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Variety and volatility in financial markets

Fabrizio Lillo and Rosario N. Mantegna
Istituto Nazionale per la Fisica della Materia, Unita` di Palermo and Dipartimento di Fisica e Tecnologie Relative,

Universitàdi Palermo, Viale delle Scienze, I-90128, Palermo, Italy
~Received 4 June 2000!

We study the price dynamics of stocks traded in a financial market by considering the statistical properties
of both a single time series and an ensemble of stocks traded simultaneously. We use then stocks traded on the
New York Stock Exchange to form a statistical ensemble of daily stock returns. For each trading day of our
database, we study the ensemble return distribution. We find that a typical ensemble return distribution exists
in most of the trading days with the exception of crash and rally days and of the days following these extreme
events. We analyze each ensemble return distribution by extracting its first two central moments. We observe
that these moments fluctuate in time and are stochastic processes, themselves. We characterize the statistical
properties of ensemble return distribution central moments by investigating their probability density functions
and temporal correlation properties. In general, time-averaged and portfolio-averaged price returns have dif-
ferent statistical properties. We infer from these differences information about the relative strength of corre-
lation between stocks and between different trading days. Last, we compare our empirical results with those
predicted by the single-index model and we conclude that this simple model cannot explain the statistical
properties of the second moment of the ensemble return distribution.

PACS number~s!: 05.40.2a, 89.90.1n
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I. INTRODUCTION

In recent years physicists have begun to interact w
economists to construct models of financial markets@1#. This
inspired a group of physicists to analyze and model pr
dynamics in financial markets using paradigms and tools
statistical and theoretical physics@2#. One goal of this re-
search is to implement a stochastic model of price dynam
in financial markets that reproduces the statistical proper
observed in the time evolution of stock prices. Over the p
few years, physicists interested in financial analysis h
performed several empirical research studies investiga
the statistical properties of stock price and volatility tim
series of a single stock~or of an index! at different temporal
horizons@3,4#. This kind of analysis does not take into a
count any interaction of the considered financial stock w
other stocks traded simultaneously on the same market.
known that the synchronous price returns time series of
ferent stocks are pair correlated@5,6# and several studie
have also been performed by physicists to extract inform
tion from the correlation properties@7–9#. A precise charac-
terization of collective movements in a financial market is
key importance in understanding the market dynamics an
controlling the associated risk to a portfolio of stocks. T
present study contributes to the understanding of collec
behavior of a portfolio of stocks in normal and extreme da
of market activity.

Specifically, we address the following question: Is t
complexity of a financial market essentially limited to th
statistical behavior of each financial time series or, rath
does a complexity of the overall market exist? To answ
this question, we present the results of an empirical anal
performed adopting the following point of view. We inve
tigate the price returns of an ensemble ofn stocks simulta-
neously traded on a financial market on a given day. W
this approach, we quantify what we call thevariety of a
PRE 621063-651X/2000/62~5!/6126~9!/$15.00
h

e
f

s
s

st
e
g

h
is
f-

-

f
in

e
s

r,
r
is

h

financial market on a given trading day@10#. The variety
provides statistical information about the amount of var
behavior observed in the stock return in a given ensembl
stocks at a given trading time horizon~in the present case
one trading day!. We observe that the distribution of variet
is sensitive to the composition of the portfolio investigat
~especially to the capitalization of the considered stocks!.

The return distribution shows a typical shape for most
the trading days. However, the typical behavior is not o
served during crash and rally days. The shape and param
characterizing the ensemble return distribution are relativ
stable during normal phases of the market activity, but
come time dependent in the periods following crashes. T
variety is characterized by a long-range correlated mem
showing that no typical time scale can be expected afte
rally or a crash for the expected relaxation to a ‘‘norma
market phase. Moreover, a simple model such as the sin
index model cannot reproduce the statistical properties
pirically observed.

