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Random networks created by biological evolution
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We investigate a model of an evolving random network, introduced by us previdisjs. Rev. Lett83,
5587 (1999]. The model is a generalization of the Bak-Sneppen model of biological evolution, with the
modification that the underlying network can evolve by adding and removing sites. The behavior and the
averaged properties of the network depend on the parametiee probability to establish a link to the newly
introduced site. Fop=1 the system is self-organized critical, with two distinct power-law regimes with
forward-avalanche exponents-1.98+0.04 andr’' =1.65+0.05. The average size of the network diverges as
a powerlaw whermp—1. We study various geometrical properties of the network: the probability distribution
of sizes and connectivities, size and number of disconnected clusters, and the dependence of the mean distance
between two sites on the cluster size. The connection with models of growing networks with a preferential
attachment is discussed.

PACS numbegps): 05.40—a, 87.10+e, 87.23.Kg

[. INTRODUCTION plays the role of a testing ground for various analytical as
well as numerical approachésee, for exampld21,25-30).
Irregular networks or random grapti&] composed of The idea of ED is the following. The dynamical system in

units of various kinds are very frequent both in nature andjuestion is composed of a large number of simple units,
society(which is, however, nothing but a special segment ofconnected in a network. Each site of the network hosts one
naturg. Examples range from vulcanized polymers, silicaunit. The state of each unit is described by a single dynami-
glasses, force chains in granular materi@$ and mesos- cal variableb, called the barrier. In each step, the unit with
copic quantum wireg3] to food webg 4], herding effects in  minimumb is mutated by updating the barrier. The effect of
economicg5], worldwide-web linkg 6], “small-world” net-  the mutation on the environment is taken into account by
works of personal contacts between hum@gh8], and scien- changingb also at all sites connected to the minimum site by
tific collaboration network$9]. a network link. Because a perturbation can propagate
The modeling of such networks is not quite easy and anathrough the links, we should expect that the topology of the
lytical results are relatively rar@xamples, without any pre- network can affect substantially the ED evolution.
tence of completeness, can be foundlb,10,13). Numeri- The general feature of ED models is the avalanche dy-
cal simulations are still one of the principal tools. However,namics. The forward\ avalanches are defined as follows
even in the case when the properties of a given class dR1]. For a fixed\ we define active sites as those having
random networks are relatively well established, either anabarrierb<<\. The appearance of one active site can lead to
lytically or numerically, as is the case of small-world net- an avalanchelike proliferation of active sites in successive
works, the serious question remains as to why these netime steps. The avalanche stops when all active sites disap-
works occur in nature. In other words, what are thepear again. Generically, there is a valuexofor which the
dynamical processes which generate these networks. probability distribution of avalanche sizes obeys a power law
Indeed, one can study, for example, various networks ofvithout any parameter tuning, so that the ED models are
the mutual dependence of species in a model of coevolutionlassified as a subgroup of self-organized critical models
[12-14, but it is difficult to infer from these studies only [31]. (This, of course, can hold only for networks of unlim-
which networks are closer to reality than the others. In théted size) The set of exponents describing the critical behav-
context of biological evolution models, there were recently aior determines the dynamical universality class the model
few attempts to let the networks evolve freely, in order tobelongs to.
check which types of topologies might correspond to “at- It was found that the universality class depends on the
tractors” of the process of natural evolutiph5—20. topology of the network. Usually, regular hypercubic net-
The model introduced by us in a preceding Leftef] is  works[21] or Cayley tree$30] are investigated. For random
based on extremal dynamics and basically follows the Bakneighbor networks, the mean-field solution was found to be
Sneppen model of biological evolutidi3]. Extremal dy- exact[32,2€. Also the tree model§30] were found to be-
namics(ED) models[21] are used in a wide area of prob- long to the mean-field universality class. A one-dimensional
lems, ranging from growth in a disordered mediy&g], model in which the links were wired randomly with the
dislocation movemenf23], and friction [24] to biological probability decaying as a power of the distance was intro-
evolution[13]. Among them, the Bak-Snepp&BS) model  duced[33,34]. It was found that the values of critical expo-
nents depend continuously gn The BS model of a small-
world network was also studig@®5].
*Email address: slanina@fzu.cz Recently, the BS model on random networks, produced
"Email address: kotrla@fzu.cz by bond percolation on a fully connected lattice, was studied
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[15]. Two universality classes were found. Above the perco- (i) If a unit is chosen for speciation, it acts as a “mother”
lation threshold, the system belongs to the mean-field univergiving birth to a new, “daughter” unit. A new unit is added
sality class, while exactly at the percolation threshold, theo the system and links are established between the new unit
avalanche exponent is different. A dynamics changing theind the neighbors of the “mother” unit: each link of the
topology in order to drive the network to critical connectivity “mother” unit is inherited with probabilityp by the “daugh-
was suggested. ter” unit. This rule reflects the fact that the new unit is to a
There are also several recent results for random networkgertain extent a copy of the original, so the relations to the
produced by different kinds of dynamics than ED, especiallyenyironment will be initially similar to the ones the old unit
for the threshold networkg18] and Boolean networks paq Moreover, if a unit which speciates has only one neigh-

