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Critical behavior and conservation in directed sandpiles
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We perform large-scale simulations of directed sandpile models with both deterministic and stochastic
toppling rules. Our results show the existence of two distinct universality classes. We also provide numerical
simulations of directed models in the presence of bulk dissipation. The numerical results indicate that the way
in which dissipation is implemented is irrelevant for the determination of the critical behavior. The analysis of
the self-affine properties of avalanches shows the existence of a subset of superuniversal exponents, whose
value is independent of the universality class. This feature is accounted for by means of a phenomenological
description of the energy balance condition in these models.

PACS numbd(s): 05.65+b, 05.70.Ln

[. INTRODUCTION tween dissipation and size scaling has not yet been achieved
and it has been recently the subject of several stydied 4.
Sandpile cellular automata are the most famous example In this paper we address some of the aforementioned
of self-organized criticalSOQ behavior[1-3]. Under an  problems in the case of directed sandpile mofiels15-18.
external drive consisting of a slow addition of saetergy In this case Dhar and Ramaswamy obtained an exact solution
grains and the action of dissipation through the loss of enfor the Abelian deterministic directed sandpileDS) [15],
ergy on the lattice boundaries, these models reach a statiothat can be used as a touchstone to check the numerical
ary steady state. In the limit of infinitesimal driving and dis- simulation analysis. Directed sandpiles thus become an inter-
sipation(this last achieved in the thermodynamic lijnithe  esting test field to study how the critical behavior is affected
stationary state of sandpile models exhibits diverging reby the introduction of stochastic elements and dissipation.
sponse functions associated to a characteristic avalanche dyte perform large scale numerical simulations of two di-
namics. This is the hallmark of a critical behavior that hasrected sandpile automata: the deterministic directed sandpile
attracted an enormous amount of interest as a plausible exaodel[15] and the stochastic directed sandpile mdde].
planation of the avalanche-like critical behavior empirically We study both models in the case of boundary and bulk
observed in many natural systefid. dissipation[19-22. We find, in agreement with the results
Sandpile models have been at the center of an intense Ref.[18], that the models define two different universality
research activity made of both analytical studies and numerielasses. In addition we show that the universality class of the
cal simulations. Despite the simple definition of these auimodels does not depend on the way in which dissipation is
tomata, it turns out that their full analytical understanding isimplemented. Finally we analyze the properties of aniso-
a very problematic task4]. As a further complication, also tropic models in which the dynamics is not fully directed
the numerical inspection of these models results to be paf<10,23. In this case we observe that on large scales the criti-
ticularly difficult. For example, the precise identification of cal behavior is the same of that of fully directed models.
universality classes has resisted for many years even theesults for the stochastic models are compared with a recent
most careful numerical analysis, and only recent results haviheoretical approach by Paczuski and Bas2di, that pro-
partially settled this probleff6—8]. On the other hand, these vides values for the critical exponents in perfect agreement
refined analyses have pointed out that several sandpile mod4th numerical simulations. These results are also recovered
els do not follow the simple finite size scalif§S9 form  in Ref.[25].
usually adopted in the description of critical behaviéi. The numerical analysis also points out that some critical
For instance, the more sophisticated multiscaling approachxponent values, such as the correlation length exponents or
[10-12 seems to be required for a full description of the the affinity exponen(to be defined later gnare independent
scaling properties of the original Bak, Tang, and Wiesenfeldf the particular universality classes and common to all mod-
(BTW) model[1,2]. els considered. In order to explain this numerical evidence,
Many sandpile features have been underlined as the posve provide a phenomenological characterization of directed
sible origin of these scaling anomalies. The deterministic dysandpiles based on the basic symmetries introduced by the
namical rules of the BTW model induce nonergodic effectsconserved dynamics of these automata. Following balance of
[8], that are certainly missing in stochastic models, such asnergy arguments inspired in Ref26-2§, we derive a
the Manna mode€]l13,4], which shows a perfect FSS behav- series of results and predictions on the value of critical ex-
ior, even for moderate system sizes. A further complicatiorponents which are a straightforward consequence of conser-
of sandpile automata stems from the peculiar role of thevation. These general results can be considered as superuni-
boundary dissipation, that makes the lattice size scaling entersal, because they characterize the critical behavior of all
tangled with the system dynamics. In such cases, the thermdirected sandpiles with local dynamical rules, independently
dynamic limit is essential for the dissipative dynamics ofon the specific universality class. The results presented here
large avalanches. A clear understanding of the interplay beprovide a general picture of directed models and the role of
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threshold isz.=2, independently of the dimensionality of
AN VAR VAR the lattice. When a site in the hyperplaxetopples, it sends
[—0— two grains of energy to two siteandomly choseamong its
V"N I | ¥ % .
Lo J ; J ; ol b 2d—1 nearest and next-nearest neighbors on the hyperplane
7N ™ ™ ™ 4\ x;+1. The toppling rules of this model can be defired
a1 DRGNS ) clusiveif the two energy grains are always distributed on