The paper is organized as follows. In Sec. II we illustra
our database and the ensemble of stocks considered. Se
III is devoted to the investigation of the statistical propert
of the time evolution of each single stock. In Sec. IV, w
discuss the statistical properties of ensemble return distr
tion. Specifically, we consider the behavior of the first tw
central moments, their distribution and time correlation
comparison of time and portfolio average, and the role of
size and homogeneity of the investigated portfolio. In Sec
we compare the statistical properties observed in a rea
nancial market with the prediction of the single-index mod
In Sec. VI we present a discussion of the results obtaine

II. DATABASE AND VARIABLES INVESTIGATED

The market investigated is the New York Stock Exchan
~NYSE! during the 12-year period from January 1987 to D
6126 ©2000 The American Physical Society
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PRE 62 6127VARIETY AND VOLATILITY IN FINANCIAL MARKETS
cember 1998, which corresponds to 3032 trading days.
consider the ensemble of all stocks traded on the NYSE.
number of stocks traded on the NYSE increases in the in
tigated period, ranging from 1128 at the beginning of 1987
2788 at the end of 1998. The total number of data reco
exceeds six million.

The variable investigated in our analysis is the daily pr
return, which is defined as

Ri~ t ![
Yi~ t !2Yi~ t21!

Yi~ t21!
, ~1!

whereYi(t) is the closure price of thei th stock at dayt (t
51,2, . . . ). Foreach trading dayt, we considern returns,
wheren depends on the total number of stocks traded on
NYSE on the selected dayt. In our study we use a ‘‘marke
time.’’ With this choice, we consider only the trading da
and we remove the weekends and holidays from the cale
time.

A database of more than six million records unavoida
contains some errors. Direct control of a so large databas
not realistic. For this reason, to avoid spurious results
filter the data by not considering price returns that are,
absolute values, greater than 50%.

The companies traded on the NYSE are quite differ
from one another. Differences between the companies
observed both with respect to the sector of their econo
interests and with respect to their size. One measure of
size of a company is its capitalization. The capitalization o
stock is the stock price times the number of outstand
shares. In this study, we discuss the role of the differ
capitalization in the price dynamics.

III. SINGLE-STOCK PROPERTIES

The distribution of returns with different time horizons
a single stock or index has been studied by several aut
@2–6#. The stocks traded on a financial market have differ
capitalizations. An important issue is whether or not the d
ferences in capitalization are reflected in the statistical pr
erties of the price returns of the stocks. To answer this qu
tion, we investigate the distribution of daily returns of 21
stocks traded on the NYSE.

We compare the statistical properties of daily price ret
distribution of each stock as a function of its capitalizatio
We sequence the 2188 stocks in decreasing order acco
to their capitalization at an arbitrarily chosen day that
select as June 10, 1996. Our sequencing procedure giv
the most capitalized stock~the General Electric Co., GE! the
rank i 51, to the second one~the Coca Cola Company! the
rank i 52, and so on. An analysis of the return probabil
density function~PDF! for the 2188 stocks shows that th
distributions are different. This is due in general to~i! differ-
ent scale and~ii ! the different shape of the return PDFs.
order to eliminate one source of difference, we analyze
PDF of the normalized returns@Ri(t)2m i #/s i ( i
51,2, . . .,2188), wherem i and s i are the first two centra
moments of the time seriesRi(t) defined as

m i5
1

Ti
(
t51

Ti

Ri~ t !, ~2!
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Ti
S (

t51

Ti

~Ri~ t !2m i !
2D , ~3!

whereTi is the number of trading days of the stocki during
the investigated period. The quantitym i gives a measure o
the overall performance of stocki during this period. The
standard deviations i is calledhistorical volatility in the fi-
nancial literature and quantifies the risk associated with
i th stock. This quantity is of primary importance in risk ma
agement and in option pricing.

The PDF of normalized daily returns of all the stoc
sequenced by capitalization is shown in Fig. 1. The cen
part of the distribution of the most capitalized stocks ha
bell-shaped profile. Moving towards less capitalized stoc
the central part of the distribution becomes more peaked
the tails of the distribution become fatter. The PDF of t
less capitalized stocks is therefore more leptokurtic than
PDF of the more capitalized ones.

The typical estimation of the degree of leptokurtosis o
PDF is done by considering its kurtosis. The evaluation
the kurtosis of the PDF is, in general, difficult for a small s
of data because the fourth moment and all the mome
higher than the second are extremely sensitive to the hig
absolute returns. This implies that the kurtosis calcula
from a relatively small set of records is dominated by t
highest absolute returns rather than by the shape of the
and therefore it is not a good statistical estimate. To av
this problem, we quantify the distance between the emp
cally calculated PDF of the daily returns of thei th stock and
the Gaussian distribution by considering the quantity

h[
^uxu&

A^x2&2^x&2
. ~4!

