESOSCOPIC KINEMATICS
the orientational densityof the cracks is defined by the inte-
gral The following formulas make it possible to give substan-
| tial balances in the mesoscopic continuum in addition to the
p(nx,t)= J maxp“ n,x,H)12dl. 1) local ones, so we can grasp the meaning of the porresppnding
mesoscopic balances more easily. Let us consider a piece of

. 2 . . continuum material. Now we refer to the material elements
We will call the S"> kx| mesoscopic space of the orien- it their positionX at some initial instant,, as usual. Let

tation, position, and timer(x,t) of the microcracks theri- ;s qengte by the position of the appropriate material ele-
entation spaceFor the further calculations it is very impor- o4 ot the ‘instant. We give the position of the material
tant to keep in mind the basic applicability criteria of theﬁ:lementx at the timet with the map

mesoscopic concept: the cracks are fixed in the base co

tinuum. There is a fixed amount of base material for every X EgX Lo I, (X, t)—>X(X,1).

microcrack. In this case, and only in this case, the density of

the media will characterize the density of the number ofHere we denoted the three dimensional Euclidean vector

cracks also. Taking this into account, we can write that ~ space of positions by and the structural space of material
points byl,. Similarly, we can give the material element at

;(X,t)==<p(|,X,t)>==%f SP(LX,I)dVF%f Zﬁ(n,x,t)dn the positionx and instant with the map

_ ) R_ ) ® ) X EXT—Eg, (X, t)—=X(X,t).

is the macroscopic density of the microcracks at spacetime

point (x,t). HeredV, denotes the Lebesque measure of theThe two maps have one to one correspondence and they are

microcrack part of the direction space, athd is the corre- each other’s inverse at the same instefX(x,t),t)=x and

sponding surface measure®f in the orientation space. Fur- X(X(X,t),t)=X.
thermore, The mesoscopic structure is characterized by the variable

| e . In the case of nematic liquid crystals this is the unit
M(t):f {p(1,x,1))dV sphereS?, for biaxial nematics it isS®, and for planar mi-
RS crocracks a subset d@f. The microstructure is connected to
o the material element; therefore we can give its value at the
=f 3p(x,t)dV instant t corresponding to the material element
i X:l:EgX Iy, (X, t)—1(X,1).
Now we define the velocities
=%fRJR3p(I,x,t)dV| dv

=%f J p(nxtdndv
R3JS If a field quantity depends on the directiband the position
is the total mass of the sample continuum. The symmetri& We can define its material time derivative as follows:

o X,t d al X, t
V"E( 1) an Vl"ﬁ( ).

polar vector representation]p(l,x,t)=p(—1,x,t) and _ of
p(n,x,t)=p(—n,x,t)] necessitates the factor &fin the last flx )= —-+v-Vi+v- Vif e(Lx, (X, ()
two integrals.
It is useful to normalize the densities by introducing the  Until now we have considered a continuum; therefore the
directional probability distribution positionx and the directioth were treated as fields. However,
the situation is more difficult because we are below the con-
f(1.x t)::P_(LX't) @) tinuu_m level. In the case of liquid crystals on the micro-
o p(X,t) ' scopic level we have single molecules. For cracks we can
suppose that we are in the continuum domain as regards the
orientational probability distribution mass, but the material elements contain single microcracks
- and therefore the direction can be discontinuous from crack
f(nx.t) :ZPL”'X’U ’ ) to crack at this level. Qur task is to geta conti_nuum descrip-
p(Xx,t) tion and at the same time keep some information from below
S the usual macroscopic continuum level. Therefore we ac-
andlength probability distribution complish a second homogenization, forming a bigger mate-
| £l rial element from the micro-meso ones and introducing a
f(1,%,1) = pxb _TdxH (4)  center of mas¥, for that macro material element with vol-

p(nx,t) F(nxt) umeV,y,:
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Heret is the stressf is the body force density, andis the
fv Xp(X)dVy, notation of tensorial product in continuum physics. The su-
XO:"‘—. perscriptT denotes the transpose of the corresponding sec-
f p(X)dV ond order tensor. We assumed here that the change of mo-
" m mentum, even if it depends on the direction, is due only to

