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Critical behavior and conservation in directed sandpiles

Romualdo Pastor-Satorras and Alessandro Vespignani
The Abdus Salam International Centre for Theoretical Physics, P.O. Box 586, 34100 Trieste, Italy

~Received 20 June 2000!

We perform large-scale simulations of directed sandpile models with both deterministic and stochastic
toppling rules. Our results show the existence of two distinct universality classes. We also provide numerical
simulations of directed models in the presence of bulk dissipation. The numerical results indicate that the way
in which dissipation is implemented is irrelevant for the determination of the critical behavior. The analysis of
the self-affine properties of avalanches shows the existence of a subset of superuniversal exponents, whose
value is independent of the universality class. This feature is accounted for by means of a phenomenological
description of the energy balance condition in these models.

PACS number~s!: 05.65.1b, 05.70.Ln
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I. INTRODUCTION

Sandpile cellular automata are the most famous exam
of self-organized critical~SOC! behavior @1–3#. Under an
external drive consisting of a slow addition of sand~energy!
grains and the action of dissipation through the loss of
ergy on the lattice boundaries, these models reach a sta
ary steady state. In the limit of infinitesimal driving and di
sipation~this last achieved in the thermodynamic limit!, the
stationary state of sandpile models exhibits diverging
sponse functions associated to a characteristic avalanch
namics. This is the hallmark of a critical behavior that h
attracted an enormous amount of interest as a plausible
planation of the avalanche-like critical behavior empirica
observed in many natural systems@3#.

Sandpile models have been at the center of an inte
research activity made of both analytical studies and num
cal simulations. Despite the simple definition of these
tomata, it turns out that their full analytical understanding
a very problematic task@4#. As a further complication, also
the numerical inspection of these models results to be
ticularly difficult. For example, the precise identification
universality classes has resisted for many years even
most careful numerical analysis, and only recent results h
partially settled this problem@5–8#. On the other hand, thes
refined analyses have pointed out that several sandpile m
els do not follow the simple finite size scaling~FSS! form
usually adopted in the description of critical behavior@9#.
For instance, the more sophisticated multiscaling appro
@10–12# seems to be required for a full description of t
scaling properties of the original Bak, Tang, and Wiesenf
~BTW! model @1,2#.

Many sandpile features have been underlined as the
sible origin of these scaling anomalies. The deterministic
namical rules of the BTW model induce nonergodic effe
@8#, that are certainly missing in stochastic models, such
the Manna model@13,4#, which shows a perfect FSS beha
ior, even for moderate system sizes. A further complicat
of sandpile automata stems from the peculiar role of
boundary dissipation, that makes the lattice size scaling
tangled with the system dynamics. In such cases, the the
dynamic limit is essential for the dissipative dynamics
large avalanches. A clear understanding of the interplay
PRE 621063-651X/2000/62~5!/6195~11!/$15.00
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tween dissipation and size scaling has not yet been achie
and it has been recently the subject of several studies@11,14#.

In this paper we address some of the aforementio
problems in the case of directed sandpile models@10,15–18#.
In this case Dhar and Ramaswamy obtained an exact solu
for the Abelian deterministic directed sandpile~DDS! @15#,
that can be used as a touchstone to check the nume
simulation analysis. Directed sandpiles thus become an in
esting test field to study how the critical behavior is affect
by the introduction of stochastic elements and dissipati
We perform large scale numerical simulations of two
rected sandpile automata: the deterministic directed sand
model @15# and the stochastic directed sandpile model@18#.
We study both models in the case of boundary and b
dissipation@19–22#. We find, in agreement with the resul
in Ref. @18#, that the models define two different universali
classes. In addition we show that the universality class of
models does not depend on the way in which dissipation
implemented. Finally we analyze the properties of ani
tropic models in which the dynamics is not fully directe
@10,23#. In this case we observe that on large scales the c
cal behavior is the same of that of fully directed mode
Results for the stochastic models are compared with a re
theoretical approach by Paczuski and Bassler@24#, that pro-
vides values for the critical exponents in perfect agreem
with numerical simulations. These results are also recove
in Ref. @25#.

The numerical analysis also points out that some criti
exponent values, such as the correlation length exponen
the affinity exponent~to be defined later on!, are independen
of the particular universality classes and common to all m
els considered. In order to explain this numerical eviden
we provide a phenomenological characterization of direc
sandpiles based on the basic symmetries introduced by
conserved dynamics of these automata. Following balanc
energy arguments inspired in Refs.@26–28#, we derive a
series of results and predictions on the value of critical
ponents which are a straightforward consequence of con
vation. These general results can be considered as supe
versal, because they characterize the critical behavior o
directed sandpiles with local dynamical rules, independen
on the specific universality class. The results presented
provide a general picture of directed models and the role
6195 ©2000 The American Physical Society
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6196 PRE 62ROMUALDO PASTOR-SATORRAS AND ALESSANDRO VESPIGNANI
boundary and bulk dissipation in the process of se
organization.