The quantityh is nondimensional and depends on the fi
two moments. For the Gaussian distribution

PG~x!5
1

A2psG
2

expS 2
~x2mG!2

2sG
2 D , ~5!

the parameterh is equal to

FIG. 1. Surface plot of the logarithm of the probability dens
function of normalized daily returns@Ri(t)2m i #/s i of all the
stocks traded on the NYSE. The stocks are sorted according to
capitalization on June 10, 1996.
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hG5A2

pFexpS 2
mG

2

2sG
2 D 1Ap

2

mG

sG
ErfS mG

A2sG
D G . ~6!

The parameterhG is a function of the ratiomG /sG ranging
from the lower boundA2/p whenmG /sG50 to infinity. For
a leptokurtic PDF, as, for example, a Laplace distribution
a Student’st distribution with finite variance,h is always
smaller thanhG . The distance ofh from hG quantifies the
degree of leptokurtosis of the PDF considered. Figure
shows the parameterh for the stocks traded on the NYSE a
a function of their capitalization. In this figure, we also sho
the lower bound ofhG for comparison. The empirically cal
culated parameterh is systematically smaller thanhG . The
mean valuê h& of the overall market iŝ h&50.67 and its
standard deviation issh50.06. Hence this result sugges
that, as a first approximation, one can assume that the l
majority of stocks are characterized by a roughly simi
PDF. However, we wish to point out that this conclusion
only valid as a first approximation because a trend ofh is
clearly detected in Fig. 2. Specifically,h increases as the
capitalization increases. Therefore, the less capitalized st
have a more leptokurtic daily return PDF than the more ca
talized ones.

The second moment of return distribution has been fo
finite in recent research@11–14#. In order to verify the con-
vergence of the PDF towards a Gaussian PDF at large
poral horizons, we evaluate theh parameter for weeklŷhw&
and monthlŷ hm& return PDFs. We obtain from our analys
^hw&50.70 and̂ hm&50.74. These results show that the va
ues ofh moves towardshG5A2/p.0.80 when the time ho-
rizon of returns is increased, supporting the conclusion
finite second moment.

IV. ENSEMBLE RETURN DISTRIBUTION

In the preceding section we focused on the statist
properties of the time evolution of price returns for ea
single stock traded on the NYSE. In this section we perfo
a synchronous analysis on the return of all stocks traded

FIG. 2. Each circle represents theh parameter defined in Eq.~4!
of the daily return distribution of a stock as a function of its ca
talization. The dashed line is the valueA2/p.0.80, which is the
lower bound forhG expected for a Gaussian distribution of dai
return. Values ofh smaller thanhG indicate a leptokurtic distribu-
tion of returns. The parameterh slowly increases by increasing th
capitalization.
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the NYSE. Toward this end we extract then returns of then
stocks for each trading dayt. The distribution of these re
turns Pt(R) provides information about the kind of activit
occurring in the market on the selected trading dayt.

Figure 3 shows the logarithm of the PDF as a function
the return and of the trading day. In this figure we show
interval of daily returns from225% to 25%. The centra
part of the distribution is roughly triangular in a logarithm
scale and this shape and its scale are conserved for long
periods. Sometimes the shape and scale of the ensemb
turn PDF changes abruptly in the presence of either la
average positive returns or large average negative retu
Figure 4 shows the same data as Fig. 3 in a contour plot.
contour lines describe equiprobability regions. In order
point out the properties of the central part of the distributio
in Fig. 4 we plot only the returns that are less than 15%
absolute value. Only a few points of the contour lines l
outside this limit during the 1987 and 1998 crises. In Fig
there are long time periods in which the central part of
distribution maintains its shape and the equiprobability c
tour lines are approximately parallel one to each other. As
example, one can consider the three-year period 1993-1
On the other hand, there are time periods in which the sh
of the distribution changes drastically. In general, these
riods corresponds to financial turmoil in the market. For e
ample a dramatic change in the shape and scale of the PD
observed in Fig. 4 during and after the Oct. 19, 1987 cra
at the beginning of 1991, and at the end of 1998. A syste
atic analysis of the change of the shape and scale of
ensemble return distribution during extreme events of
market has been discussed elsewhere@15#