[19,20. _ _ _ bor, a link between “mother” and “daughter” is also estab-
The geometry of the worldwide web was intensively stud-jisheq.

ied very recently. It was found experimentally that the net-
work exhibits scale-free characteristics, measured by thg,
power-law distribution of the connectivities of the sites (iii) In each step, the unit with minimuim is found and

[6,36]. Similar power-law behavior was observed also in theytated. The barrier of the mutated unit is replaced by a new
actor collaboration graph and in power gridd. A model  ohqom valuer' taken from the uniform distribution on the

interval (0,1). Also the barriers of all its neighbors are re-

; ; ) 4 X L . rBlaced by new random numbers from the same distribution.
OT new links, Y\."th sites W'th hlg.h_er connectivity having a The rules determining whether a unit is chosen for extic-
higher probability to receive additional links. The latter fea'tion or speciation are the following.

ture resembles the_ behavior of additive-multiplicative ran- (iv) If the newly assigned barrier of the mutated usitis
dom processes, which are well known to produce power-law, qer than the new barriers of all its neighbors, the unit is
d|str|but|ons[3_7,3Eﬂ. N . chosen for speciation. b’ is lower than the barriers of all

The model |ntr.0duced_ if6] is exactly SOIUUE{?’Q]' Var|-. neighbors, the unit is chosen for extinction. In other cases
gnts.mcludmg aging of Sltd:ngA.];I and decaying and FEWI peither extinction nor speciation occcurs. As a boundary con-
ing links [42,43 were also studied. The preferential attach-

_ . - dition, we use the following exception: if the network con-
ment rule, Wh'(.:h. _apparently requires unrealistic knOWI_edgesists of a single isolated unit only, it is always chosen for
of the connectivities of the whole network before a S'nglespeciation '

new link is established, was justified in a very recent work (v) If a unit is chosen for extinction, all its neighbors

[44], whe're a higher probability of attachment at hi_ghly €ON"\yhich are not connected to any other unit are also chosen for
nected sites results from a local search by walking on th%xtinction. We call this kind of extinction singular extinc-
network. tion

In the preceding Lettefr17] we concentrated on the self- Rule (iv) is motivated by the following considerations.

orggn;;ed ﬁr |tr|]carll behawolz ahnd eXtII:thIOI’I Fiyrlllalﬂblcs d%f' 3\We assume that well-adapted units proliferate more rapidly
mod el in which the n<|etwor Ch angesh ynr?mlca' y by addiNgy g the chance for speciation is bigger. However, if the local
and removing sites. It was shown that the extinction EXPOpjndiversity, measured by the connectivity of the unit, is big-

nent is larger 'Fhan the upper bound for the BS mc_igblen ger, there are fewer empty ecological niches and the prob-
by the mean-field valyeand is closer to the experimentally ability of speciation is lower. On the other hand, poorly

found value than any previous version of the BS ”.‘Ode'- Inadapted units are more vulnerable to extinction, but at the
the present work we introduce in Sec. Il a generalized ver

. . X . . same time larger biodiversifyarger connectivity may favor
sion of the:- model' Qefmed IE[L?] apd further investigate the survival. Our rule corresponds well to these assumptions:
self-organized critical behavior in Sec. Ill. However, our

. ) ) ) . speciation occurs preferably at units with a high barrier and
main concern will be with the geometric properties of the

. . surrounded by fewer neighbors; extinction is more frequent
network, produced during the dynamics. These results ar y 9 9

din Sec. IV. Section V ai lusi p h &t units with lower barriers and lower connectivity. More-
Eergﬁﬁgtgbt;?negc - Section V gives conclusions from t %ver, we suppose that a unit completely isolated from the rest

of the ecosystem has a very low chance to survive. This leads
to rule (v).

