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Random networks created by biological evolution
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We investigate a model of an evolving random network, introduced by us previously@Phys. Rev. Lett.83,
5587 ~1999!#. The model is a generalization of the Bak-Sneppen model of biological evolution, with the
modification that the underlying network can evolve by adding and removing sites. The behavior and the
averaged properties of the network depend on the parameterp, the probability to establish a link to the newly
introduced site. Forp51 the system is self-organized critical, with two distinct power-law regimes with
forward-avalanche exponentst51.9860.04 andt851.6560.05. The average size of the network diverges as
a powerlaw whenp→1. We study various geometrical properties of the network: the probability distribution
of sizes and connectivities, size and number of disconnected clusters, and the dependence of the mean distance
between two sites on the cluster size. The connection with models of growing networks with a preferential
attachment is discussed.

PACS number~s!: 05.40.2a, 87.10.1e, 87.23.Kg
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I. INTRODUCTION

Irregular networks or random graphs@1# composed of
units of various kinds are very frequent both in nature a
society~which is, however, nothing but a special segment
nature!. Examples range from vulcanized polymers, sili
glasses, force chains in granular materials@2#, and mesos-
copic quantum wires@3# to food webs@4#, herding effects in
economics@5#, worldwide-web links@6#, ‘‘small-world’’ net-
works of personal contacts between humans@7,8#, and scien-
tific collaboration networks@9#.

The modeling of such networks is not quite easy and a
lytical results are relatively rare~examples, without any pre
tence of completeness, can be found in@1,5,10,11#!. Numeri-
cal simulations are still one of the principal tools. Howev
even in the case when the properties of a given class
random networks are relatively well established, either a
lytically or numerically, as is the case of small-world ne
works, the serious question remains as to why these
works occur in nature. In other words, what are t
dynamical processes which generate these networks.

Indeed, one can study, for example, various networks
the mutual dependence of species in a model of coevolu
@12–14#, but it is difficult to infer from these studies onl
which networks are closer to reality than the others. In
context of biological evolution models, there were recentl
few attempts to let the networks evolve freely, in order
check which types of topologies might correspond to ‘‘
tractors’’ of the process of natural evolution@15–20#.

The model introduced by us in a preceding Letter@17# is
based on extremal dynamics and basically follows the B
Sneppen model of biological evolution@13#. Extremal dy-
namics~ED! models@21# are used in a wide area of prob
lems, ranging from growth in a disordered medium@22#,
dislocation movement@23#, and friction @24# to biological
evolution @13#. Among them, the Bak-Sneppen~BS! model
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plays the role of a testing ground for various analytical
well as numerical approaches~see, for example,@21,25–30#!.

The idea of ED is the following. The dynamical system
question is composed of a large number of simple un
connected in a network. Each site of the network hosts
unit. The state of each unit is described by a single dyna
cal variableb, called the barrier. In each step, the unit wi
minimumb is mutated by updating the barrier. The effect
the mutation on the environment is taken into account
changingb also at all sites connected to the minimum site
a network link. Because a perturbation can propag
through the links, we should expect that the topology of
network can affect substantially the ED evolution.

The general feature of ED models is the avalanche
namics. The forwardl avalanches are defined as follow
@21#. For a fixedl we define active sites as those havi
barrierb,l. The appearance of one active site can lead
an avalanchelike proliferation of active sites in success
time steps. The avalanche stops when all active sites di
pear again. Generically, there is a value ofl for which the
probability distribution of avalanche sizes obeys a power l
without any parameter tuning, so that the ED models
classified as a subgroup of self-organized critical mod
@31#. ~This, of course, can hold only for networks of unlim
ited size.! The set of exponents describing the critical beha
ior determines the dynamical universality class the mo
belongs to.

It was found that the universality class depends on
topology of the network. Usually, regular hypercubic ne
works @21# or Cayley trees@30# are investigated. For random
neighbor networks, the mean-field solution was found to
exact @32,26#. Also the tree models@30# were found to be-
long to the mean-field universality class. A one-dimensio
model in which the links were wired randomly with th
probability decaying as a powerm of the distance was intro
duced@33,34#. It was found that the values of critical expo
nents depend continuously onm. The BS model of a small-
world network was also studied@35#.