One key aspect of the ensemble return distribution c
cerns its shape during the normal periods of activity of
market. Is the distribution approximately Gaussian or is
systematic deviation from a Gaussian shape quantitativ
observed? We already cited that a direct inspection of Fig
suggests that the central part of the empirical return distri
tion is roughly Laplacian~triangular in a logarithmic scale!
and not Gaussian. To make this analysis more quantita
we show in Fig. 5 the ratio between the value ofh deter-
mined for each trading day from the ensemble return dis

FIG. 3. Surface plot of the logarithm of the ensemble retu
distribution for the 12-year period of investigation from Janua
1987 to December 1998. In this figure the 1987 crash is cle
recognizable~trading day index equal to 200! and the high-
volatility two-year period 1997–1998~trading day index from 2500
to 3032!.
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PRE 62 6129VARIETY AND VOLATILITY IN FINANCIAL MARKETS
bution and the quantitieshG calculated by determining th
mean and the standard deviation ofPt(R) and hypothesizing
a Gaussian shape by using Eq.~6!. The ratioh/hG is system-
atically smaller than one and this implies that the Gauss
hypothesis for the shape of the distribution is not verified
the empirical analysis. In other words, the Gaussian distr
tion is not a good approximation for either the central part
the tails of the distribution, and the deviation from th
Gaussian behavior is systematically observed for all trad
days of the 12-year time period analyzed in our study.

In summary, the ensemble return distribution well char
terizes the market activity. It has a typical shape and sc
during long periods of ‘‘normal’’ activity of the market char
acterized by moderately low average daily returns. Dur
extreme events the shape and scale change dramatically
systematic way. Specifically, during crises the ensemble
turn distribution becomes negatively skewed, whereas du
rallies a positive skewness is observed@15#. Figure 4 clearly
shows that extreme events~such as the October 1987 cras!
trigger an ‘‘aftershock’’ period in the ensemble return PD
that can last for a period of several months.

A. Central moments

In order to characterize more quantitatively the ensem
return distribution on dayt, we extract the first two centra

FIG. 4. Contour plot of the logarithm of the ensemble retu
distribution for the 12-year period January 1987 to December 1
~same data as in Fig. 3!. The contour plot is obtained for equidista
intervals of the logarithmic probability density. The brightest ar
of the contour plot corresponds to the most probable value.
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moments on each of the 3032 trading days. Specifically,
consider the average and the standard deviation defined

m~ t !5
1

nt
(
i 51

nt

Ri~ t !, ~7!

s~ t !5A1

nt
S (

i 51

nt

@Ri~ t !2m~ t !#2D , ~8!

wherent indicates the number of stocks traded on dayt.
The mean of price returnsm(t) quantifies the genera

trend of the market at dayt. The standard deviations(t)
provides a measure of the width of the ensemble return
tribution. We call this quantity thevariety of the ensemble
because it provides a measure of the variety of behavior
served in a financial market on a given day. A large value
s(t) indicates that different companies are characterized
rather different returns on dayt. In fact, on days of high
variety some companies experience great gains whereas
ers have great losses. The mean and the standard deviati
price returns are not constant, but fluctuate in time. We st
the temporal series ofm(t) ands(t) in order to characterize
the temporal evolution of the ensemble return distribut
quantitatively. We investigate these fluctuating parame
by investigating their time correlation properties and th
PDFs.

B. Probability distributions of the central moments

The empirical PDF of the meanm(t) for the 3032 trading
days investigated is shown in Fig. 6. The central part of t
distribution is non-Gaussian and is roughly described b
Laplace distribution.

The meanm(t) is proportional to the sum ofn random
variablesRi(t) ( i 51,2, . . . ,n). The central limit-theorem
prescribes that the sum ofn independentrandom variables
with finite variance converges to a Gaussian PDF. By ass
ing a finite value for the volatility of stocks, the observatio
that the PDF of the mean returnm(t) is non-Gaussian can b
therefore attributed to the presence of correlation betw
the stocks.

FIG. 5. Ratio between theh parameter defined in Eq.~4! of the
ensemble return distribution and the value ofhG expected from a
Gaussian distribution and defined by Eq.~6! for each trading day.
The ratioh/hG is systematically smaller than one, indicating th
the ensemble return distribution is leptokurtic for each trading d

8
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6130 PRE 62FABRIZIO LILLO AND ROSARIO N. MANTEGNA
Figure 7 shows the PDF of the varietys(t). The central
part of this distribution is approximated by a log-normal d
tribution. A deviation from the log-normal behavior is ob
served in the tail of higher values of variety. This deviati
depends on the size of the portfolio and will be discussed
subsection IV E.