The paper is arranged as follows. In Sec. II we introdu
and define the various directed models considered. Sec
III and IV present and discuss, from the standpoint of u
versality, the numerical results for directed models w
boundary and bulk dissipation. In Sec. V we introduce
isotropic models, and present the numerical results obtai
in comparison with those of directed models. Section VI
devoted to an analytical approach based on the conserv
of energy. Finally, in Sec. VII we draw our conclusions a
perspectives.

II. DIRECTED MODELS

Sandpile models are usually defined on ad-dimensional
hypercubic lattice of sizeL. To each node of the lattice i
assigned an integer variablezi , called ‘‘energy.’’ Energy is
added to the system uniformly at randomly chosen siteszi
→zi11). When a site becomes active, that is, when its
ergy becomes larger than or equal to a certain thresholdzc ,
it topples. A toppling site loses an energyzc , that is distrib-
uted among its neighbors according to a certain set of ru
The neighbors that receive energy can become active
topple on their turn, thus generating an avalanche. The s
driving condition is effectively imposed by stopping the ra
dom energy addition during the avalanche spreading. T
means that the driving time scale is infinitely large with r
spect to the toppling characteristic time scale.

The models we consider in this section are directed, in
sense that the energy is always transported along a prefe
fixed direction. We denote this preferred direction by t
coordinatexi , whose positive direction is usually defined
‘‘downwards.’’ The transverse direction~subspace of dimen
sion d21 perpendicular toxi) will be denoted byxW' .

The toppling rules of the models define two main class
~i! Deterministic directed sandpile~DDS!: In d dimen-

sions, the threshold is set tozc52d21. When a site in a
given hyperplanexi topples, it sendsdeterministicallyone
grain of energy to each one of its nearest and next-nea
neighbors on the hyperplanexi11 @see Fig. 1~a!#. Our defi-
nition is somewhat different from the original model of Dh
and Ramaswamy@15#, in both the driving and the orientatio
of the lattice. Both models, however, are expected to sh
the same universality class, being deterministic and direc
Numerical simulations confirm indeed this point@18#.

~ii ! Stochastic directed sandpile~SDS!: In this case, the

FIG. 1. Toppling rules ind52 for directed sandpiles. Filled
circles represent active~toppling! sites; empty circles are stabl
sites. In the deterministic model~a! an active site sends one grain
each of its three neighbors on the next downwards row. In
stochastic models, exclusive~b! and nonexclusive~c!, one grain is
sent to two randomly chosen downwards neighbors.
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threshold iszc52, independently of the dimensionality o
the lattice. When a site in the hyperplanexi topples, it sends
two grains of energy to two sites,randomly chosenamong its
2d21 nearest and next-nearest neighbors on the hyperp
xi11. The toppling rules of this model can be definedex-
clusive if the two energy grains are always distributed
different sites, Fig. 1~b!. On the other hand, the model can b
definednonexclusiveif the dynamics allows the transfer o
two energy grains onto the same site, Fig. 1~c!. We therefore
report simulations on the exclusive stochastic directed sa
pile ~ESDS! and on the nonexclusive stochastic direct
sandpile~NESDS!. In spite of the stochastic nature of the
models, we must bear in mind that they are neverthe
Abelian @4#. The discussion therefore focuses on the diff
ence between stochastic and deterministic models.

Once the toppling rules have been determined, the mo
are finally defined by specifying the dissipation mechanis
For systems with boundary dissipation, we impose perio
boundary conditions in the transverse directionsxW' and open
at the hyperplanexi5L. In this way, the models are locall
conserved; energy can only leave the system at the botto
the lattice. In models with bulk dissipation, we impose pe
odic boundary conditions in both thexi and xW' directions.
Dissipation is implemented by allowing a toppling site
lose an energyzc without transferring it with probabilityp
@26,21#. This means that, on average, an energye5zcp is
dissipated in each toppling. In the limite→0, the system
shows critical behavior@26#.

In the stationary state we can define the probability t
the addition of a single energy grain is followed by an av
lanche of toppling events. Avalanches are then character
by the total number of topplingss and the time durationt. In
the limit of infinitesimal driving~slow driving condition! the
system shows scaling behavior and the probability distri
tions of these quantities follow the finite-size scaling~FSS!
forms

P~s!5s2tsG~s/sc!, ~1!

P~ t !5t2t tF~ t/tc!, ~2!

wheresc and tc are the characteristic size and time, resp
tively. The exponentsts and t t characterize the critical be
havior and define the universality classes to which the m
els belong. In the critical region the characteristic time a
size are determined only by the system sizeL or the dissipa-
tion e, in the case of boundary and bulk dissipation, resp
tively. In directed models, theaffinity exponentz is of par-
ticular importance; it relates the avalanche characteri
lengths in the perpendicular direction,j' , and in the parallel
direction, j i , through the relationj';j i

z . This exponent
characterizes the degree of anisotropy due to the prefere
direction present in the transport of the energy. In oth
words, it expresses the self-affine properties in the scalin
avalanches. A general result concerns the average avala
size^s&, that also scales linearly withL @10,15,23#; this result
can be exactly obtained by inspecting the conservation s
metry of the model as we shall see in Sec. VI.