Recently, the BS model on random networks, produc
by bond percolation on a fully connected lattice, was stud
6170 ©2000 The American Physical Society
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PRE 62 6171RANDOM NETWORKS CREATED BY BIOLOGICAL EVOLUTION
@15#. Two universality classes were found. Above the per
lation threshold, the system belongs to the mean-field uni
sality class, while exactly at the percolation threshold,
avalanche exponent is different. A dynamics changing
topology in order to drive the network to critical connectivi
was suggested.

There are also several recent results for random netw
produced by different kinds of dynamics than ED, especia
for the threshold networks@18# and Boolean networks
@19,20#.

The geometry of the worldwide web was intensively stu
ied very recently. It was found experimentally that the n
work exhibits scale-free characteristics, measured by
power-law distribution of the connectivities of the sit
@6,36#. Similar power-law behavior was observed also in t
actor collaboration graph and in power grids@6#. A model
was suggested@6# to explain this behavior, whose two ma
ingredients are continual growth and preferential attachm
of new links, with sites with higher connectivity having
higher probability to receive additional links. The latter fe
ture resembles the behavior of additive-multiplicative ra
dom processes, which are well known to produce power-
distributions@37,38#.

The model introduced in@6# is exactly soluble@39#. Vari-
ants including aging of sites@40,41# and decaying and rewir
ing links @42,43# were also studied. The preferential attac
ment rule, which apparently requires unrealistic knowled
of the connectivities of the whole network before a sing
new link is established, was justified in a very recent wo
@44#, where a higher probability of attachment at highly co
nected sites results from a local search by walking on
network.

In the preceding Letter@17# we concentrated on the sel
organized critical behavior and extinction dynamics of
model in which the network changes dynamically by add
and removing sites. It was shown that the extinction ex
nent is larger than the upper bound for the BS model~given
by the mean-field value! and is closer to the experimental
found value than any previous version of the BS model.
the present work we introduce in Sec. II a generalized v
sion of the model defined in@17# and further investigate the
self-organized critical behavior in Sec. III. However, o
main concern will be with the geometric properties of t
network, produced during the dynamics. These results
presented in Sec. IV. Section V gives conclusions from
results obtained.

II. EVOLUTION MODEL ON EVOLVING NETWORK

We consider a system composed of varying numbernu of
units connected in a network, subject to extremal dynam
Each unit bears a dynamical variableb. In the context of
biological evolution these units are species andb represent
the barrier against mutations. For the main novelty of o
model consisting in adding~speciation! and removing~extic-
tion! units, let us first define the rules for extinction an
speciation. The rules determining which of the existing un
will undergo speciation or extinction will be specified afte
wards.

~i! If a unit is chosen for extinction, it is completely re
moved from the network without any substitution and
links it has are broken.
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~ii ! If a unit is chosen for speciation, it acts as a ‘‘mothe
giving birth to a new, ‘‘daughter’’ unit. A new unit is adde
to the system and links are established between the new
and the neighbors of the ‘‘mother’’ unit: each link of th
‘‘mother’’ unit is inherited with probabilityp by the ‘‘daugh-
ter’’ unit. This rule reflects the fact that the new unit is to
certain extent a copy of the original, so the relations to
environment will be initially similar to the ones the old un
has. Moreover, if a unit which speciates has only one nei
bor, a link between ‘‘mother’’ and ‘‘daughter’’ is also estab
lished.

The extremal dynamics rule for our model is the follow
ing.

~iii ! In each step, the unit with minimumb is found and
mutated. The barrier of the mutated unit is replaced by a n
random valueb8 taken from the uniform distribution on th
interval (0,1). Also the barriers of all its neighbors are r
placed by new random numbers from the same distributi

The rules determining whether a unit is chosen for ex
tion or speciation are the following.

~iv! If the newly assigned barrier of the mutated unitb8 is
larger than the new barriers of all its neighbors, the unit
chosen for speciation. Ifb8 is lower than the barriers of al
neighbors, the unit is chosen for extinction. In other ca
neither extinction nor speciation occcurs. As a boundary c
dition, we use the following exception: if the network co
sists of a single isolated unit only, it is always chosen
speciation.

~v! If a unit is chosen for extinction, all its neighbor
which are not connected to any other unit are also chosen
extinction. We call this kind of extinction singular extinc
tion.