) ) ) ) ) different sites, Fig. (b). On the other hand, the model can be
_ FIG. 1. Toppling rules ind=2 for directed sandpiles. Filled  jefinednonexclusivef the dynamics allows the transfer of
circles represent activéoppling sites; empty circles are stable two energy grains onto the same site, Fig) 1We therefore

sites. In t_he determlnl_snc modéd) an active site sends one grain to report simulations on the exclusive stochastic directed sand-
each of its three neighbors on the next downwards row. In the

. . . S pile (ESDS and on the nonexclusive stochastic directed
stochastic models, exclusiyb) and nonexclusivéc), one grain is dpile(NESDS. | ite of the stochasti i fth
sent to two randomly chosen downwards neighbors. sandprie - [N SpI ? 0 . € stochastic nature ot these
models, we must bear in mind that they are nevertheless
L ) Abelian [4]. The discussion therefore focuses on the differ-
boundary and bulk dissipation in the process of self-gnce hetween stochastic and deterministic models.
organization. _ Once the toppling rules have been determined, the models
The paper is arranged as follows. In Sec. Il we introduceyre finally defined by specifying the dissipation mechanism.
and define the various directed models considered. Sectiong,, systems with boundary dissipation, we impose periodic

[l and IV present and discuss, from the standpoint of uni- . . L=
. . . ... boundary conditions in the transverse directignsand open
versality, the numerical results for directed models with .
at the hyperplaneg,=L. In this way, the models are locally

boundary and bulk dissipation. In Sec. V we introduce an- onserved: eneray can only leave the svstem at the bottom of
isotropic models, and present the numerical results obtaine Co 9y only = (e Sy . X
e lattice. In models with bulk dissipation, we impose peri-

in comparison with those of directed models. Section VI is™ . _ ST
devoted to an analytical approach based on the conservati@lic boundary conditions in both thg andx, directions.

of energy. Finally, in Sec. VIl we draw our conclusions and Dissipation is implemented by allowing a toppling site to
perspectives. lose an energy, without transferring it with probabilityp

[26,21]. This means that, on average, an eneegyz.p is
dissipated in each toppling. In the limi&—0, the system
Il. DIRECTED MODELS shows critical behaviol26].

In the stationary state we can define the probability that
the addition of a single energy grain is followed by an ava-
lanche of toppling events. Avalanches are then characterized
by the total number of topplingsand the time duration In
the limit of infinitesimal driving(slow driving condition the
system shows scaling behavior and the probability distribu-
tions of these quantities follow the finite-size scalifs9

Sandpile models are usually defined oml-dimensional
hypercubic lattice of sizé.. To each node of the lattice is
assigned an integer varialtte, called “energy.” Energy is
added to the system uniformly at randomly chosen sites (
—2z;+1). When a site becomes active, that is, when its en
ergy becomes larger than or equal to a certain threshqld
it topples. A toppling site loses an energy, that is distrib-

uted among its neighbors according to a certain set of ruIeé?rms

The neighbors that receive energy can become active and P(s)=s "sG(sls,), )
topple on their turn, thus generating an avalanche. The slow

driving condition is effectively imposed by stopping the ran- P(t)=t" "F(t/t), 2)

dom energy addition during the avalanche spreading. This
means that the driving time scale is infinitely large with re-wheres; andt. are the characteristic size and time, respec-
spect to the toppling characteristic time scale. tively. The exponents and 7, characterize the critical be-
The models we consider in this section are directed, in théavior and define the universality classes to which the mod-
sense that the energy is always transported along a preferrets belong. In the critical region the characteristic time and
fixed direction. We denote this preferred direction by thesize are determined only by the system dizer the dissipa-
coordinatex;, whose positive direction is usually defined astion e, in the case of boundary and bulk dissipation, respec-
“downwards.” The transverse directidisubspace of dimen- tively. In directed models, thaffinity exponent is of par-
siond—1 perpendicular te;) will be denoted by;L- ticular importance; it relates the avalanche characteristic
The toppling rules of the models define two main classeslengths in the perpendicular directiafy, , and in the parallel
(i) Deterministic directed sandpilDDS): In d dimen-  direction, &, through the relationfi~§,§. This exponent
sions, the threshold is set =2d—1. When a site in a characterizes the degree of anisotropy due to the preferential
given hyperplanex, topples, it sendsleterministicallyone  direction present in the transport of the energy. In other
grain of energy to each one of its nearest and next-nearegtords, it expresses the self-affine properties in the scaling of
neighbors on the hyperplang+ 1 [see Fig. 1a)]. Our defi-  avalanches. A general result concerns the average avalanche
nition is somewhat different from the original model of Dhar size(s), that also scales linearly with[10,15,23; this result
and Ramaswampl5], in both the driving and the orientation can be exactly obtained by inspecting the conservation sym-
of the lattice. Both models, however, are expected to sharmetry of the model as we shall see in Sec. VI.
the same universality class, being deterministic and directed. For the DDS, the exact analytical solutionds-2 yields
Numerical simulations confirm indeed this poji]. the exponentss=4/3 andr,=D =3/2[15]. The upper criti-
(ii) Stochastic directed sandpi(€DS: In this case, the cal dimension is found to beé.=3, and it is also possible to
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find exactly the logarithmic corrections to scalihgs,29. TABLE 1. Critical exponents for directed sandpiles with bound-
The introduction of stochastic ingredients in the toppling dy-ary dissipation ind=2. DR: Dhar and Ramaswamy’s exact solu-
namics of directed sandpiles has been studied recently in tgn; DDS, deterministic directed model; ESDS and NESDS, sto-
model that randomly stores energy on each topplihg]. chastic directed models. Figures in parentheses denote statistical
This model is strictly related to directed percolation and de-Lncertainties.