From rule(iv) alone follows the equal probability of add-

We consider a system composed of varying nunthesf ~ ing and removing a unit, because the new random barbiers
units connected in a network, subject to extremal dynamicsare taken from the uniform distribution. At the same time
Each unit bears a dynamical varialie In the context of rule (v) enhances the probability of the removal. Thus, the
biological evolution these units are species &ndkpresent probability of speciation is slightly lower than the probability
the barrier against mutations. For the main novelty of ourof extinction. The degree of disequilibrium between the two
model consisting in addingspeciation and removingextic-  depends on the topology of the network at the moment and
tion) units, let us first define the rules for extinction and can be quantified by the frequency of singular extinctions.
speciation. The rules determining which of the existing unitsThe number of units),,, perform a biased random walk with
will undergo speciation or extinction will be specified after- reflecting boundary at,=1. The bias towards small values
wards. is not constant, though, but fluctuates as well.

(i) If a unit is chosen for extinction, it is completely re-  The above rules are illustrated by the examples shown in
moved from the network without any substitution and all Fig. 1. The networks irfa) show the effect of speciation: a
links it has are broken. new site is created and some to the links to the mother’s

The extremal dynamics rule for our model is the follow-

II. EVOLUTION MODEL ON EVOLVING NETWORK
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FIG. 2. Rescaled distribution of forward avalanches in the case
p=1, for the values\=0.03(A), A=0.05(0), A=0.1(+), A
=0.2(¢), A=0.4(X), and A=0.6(1), The superscript> in
P..q(s) is to indicate that we count all avalanches larger thaim
the inset we plot the dependence of the scaling paramsigts
(+) andfges{ X) on . The solid line is the power law " with
exponento’ =3.5. The number of time steps wa30° and the
data are averaged over 12 independent runs.

power-law regimes with two different exponents occur. The
crossover values,ss Which separates the two regimes de-
pends om. We observed that the distributions for different

FIG. 1. Schematic illustration of the dynamical rules of the )\ colapse onto a single curve if plotted against the rescaled
model. Speciation is shown {i), where the solid square represents avalanche size/s. ie
Cross: '~

the extremal unit, which speciates, solid circle the new, daughter
unit, and open circles other units, not affected by the speciation
event. The dotted link illustrates that fprc 1 some of the mother’s

links may not be inherited by the daughter. Extinction is shown mwhereg(x)~x’”1 for x<1 andg(x)~x’7’+1 for x>1.

(b), where the extremal unit, which is removed, is indicated by the_l_h d | din Fia. 2. F h | f th
solid square. The unit denoted by the solid circle is the neighbor e data are plotted in Fig. 2. For the values of the expo-

removed by the singular extinction. (o) an example of an extinc- NeNts, we fOP”d': 1.98+0.04 andr’ =1.65+ 0'0.5'
tion event is shown, which leads to the splitting of the network into e investigated the dependence of the scaling parameters
disconnected clusters. Scross@Nd fr0ss0N N @and we found that both of them behave

as a power law with approximately equal exponesityss

neighbors are established. (o) extinction is shown. One of —_f_ _—\~7" with ¢’ ~3.5(see inset in Fig. 2 The role of
the units is removed also due to a singular extincfinfe  critical A at which the distribution of forward avalanches
(V)] In (c) we illustrate the possibility that in the extinction fo|lows a power law is assumed by the valne-0. This
event the network can be split into several disconnected clugasylt is easy to understand. In fact, in models with fiked
ters. at least boundectonnectivityc, the critical\ is roughly 1£.
As will be shown in the next section, in our case the size of
the system and average connectivity grow without limits, and
thus the criticah tends to zero. Note that it is difficult to see
. ) . ) this result without resort to the data collag4e. Indeed, for

The model investigated in the preceding Lefte] cor- gy finite time of the simulation, the connectivity and the
responds to the valup=1. We found that in this case the gystem size reach only a limited value and the criticaken

model is self-organized critical. We defined newly the massy, the distribution of forward avalanches has apparently a
extinctions as the number of units removed during an avangnzero value.