Rule ~iv! is motivated by the following considerations
We assume that well-adapted units proliferate more rap
and the chance for speciation is bigger. However, if the lo
biodiversity, measured by the connectivity of the unit, is b
ger, there are fewer empty ecological niches and the pr
ability of speciation is lower. On the other hand, poor
adapted units are more vulnerable to extinction, but at
same time larger biodiversity~larger connectivity! may favor
survival. Our rule corresponds well to these assumptio
speciation occurs preferably at units with a high barrier a
surrounded by fewer neighbors; extinction is more frequ
at units with lower barriers and lower connectivity. Mor
over, we suppose that a unit completely isolated from the
of the ecosystem has a very low chance to survive. This le
to rule ~v!.

From rule~iv! alone follows the equal probability of add
ing and removing a unit, because the new random barrieb
are taken from the uniform distribution. At the same tim
rule ~v! enhances the probability of the removal. Thus, t
probability of speciation is slightly lower than the probabili
of extinction. The degree of disequilibrium between the tw
depends on the topology of the network at the moment
can be quantified by the frequency of singular extinctio
The number of units,nu , perform a biased random walk wit
reflecting boundary atnu51. The bias towards small value
is not constant, though, but fluctuates as well.

The above rules are illustrated by the examples show
Fig. 1. The networks in~a! show the effect of speciation:
new site is created and some to the links to the moth
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6172 PRE 62FRANTIŠEK SLANINA AND MIROSLAV KOTRLA
neighbors are established. In~b! extinction is shown. One o
the units is removed also due to a singular extinction@rule
~v!#. In ~c! we illustrate the possibility that in the extinctio
event the network can be split into several disconnected c
ters.

III. SELF-ORGANIZED CRITICAL BEHAVIOR

A. Crossover scaling

The model investigated in the preceding Letter@17# cor-
responds to the valuep51. We found that in this case th
model is self-organized critical. We defined newly the ma
extinctions as the number of units removed during an a
lanche. The distribution of mass extinctions obeys a po
law with the exponenttext52.3260.05. In this section we
present an improved analysis of the data for the s
organized critical behavior.

We measured the distribution of forwardl avalanches
@21# and we observed, contrary to the BS model, that t

FIG. 1. Schematic illustration of the dynamical rules of t
model. Speciation is shown in~a!, where the solid square represen
the extremal unit, which speciates, solid circle the new, daug
unit, and open circles other units, not affected by the specia
event. The dotted link illustrates that forp,1 some of the mother’s
links may not be inherited by the daughter. Extinction is shown
~b!, where the extremal unit, which is removed, is indicated by
solid square. The unit denoted by the solid circle is the neigh
removed by the singular extinction. In~c! an example of an extinc
tion event is shown, which leads to the splitting of the network in
disconnected clusters.
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power-law regimes with two different exponents occur. T
crossover valuescross which separates the two regimes d
pends onl. We observed that the distributions for differe
l collapse onto a single curve if plotted against the resca
avalanche sizes/scross, i.e.,

Pfwd
. ~s! f cross5g~s/scross!, ~1!

whereg(x);x2t11 for x!1 andg(x);x2t811 for x@1.
The data are plotted in Fig. 2. For the values of the ex
nents, we foundt51.9860.04 andt851.6560.05.

We investigated the dependence of the scaling parame
scrossand f crosson l and we found that both of them behav
as a power law with approximately equal exponent,scross

; f cross;l2s8 with s8.3.5 ~see inset in Fig. 2!. The role of
critical l at which the distribution of forward avalanche
follows a power law is assumed by the valuel50. This
result is easy to understand. In fact, in models with fixed~or
at least bounded! connectivityc, the criticall is roughly 1/c.
As will be shown in the next section, in our case the size
the system and average connectivity grow without limits, a
thus the criticall tends to zero. Note that it is difficult to se
this result without resort to the data collapse~1!. Indeed, for
any finite time of the simulation, the connectivity and th
system size reach only a limited value and the criticall seen
in the distribution of forward avalanches has apparentl
nonzero value.