fines a universality class “per se.” It would be very interest-

ing to investigate the possible connection between this modelMode! Ts D Tt z ¢
and the stochastic directed one presented in this work.  pgr 4/3 3/2 3/2 1 1/2
DDS 1.34(1) 1.51(1) 1.51(1) 1.00(1) 0.50(1)
IIl. NUMERICAL SIMULATIONS WITH BOUNDARY ESDS 1.43(1) 1.74(1) 171(3) 0.99(1) 0.51(1)
DISSIPATION NESDS 1.43(1) 1.75(1) 1.74(4) 0.99(1) 0.51(1)

In this section we report results from computer simula-
tions of deterministic and stochastic directed sandpiles, peiingly t—t/L* and P(t)— P(t)L*", should collapse onto the
formed with boundary dissipation. The system sizes considsame universal function, for different valueslof

ered range fromL=100 to L=6400. The statistical In Table | we report the exponents found for the DDS,
distribution functions have been computed averaging oveESDS, and NESDS models id=2. Figure 2 shows the
10’ nonzero avalanches. momentso¢(q) ando(q). Figures 3 and 4 plot the FSS data

In the case of boundary dissipation, the lattice sizethe  collapse for sizes and times, respectively. The exponents ob-
only characteristic length present in the system. Approachinggined for the DDS are in perfect agreement with the ex-
the thermodynamic limitl{(— <), the avalanche characteris- pected analytical results. This fact supports the idea that the
tic size and time in Eqd.1) and(2) diverge ass,~LP and  system sizes used in the present work allow to recover the
t.~L? respectively. The exponeit defines the fractal di- correct asymptotic behavior. Results for the ESDS and
mension of the avalanche cluster ani$ the usual dynamic NESDS are identical within the error bars, pointing out that
critical exponent. The directed nature of the model intro-these two models are in the same universality class. On the
duces a drastic simplification, since it impogesl. In order ~ other hand, the obtained exponents prove beyond any doubts
to compute the different exponents characterizing the dythat deterministic and stochastic directed sandpile models do
namics of the avalanches, we have performed the momemot belong to the same universality class.
analysis of the distributions, in analogy to the method devel- We have also directly computed the characteristic lengths
oped by De Menectet al. [11,12. We define theqth mo-  in the parallel and transversal directiofjsand ¢, as a func-
ment of the avalanche size distribution on a lattice of &ize
as(s% = [ds s'P(s). If the FSS hypothesifl) is valid in 4 T T
the asymptotic limit of larges, then thegqth moment has the L a)
following dependence on system size:

3 - .
<Sq>L: LD(qul*TS)J» dy y(qus)g(y)wLo's(q)_ (3) § 2 | ]
5
. o—o DDS
The exponentr¢(q)=D(g+ 1— 75) is computed as the slope 1 ESDS 1
of the log-log plot of(s%_ as a function ofL. For large
enough values ofj [i.e., away from the region where the > NESDS
integral in Eq.(3) is dominated by its lower cutofffone can 0 """ 1 2 3

compute the fractal dimensidd as the slope oé¢(q) as a
function of q: D=4do4(q)/dg. On the other hand, since the
first moment must scale linearly with, we haveo(1)=1.
Once D is known we can estimateg using the relation
o4(1)=D(2— 719 =1.

Along the same lines we can obtain the moments of the
avalanche time distribution. In this cage$), ~L®, with
do(q)/dg=1z. Analogous considerations for smajlapply
also for the time moment analysis. Here, an estimate of the
asymptotic convergence of the numerical results is provided
by the constrainz= 1, that must hold for large enough sizes.
Then, ther; exponent can be found using the scaling relation
(2—1)=0y(1).

Once the exponents have been estimated numerically, we
can check the accuracy of the moment analysis’ predictions
using the FSS hypothesis. If the FSS hypothesis of Egs.
(1),(2) is correct, then the plots of the distributions, under the  FIG. 2. Plot of(a) o4(q) and (b) o((q) for the d=2 models
rescalings—s/LP and P(s)—P(s)LP"s and correspond- DDS, ESDS, and NESDS with boundary dissipation.