For the DDS, the exact analytical solution ind52 yields
the exponentsts54/3 andt t5D53/2 @15#. The upper criti-
cal dimension is found to bedc53, and it is also possible to
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find exactly the logarithmic corrections to scaling@15,29#.
The introduction of stochastic ingredients in the toppling d
namics of directed sandpiles has been studied recently
model that randomly stores energy on each toppling@16#.
This model is strictly related to directed percolation and
fines a universality class ‘‘per se.’’ It would be very interes
ing to investigate the possible connection between this mo
and the stochastic directed one presented in this work.

III. NUMERICAL SIMULATIONS WITH BOUNDARY
DISSIPATION

In this section we report results from computer simu
tions of deterministic and stochastic directed sandpiles,
formed with boundary dissipation. The system sizes con
ered range from L5100 to L56400. The statistica
distribution functions have been computed averaging o
107 nonzero avalanches.

In the case of boundary dissipation, the lattice sizeL is the
only characteristic length present in the system. Approach
the thermodynamic limit (L→`), the avalanche characteris
tic size and time in Eqs.~1! and ~2! diverge assc;LD and
tc;Lz, respectively. The exponentD defines the fractal di-
mension of the avalanche cluster andz is the usual dynamic
critical exponent. The directed nature of the model int
duces a drastic simplification, since it imposesz51. In order
to compute the different exponents characterizing the
namics of the avalanches, we have performed the mom
analysis of the distributions, in analogy to the method dev
oped by De Menechet al. @11,12#. We define theqth mo-
ment of the avalanche size distribution on a lattice of sizL
as ^sq&L5*ds sqP(s). If the FSS hypothesis~1! is valid in
the asymptotic limit of larges, then theqth moment has the
following dependence on system size:

^sq&L5LD(q112ts)E dy y(q2ts)G~y!;Lss(q). ~3!

The exponentss(q)5D(q112ts) is computed as the slop
of the log-log plot of ^sq&L as a function ofL. For large
enough values ofq @i.e., away from the region where th
integral in Eq.~3! is dominated by its lower cutoff#, one can
compute the fractal dimensionD as the slope ofss(q) as a
function of q: D5]ss(q)/]q. On the other hand, since th
first moment must scale linearly withL, we havess(1)51.
Once D is known we can estimatets using the relation
ss(1)5D(22ts)51.

Along the same lines we can obtain the moments of
avalanche time distribution. In this case,^tq&L;Ls t(q), with
]s t(q)/]q5z. Analogous considerations for smallq apply
also for the time moment analysis. Here, an estimate of
asymptotic convergence of the numerical results is provi
by the constraintz51, that must hold for large enough size
Then, thet t exponent can be found using the scaling relat
(22t t)5s t(1).

Once the exponents have been estimated numerically
can check the accuracy of the moment analysis’ predicti
using the FSS hypothesis. If the FSS hypothesis of E
~1!,~2! is correct, then the plots of the distributions, under
rescaling s→s/LD and P(s)→P(s)LDts and correspond-
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ingly t→t/Lz andP(t)→P(t)Lzt t, should collapse onto the
same universal function, for different values ofL.

In Table I we report the exponents found for the DD
ESDS, and NESDS models ind52. Figure 2 shows the
momentsss(q) ands t(q). Figures 3 and 4 plot the FSS da
collapse for sizes and times, respectively. The exponents
tained for the DDS are in perfect agreement with the
pected analytical results. This fact supports the idea that
system sizes used in the present work allow to recover
correct asymptotic behavior. Results for the ESDS a
NESDS are identical within the error bars, pointing out th
these two models are in the same universality class. On
other hand, the obtained exponents prove beyond any do
that deterministic and stochastic directed sandpile model
not belong to the same universality class.

We have also directly computed the characteristic leng
in the parallel and transversal directionsj i andj' as a func-

FIG. 2. Plot of ~a! ss(q) and ~b! s t(q) for the d52 models
DDS, ESDS, and NESDS with boundary dissipation.

TABLE I. Critical exponents for directed sandpiles with boun
ary dissipation ind52. DR: Dhar and Ramaswamy’s exact sol
tion; DDS, deterministic directed model; ESDS and NESDS, s
chastic directed models. Figures in parentheses denote stati
uncertainties.

Model ts D t t z z

DR 4/3 3/2 3/2 1 1/2
DDS 1.34(1) 1.51(1) 1.51(1) 1.00(1) 0.50(1)
ESDS 1.43(1) 1.74(1) 1.71(3) 0.99(1) 0.51(1
NESDS 1.43(1) 1.75(1) 1.74(4) 0.99(1) 0.51(1
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tion of the system size. The anisotropy of the system is
flected in the different definitions of both characteris
lengths. In this sense, we define them with the same spir
in directed percolation@30#.