B. Comparison with the Bak-Sneppen model

If we compare the above findings with the BS model, w
can deduce that in our model, withp51, the exponentt
corresponds to the usual forward-avalanche exponent, w

er
n

e
r

FIG. 2. Rescaled distribution of forward avalanches in the c
p51, for the valuesl50.03(n), l50.05(s), l50.1(1), l
50.2(L), l50.4(3), and l50.6(h), The superscript. in
Pfwd

. (s) is to indicate that we count all avalanches larger thans. In
the inset we plot the dependence of the scaling parametersscross

(1) and f cross(3) on l. The solid line is the power lawl2s8 with
exponents853.5. The number of time steps was 33108 and the
data are averaged over 12 independent runs.
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PRE 62 6173RANDOM NETWORKS CREATED BY BIOLOGICAL EVOLUTION
the exponentt8 is new. The above described scaling~1!
breaks down forp,1 because the connectivity and the sy
tem size are limited~cf. the next section!.

The main difference from the usual BS model is the e
istence of the second power-law regime fors@scross. It can
be particularly well observed for values ofl close to 1,
where the crossover avalanche sizescross is small. We have
seen that such avalanches start and end mostly when
number of units is close to its minimum value equal to
Between these events the evolution of the number of uni
essentially a random walk, because singular extinctions
rare @17#. This fact can explain why the exponentt8 is not
too far from the value 3/2 corresponding to the distributi
of the first returns to the origin for the random walk. Th
difference is probably due to the presence of singular ext
tions.

We measured also the distribution of barriersP(b) and
the distribution of barriers on the extremal sitePmin(bmin). In
Fig. 3 we can compare the results forp51 andp50.95. The
sharp step observed in the BS model is absent here, bec
the connectivity is not uniform.~For comparison, we mea
sured also the barrier distribution in the model of Ref.@15#,
where the network is static, but the connectivity is not u
form. Also in that case the step was absent and the distr
tion was qualitatively very similar to the one shown in Fi
3.! The large noise level forb close to 1 is due to the fact tha
units with largerb undergo mutations rarely.

IV. NETWORK GEOMETRY

In this section we analyze the geometrical properties
the network and their dependence on the parameterp.

A. Size of the network

The first important feature of the networks created by
dynamics of the model is their size or the number of un

FIG. 3. Distribution of barriersb ~solid line! and minimum bar-
riers bmin ~dashed line! for p50.95 ~upper plot! and p51 ~lower
plot!. In both cases the number of time steps was 107.
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within the network. This is a strongly fluctuating quantit
but on average it grows initially and after some time it sa
rates and keeps fluctuating around some average va
which depend onp. Figure 4 shows the probability distribu
tion of number of unitsnu for several values ofp. The aver-
age number of unitŝnu& was computed from these distribu
tions and its dependence onp is shown in the inset of Fig. 4
We can see that the average network size diverges fop
→1 as a power law,̂ nu&}(12p)2an with the exponent
an.0.8.

We can see from Fig. 5 that the distribution of the numb
of units has an exponential tail. This corresponds to the
that the time evolution of the network size is a random w
with reflecting boundary atnu51, with a bias to lower val-
ues, caused by the singular extinctions~for an analysis of
biased random walks repelled from zero see, e.g.,@37#!.
From the decrease of average size with decreasingp we de-
duce that the bias due to singular extinctions has a la
effect for smallerp, i.e., if the new unit created in a specia
tion event has fewer links to the neighbors.

FIG. 4. Distribution of the number of units for different value
of p@(n)0.85,(h)0.9,(3)0.95,(1)0.97,(L)0.98#. Data are aver-
aged over 108 time steps. Inset: dependence of the averaged num
of units on p. The solid line corresponds to the power law^nu&
}(12p)20.8.

FIG. 5. Distribution of the number of units~solid line! and con-
nectivity ~dashed line!, for p50.98, averaged over 108 time steps.
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B. Connectivity

In Fig. 6 we show the probability distribution of the con
nectivity of network sitesPall(c) and the distribution of the
connectivity of the extremal unitPextremal(c). We can ob-
serve the tendency that the extremal unit has a larger
nectivity than average. This is in accordance with the fin
ings of Ref.@15# obtained on static networks. It can be al
easily understood intuitively. Indeed, in a mutation event
barriers of neighbors of the mutated unit are changed. So
neighbors have an enhanced probability to be extremal in
next time step. Therefore, sites with a higher number
neighbors have a larger probability that a mutation occur
their neighborhood and that they are then mutated in
subsequent step.