3
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FIG. 3. Data collapse analysis of the integrated avalanche size FIG. 4. Data collapse analysis of the integrated avalanche time
distribution for thed=2 stochastic models with boundary dissipa- distribution for thed=2 stochastic models with boundary dissipa-
tion (a) ESDS andb) NESDS. System sizes ake=400, 800, 1600, tion (a) ESDS andb) NESDS. System sizes are=400, 800, 1600,
3200, and 6400. 3200, and 6400.

tion of the system size. The anisotropy of the system is rethus the second moment of the relative distance distribution
flected in the different definitions of both characteristicis needed to define a meaningful correlation length. In the
lengths. In this sense, we define them with the same spirit datter case, on the other hand, the spreading is always in the

in directed percolatiof30]. direction of growingx;, and therefore the first moment is
Consider a given avalanche, labeledthat has started at sufficient.

the site MO) x{9), and has affected the set differentsites The system being critical, both correlation lengths should
{(x(') X(ll))} for i=0---a—1 (i.e., it has covered an area Ecale with the system size, defining the exponeftand v,
a). Let us define the quantities y

§~LM, & ~LM (7)

Ri(e)=7 2 |x(0—x{"] (4)  The affinity exponent, defined by
nggﬁ (8)

and
is thus given byl=v, /v, .
We have calculated the correlations lengths in the models
R?( a)—— 2 (x{9—x(2 (5) DDS, ESDS, and NESDS, given by the definititg). The
results, plotted in Fig. 5, give the following dependence of
the correlation lengths with system size for all models:
Furthermore, let us defing (a) and Rf(a) as the averages
of the previous quantities, over all avalanches of the same &~L, & ~L2 9)
fixed areaa. Let P(a) be the probability of observing an

avalanche of area. We define the correlation lengths by ~ These relations define the exponents-1 andv, =1/2, and
an affinity exponent =1/2. It is interesting to note that this

2 exponent is independent of the universality class of the
H:w’ 2 :w. (6) model, defining a sort of superuniversal property of directed
2 aP(a) * 2,aP(a) models.
As pointed out in Ref[18], the stochastic dynamics of
The different definitiong4) and(5) are obviously due to the SDS models introduces multiple toppling events on the same
different nature of the avalanche spreading in the directionsite, which are by definition absent in the deterministic case.
x, andx, . In the former case, the spreading is isotropic, andThis gives rise to a very different avalanche structure, even-
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35 T T T — TABLE IlI. Critical exponents for directed sandpiles with bulk

,/8 dissipation ind=2. DR: Dhar and Ramaswamy’s exact solution;
/,g DDS, deterministic directed model; ESDS and NESDS, stochastic
25 | §) ~ Ll‘oo‘/@ i directed models. Figures in parentheses denote statistical uncertain-
o /,@’ ties.
< &
&0 o e Model 7o Ag 7 A, s
T 15t e’ o .
r Y. a DR 4/3 3/2 3/2 1 1/2
W,«r‘” £~ LM DDS 1.32(1) 1.50(1) 1.52(1) 1.00(1) 0.51(1)
r- , . . . ESDS 1.42(1) 1.72(2) 1.70(4) 0.98(2) 0.51(1)
038 23 (28 33 38 NESDS ~ 143(1) 175(2) 170(5) 099(2) 0.50(1)
0810

FIG. 5. Correlation lengthg, and¢, as a function oL for the jzed to systems with bulk dissipation. In this case the role of
models with boundary dissipation DDSOJ, ESDS (A), and  tne system sizé as scaling parameter is played by the dis-
NESDS (¢). The dashed lines are guides to the eye with SloPesipatione. If the FSS hypothesis holds, tiggh moment for,
1.00 and 0.50. say the size distribution, has an explicit dependence on the

) ) o ~dissipation rate that reads
tually reflected in the different asymptotic critical behavior.

It is worth remarking that the universality class of SDS ap- (89) ~ e AslaF 177 = ¢ ps(@) (10)
pears robust to modifications of the stochastic microscopic

dynamics as pointed out in RéB1], where it is shown that The new momenpg(q)=As(q+1—7) can be estimated by
modifications of SDS models with stochastic toppling thresh/inear regression in a log-log plot ¢, as a function of
old still belong to the same universality class. Recently, Pace - Once this moment is computed, the expondntis
zuski and Basslei24], have proposed a theoretical approachdiven by Ag=dps(q)/dq. The relation(s)=€ " imposes
that allows the calculation of critical exponents in directedps(1)=1, and from here, once knowAg, we computers
models with multiple topplings. The analysis goes throughusing the relationps(1)=A¢(2— 7). Analogous consider-
the mapping of the avalanche evolution into the dynamics oftions allow us to compute the exponents of the time distri-
an interface moving in a random medium, as also proposebution A; and 7. Finally, to check the exponents with the
in Refs.[32,33. This theoretical result gives the exponentsdata collapse technique, one must plot the rescaled functions
7<=10/7 andr,=D =7/4, in perfect agreement with the val- P(s)e *s™as a function o/ “s andP(t) e *t"t as a func-
ues obtained by numerical simulations, Table I. The sam&on of t/e~ 2, respectively.

exponent values are also found in the approach of R&l.