the body and normal surface forces, that is there are no sur-
Now if we completely replaced the micro material elementsface forces in the direction component, and that there is no
with macro ones X—X,) we would get the macroscopic conductive directional momentum current.
directorl(Xg,t). Instead of doing that, we would like to keep ~ Similarly, for the balance of the moment of momentum
some microscopic information and therefore we make thave will get the form
X—(Xg,l) substitution, supposing that there is a distribution
of directio_ns inside _the macro element. In this wlais no @+V'(pV°S— 7N +V, - (pves) =t8+pg,  (10)
longer a field quantity as we supposed above, but stands on ot
equal footing withXy and plays an independent role charac- ) o ) s ,
terizing the macro continuum element. Therefore the previ¥Wheres is the directional spin density;® denotes the anti-
ous functions defined on the micro material space becomgYMmetric part of the stress tenser,is the couple stress,
functions on the mesoscopic spaesg., the velocities, v,). fandg is the density of the couple force. The substantial form
Moreover, as the continuity of the variables is secured witHS
the homogenization procedure we can introduce the previous
derivative (5) as a material derivative on the mesoscopic

Space. Finally we give the directional internal energy density
balances. These we got by subtracting the balances of the
IV. DIRECTIONAL BALANCES kinetic and rotational energy from the balance of the total

. energy:
After these preparations we are ready to get the meso- 9y

scopic balance equations of the directional quantities. All of  jpe _

the following local balances were derived from the proper ~ ——+V-(pve+a)+V - (pvie+q)=Veovit+pE.

global balances using a generalized form of the Gauss- (12)
Stokes integral theorenfor Reynolds transport theorem,

equivalently. The difference between the usual spacetimeHere q andq, are the heat current and the directional heat
balances and the following generalized balances where theurrent, respectivel{both mesoscopjcE is the internal en-
spacetime variables are completed with the direction is thag¢rgy production related directly to the microcrack propaga-
now the “configuration space” of the continuum is six di- tion. The corresponding substantial form is

mensional. Therefore the velocity space is also six dimen-

ps—V - m' =25+ pg. 11

sional; we get an additional directional velocity component. pe+V.-q+V,-q=Vovit+pE. (13

Moreover, the local balances will have an additional “cur-

rent term” with the divergence of the directional part of the V. ORIENTATIONAL BALANCES

total (2x3) dimensional current densitie¥(-). Using the . . , ,

introduced mesoscopic material time derivatig we will ~_ Traditionally in damage mechanics we are interested only

give the corresponding substantial balances also. in the orientational part of the data d|str|bu_t|o_ns; When the
First we can get the fundamental balance of mass length of the cracks is supposed to be statistically indepen-

dent of the orientational part of the data distribution, we use
ap averaged, uniform size cracks in the treatment. Therefore
TV (V) + V- (pv)) =0 (6)  here we give the balances of the orientational quantities also.
If we want to get an orientational quantity from a directional
one we should average over the microcrack length using the
directional distribution functionf and length distribution
functionf, [see Eqs(2) and(4)]. To do this we will integrate
the directional balances over the microcrack length. It is wor-
thy of note here that the time derivation and normal diver-

where v is the directional material velocity anq is the ence commute with the integration over the length, and for
velocity of the change of crack orientation and length. Here? . L =9 gth,
an arbitrary directional functioh

and throughout this section all quantities are directional,

and

p+p(V-v+V,-v)=0, (7)

their domain is the subset of the direction space. Imax Imax
The balance of momentum is given by fo V|h(I)I2dI=VnJ0 h(In)l2dl. (14
@ +V - (pvev—tT)+ V|- (pvov) = pf ®) _ The_ cqmmutation propgrties and &q.4) suppose sevgral
at identifications and regularity properties. For example, in cal-
culating the formula14) the splitting of the directional de-
and rivative was accomplished asv,=(n-V,,(I—-nen)V,)

) =(9/41,V,), and (0a)=a. We will use the caret for the
pv—V -tT=pf. (9) orientational quantitiegas abovgand introduce the notation
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('), for the length averaging. Denoting the orientational ve- The orientational balance of the internal energy is very

locities by v:=(v), andv,:=(v,),, then we get the orienta- similar to the directional one, but the. conductive currents and

tional mass balance the second source term, are not simply the average of the
corresponding directional quantities. The single averaged

ap . .a orientational term is the internal energy itself<(e),).
7t TV (pV)+ V4 (pv) =0. (15 B
dpe Ann A Ann oA NSNS
In substantial form this is o TV (pvet )+ Vo (pviet ) =Vovit+p=.
_ (21)
p+pV-V+pV,-v,=0. (16)