The average connectivitŷc& computed from the distribu
tions Pall(c) is shown in the inset of Fig. 6. We can obser
that analogically to the system size also the average con
tivity diverges forp→1 as a power law, but the value of th
exponent is slightly different. We find̂c&}(12p)2ac with
the exponentac.0.75. From the data available we were n
able do decide whether the exponentsan and ac are equal
within the statistical noise.

In Fig. 5 we can see that also the distribution of the co
nectivity has an exponential tail, similarly to the distributio
of the network size. We measured also the joint probabi
densityP(nu ,c) for the number of units and the connecti
ity. The result is shown as a contour plot in Fig. 7. We c
see that also for large networks~largenu) the most probable
connectivity is small and nearly independent ofnu . This
means that the overall look of the network created by
dynamics of our model is that there are a few sites with la
connectivity, surrounded by many sites with low connect
ity.

An interesting observation can be drawn from the res
shown in Fig. 8. It depicts the joint probability density as
function of the connectivity at fixed system sizes. We can
that for smaller system sizes, closer to the average numb
units, the distribution is exponential, while if we increase t
system size a power-law dependence develops. For exa

FIG. 6. Distribution of the connectivity for all sites~solid line!
and for extremal sites only~dashed line!, in the stationary regime
for p50.98, averaged over 108 time steps. Inset: dependence of t
averaged connectivity onp. The solid line corresponds to the pow
law ^c&}(12p)20.75.
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for the system size fixed atnu5170 we observe a power-law
behavior P(nu ,c);c2h nearly up to the geometric cutof
c,nu . The value of the exponent was abouth.2.3.

This finding may be in accordance with the power-la
distribution in growing networks@6,39#. Indeed, in our
model the power-law behavior applies only for networks s
nificantly larger than the average size. Such networks
created during time-to-time fluctuations leading to a tem
rary expansion of the network. So the power law is the tra
of expansion periods in the network evolution, correspo
ing to continuous growth in the model of@6#. The preferen-
tial attachment, which is the second key ingredient in@6#, has
also an analog in our model; highly connected units are m
likely to be mutated, as was already mentioned in the disc
sion of Fig. 6. However, here the preference of highly co
nected sites is a dynamical phenomenon, resulting from
extremal dynamics rules of our model.

FIG. 7. Contour plot of the joint probability densityP(nu ,c) for
the number of units and connectivity, forp50.8, averaged over 3
3109 time steps. The contours correspond to the following valu
of the probability density~from inside to outside!: 53102R, 2
3102R, and 102R, with ordersR53,4,5,6,7,8.

FIG. 8. Distribution of the connectivity for a fixed number o
units, for p50.8 and sizesnu540 (1), 80 (3),120 ((), and
170 (h). The straight line is a power law with exponent22.3. The
data are the same as those used in Fig. 7.
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C. Clusters

As noted already in the Sec. II, the network can be s
into several disconnected clusters. The clusters can
merge, but they may vanish due to extinctions. We obser
qualitatively that after initial growth the number of cluste
exhibits stationary fluctuations around an average va
which increases whenp approaches 1. We measured both t
distribution of the number of clusters and the distribution
their sizes. In Fig. 9 we show the distribution of the numb
of clusters. The most probable situation is that there is on
single cluster. However, there is a broad tail, which me
that even a large number of clusters can be sometimes
ated. The tail has a power-law part with an exponential c
off. The value of the exponent in the power-law regim
P(nc);nc

2r was aboutr.1.2. We have observed that th
width of the power-law regime is larger for largerp. This
leads us to the conjecture that in the limitp→1 the number
of clusters is power-law distributed.

On the other hand, the distribution of cluster sizes sho
in Fig. 10 has a maximum at very small values. This is due
two effects. First, already the distribution of network size h
a maximum at small sizes, and second, if the network is s
into many clusters, they have a small size and remain
changed for a long time. The reason why small clust
change very rarely~and therefore can neither grow nor di
appear! can be also seen from Fig. 10, where the distribut
of the sizes of the clusters containing the extremal site
shown. The latter distribution is significantly different fro
the size distribution for all clusters and shows that the
tremal site belongs mostly to large clusters. In fact, we m
sured also the fraction indicating how often the extremal u
is in the largest cluster if there is more than one cluster.
the same run from which the data shown in Fig. 10 w
collected, we found that this fraction is 0.97, i.e., very clo
to 1. A similar ‘‘screening effect’’ was reported also i
the Cayley tree models@30#: the small isolated portions
of the network are very stable and nearly untouched
the evolution.