C. Correlations in the central moments

Another important statistical property ofm(t) and s(t)
concerns their correlation properties@10#. For the considered
portfolio, we calculate the autocorrelation function of a va
ablex(t) which is defined as

R~t![
^x~ t !x~ t1t!&2^x~ t !&^x~ t1t!&

^x~ t !2&2^x~ t !&2
. ~9!

In agreement with previous results@10#, we find that the
mean m(t) is approximately delta correlated, whereas t
autocorrelation function ofs(t) is long-range correlated
The empirical autocorrelation function ofs(t) is well ap-

FIG. 6. Linear-log plot of the probability density function of th
meanm(t) of the ensemble return distribution~white diamonds!
and of the mean of the daily returnm i of all the stocks traded in the
NYSE ~black squares!.

FIG. 7. Log-log plot of the probability density function of th
variety s(t), i.e., the variance of the ensemble return distribut
~white diamonds! and of the volatilitys i , i.e., the variance of the
daily return, of the all the stocks traded in the NYSE~black
squares!.
-

in

-

e

proximated by a power-law functionR(t)}t2d . By per-
forming a best fit with a maximum time lag of 50 tradin
days, we determine the exponentd50.23060.006. This re-
sult indicates that the varietys(t) has a long-range memor
in the market. We recall that the historical volatility is cha
acterized by long-range memory of the same nature@16–18#.

Another way to investigate the long-range correlation is
determine the power spectrum of the investigated varia
We evaluate the power spectrum ofs(t) and we perform a
best fit of the power spectrum with a functional form of th
kind

S~ f !}
1

f h
. ~10!

Our best fit for the power spectrum ofs(t) gives for the
exponenth'1.1. This result confirms that the varietys(t) is
a long-range time-correlated random variable.

D. Time and portfolio average

Figure 6 shows two curves. In fact, in Fig. 6 we also sh
the PDF of the meanm i . The quantitym i @see Eq.~2!# is the
mean return of stocki averaged over the investigated tim
interval. The PDF ofm i is non-Gaussian and it is much mo
peaked than the PDF ofm(t). Hence, the statistical behavio
observed by investigating a large portfolio in a market day
not representative of the statistical behavior observed by
vestigating the time evolution of single stocks.

This comparison can be performed as well for the sec
moment of the distributions. In Fig. 7 we compare the P
of the volatility s i with the PDF of the varietys(t). Also in
this case, the statistical properties ofs i ands(t) are differ-
ent. Specifically, the PDF ofs(t) is more peaked than th
PDF of s i .

In order to understand the differing behavior of the tim
averaged and the portfolio-averaged quantities, for the s
of simplicity we consider a portfolio composed byN stocks
traded in a period ofT trading days. We first study the prop
erties of the two means,m i andm(t). It is straightforward to
verify that

^m i& i5^m~ t !& t[m, ~11!

where^•••& t indicates temporal average and^•••& i indicates
ensemble average. The variances ofm i andm(t) are, in gen-
eral, different. We obtain for the variance ofm(t) the expres-
sion

Var@m~ t !#[
1

T (
t51

T

@m~ t !2m#25
1

N2 (
i 51

N

(
j 51

N

s i j
2 , ~12!

where s i j
2 is the return covariance between stocksi and j

defined as

s i j
2 5^Ri~ t !Rj~ t !& t2^Ri~ t !& t^Rj~ t !& t . ~13!

The width of the PDF ofm(t) ~shown in Fig. 6! is the square
root of Var@m(t)#. Equations~12! and~13! indicate that this
quantity depends on both the ensemble-averaged sq
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PRE 62 6131VARIETY AND VOLATILITY IN FINANCIAL MARKETS
volatility @terms with i 5 j in Eq. ~12!# and the mean of the
synchronous cross-covariances between pairs of st
@terms withiÞ j in Eq. ~12!#.

With similar methods we show that the variance ofm i can
be written as

Var@m i #[
1

N (
i 51

N

~m i2m!25
1

T2 (
t51

T

(
t851

T

s tt8
2 , ~14!

where we define the return covariance between trading d
t and t8 as

s tt8
2

5^Ri~ t !Ri~ t8!& i2^Ri~ t !& i^Ri~ t8!& i . ~15!