The definitions of the heat currents and the source term

The balance of momentum in local form can be given adf€ as follows:

apv - i ar
a—t+V~(pv<>v—t )+ V- (pvev—=T")=pf. (17)

A A~ An Ima)(
g=p((ve)—ve)+ fo qgl?dl,

Here we introduced the orientational strdsand orienta- a=p((vien=vie),
tional microstressT as follows: . Lmax o
E=p<E>|+J Vov:tl?dl— Vov:t.
A AA A |ma>< 0
'[=pV°V—J (pvev—1)12dl

0 We can easily get the substantial form:

A A A |ma>< A A A A A A A"
=p(V°V—<V°V>|)+JO ti2dl, pe+V-q+V,-q=Vov:t+pE. (22)

o (e o VI. MACROSCOPIC BALANCES
T=pV|°V—f pVievi2dl = p(Viev—(Vjov))). _ _

0 In the calculation of the macroscopic balances we can use
either the directional or the orientational balances. Maybe the

We can give the substantial form of the orientational mo-first way is the more convenient. We will denote the macro-

mentum balance as scopic quantities with the overbar and the averaged direc-
_ tional quantities that are calculated with the help of the di-
ov—(V-iT+V,- T =pf. (18  rectional distribution functiori2) with angular brackets ).

The corresponding macroscopic equations are calculated by

The appearance of microstress is remarkab|e’ a Conduaﬂtegraﬂon of the directional balances oVeThis integration
tive orientational momentum current in the orientational mo-commutes with the time and space derivatives and eliminates

mentum balance. the divergence of the directional derivative, because any di-
The local balance of the moment of momentum is rection functionh has a compact support,
aps SOV o . _
L—i—v(pvs—ﬁT)—FVn(pVIS_HT):taS+pg (19) fVIV| th| O

at

Heres=(s), is the orientational spin ang=(g), is the ori- _ If the magroscopm(barycentnd veIOC|ty.v=<v)Jhen,
entational couple force vector. However, we should be carelith the previously introduced macroscopic density the
ful because, for exampl€®S+ (t*%),, but we should consider balance of mass can be written as

the previous definition. Moreover, the couple microstress

~ p -
and the neworientational coupling microstrest are defined 5V v)=0. (23
as

| The balance of momentum is
7= p(VoSs—(Vos)) + f "2 dl, -
0 dp Vv PR —
T‘FV'([) V°V—tT):pf, (24)
1= p(Vies—(vi°s))). _
where the macroscopic force density(f). Again the mac-
It is easy to see that is orthogonal ta. The corresponding roscopic stress is not a simple average; it can be calculated as
substantial equation is
ah ~ f el t_=f tdV,+ p(vov—(Vvev)).
ps— (V-7 +V,-II")=t3%+pg. (20 V|
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The balance of the moment of momentum and the balance @fheref=p/p is the directional probability density as it was

internal energy can be calculated similarly: given in Eq.(2) andv is the macroscopic velocity. The sub-

ﬁp—s stantial form is remarkably simple:

——+V-(p ves—m)=t3+p g, 25 .

g (p ) pg (25) F £V, v, 20,

where the macroscopic couple force dens]ty(g). The Integrating over the crack length we get the following orien-
macroscopic couple stress also includes a contribution due tational balance:

deviations ofv ands from the average; this can be calculated

as of — . ~a
E+v~Vf+Vn-fv|=O, (30
= dV, + p(vos—(ves)). .
ﬁ f v, mdVit el (ves)) where the orientational crack velocity was introduced. Let
. us observe that Eq29) is formally the same as E¢30) but
The balance of the internal energy becomes the functions are differendirectional/orientational
Py Therefore our simplified final system of equations is Egs.
ﬁJrV,(p?_q_):VOWjL;E (26) (2_7) an(_j (29 in direction space, or Eq$28) and (30) i_n. N
at orientation space. Now we can consider several possibilities
where for a closed, soluble system. We can try to close the system

on the mesoscopic or on the macroscopic level.
. o (8 We can consider some specific information on the
q= (<V6>—VE)+f qdV, crack propagation and calculate the crack growth speed
Vi This is promising because this velocity is connected to the
L L micromaterial element and therefore we need to investigate a
p E=p<E>+f Vov:tdV,—Vov:t. single crack to calculate it. In this way, by introducing the
Vi corresponding state space and considering some constitutive

Let us remark that on the directional and orientational"’lssumptionS on the mesoscopic stress, there is a good chance

level it was unreasonable to suppose a positive entropy pré)_f_clos[ng _the system at _the mesoscopic level. The problem-
ic point is the constitutive assumption forOn the meso-

duction but it makes sense on a macroscopic level and walic _ . :
can exploit it. scopic level, without an inequality from the second law for

the mesoscopic functions, the constitutive theory is more ap-
proximate.