FIG. 9. Distribution of the number of clusters, forp50.98. The
straight line is a power law with exponent21.2. The data were
averaged over three independent runs 53108,53108, and 108 time
steps long.
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D. Mean distance

An important feature of a random network is also t
mean distanced̄ between two sites, measured as the mi
mum number of links which should be passed in order to
from one site to the other. InD-dimensional lattices, the
mean distance depends on the number of sitesN as d̄
;N1/D, while in completely random networks the depe
dence isd̄; ln N. In small-world networks, the crossove
from the former to the latter behavior is observed@7,8#.

The dependence of the average distance within a clu
on the size of the cluster in our model is shown in Fig. 1
We can observe a global tendency to decreased̄ when in-
creasingp. This result is natural, because a largerp means
more links from a randomly chosen site and thus a sho
distance to other sites. The functional form of the size
pendence is not completely clear. However, for larger clus
sizes, greater than about 25, the dependence seems
faster than logarithmic, as can be seen from the inset in

FIG. 10. Distribution of the cluster sizessc for p50.98, aver-
aged over 108 time steps. Solid line, all clusters; dashed line, clu
ters containing the extremal site. Inset: detail of the same distr
tion.

FIG. 11. Dependence of the average distance of two sites wi
the same cluster on the cluster size, forp50.95 ~solid line! andp
50.97 ~dashed line!, averaged over for 107 time steps. In the inse
we show the same data in the log-linear scale.
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11. So the networks created in our model seem to be qu
tatively different from the random networks studied pre
ously, as far as we know.

V. CONCLUSIONS

We studied an extremal dynamics model motivated
biological evolution on a dynamically evolving random ne
work. The properties of the model can be tuned by the
rameterp, the probability that a link is inherited in the pro
cess of speciation. Forp51 the model is self-organize
critical and the average system size and connectivity g
without limits. Contrary to the usual BS model, we find tw
power-law regimes with different exponents in the statist
of forward l avalanches. The crossover avalanche size
pends onl and diverges forl→0 as a power law. The
reason why the criticall is zero in this model is connecte
with the fact that time-averaged connectivity diverges fop
51.

We investigated the geometrical properties of the rand
networks for different values ofp. The average network siz
and average connectivity diverge as a power of 12p. The
probability distribution of system sizes has an exponen
tail, which suggests that the dynamics of the system siz
essentially a biased random walk with a reflecting bounda
The value of the bias grows with decreasingp. The joint
distribution of size and connectivity shows that even
large network sizes the most probable connectivity is lo
Hence, there are few highly connected sites linked to
majority of sites with small connectivity. Moreover, situ
tions where the system size is far above its mean value
characterized by a power-law distribution of the connec
,

e

et

d
,

en
li-

y

-

w

s
e-

m

l
is
y,

r
.
e

re
-

ity, like in models of growing networks with preferentia
attachment.

The network can consist of several mutually disconnec
clusters. Even though the most probable situation conta
only a single cluster, the distribution of cluster numbers h
a broad tail, which shows a power-law regime with expone
tial cutoff. We observed the ‘‘screening effect,’’ characte
ized by a very small probability that the extremal site
found in any other cluster than the largest one. So there
central large cluster, where nearly everything happens,
rounded by some small peripheral clusters, frozen for
major part of the evolution time.

We measured also the mean distance measured alon
links within one cluster. The distance grows very slow
with the cluster size; however, the increase seems to be fa
than logarithmic.

Summarizing, we demonstrated that the extremal dyna
ics, widely used in previous studies on macroevolution
fixed-size systems, is useful in creating random networks
variable size. It would be of interest to compare the prop
ties of the networks created in our model with food webs a
other networks found in nature. For example studies of fo
webs in isolated ecologies@4# give for network sizes abou
30 average connectivities in the range from 2.2 to 9, which
not in contradiction with the findings of our model. How
ever, more precise comparisons are necessary for any
able conclusions about real ecosystems.
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