This quantity gives an estimate of the correlation presen
the whole portfolio on trading dayst andt8. The double sum
in Eq. ~14! can be split into a term depending on the avera
square variety (t5t8) and a term depending on the correl
tion between different trading days (tÞt8).

We verify that the average square variance and volat
satisfy the sum rule

Var@m i #1^s i
2& i5Var@m~ t !#1^s2~ t !& t . ~16!

Combining Eqs.~12!, ~14!, and~16! we show that

T21

T
^s2~ t !& t1

2

N2 (
j 51

N

(
i , j

s i j
2 5

N21

N
^s i

2& i

1
2

T2 (
t51

T

(
t8,t

s tt8
2 . ~17!

Since N,T@1, we approximate (N21)/N>(T21)/T>1
and Eq.~17! becomes

^s i
2& i2^s2~ t !& t>^s i j

2 & iÞ j2^s tt8
2 & tÞt8 ~18!

or, equivalently,

Var@m~ t !#2Var@m i #>^s i j
2 & iÞ j2^s tt8

2 & tÞt8 . ~19!

Figure 6 shows that Var@m(t)#.Var@m i #. This empirical ob-
servation, together with the last relation, tells us that
synchronous cross-correlations between the stocks are
average, stronger than the single-stock correlation prese
the whole portfolio on two different trading days. This res
is consistent with previous observations that synchronous
turns of different stocks are significantly cross-correla
@5–9#, whereas single price returns are poorly autocorrela
in time. This conclusion is also verified by our empiric
observation that̂s i

2& i.^s2(t)& t .

E. Portfolio size

One key aspect of the previous results concerns the
gree of generality of the observed stylized facts. In ot
words, are the empirical properties of the variety depend
upon the portfolio considered? In Sec. II we have shown t
all the stocks are not equivalent with respect to their sta
tical properties~see the spread of points observed in Fig.!.
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In fact, a trend is observed in the degree of non-Gauss
shape of the return distribution as a function of the sto
capitalization.

To test the degree of sensitivity of our results to the a
erage capitalization of the selected portfolio, we repeat
analysis presented in subsection III B for three other por
lios of stocks traded on the NYSE. Specifically, we inves
gate~a! the set of 30 stocks used to compute the Dow Jo
Industrial Average index,~b! the set of stocks traded on th
NYSE and used to compute the Standard & Poor’s 100
dex, and~c! the set of stocks traded on the NYSE and used
compute the Standard & Poor’s 500 index. The results
tained for all the stocks traded on the NYSE are also con
ered for reference. The four sets are different with respec
two aspects. They differ in the number of stocks presen
the set and in the average capitalization of the stocks con
ered. The empirical PDFs ofm(t) for the four sets consid-
ered are roughly the same. An evident different behavio
observed for the variety. In Fig. 8 we show the PDF of t
variety of the portfolios of stocks considered. Specifical
panels~a!, ~b!, ~c!, and~d! of Fig. 8 are the results obtaine
for the Dow Jones 30, Standard & Poor’s 100, Standard
Poor’s 500, and NYSE sets of stocks, respectively. By m
ing from the smallest to the largest stock portfolio, two e
fects take place. The PDF of the variety becomes prog
sively sharper and deviates more from a log-normal profi
The fact that the PDF of the variety becomes progressiv
sharper is probably due to the fact that the number of e
ments in the set considered increases, whereas we inte
the progressive deviation from the log-normal profile as
direct manifestation of the progressive increase of the deg
of inhomogeneity of the stock portfolio.

In summary, the presence of inhomogeneity in capitali
tion in the stock portfolio affects the statistical properties
the variety, of the portfolio. This fact should be kept in min
when results about the variety such as results about o
statistical properties including return distribution, are o
tained by considering the statistical properties of a set
inhomogeneous stocks.

FIG. 8. Log-log plot of the probability density function of th
variety s(t) for the four considered ensemble of stocks.~a!
DJIA30, ~b! SP100,~c! SP500,~d! NYSE. The solid lines are our
best fit of the central part of the distribution according to a logn
mal distribution.
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V. SINGLE-INDEX MODEL

In this section we compare the results of our empiri
analysis obtained for the NYSE portfolio of stocks with t
results obtained by modeling the stock price dynamics w
the single-index model. The single-index model@5,6# is a
basic model of price dynamics in financial markets. It a
sumes that the returns of all stocks are controlled by
factor, usually called the ‘‘market.’’ In this model, for an
stock i we have

Ri~ t !5a i1b iRM~ t !1e i~ t !, ~20!

whereRi(t) andRM(t) are the return of the stocki and of the
‘‘market’’ on day t, respectively,a i and b i are two real
parameters, ande i(t) is a zero mean noise term characteriz
by a variance equal tose i

2 . The noise terms of differen

stocks are assumed to be uncorrelated,^e i(t)e j (t)& t50 for
iÞ j . Moreover, the covariance betweenRM(t) and e i(t) is
set to zero for anyi.