4 T T

a)

IV. NUMERICAL SIMULATIONS WITH BULK
DISSIPATION

In this section we report results from computer simula-
tions of deterministic and stochastic sandpiles, performed
with bulk dissipation. In this case, dissipation is imple-
mented as described in Sec. Il. That is, in a system with
periodic boundary conditions, each toppling site has a prob-
ability e/z. of losing an energyz., and a probability 1
—e€lz. of transferring it to its neighbors. The dissipation
rates range frone=0.0016 to 0.0512, and tHé&xed) system
size considered ik =6400. Statistical distribution functions
have been computed averaging ovef h@nzero avalanches.

In the presence of bulk dissipation the characteristic sizes
are determined by the dissipation ratewhich defines the
only characteristic length in the system. Approaching the
limit e—0, the avalanche characteristic size and time di-
verge ass;~ e “s andt,~ e t, respectively. It is also very
easy to relate the mean avalanche size to the dissipation rate
e. On average, each added grain must be dissipated in the
evolution of the avalanche, resulting éfis)=1. This readily
yields (s)=€"1. In this case it is extremely important that
the characteristic length of the avalandés always smaller
than the size of the lattice used. This allows us to study only
finite size effects introduced by the dissipation probability,
without spurious effects due to the finite lattice size. FIG. 6. Plot of (@) ps(q) and (b) pi(q) for the d=2 models

The moment analysis can be straightforwardly generalbDS, ESDS, and NESDS with bulk dissipation.
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FIG. 7. Data collapse analysis of the integrated avalanche size r|G. 8. pata collapse analysis of the integrated avalanche time
distribution for thed= 2 stochastic models with bulk dissipatic® distribution for thed= 2 stochastic models with bulk dissipatia
ESDS andb) NESDS. Dissipations are=0.0256, 0.0128, 0.0064, ggps andb) NESDS. Dissipations are=0.0256, 0.0128, 0.0064,
0.0032, and 0.0016. 0.0032, and 0.0016.

In Table Il we report the exponents computediin 2 for  gate theoretical approaches in which it is assumed a homo-
the directed models DDS, ESDS, and NESDS with bulk disgyeneous dissipation that is much easier to treat analytically.
sipation. The corresponding moments(q) and p(q) are As a last observation it is worth remarking that also in this
shovyn in Figs._ 6, while Fig;. 7 and 8 plot the data coIIapsecase’ a series of exponents suchand »| assume values
for sizes and times, respectively. , , independently of the universality class of the model under

To conclude our analysis of directed sandpiles with bUIkstudy. This sort of superuniversality can be explained in

dissipation, we have proceeded to compute the correlatiopyms of energy conservation as we shall see in Sec. VI.
length of the models. In this case, the scaling of the correla-

tion lengths with vanishing dissipation define the scaling ex-
V. NUMERICAL SIMULATIONS OF ANISOTROPIC

ponents
MODELS
§~e M, E~e (13) An important question to study in directed sandpile mod-
els is the effect on the scaling properties of any amount of
and an affinity exponerit= v /v, . Using an analogous defi-
nition as in the case of boundary dissipation, we compute the 35 . . , .
exponentsy| =1, v| =1/2, and{=1/2, as shown in Fig. 9. L
That is, the correlation length exponents are identical for ° O £~ €100
both boundary and bulk dissipation. These results again im- as | o g\" |
ply an affinity exponent=1/2 in all the models studied so w ’ \8\
far. S ~Q
These results confirm that the critical behavior of models & "~ D\\Q\

with boundary or bulk dissipation is identical. In fact, all L5 F \8“8\ N e
critical exponentsrg, 7, z, and { are equal in both cases £, ~ 00 ‘8‘\8\ N
[34]. This further confirms the complete equivalence of both ‘8‘\0\
points of view with respect to sandpiles and shows that, at 05 L L ' .
least in the directed case, the open boundary conditions usu- -3 25 lc;gzloe -5 -

ally implemented in simulations do not affect the scaling

behavior in a peculiar way. Of course, the open boundary FiG. 9. Correlation lengthg, and &, as a function of for the
conditions breaks the translational invariance of the systenmmodels with bulk dissipation DDSJ), ESDS (1), and NESDS

but in the thermodynamic limit this effect is negligible for (¢ ). The dashed lines are guides to the eye with slope 1.00 and
the asymptotic critical behavior. Finally, these results vali-0.50.
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FIG. 11. Correlation lengthg, and&, as a function ot for the
FIG. 10. Toppling rules ind=2 for an anisotropic sandpile. model with boundary dissipation NESAS. The dashed lines are
Filled circles represent activéioppling sites; empty circles are gyides to the eye with slope 1.00 and 0.50.
stable sites. An active site sends one grain to two randomly chosen

sites selected among the three downwards neighbors and the up- VI. THE ROLE OF CONSERVATION
ward nearest neighbor. IN SANDPILE MODELS