Consider a given avalanche, labeleda, that has started a
the site (xi

(0) ,xW'
(0)), and has affected the set ofdifferentsites

$(xi
( i ) ,xW'

( i ))%, for i 50•••a21 ~i.e., it has covered an are
a). Let us define the quantities

Ri~a!5
1

a (
i 51

a21

uxi
(0)2xi

( i )u ~4!

and

R'
2 ~a!5

1

a (
i 51

a21

~xW'
(0)2xW'

( i )!2. ~5!

Furthermore, let us defineRi(a) andR'
2 (a) as the average

of the previous quantities, over all avalanches of the sa
fixed areaa. Let P(a) be the probability of observing a
avalanche of areaa. We define the correlation lengths by

j i5
(aRi~a!aP~a!

(aaP~a!
, j'

2 5
(aR'

2 ~a!aP~a!

(aaP~a!
. ~6!

The different definitions~4! and~5! are obviously due to the
different nature of the avalanche spreading in the directi
xi andx' . In the former case, the spreading is isotropic, a

FIG. 3. Data collapse analysis of the integrated avalanche
distribution for thed52 stochastic models with boundary dissip
tion ~a! ESDS and~b! NESDS. System sizes areL5400, 800, 1600,
3200, and 6400.
-

as

e

s
d

thus the second moment of the relative distance distribu
is needed to define a meaningful correlation length. In
latter case, on the other hand, the spreading is always in
direction of growingxi , and therefore the first moment i
sufficient.

The system being critical, both correlation lengths sho
scale with the system size, defining the exponentsn i andn'

by

j i;Ln i, j';Ln'. ~7!

The affinity exponent, defined by

j';j i
z ~8!

is thus given byz5n' /n i .
We have calculated the correlations lengths in the mod

DDS, ESDS, and NESDS, given by the definition~6!. The
results, plotted in Fig. 5, give the following dependence
the correlation lengths with system size for all models:

j i;L, j';L1/2. ~9!

These relations define the exponentsn i51 andn'51/2, and
an affinity exponentz51/2. It is interesting to note that thi
exponent is independent of the universality class of
model, defining a sort of superuniversal property of direc
models.

As pointed out in Ref.@18#, the stochastic dynamics o
SDS models introduces multiple toppling events on the sa
site, which are by definition absent in the deterministic ca
This gives rise to a very different avalanche structure, ev

ze FIG. 4. Data collapse analysis of the integrated avalanche t
distribution for thed52 stochastic models with boundary dissip
tion ~a! ESDS and~b! NESDS. System sizes areL5400, 800, 1600,
3200, and 6400.
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tually reflected in the different asymptotic critical behavio
It is worth remarking that the universality class of SDS a
pears robust to modifications of the stochastic microsco
dynamics as pointed out in Ref.@31#, where it is shown that
modifications of SDS models with stochastic toppling thre
old still belong to the same universality class. Recently, P
zuski and Bassler@24#, have proposed a theoretical approa
that allows the calculation of critical exponents in direct
models with multiple topplings. The analysis goes throu
the mapping of the avalanche evolution into the dynamics
an interface moving in a random medium, as also propo
in Refs. @32,33#. This theoretical result gives the exponen
ts510/7 andt t5D57/4, in perfect agreement with the va
ues obtained by numerical simulations, Table I. The sa
exponent values are also found in the approach of Ref.@25#.

IV. NUMERICAL SIMULATIONS WITH BULK
DISSIPATION

In this section we report results from computer simu
tions of deterministic and stochastic sandpiles, perform
with bulk dissipation. In this case, dissipation is impl
mented as described in Sec. II. That is, in a system w
periodic boundary conditions, each toppling site has a pr
ability e/zc of losing an energyzc , and a probability 1
2e/zc of transferring it to its neighbors. The dissipatio
rates range frome50.0016 to 0.0512, and the~fixed! system
size considered isL56400. Statistical distribution function
have been computed averaging over 107 nonzero avalanches

In the presence of bulk dissipation the characteristic s
are determined by the dissipation ratee, which defines the
only characteristic length in the system. Approaching
limit e→0, the avalanche characteristic size and time
verge assc;e2Ds and tc;e2D t, respectively. It is also very
easy to relate the mean avalanche size to the dissipation
e. On average, each added grain must be dissipated in
evolution of the avalanche, resulting ine^s&51. This readily
yields ^s&5e21. In this case it is extremely important tha
the characteristic length of the avalanchej i is always smaller
than the size of the lattice used. This allows us to study o
finite size effects introduced by the dissipation probabili
without spurious effects due to the finite lattice size.

The moment analysis can be straightforwardly gene

FIG. 5. Correlation lengthsj i andj' as a function ofL for the
models with boundary dissipation DDS (s), ESDS (n), and
NESDS (L). The dashed lines are guides to the eye with slo
1.00 and 0.50.
.
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ized to systems with bulk dissipation. In this case the role
the system sizeL as scaling parameter is played by the d
sipatione. If the FSS hypothesis holds, theqth moment for,
say the size distribution, has an explicit dependence on
dissipation rate that reads

^sq&e;e2Ds(q112ts)5e2rs(q). ~10!