Each stock is correlated with the ‘‘market’’ and the pre
ence of such a correlation induces a correlation between
pair of stocks. It is customary to adopt a broad-based st
index for the ‘‘market’’ RM(t). Our choice for the marke
time series is the Standard and Poor’s 500 index. The
estimate of the model parametersa i , b i , and se i

2 is done

with the ordinary least-squares method@6#. In order to com-
pare our empirical results with those predicted by the sing
index model, we build up an artificial market according
Eq. ~20!. To this end, we first evaluate the model paramet
for all the stocks traded on the NYSE and then we genera
set ofn surrogate time series according to Eq.~20! by using
the customary assumption of Gaussian statistics fore i . To
make the simulation as realistic as possible, in the genera
of our surrogate data set we use as ‘‘market’’ time series
true time series of the Standard and Poor’s 500 index.

We evaluate the central momentsm(t) ands(t) defined
in Eqs. ~7!,~8! for the surrogate data. In Fig. 9~a! we show
the time series ofm(t) of the real data and in Fig. 9~b! we
show the same quantity for the surrogate market data ge
ated according to the single-index model. The agreement
tween the two time series is pretty high and therefore
single-index model describes quite well the mean return
the market at timet provided that the behavior of the ‘‘mar
ket’’ RM(t) is known. This result is also confirmed by Fi
10, where the PDFs ofm(t) for real and surrogate data a
shown. Also, the time correlation properties of surrog
m(t) are pretty similar to the real ones. In fact, a fast dec
ing autocorrelation function ofm(t) is observed in surrogat
data. Good agreement is also observed when one investig
the statistical properties ofm i and s i . The single-index
model approximates quite well the empirical distribution
m i ands i .

Different behavior is observed for the varietys(t). Fig-
ures 9~c! and 9~d! show the time series ofs(t) for real and
surrogate data, respectively. The real time series of the v
ety is nonstationary and shows several bursts of activ
Conversely, the surrogate time series is quite stationary w
the exception of the 1987 crash.

One important point is to consider if these results are s
observed when non-Gaussian statistics is assumed for
l
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random variablese i . Non-Gaussian statistics is indeed o
served in the empirical analysis of stock returns@2–6,12–
14#. For example, a generalized single-index model w
non-Gaussian noise terms has been shown to describe
of the statistical properties of stock returns observed in a
market@19#. To test if our results are still valid for a single
index model with non-Gaussian noise terms, we generate
in Ref. @19#, a second set ofn surrogate time series, stil
according to Eq.~20! but assuming thate i5se i

w, wherew is
a random variable distributed according to Student’st den-
sity function

P~w!5
Ck

~11w2/k!(k11)/2
, ~21!

whereCk is a normalization constant. Empirical investig
tions of real data@13,14,20# suggest a value between 4 and

FIG. 9. ~a! Time series of the mean of the ensemble retu
distribution m(t). ~b! Time series of the mean of the ensemb
return distribution for the surrogate data generated according to
single-index model.~c! Time series of the varietys(t) of the en-
semble return distribution.~d! Time series of the variety of the
ensemble return distribution for the surrogate data generated
cording to the single-index model.

FIG. 10. Comparison of the probability density function of th
meanm(t) of the ensemble return distribution obtained from re
data ~diamonds! with that obtained from surrogate data genera
according to the single-index model~continuous line!.
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for the power-law exponent ofP(w) for large values ofuwu.
In our simulation we take the most leptokurtic distributio
within this interval that corresponds tok53. We also verify
that for greater values ofk the behavior of the surrogate da
is intermediate between that of the single-index model w
customary Gaussian statistics and that of the single-in
model with Student’st statistics andk53.