(b) The other possibility is to calculate the macroscopic

For the most frequently used materials in damage mebalances from the mesoscopic ones. In this case the orienta-
chanics the balance equations given above are too generéibnal balances are more promising, because here the mo-
Therefore we introduce some simplifying assumptiofi3. ment series expansion gives a familiar and understood pro-
The base material does not have an internal spin, that is, @ess(see, e.g.[12]). We can try similar series expansions in
crack does not rotate independently from the base materiaithe directional space too, but the most straightforward
(2) There are no couple forceg<£0) and coupling stresses choices mix the length and orientational information and
(IT=0). (3) There are no external body forcek=0). (4)  therefore the meaning of the macroscopic quantities is not

The material is in mechanical equilibriunv£0). (5) The  evident.
velocity does not depend on the crack size and orientation; _ _
this means it is equal to the barycentric velodity(l,x,t) A. Moment series expansion and order parameters

=7(x,t)]. First we will investigate the consequences of moment se-

Because of the first condition we do not need the balancges expansion of the distribution functiérand Eq.(30). We

spin balance to a symmetric stress. For this symmetric stress

VIl. CRACK PROPAGATION

the balance of the momentum together with the fourth and )
fifth conditions results in an equation for the mechanical a(k)(X,l):fzf(n,X,l) ne- - -endn, (31
equilibrium: §

where "' denotes the symmetric irreducible part of a
V-t=0. (27) tensor [23]. It is remarkable that only the even order tensors
appear in the series because the microcracks are represented
by axial vectors. These damage parameters are macroscopic
Vv.i=o0. (29 quantities and are called fabric tensors of the second kind in
damage mechanics (see Kanatani [9] or Krajcinovic [1]).
Moreover, the balance of mass simplifies considerably beThey were introduced on purely statistical grounds, without a
cause of the last condition: mesoscopic foundation.
Now let us turn our attention to the series expansion of
(29) Eqg. (30). We can get the following system of equations for
the kth moment] 24]:

Very similarly, we can get in the orientational space

af —
E+V'Vf+V|'(fV|):O,
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day!) —— 2k+1
T * - — 5 coon. dna®
k (0Xa'™) " iy E (21 1)!!{( izévl’ R =g, My =My d na,, m

.....

dt leven |\ Js& - 20 Tl

” 2
+ izévl’ 'n,,,l- . -nml"n,,l- . -n,,k'd n(lnp) ,

.....

T 17 1 ~ &)
+ iz L A TR (V,X 52)-dn>am1 m

_ T - 1T — 1 6]
) éz Moy My M oty (S0XaM), mydn
+ S0P 'n, - -n, d’n(lnp) ,+ 80P 'n, n, d’n
52 1 k P 1 k
P
+ 2 Ry oeony (VX 5@)-5[4,

wherew=3VXv, do=w—w, v=v—v, and we denoted Moreover, for the vectod we can get

the components of the velocity with the indgxto avoid

misunderstanding. In this way we have a whole set of pos-

sible macroscopic damage parameters together with a gen- S —=2(ded— 8)d:{ Iv,_on| ).
eral form for their dynamic equation. Let us investigate more dt

closely the dynamic equation of the second order tensor term

in the expansion. It seems useful to put down the definition | gt ys remark that there are cases when a truncation of the
and the dynamic equation for that term separately as followsseries leads to paradoxes. If the microcrack distribution is
uniaxial then the best fitting alignment tensor can result in
o A negative crack densities, the so called anticrack regions in
a(x,t):= nen dn, . o .
(x.1) LZ ! (32 the approximate data distributiof25]. This unexpected
property can be removed if we use a diredtegctoria) in-

and we get the following dynamic equation: ternal variable representation instead of the even order trace-
P less tensors. The single vectorial approximation results in a
a _ . T
5JFV‘V:H j zmvn'(fw):O, (33 macroscopic director theory.
N
or equivalently B. Solution for the distribution function: Griffith cracks