The new momentrs(q)5Ds(q112ts) can be estimated by
linear regression in a log-log plot of^sq&e as a function of
e21. Once this moment is computed, the exponentDs is
given by Ds5]rs(q)/]q. The relation ^s&5e21 imposes
rs(1)51, and from here, once knownDs , we computets
using the relationrs(1)5Ds(22ts). Analogous consider-
ations allow us to compute the exponents of the time dis
bution D t and t t . Finally, to check the exponents with th
data collapse technique, one must plot the rescaled funct
P(s)e2Dsts as a function ofs/e2Ds andP(t)e2D tt t as a func-
tion of t/e2D t, respectively.

e

FIG. 6. Plot of ~a! rs(q) and ~b! r t(q) for the d52 models
DDS, ESDS, and NESDS with bulk dissipation.

TABLE II. Critical exponents for directed sandpiles with bu
dissipation ind52. DR: Dhar and Ramaswamy’s exact solutio
DDS, deterministic directed model; ESDS and NESDS, stocha
directed models. Figures in parentheses denote statistical unce
ties.

Model ts Ds t t D t z

DR 4/3 3/2 3/2 1 1/2
DDS 1.32(1) 1.50(1) 1.52(1) 1.00(1) 0.51(1)
ESDS 1.42(1) 1.72(2) 1.70(4) 0.98(2) 0.51(1
NESDS 1.43(1) 1.75(2) 1.70(5) 0.99(2) 0.50(1
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In Table II we report the exponents computed ind52 for
the directed models DDS, ESDS, and NESDS with bulk d
sipation. The corresponding momentsrs(q) and r t(q) are
shown in Figs. 6, while Figs. 7 and 8 plot the data collap
for sizes and times, respectively.

To conclude our analysis of directed sandpiles with b
dissipation, we have proceeded to compute the correla
length of the models. In this case, the scaling of the corr
tion lengths with vanishing dissipation define the scaling
ponents

j i;e2n i8, j';e2n'8 , ~11!

and an affinity exponentz5n'8 /n i8 . Using an analogous defi
nition as in the case of boundary dissipation, we compute
exponentsn i851, n'8 51/2, andz51/2, as shown in Fig. 9
That is, the correlation length exponents are identical
both boundary and bulk dissipation. These results again
ply an affinity exponentz51/2 in all the models studied s
far.

These results confirm that the critical behavior of mod
with boundary or bulk dissipation is identical. In fact, a
critical exponentsts , t t , z, and z are equal in both case
@34#. This further confirms the complete equivalence of bo
points of view with respect to sandpiles and shows that
least in the directed case, the open boundary conditions
ally implemented in simulations do not affect the scali
behavior in a peculiar way. Of course, the open bound
conditions breaks the translational invariance of the syst
but in the thermodynamic limit this effect is negligible fo
the asymptotic critical behavior. Finally, these results va

FIG. 7. Data collapse analysis of the integrated avalanche
distribution for thed52 stochastic models with bulk dissipation~a!
ESDS and~b! NESDS. Dissipations aree50.0256, 0.0128, 0.0064
0.0032, and 0.0016.
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date theoretical approaches in which it is assumed a ho
geneous dissipation that is much easier to treat analytica

As a last observation it is worth remarking that also in th
case, a series of exponents such asz andn'8 assume values
independently of the universality class of the model un
study. This sort of superuniversality can be explained
terms of energy conservation as we shall see in Sec. VI.

V. NUMERICAL SIMULATIONS OF ANISOTROPIC
MODELS

An important question to study in directed sandpile mo
els is the effect on the scaling properties of any amoun

ze FIG. 8. Data collapse analysis of the integrated avalanche t
distribution for thed52 stochastic models with bulk dissipation~a!
ESDS and~b! NESDS. Dissipations aree50.0256, 0.0128, 0.0064
0.0032, and 0.0016.

FIG. 9. Correlation lengthsj i andj' as a function ofe for the
models with bulk dissipation DDS (s), ESDS (n), and NESDS
(L). The dashed lines are guides to the eye with slope 1.00
0.50.
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diffusion along the preferred direction of transportxi . One
would expect that the broken symmetry introduced by
preferential direction should prevail on large scales, so
the dynamical scaling in directed and simply anisotro
sandpiles become indistinguishable in the thermodyna
limit. This fact hints towards the possibility of a unique un
versality class for both directed and anisotropic sandpi
This universality class is determined uniquely by the lack
symmetry along thexi direction, and the presence or absen
of stochastic elements in the definition of the models.