We have seen in the preceding sections that a subset of
diffusion along the preferred direction of transpgjt One  critical exponents characterizing the critical behavior of di-
would expect that the broken symmetry introduced by theected and anisotropic models have an interesting superuni-
preferential direction should prevail on large scales, so thafersal property; i.e., they are independent of the universality
the dynamical scaling in directed and simply anisotropicclass of the models. In order to understand this feature we
sandpiles become indistinguishable in the thermodynamiperform a theoretical analysis based on the conservation of
limit. This fact hints towards the possibility of a unique uni- energy, that is the basic symmetry in standard sandpile au-
versality class for both directed and anisotropic sandpilesomata. We shall see in the following that the superuniversal
This universality class is determined uniquely by the lack ofcharacter of some critical exponents is dictated by simple
symmetry along the, direction, and the presence or absenceenergy conservation considerations. The use of this approach
of stochastic elements in the definition of the models. also allows us to establish a relation between boundary and
In order to test this Conjecture7 we have performed nubulk diSSipation models by intrOdUCing an effective diSSipa-

merical simulations of an anisotropic stochastic sandpildion that depends on the system size. o
model, defined according to the following rules: on a hyper- e avalanche dynamics in sandpile models is implicitly
cubic lattice of sizel, we consider a model with threshold due to the imposed infinite time scale separation between
z.=2. When a site topples, it sends two grains of energy t§l"ving and dissipation[26,27,33. In order to devise a
two sites, randomly selected among theé—21 nearest and theory that can take into account the_ symmetryllntroduced by
next-nearest neighbors on the hyperplage-1, and the the energy conservation, one must flrst.regulanze_the r_ules of
nearest neighbor on the hyperplaxe-1, see Fig. 10. The the quels in such a way that_a smgle time scale is ruling t'he
rules in this model are defined non-exclusive, in such a wayynamics. One way to do so is to introduce a nonzero driv-
that the same site can receive the two sand grain expelled B)9 rate, defined as the probability per unit timef a site to

an active site. The model is clearly anisotropic, because thEeCeive @ grain of enerdy26,35. This driving rate plays the
probability to transfer energy in the downwards direction isrole of an external field and leads to the SOC behavior in the

three times larger than in the upwards direction. It wouldimit h—07.On the other hand, given that the toppling rules

thus correspond to a nonexclusive stochastic anisotropigl® conserved, energy can leave the system only at the

sandpile(NESAS. We consider only the case of boundary bounda_ries. B_oundary dissipqtiqn is a natural chqice in com-
dissipation, performing simulations for sizes ranging fromPUter simulations. However, it introduces undesirable com-
L=100 up to 6400, and averaging over’1@onzero ava- plications due to its singular character in a local theory. It is
lanches. ’ therefore convenient to use an homogeneous effective dissi-

In Fig. 11 we plot the correlation length and¢, , mea- patione, defined as _the average energy lost in each ftoppling
sured according to the rules given in E@6). We confirm event. As observed in previous sections, one can define mod-

the expectation that anisotropic models have the same scdlS With periodic boundary conditions and built-in bulk dis-
ing properties, as regards the scaling of the correlatiofsiPation. When constructing the local .thgory_ for models with
lengths, as directed models with the same deterministic gfP€N Poundary conditions, the bulk dissipatioamounts to
stochastic ingredients. We have also measured the expone/®@ effective parameter that is to be related to the system size

7s, Tt,» D, andz for this model, using the moment analysis = , )
technique. The values found are=1.431), D=1.7§1), With all these ingredients, we are ready to formulate con-

7=1722), z=0.992). These results, compared with servation of energy as a continuous equation. In sandpiles,
Tables | and Il, show that this anisotropic models belongs tdve dgfme the order_ parimetpg as the denS|ty_ of _actlve
the same universality class of the ESDS and NESDS directet{t€s (i-€., whose heighz=z). The only dynamics in the
models, confirming the irrelevance of the diffusion along themodel is obviously due to the fiejal(x,t), which is coupled
preferred directiorx; . to the local energy densit#(x,t) (i.e., the local density of
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sand grains which enhances or suppresses the generation afhere the symbo#, stands for the partial derivativé Jx; .

new active sites. A Langevin description for sandpile au-This is the general conservation equation for any directed
tomata is possible by considering the dynamics of the locasandpile model. It is worth remarking at this point that the
order-parameter fie|(ba()z,t) in a coarse-grained picture, energy field is a static field, in the sense that energy diffuses

P >N ly if active sites are present in the system. This is intu-
bearing in mind that the energy densiyx,t) is aconserved on . .
field. In Refs[27,28, in analogy with absorbing-state phase !iVely understood in sandpile models, where enefggnd

L : . ; ins diffuse only from toppling sites.
transitiong 36,37, a pair of coupled dynamical equations for grans .
. - T | h f ful
the fieldsp,(x,t) andE(x,t) were proposed. In the follow- 0 analyze the consequences of Etp), it proves usefu

ing we elucidate the consequences of energy conservatidf define the susceptibility(x,t) [28]:

and we focus only on the latter equation. The interested -
reader can find the full set of equations in Ref8]. In the Vil I opa(x.t)
. ! . x(xX=x"t—-t")y={ —————) , (16
next subsections we shall consider separately directed and Sh(x',t")
n

anisotropic models.