lanche. The distribution of mass extinctions obeys a power
law with the exponentr.,=2.32+0.05. In this section we
present an improved analysis of the data for the self-

1

Pf?/vd( S)f cross= 9(S/Scrosd s

Ill. SELF-ORGANIZED CRITICAL BEHAVIOR

A. Crossover scaling

B. Comparison with the Bak-Sneppen model

organized critical behavior.
We measured the distribution of forwand avalanches

If we compare the above findings with the BS model, we
can deduce that in our model, wigh=1, the exponentr

[21] and we observed, contrary to the BS model, that twocorresponds to the usual forward-avalanche exponent, while
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FIG. 3. Distribution of barrier® (solid line) and minimum bar-
riers b, (dashed ling for p=0.95 (upper ploj and p=1 (lower
plot). In both cases the number of time steps wa§ 10

within the network. This is a strongly fluctuating quantity,
but on average it grows initially and after some time it satu-
rates and keeps fluctuating around some average value,
the exponentr’ is new. The above described scaliity  which depend omp. Figure 4 shows the probability distribu-
breaks down fop<1 because the connectivity and the sys-tion of number of units, for several values gp. The aver-
tem size are limitedcf. the next section age number of unitén,) was computed from these distribu-
The main difference from the usual BS model is the ex-tions and its dependence pris shown in the inset of Fig. 4.
istence of the second power-law regime $¥ss It can  We can see that the average network size diverge for
be particularly well observed for values af close to 1, —1 as a power law{n,)o<(1—p)~ “ with the exponent
where the crossover avalanche sigqis small. We have «,=0.8.
seen that such avalanches start and end mostly when the We can see from Fig. 5 that the distribution of the number
number of units is close to its minimum value equal to 1.0f units has an exponential tail. This corresponds to the fact
Between these events the evolution of the number of units ithat the time evolution of the network size is a random walk
essentially a random walk, because singular extinctions areith reflecting boundary at,=1, with a bias to lower val-
rare[17]. This fact can explain why the exponeritis not  ues, caused by the singular extinctiofier an analysis of
too far from the value 3/2 corresponding to the distributionbiased random walks repelled from zero see, €.37)).
of the first returns to the origin for the random walk. The From the decrease of average size with decregsiwg de-
difference is probably due to the presence of singular extincduce that the bias due to singular extinctions has a larger
tions. effect for smallerp, i.e., if the new unit created in a specia-
We measured also the distribution of barri€&) and tion event has fewer links to the neighbors.
the distribution of barriers on the extremal SRg;,(bmin) - IN
Fig. 3 we can compare the results for 1 andp=0.95. The ol T T ' ' T
sharp step observed in the BS model is absent here, because ’
the connectivity is not uniform(For comparison, we mea-
sured also the barrier distribution in the model of Réf],
where the network is static, but the connectivity is not uni- >
form. Also in that case the step was absent and the distribu- g
tion was qualitatively very similar to the one shown in Fig. ~=
g
&

0.01

—3
3.) The large noise level fdo close to 1 is due to the fact that 10

units with largerb undergo mutations rarely.

104
IV. NETWORK GEOMETRY

In this section we analyze the geometrical properties of
the network and their dependence on the parangeter

10-%

0 50 100 150 200 250 300

A. Size of the network Ny, €

The first important feature of the networks created by the FIG. 5. Distribution of the number of unitsolid line) and con-
dynamics of the model is their size or the number of unitsnectivity (dashed ling for p=0.98, averaged over @ime steps.
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FIG. 6. Distribution of the connectivity for all sitesolid line) FIG. 7. Contour plot of the joint probability densiB(n,,,c) for
and for extremal sites onlydashed ling in the stationary regime the number of units and connectivity, fpr=0.8, averaged over 3
for p=0.98, averaged over @ime steps. Inset: dependence of the x 10° time steps. The contours correspond to the following values
averaged connectivity om The solid line corresponds to the power of the probability density(from inside to outside 5xX 10 R, 2
law (c)o(1—p)~O75, x10°R, and 10°R, with ordersR=3,4,5,6,7,8.