In order to test this conjecture, we have performed
merical simulations of an anisotropic stochastic sand
model, defined according to the following rules: on a hyp
cubic lattice of sizeL, we consider a model with threshol
zc52. When a site topples, it sends two grains of energy
two sites, randomly selected among the 2d21 nearest and
next-nearest neighbors on the hyperplanexi11, and the
nearest neighbor on the hyperplanexi21, see Fig. 10. The
rules in this model are defined non-exclusive, in such a w
that the same site can receive the two sand grain expelle
an active site. The model is clearly anisotropic, because
probability to transfer energy in the downwards direction
three times larger than in the upwards direction. It wou
thus correspond to a nonexclusive stochastic anisotr
sandpile~NESAS!. We consider only the case of bounda
dissipation, performing simulations for sizes ranging fro
L5100 up to 6400, and averaging over 107 nonzero ava-
lanches.

In Fig. 11 we plot the correlation lengthj i andj' , mea-
sured according to the rules given in Eqs.~6!. We confirm
the expectation that anisotropic models have the same
ing properties, as regards the scaling of the correla
lengths, as directed models with the same deterministic
stochastic ingredients. We have also measured the expon
ts , t t , D, andz for this model, using the moment analys
technique. The values found arets51.43(1), D51.75(1),
t t51.72(2), z50.98(2). These results, compared wit
Tables I and II, show that this anisotropic models belongs
the same universality class of the ESDS and NESDS dire
models, confirming the irrelevance of the diffusion along t
preferred directionxi .

FIG. 10. Toppling rules ind52 for an anisotropic sandpile
Filled circles represent active~toppling! sites; empty circles are
stable sites. An active site sends one grain to two randomly cho
sites selected among the three downwards neighbors and the
ward nearest neighbor.
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VI. THE ROLE OF CONSERVATION
IN SANDPILE MODELS

We have seen in the preceding sections that a subse
critical exponents characterizing the critical behavior of
rected and anisotropic models have an interesting super
versal property; i.e., they are independent of the universa
class of the models. In order to understand this feature
perform a theoretical analysis based on the conservatio
energy, that is the basic symmetry in standard sandpile
tomata. We shall see in the following that the superuniver
character of some critical exponents is dictated by sim
energy conservation considerations. The use of this appro
also allows us to establish a relation between boundary
bulk dissipation models by introducing an effective dissip
tion that depends on the system size.

The avalanche dynamics in sandpile models is implic
due to the imposed infinite time scale separation betw
driving and dissipation@26,27,35#. In order to devise a
theory that can take into account the symmetry introduced
the energy conservation, one must first regularize the rule
the models in such a way that a single time scale is ruling
dynamics. One way to do so is to introduce a nonzero d
ing rate, defined as the probability per unit timeh of a site to
receive a grain of energy@26,35#. This driving rate plays the
role of an external field and leads to the SOC behavior in
limit h→01. On the other hand, given that the toppling rul
are conserved, energy can leave the system only at
boundaries. Boundary dissipation is a natural choice in co
puter simulations. However, it introduces undesirable co
plications due to its singular character in a local theory. I
therefore convenient to use an homogeneous effective d
patione, defined as the average energy lost in each topp
event. As observed in previous sections, one can define m
els with periodic boundary conditions and built-in bulk di
sipation. When constructing the local theory for models w
open boundary conditions, the bulk dissipatione amounts to
an effective parameter that is to be related to the system
L.

With all these ingredients, we are ready to formulate co
servation of energy as a continuous equation. In sandp
we define the order parameterra as the density of active
sites ~i.e., whose heightz>zc). The only dynamics in the
model is obviously due to the fieldra(xW ,t), which is coupled
to the local energy densityE(xW ,t) ~i.e., the local density of

en
up-

FIG. 11. Correlation lengthsj i andj' as a function ofL for the
model with boundary dissipation NESAS. The dashed lines
guides to the eye with slope 1.00 and 0.50.
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sand grains!, which enhances or suppresses the generatio
new active sites. A Langevin description for sandpile a
tomata is possible by considering the dynamics of the lo
order-parameter fieldra(xW ,t) in a coarse-grained picture
bearing in mind that the energy densityE(xW ,t) is aconserved
field. In Refs.@27,28#, in analogy with absorbing-state pha
transitions@36,37#, a pair of coupled dynamical equations f
the fieldsra(xW ,t) andE(xW ,t) were proposed. In the follow
ing we elucidate the consequences of energy conserva
and we focus only on the latter equation. The interes
reader can find the full set of equations in Ref.@28#. In the
next subsections we shall consider separately directed
anisotropic models.

A. Directed sandpiles

We seek a continuous equation for the coarse-grained
cal density of energyE(xW ,t). In the limit of zero driving and
dissipation, energy is conserved. Therefore, the evolu
equation fulfilled by the local fieldE is

]E~xW ,t !

]t
52¹W •JWE2era~xW ,t !1h~xW ,t !1hE~xW ,t !. ~12!

The first term simply represents the diffusion of energy;
second term accounts for the dissipation that is associ
with every toppling event; the third term represents the
ternal driving. Finally, the last term is a source of stochas
noise, that accounts for the randomness in the flow of
ergy. The noise term can be generated by the toppling r
in a stochastic model, or by the initial conditions plus t
random driving in a deterministic model. We will require th
noise to have zero average

^hE~xW ,t !&50. ~13!