where the symbol), denotes an average over the noise
A. Directed sandpiles distribution. By definition, the susceptibility measures the
ed |QVerage increase in the number of active sites due to an im-
pulsive perturbation, that is, to the addition of a single en-
ergy grain. Since we measure the size of the avalanches by
'he total number of topplings, the average avalanche size is
given by

We seek a continuous equation for the coarse-grain
cal density of energE(f,t). In the limit of zero driving and
dissipation, energy is conserved. Therefore, the evolutio
equation fulfilled by the local fieldE is

JE(X,1) .. . . R A
== V- Je— epa (XD +h(X D + me(X, D). (12 <S>:fddxdtx(x’t). 17

The first term simply represents the diffusion of energy; the Taking the functional derivative of Eq15) and averaging
second term accounts for the dissipation that is associatasler time and noise, we obtain, in the lintit:c, in which
with every toppling event; the third term represents the exthe sandpile is in a stationary state with constant average

ternal driving. Finally, the last term is a source of StOChaStiCenergy, the following equation for the static susceptibility:
noise, that accounts for the randomness in the flow of en-

ergy. The noise term can be generated by the toppling rules D, VZx(X) = 2N djx(X) — ex(X)=— 6D (x). (18
in a stochastic model, or by the initial conditions plus the

random driving in a deterministic model. We will require the This equation can be easily solved in Fourier space. Defining
noise to have zero average the transformation

(me(X,1))=0. (13)

XX X,)= f d?~ 1k dqx(q,k) ek xeld (19)

d
The noise correlatof 7(X,t) 7e(x',t') is of fundamental (2)
impor_tgnce for th_e determination of universality classes and,,4 substituting into Eq18), we obtain the solution
the critical behavior of the order parameter. However, for our
present purposes we do not need precise knowledge of its
analytical form(for a detailed discussion, see Rgi2&7,2§)). x(q,k)= ——-,

The current can be constructed by appealing to the sym- D, k*+2iNg+e
metries of the model. The transport of energy is due to top-
plings. These are isotropic along the transversal directiotvhich yields the susceptibility in real space

>ZL , therefore the current along this direction will be propor- igx

tional to thegradient of the density of active sites. In the VIR g 1 a1y gk, [ g S
-2 . X(X,X, ) 5] A% ke* [ dg—F— .

preferred direction, on the other hand, all the energy is trans- -» D k"+2iNg+e

(20

ferred downwards; therefore, the current in this direction (21)
must be proportional to thdensityof active sites. The final
form of the current is then This integral yields the result, settig, =1:
- - - - - (d-1)/2
Je(X,t)=—=D  V, pa(X,t) + 2N pa(X,t) e . (14 (X, X ):i L X(l—d)IZG—x”s/2)\e—)\xf/2xu
XX =50\ o0 I :
Plugging this expression into the equation for the energy, we (22

have the final result
Equation(22) can be conveniently rewritten into the scaling

&E()_(),t) , - . form
ot~ DiVipa(X\) = 2hdipa(X.t)

R B X, X
x (X %) =x{" d)lzr(_” _L) @3

—epa(X,t) +h(X,t)+ 7(X,1), (15) &' &L
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wherel is a cutoff function that decreases exponentially in

both its arguments. Comparing this last expression with Eq. x(X,X, )= dJ' dd- 1k gk
(22), we can identify the parallel and transversal correlation ™)
lengths i
foc e'dX
X d . (28
E~el, & ~el2 (24) oo qDLk2+ D,g?+2iNg+e 28

In more general terms, if we define the exponerﬁtsmd v This last integral can be performed analyticallyds 1 and

by Egs.(11), then we have for directed sandpiles=1 and 2. Ford>2, even though we do not have a closed expres-
v/ =1/2. From these last expressions, we can read off a firstion, We can obtain the leading scaling behavior. To simplify
exact result for directed sandpiles: the avalanches producdh® calculations, we set, without lack of generallly, =D,

in those models are elongated, with characteristic length i 1- The integration irg is done by the method of the resi-
the parallel and transversal directions related by an affinityglues. The integration of the angular par{38] yields
exponent/=1/2. It is very important to stress that these
results are independent of the particular model considered
and of the dimensionalitg of the system, dictated only by
the energy balance in the stationary state.