B. Connectivity
for the system size fixed at,=170 we observe a power-law

In Fig. 6 we show the probability distribution of the con- behavior P(n,,c)~c~ 7 nearly up to the geometric cutoff

nectivity of network sited,,(c) and the distribution of the
connectivity of the extremal uniPgyyems(C). We can ob- C<n”.' The _value of the _exponent was apom=2.3.
serve the tendency that the extremal unit has a larger con-. Th's fmdmg may .be In accordance with the ppwer-law
nectivity than average. This is in accordance with the fing-distribution in growing networks[6,39. Indeed, in our
ings of Ref.[15] obtained on static networks. It can be also M0del the power-law behavior applies only for networks sig-
easily understood intuitively. Indeed, in a mutation event thehificantly larger than the average size. Such networks are
barriers of neighbors of the mutated unit are changed. So thg'éated during time-to-time fluctuations leading to a tempo-
neighbors have an enhanced probability to be extremal in th&ry expansion of the network. So the power law is the trace
next time step. Therefore, sites with a higher number oPf expansion periods in the network evolution, correspond-
neighbors have a larger probability that a mutation occurs inng to continuous growth in the model {8]. The preferen-
their neighborhood and that they are then mutated in th&al attachment, which is the second key ingredieri6il has
subsequent step. also an analog in our model; highly connected units are more
The average connectiviic) computed from the distribu- likely to be mutated, as was already mentioned in the discus-
tions P, (c) is shown in the inset of Fig. 6. We can observe sion of Fig. 6. However, here the preference of highly con-
that analogically to the system size also the average conneonected sites is a dynamical phenomenon, resulting from the
tivity diverges forp—1 as a power law, but the value of the extremal dynamics rules of our model.
exponent is slightly different. We fin¢c)oc(1—p) ~ “c with
the exponenty,=0.75. From the data available we were not —— T ———
able do decide whether the exponentsand «. are equal
within the statistical noise. 0.001
In Fig. 5 we can see that also the distribution of the con-
nectivity has an exponential tail, similarly to the distribution
of the network size. We measured also the joint probability
densityP(n,,c) for the number of units and the connectiv-
ity. The result is shown as a contour plot in Fig. 7. We can
see that also for large networldsrgen,) the most probable
connectivity is small and nearly independent rgf. This
means that the overall look of the network created by the
dynamics of our model is that there are a few sites with large
connectivity, surrounded by many sites with low connectiv-

ity.

10—5 -

P(nu: c)

1077 -

10—9 -

An interesting observation can be drawn from the results 1
shown in Fig. 8. It depicts the joint probability density as a
function of the connectivity at fixed system sizes. We can see FIG. 8. Distribution of the connectivity for a fixed number of
that for smaller system sizes, closer to the average number @hits, for p=0.8 and sizes,=40 (+), 80 (X),120 (@), and
units, the distribution is exponential, while if we increase the170 (). The straight line is a power law with exponen.3. The
system size a power-law dependence develops. For exampdata are the same as those used in Fig. 7.
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FIG. 9. Distribution of the number of clusters, for=0.98. The FIG. 10. Distribution of the cluster sizes for p=0.98, aver-

Straight line is a power law with exponeﬁ{l_z_ The data were aged over 1®tlme Steps. Solid |ine, all ClUSterS; dashed |ine, clus-
averaged over three independent runs18?,5x 108, and 18 time ters containing the extremal site. Inset: detail of the same distribu-

steps long. tion.

C. Clusters D. Mean distance

As noted already in the Sec. II, the network can be split A" Important feature of a random network is also the
into several disconnected clusters. The clusters canndf€an distance between two sites, measured as the mini-
merge, but they may vanish due to extinctions. We observefUm number of links which should be passed in order to get
qualitatively that after initial growth the number of clusters TOM One site to the other. Iib-dimensional lattices, the
exhibits stationary fluctuations around an average valueghean distance depends on the number of siess d
which increases whemapproaches 1. We measured both the~ N, while in completely random networks the depen-
distribution of the number of clusters and the distribution ofdence isd~ InN. In small-world networks, the crossover
their sizes. In Fig. 9 we show the distribution of the numberfrom the former to the latter behavior is obseri&d].
of clusters. The most probable situation is that there is only a The dependence of the average distance within a cluster
single cluster. However, there is a broad tail, which mean&n the size of the cluster in our model is shown in Fig. 11.
that even a large number of clusters can be sometimes cr&/e can observe a global tendency to decrehsehen in-
ated. The tail has a power-law part with an exponential cutcreasingp. This result is natural, because a largemeans
off. The value of the exponent in the power-law regimemore links from a randomly chosen site and thus a shorter
P(ng)~n. " was aboutp=1.2. We have observed that the distance to other sites. The functional form of the size de-
width of the power-law regime is larger for larggr This pendence is not completely clear. However, for larger cluster

leads us to the conjecture that in the limit>1 the number ~ SiZe€S, greater than about 25, the dependence seems to be
of clusters is power-law distributed faster than logarithmic, as can be seen from the inset in Fig.