The noise correlator̂hE(xW ,t)hE(xW8,t8& is of fundamental
importance for the determination of universality classes
the critical behavior of the order parameter. However, for
present purposes we do not need precise knowledge o
analytical form~for a detailed discussion, see Refs.@27,28#!.

The current can be constructed by appealing to the s
metries of the model. The transport of energy is due to t
plings. These are isotropic along the transversal direc
xW' , therefore the current along this direction will be propo
tional to thegradient of the density of active sites. In th
preferred direction, on the other hand, all the energy is tra
ferred downwards; therefore, the current in this direct
must be proportional to thedensityof active sites. The fina
form of the current is then

JWE~xW ,t !52D'¹W 'ra~xW ,t !12lra~xW ,t !eW i . ~14!

Plugging this expression into the equation for the energy,
have the final result

]E~xW ,t !

]t
5D'¹'

2 ra~xW ,t !22l] ira~xW ,t !

2era~xW ,t !1h~xW ,t !1hE~xW ,t !, ~15!
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where the symbol] i stands for the partial derivative]/]xi .
This is the general conservation equation for any direc
sandpile model. It is worth remarking at this point that t
energy field is a static field, in the sense that energy diffu
only if active sites are present in the system. This is in
itively understood in sandpile models, where energy~sand!
grains diffuse only from toppling sites.

To analyze the consequences of Eq.~15!, it proves useful
to define the susceptibilityx(xW ,t) @28#:

x~xW2xW8,t2t8!5K dra~xW ,t !

dh~xW8,t8!
L

h

, ~16!

where the symbol̂ &h denotes an average over the noi
distribution. By definition, the susceptibility measures t
average increase in the number of active sites due to an
pulsive perturbation, that is, to the addition of a single e
ergy grain. Since we measure the size of the avalanche
the total number of topplings, the average avalanche siz
given by

^s&5E ddx dt x~xW ,t !. ~17!

Taking the functional derivative of Eq.~15! and averaging
over time and noise, we obtain, in the limitt→`, in which
the sandpile is in a stationary state with constant aver
energy, the following equation for the static susceptibility

D'¹'
2 x~xW !22l] ix~xW !2ex~xW !52d (d)~xW !. ~18!

This equation can be easily solved in Fourier space. Defin
the transformation

x~xi ,xW'!5
1

~2p!dE dd21k dqx~q,kW !eikW•xW'eiqxi ~19!

and substituting into Eq.~18!, we obtain the solution

x~q,kW !5
1

D'k212ilq1e
, ~20!

which yields the susceptibility in real space

x~xi ,xW'!5
1

~2p!dE dd21k eikW•xW'E
2`

`

dq
eiqxi

D'k212ilq1e
.

~21!

This integral yields the result, settingD'51:

x~xi ,xW'!5
1

2l S l

2p D (d21)/2

xi
(12d)/2e2xie/2le2lx'

2 /2xi.

~22!

Equation~22! can be conveniently rewritten into the scalin
form

x~xi ,xW'!5xi
(12d)/2GS xi

j i
,
x'

j'
D , ~23!
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whereG is a cutoff function that decreases exponentially
both its arguments. Comparing this last expression with
~22!, we can identify the parallel and transversal correlat
lengths

j i;e21, j';e21/2. ~24!

In more general terms, if we define the exponentsn i8 andn'8
by Eqs.~11!, then we have for directed sandpilesn i851 and
n'8 51/2. From these last expressions, we can read off a
exact result for directed sandpiles: the avalanches produ
in those models are elongated, with characteristic length
the parallel and transversal directions related by an affi
exponentz51/2. It is very important to stress that the
results are independent of the particular model conside
and of the dimensionalityd of the system, dictated only b
the energy balance in the stationary state.

We can use the result~24! to relate the effective bulk
dissipation with the system size in a model with open bou
ary conditions. To sustain a steady state with constant a
age energy, avalanches must reach the bottom bounda
order to be able to dissipate. This means that the chara
istic length of the avalanches in the parallel direction must
proportional to the system sizej i;L. We have therefore tha
in boundary dissipation models we can define an effec
dissipation ratee that is related with the system size by

e;L21. ~25!

From this relations we easily find thatDs5D and D t5z.
These identities are recovered in numerical simulations~see
Tables I and II!. Finally, from Eq.~20!, we can recover the
well-known result linking the system size and the avera
avalanche size,̂s&5x(q50,kW50);e21;L @10,15,23#.

B. Anisotropic sandpiles

Having completed the analysis of directed sandpiles,
turn our attention to the more complex case of anisotro
sandpiles. In this kind of model, the transport of energy
not strictly directed in the parallel direction, but is simp
stronger in the direction1xi than in the opposite direction
2xi . The presence of backwards flow allows the possibi
of diffusion in the preferred direction, and thus the equat
for the conservation of energy becomes in this case

]E~xW ,t !