Y

. 1 v+1 0
X(x”,xL)=§<ﬂ xl_”fo dz z*t?1

We can use the resulP4) to relate the effective bulk R CAERE Y
dissipation with the system size in a model with open bound- X J,(yXL Z)W (29

ary conditions. To sustain a steady state with constant aver-
age energy, avalanches_ must re_ach the bottom boundary Here, J (2) is the first kind Bessel function of order, and
order to be able to dissipate. This means that the charactef;, ha\;e defined the constants=(d—3)/2 and y=()\?
istic length of the avalanches in the parallel direction must be_ )12 We are interested in the behavior of this integral for

. large distances, that is, in the limi{>x,>1. In this limit,

he weight of the integral is given by the region of small
since the exponential suppresses large values. We can then
approximate the integral in the intervak@z<<1 and perform

a Taylor expansion of the square root in the exponential and
the denominator. In the denominator, we readily have (1
+2%)12=1. The term in the exponential, however, contains

These identities are recovered in numerical simulatices a constant term, and must be therefore expanded up to sec-
Tables | and Il. Finally, from Eq.(20), we can recover the ond order:

well-known result linking the system size and the average
avalanche sizgs)= x(q=0k=0)~e 1~L [10,15,23. =X (yV1+ 22— N)=—x,(y[1+Z%/2]—\)

=—X(y=N)=xyZ?/2.  (30)

dissipation ratee that is related with the system size by
e~L L. (25)

From this relations we easily find tha&t,;=D and A;=z.

B. Anisotropic sandpiles

Having completed the analysis of directed sandpiles, wén the limit e—0, we havey=X\, and the constany—\ can
turn our attention to the more complex case of anisotropibe expanded to give
sandpiles. In this kind of model, the transport of energy is
not strictly directed in the parallel direction, but is simply
stronger in the directiont x; than in the opposite direction y=A=(\2+e)V2=\=\
—X . The presence of backwards flow allows the possibility
of diffusion in the preferred direction, and thus the equatio
for the conservation of energy becomes in this case

- (1
A=y @D

14+ —
202

nSubstituting these approximations into E29), we are led to
the expression

IE(X,1)

0 = DLVEpa(X)+Dfpa(X,t) — 2N pa(X,t) L1 ag-xean

X (X)X, )= oN (277)"*1)&
— epa(X,1) +h(X,t) + 7e(X,1). (26) )
8 J dy y'*13,(y)e DY (32)
From Eq.(26), we can obtain the corresponding equation 0
for the susceptibility. The solution in Fourier space is readily

found to be where we have performed the change of varialylesyx, z
and extended again the upper limit of the integral to infinity
1 (which is allowed given its exponential convergencéhe
x(q,K) (27)  integral in Eq.(32) yields[38]

D, k*+D,q2+2iNg+ €

1 A v+1 ,
> G Ve | (1—d)/25—x€el2\ o= AXT 12X
Upon integration ovek andg, one obtains the expression in X(Xi,X,) 2\ ( 27,) Xj € e "L,
real space (33
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agreement with the numerical results in REf0] and the
analytic results of Ref[23]. We remark, however, that our
results do not rely in a particular model such as thod&8};,

but only on symmetry arguments, and are therefore of a
broader generality.

VII. CONCLUSIONS

In this paper we have presented a detailed numerical
analysis of deterministic and stochastic directed sandpile
models. We find definitive evidence for the existence of a
new universality class, embracing directed sandpile models
with stochastic rules. The origin of the different critical be-
havior can be traced back to the presence of multiple top-
plings in the latter case. An example of this feature is pro-
vided in Fig. 12, where we plot the local density of topplings
in two avalanches corresponding to the DDS and ESDS
models. From this figure it becomes evident that the stochas-
b) tic dynamics induces multiple toppling events, which are for-
bidden in the deterministic models. This feature has been
FIG. 12. Plots of the local density of topplings in two ava- fryjtfully exploited in Ref.[24] to obtain an analytical solu-
lanches of size 50 000 for the) DDS and(b) ESDS models. White  tion of the stochastic model.
stands for a single toppling per site; black represents the maximum \y/a have also studied the case of directed sandpiles with
number of topplings. bulk dissipation. In this case, our results prove that the criti-
cal behavior is unchanged. This points out that the boundary
dissipation does not play any particular role in the develop-
ment of the critical behavior in directed sandpiles.
, (34) Finally, numerical results indicate that some critical expo-
§ &L nents show a superuniversal nature, assuming the same val-
. , , ues independently of the universality class. We provide an
From herg, the (_:orrelatlon eXpOT‘eT“S _re@d= 1_and YL~ analytical explanation of this feature by means of a continu-
=1/2, as in the directed case. This implies again an affinity, s ‘nhenomenological equation that takes into account the

exponent/=1/2. energy balance condition imposed by the dynamical rules in
The conclusion of the lengthy calculations developed i”sandgp)i/le models. P y y

this section is that the presence of any amount of diffusion
along the preferred direction of a directed sandpile model is
completely irrelevant. As soon as there is anisotropy in a
model (in our mathematical formulation, whex+#0, how- This work was supported by the European Network under
ever, smal, it takes over and places the model in the uni-Contract No. ERBFM-RXCT980183. We thank D. Dhar, R.
versality class of completely directed sandpiles. In particularDickman, M. A. Muroz, A. Stella, and S. Zapperi for helpful
we recover the resu{ts)~L for any anisotropic sandpile, in comments and discussions.

which as usual we can write in the scaling form

-~ . X Xy,
X (X vXL):Xﬁl d)lzr(_ _>
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