Ja In this section the equation of motion for the mesoscopic

—+v-Va+2( 'V]on'>:0_ (34) distribution function is specialized by considering a specific

ot single crack model. In this case we can start from the direc-

Without calculating the last term we can see thas a nor- tional level and calculate the crack size distribution function.
The following additional assumptions are introducéi)

mal internal variable in the sense that a local first order dif—_l_he crack surface area can increase, but cannot dectghse
ferential equation describes its change. ' X

It is worth investigating the uniaxial case separately,-r.:(i:'t Cr?gk \gfcclg éi)l?]%(tepistnedrgzésc))f grtggi ?;2(;:: Iig t:g_ VI
when the alignment tensors can be expressed in terms of s 1€,

order parameter§® and a unit vectod in the following 9 ected in the expression for the crack velocity, ie., it is
way: assumed that the crack stops enlarging instantaneously when

the external load stops changin@) All the idealizations

— assumed by Griffithi26] (e.g., two dimensions, ideal elliptic
aP=5® go...od  (k=24,...), cracks, etq. are supposed here. Let us observe that these
seemingly restrictive conditions are in some respects more
general than the restrictions used explicitly or implicitly in
models of micromechanical origir2,1,3. For example, we
did not assume special crack orientations or definite interac-
tions between the microcracks.

where the value of the order parameter ¥ is 1 in the case of
total alignment (the microcracks are parallel) and zero for
randomly oriented cracks. In_the case of a second order
alignment tensor (a®=5ded) the following dynamic

equations can be written for the order parameter: From the mesoscopic balance of mass we derived the fol-
ds — lowing differential equation for the directional distribution
— +ed(ven)-d=0. (39 function:



PRE 62 MESOSCOPIC DYNAMICS OF MICROCRACKS 6213

these assumptions we obtain from the paper by Griff]
P the following expression for the stress change rate:

. R=cy(P+Q)+cy(P-Q),

- R ~ (e°*0—1)cog20)
€1= cosh2ag)—1

(39

B sinh(2ag)
2= Cosh 2ay)—c0920)"

The coefficientsc; andc, depend on crack orientation, but
(G) in our model not on position and time. If we average over
different crack orientations, the result will depend on the
order parameters introduced above.

Now the mesoscopic velocity derived from the expres-
sions(39) and (38) is introduced into the differential equa-

tion for the distributionf. In spherical coordinates we have
19 ,
l l l V|'(V|f|):|—zﬁ(| vcf)
. . . 19 2 . ..
FIG. 1. The loaded sample with a crack, according to Griffith =Sl E|7’2[c1(P+Q)-|—c2(P—Q)]f ,
[26]. '
(40)
of —
S TV ViRV -(fv)=0. (36)  which results in the equation for the distribution function,

In the following we use spherical coordinates. In sphericalg:_v (v f _1a E|7/2[C (P+Q)+co(P—Q)]f
. . . . dt | | 29 \lm 1 2 .

coordinates the mesoscopic velocityis decomposed into I

the length change velocity. and the orientation change ve- (41)

locity w, which is zero in our model: , ) ) ) )
y Separation of the variables gives the solution of the differen-

37) tial equation. Moreover, we can go further, introducing the
moments of the distribution function as macroscopic vari-
ables. From Eq(41) we can derive evolution equations for
particular moments also.
In the case of Griffith cracks we can introduce the orien-
5 tational order parameters and the length order parameters as
vo=— —132R, (38)  Macroscopic quantities describing the mesoscopic distribu-
m tion. However, there are several other possibilities. The ques-
tion arises which macroscopic parameter is relevant for the
whereR is the stress at the location of the crack, amids a  mechanical properties of the material. Here we mention an
material dependent constant. In the following we consideexample of a macroscopic parameter that is different from
the case where slowly changing external lokdandQ are  the moments. In a simple variation of the one dimensional
applied to the sample as shown in Fig. 1. “loose bundle parallel bar’ model of Krajcinovigl], the
The R used by Griffith has been given by Ingli27] i material is assumed to consist of elastic parallel bars of fixed
terms of the parameters,, B, and 6, whered is the angle  diameter,. When the projection of the crack length perpen-
between the crack orientation and thexis, anda, is the  dicular to the bar axis is greater thiy the bar is broken and
ratio of diameter to thickness of the crattke ratio of the  does not support stresses any more. The damage pardbneter
large to small axis of the ellipse describing the crack in thes introduced as the ratio of broken bars to the whole number
model of Griffith). «, is very large and is assumed to be of bars. Translating this definition to the mesoscopic theory
constant in time according to our preliminary assumptionsyith Griffith cracks we can define
(because otherwise the crack length and orientation would
not be the only crack variablesgB is the parameter of the
ellipse. According to the previous assumptiamy$1) the
stress is maximal foB= 1, i.e., on the tip of the crackhe
real maximum is very close to that, at least for Griffith as a new macroscopic parameter. The mesoscopic theory
cracks. Therefore we will here seB= . 6 is constant in  provides tools to deal with this damage variable aldg-
time because the crack cannot change its orientation. Withamics, relation to the moment series expansion).etc.

vi(1L,x,t) = (w(l,x,1),w(l,x,t)).