]t
5D'¹'

2 ra~xW ,t !1D i] i
2ra~xW ,t !22l] ira~xW ,t !

2era~xW ,t !1h~xW ,t !1hE~xW ,t !. ~26!

From Eq.~26!, we can obtain the corresponding equati
for the susceptibility. The solution in Fourier space is read
found to be

x~q,kW !5
1

D'k21D iq212ilq1e
. ~27!

Upon integration overkW andq, one obtains the expression
real space
q.
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x~xi ,xW'!5
1

~2p!dE dd21k eikW•xW'

3E
2`

`

dq
eiqxi

D'k21D iq212ilq1e
. ~28!

This last integral can be performed analytically ind51 and
2. For d.2, even though we do not have a closed expr
sion, we can obtain the leading scaling behavior. To simp
the calculations, we set, without lack of generality,D'5D i

51. The integration inq is done by the method of the res
dues. The integration of thekW angular part@38# yields

x~xi ,xW'!5
1

2 S g

2p D n11

x'
2nE

0

`

dz zn11

3Jn~gx'z!
e2xi(gA11z22l)

~11z2!1/2
. ~29!

Here,Jn(z) is the first kind Bessel function of ordern, and
we have defined the constantsn5(d23)/2 and g5(l2

1e)1/2. We are interested in the behavior of this integral f
large distances, that is, in the limitxi@x'@1. In this limit,
the weight of the integral is given by the region of smallz,
since the exponential suppresses large values. We can
approximate the integral in the interval 0,z,1 and perform
a Taylor expansion of the square root in the exponential
the denominator. In the denominator, we readily have
1z2)1/2.1. The term in the exponential, however, contai
a constant term, and must be therefore expanded up to
ond order:

2xi~gA11z22l!.2xi~g@11z2/2#2l!

52xi~g2l!2xigz2/2. ~30!

In the limit e→0, we haveg.l, and the constantg2l can
be expanded to give

g2l5~l21e!1/22l.lS 11
e

2l2D 2l5
e

2l
. ~31!

Substituting these approximations into Eq.~29!, we are led to
the expression

x~xi ,xW'!.
1

2l

1

~2p!n11
x'

(12d)e2xie/2l

3E
0

`

dy yn11Jn~y!e2(xi/2lx'
2 )y2

, ~32!

where we have performed the change of variablesy5gx'z
and extended again the upper limit of the integral to infin
~which is allowed given its exponential convergence!. The
integral in Eq.~32! yields @38#

x~xi ,xW'!.
1

2l S l

2p D n11

xi
(12d)/2e2xie/2le2lx'

2 /2xi,

~33!
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which as usual we can write in the scaling form

x~xi ,xW'!5xi
(12d)/2GS xi

j i
,
x'

j'
D . ~34!

From here, the correlation exponents readn i851 and n'8
51/2, as in the directed case. This implies again an affin
exponentz51/2.

The conclusion of the lengthy calculations developed
this section is that the presence of any amount of diffus
along the preferred direction of a directed sandpile mode
completely irrelevant. As soon as there is anisotropy in
model ~in our mathematical formulation, whenlÞ0, how-
ever, small!, it takes over and places the model in the u
versality class of completely directed sandpiles. In particu
we recover the result̂s&;L for any anisotropic sandpile, in

FIG. 12. Plots of the local density of topplings in two av
lanches of size 50 000 for the~a! DDS and~b! ESDS models. White
stands for a single toppling per site; black represents the maxim
number of topplings.
y

d

y

n
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agreement with the numerical results in Ref.@10# and the
analytic results of Ref.@23#. We remark, however, that ou
results do not rely in a particular model such as those of@23#,
but only on symmetry arguments, and are therefore o
broader generality.

VII. CONCLUSIONS

In this paper we have presented a detailed numer
analysis of deterministic and stochastic directed sand
models. We find definitive evidence for the existence o
new universality class, embracing directed sandpile mod
with stochastic rules. The origin of the different critical b
havior can be traced back to the presence of multiple t
plings in the latter case. An example of this feature is p
vided in Fig. 12, where we plot the local density of topplin
in two avalanches corresponding to the DDS and ES
models. From this figure it becomes evident that the stoch
tic dynamics induces multiple toppling events, which are f
bidden in the deterministic models. This feature has b
fruitfully exploited in Ref.@24# to obtain an analytical solu
tion of the stochastic model.

We have also studied the case of directed sandpiles
bulk dissipation. In this case, our results prove that the c
cal behavior is unchanged. This points out that the bound
dissipation does not play any particular role in the devel
ment of the critical behavior in directed sandpiles.

Finally, numerical results indicate that some critical exp
nents show a superuniversal nature, assuming the same
ues independently of the universality class. We provide
analytical explanation of this feature by means of a conti
ous phenomenological equation that takes into account
energy balance condition imposed by the dynamical rule
sandpile models.

ACKNOWLEDGMENTS

This work was supported by the European Network un
Contract No. ERBFM-RXCT980183. We thank D. Dhar,
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