On the other hand, the distribution of cluster sizes shown
in Fig. 10 has a maximum at very small values. This is due to
two effects. First, already the distribution of network size has
a maximum at small sizes, and second, if the network is split
into many clusters, they have a small size and remain un-

2.2

changed for a long time. The reason why small clusters L8

change very rarelyand therefore can neither grow nor dis-

appeay can be also seen from Fig. 10, where the distribution s 1.6

of the sizes of the clusters containing the extremal site is

shown. The latter distribution is significantly different from 14

the size distribution for all clusters and shows that the ex-

tremal site belongs mostly to large clusters. In fact, we mea- 12

sured also the fraction indicating how often the extremal unit BT

is in the largest cluster if there is more than one cluster. For 1 I 1 L

the same run from which the data shown in Fig. 10 were 0 50 100 5 150 200 250

collected, we found that this fraction is 0.97, i.e., very close
to 1. A similar “screening effect” was reported also in  FIG. 11. Dependence of the average distance of two sites within
the Cayley tree model$30]: the small isolated portions the same cluster on the cluster size, fior 0.95 (solid line) andp

of the network are very stable and nearly untouched by=0.97(dashed ling averaged over for Qtime steps. In the inset
the evolution. we show the same data in the log-linear scale.
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11. So the networks created in our model seem to be quality, like in models of growing networks with preferential
tatively different from the random networks studied previ- attachment.

ously, as far as we know. The network can consist of several mutually disconnected
clusters. Even though the most probable situation contains
only a single cluster, the distribution of cluster numbers has

] ) ) a broad tail, which shows a power-law regime with exponen-
We studied an extremal dynamics model motivated byia| cutoff. We observed the “screening effect,” character-

biological evolution on a dynamically evolving random net- jzeq by a very small probability that the extremal site is
work. The properties of the model can be tuned by the paound in any other cluster than the largest one. So there is a
rameterp, the probability that a link is inherited in the pro- central large cluster, where nearly everything happens, sur-
cess of speciation. Fop=1 the model is self-organized rounded by some small peripheral clusters, frozen for the
critical and the average system size and connectivity growhgjor part of the evolution time.
power-law regimes with different exponents in the statisticinks within one cluster. The distance grows very slowly
of forward A avalanches. The crossover avalanche size deyith the cluster size; however, the increase seems to be faster
pends on\ and diverges fon—0 as a power law. The than logarithmic.
reason Why the criticak is zero in this model is connected Summarizing' we demonstrated that the extremal dynam_
with the fact that time-averaged connectivity divergesgor ics, widely used in previous studies on macroevolution in
=1. fixed-size systems, is useful in creating random networks of
We investigated the geometrical properties of the randonyariable size. It would be of interest to compare the proper-
networks for different values gf. The average network size tjes of the networks created in our model with food webs and
and average connectivity diverge as a power efpl The  other networks found in nature. For example studies of food
probability distribution of system sizes has an exponentialyebs in isolated ecologidgl] give for network sizes about
tail, which suggests that the dynamics of the system size ig0 average connectivities in the range from 2.2 to 9, which is
essentially a biased random walk with a reflecting boundarypot in contradiction with the findings of our model. How-
The value of the bias grows with decreasipgThe joint  ever, more precise comparisons are necessary for any reli-
distribution of size and connectivity shows that even forable conclusions about real ecosystems.
large network sizes the most probable connectivity is low.
Hence, there are few highly connected sites linked to the
majority of sites with small connectivity. Moreover, situa-
tions where the system size is far above its mean value are We wish to thank K. Sneppen, A. Markoand A. P&al-
characterized by a power-law distribution of the connectiv-ski for useful discussions.

V. CONCLUSIONS
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