From the model of Griffith[26] it follows that the crack
length change velocity is

D(x,t)zjolof(l,x,t)lzdl (42)
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VIII. DISCUSSION of equations for the dynamics of the moments of the micro-

In this paper we investigated the applicability of the me_crack distribution and for the distribution function itself.

. ; . . It is important to see that our results do not correspond to
soscopic qoncept tq mlcrocracks. The physical Con.d't'or.]%ome other microstructural continuum theor{d®,20,39
tsﬁgvgljrhr?)tulr]:(\jﬁlr? C?nnesé?jrr(ﬁéagﬁ;ug'g;oCJ?E::Z tgizroa(l:raetig)r()id "Nwhere a second order equation is supposed for the dynamics
then the formaﬁsm and results deveio ed for liauid ¢ Stalsof the microstructure. Let us give a closer look at this propo-

. . P quid CryStalSsition, According to the suggestion of Capfi®d] we include
are applicable and can give some fundamental informatio

p —pB+x=0 (43

on the possible macroscopic internal variables and also 2 general kinetic energy term in the energy balance and after
For example, according to the present investigation théndlfference we get for the micromomentum balafi2e]

moment series expansion of the orientational distribution AR

the tensorial order of the internal variables in continuum ((91;) v

damage mechanics. First of all the introduction of an orien-

tion of the situation and there can be cases when the lenggrack Iengtl)u; B and y can be interpreted as “microfqrcgs”

and the orientation of the cracks are statistically dependen@nd “microstresses” and they must be given constitutively.

their dynamics. %Uome calculations based on the principle of material frame
function does not close the long discussion on the nature of

tational distribution function is only a convenient simplifica- where v is a parameter of the microstructufe.g., micro-

On the other hand the dynamics of the microcrack distribuThe first term Containg(y,.y), the “micro kinetic energy.”

tion depends on the mesoscopic space. It is easy to prove that this term cannot result in a first order
Sometimes a vectorial representation is simpler and fitgquation fory.
better than a tensorial oraniaxial casg This can be inter- On the other hand, we can make some remarks about the

preted as a special case of uniaxiality in the fabric tensostatistical approaches, too. The mesoscopic theory in some
description. The situation is best seen from the point of viewsense supports the validity of the mean field description in
of liquid crystal theories, where both kinds of description arethe case of simple crack orientation distributions when the
present. Similar symmetry requirements as in the case dfrst terms of the momentum series expansion can represent
microcracks(head-tail symmetryresult in only even order the length distribution functions. For example, this can be
terms in the alignment tensor series expansion, but the ve@xpected when uniaxial loading conditions are applied to an
torial director theory of Ericksen-Leslie-Parodi-Veshés initially undamaged material, as is expected in lattice models
well usable(and somewhat simplein many systems. where mean field scaling is observigl. However, the rea-

In continuum damage mechanics we can find examples odon for long standing metastable states should be explained
very different damage descriptofscalars[28,29; vectors  on the phenomenological level also.
[30-33; second order tensof4]; higher order tensoi84]).
From a mesoscopic point of view the relation between the
macroscopic theories with internal variables of different ten-
sorial order is cleaf13,14,18. Furthermore, the mesoscopic ~ We thank the DAAD for sponsoring the cooperation be-
theory gave a particular form of the possible dynamic equatween the Departments of Physics at the Technical Univer-
tions on both the mesoscopic and the macroscopic levekities of Berlin and Budapest. Financial support by the
Without calculating a particular source term we can see tha?ISHAY Company, 95100 Selb, Germany, is gratefully ac-
it is a first order equation in the time and space derivativesknowledged. This research was also supported by FKFP
Using further specific assumptions about the dynamics of th&rant No. 0287/1997, OTKA Grant No. F02262, and by
extension of single microcracks, one can get a closed syste@NRT at the Energy Department of ENEA, Casaccia, Italy.
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