By repeating the previous investigation for the new ser
of data, we evaluate the central momentsm(t) ands(t). As
in the Gaussian case, we find good agreement between
statistical properties ofm(t) of real and surrogate data. Fig
ure 11 shows the PDF ofs(t) for real and surrogate data fo
both Gaussian and non-Gaussian noise terms. Both
single-index model with Gaussian noise terms and the
with Student’st noise terms fail to describe the real distrib
tion of s(t).

In summary, the single-index model gives a good a
proximation of the statistical behavior ofm(t), m i and s i ,
whereas it describes poorly the statistical behavior of
variety of a portfolio of stocks traded in a financial mark
This conclusion is also supported by the observation that
autocorrelation function of the variety decays to the va
0.1 in 223 trading days both under the assumption
Gaussian and Student’st noise terms. On the other han
long-range correlation ofs(t) is observed in real data.

A more refined analysis shows that the artificial ensem
return distribution obtained with Gaussian noise terms is s
tematically less leptokurtic than the real one, whereas
artificial ensemble return distribution obtained with St
dent’st noise terms better mimics the properties of leptok
tosis of the real ensemble return distribution. Moreover,
Ref. @15# we show that the single-index model is unable
predict the change in the symmetry properties of the
semble return distribution on crash and rally days. The
ferences observed between the behavior of real data an
behavior of surrogate data suggest that the correlat

FIG. 11. Comparison of the probability density function of t
variety s(t) obtained from real data~diamonds! with that obtained
from surrogate data generated according to the single-index m
with Gaussian noise terms~continuous line! or with student’st
noise terms with probability density of Eq.~21! with k53 ~dashed
line!.
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among the stocks can be explained by the single-index m
only for normal periods in first approximations, whereas t
model completely fails to reproduce the correlation behav
during extreme events.

VI. CONCLUSIONS

The present study shows that one needs to consider
only the statistical properties characterizing the time evo
tion of price for each stock traded but also the synchron
collective behavior of the portfolio considered to reveal t
overall complexity of a financial market. We show that su
collective behavior of a stock portfolio is efficiently mon
tored by the variety of the ensemble return distribution. T
variable is directly observable for each portfolio and prese
interesting statistical properties. It is non-Gaussian dist
uted and long-range correlated. The detailed statistical p
erties depend on the considered portfolio. We verify that
a portfolio characterized by comparable capitalization,
distribution of the variety is approximately log-normal. D
viations from the log-normal behavior are observed for le
homogeneous~in capitalization! portfolios.

The shape of the distribution and the long-term mem
of the variety are not reproduced by considering surrog
data simulated by using a single-index model with a realis
time series for the ‘‘market.’’ This implies that the comple
ity detected by the empirical analysis performed cannot
modeled with a similar simple stock price model. The cor
lations present in the market are more complex than th
hypothesized by the single-index model.

The correct modeling of the statistical properties of t
variety can then be used as a benchmark for stock p
models more sophisticated than the single-index model.

The ensemble return distribution shows a qualitativ
and quantitatively different behavior in normal and extrem
trading days. The variety of a portfolio is then able to det
quite clearly shocks and aftershocks occurring in the mar
Hence, it is a promising direct observable capable of m
suring how much pressure a portfolio is under and how d
tant it is from typical market activity on a specific tradin
day. A theoretical challenge would be to relate this empiri
ensemble observation directly to the correlations active
tween pairs of stocks of a portfolio.

In summary, we believe that the overall complexity of
financial market can be detected and modeled only by c
sidering simultaneously~i! the statistical properties of th
time evolution of stock prices of the portfolio consideredand
~ii ! the statics and dynamics of the correlations existing
tween stocks.

ACKNOWLEDGMENTS

The authors thank INFM and MURST for financial su
port. This work constitutes part of the FRA-INFM proje
Volatility in financial markets. F.L. acknowledges FSE
INFM for financial support. We wish to thank Giovanni Bo
nanno for help with numerical calculations.

el



ica

si

,

y

nd

y,

g,

rint

d

6134 PRE 62FABRIZIO LILLO AND ROSARIO N. MANTEGNA
@1# The Economy as an Evolving Complex Systemedited by P. W.
Anderson, K. J. Arrow, and D. Pines~Addison-Wesley, Red-
wood City, CA, 1988!.

@2# For a collection of papers, see, for example,Econophysics:
Proceedings of the Budapest Workshop, edited by J. Kertesz
and I. Kondor~Kluwer, Dordrecht, in press!; Proceedings of
the International Workshop on Econophysics and Statist
Finance, edited by R.N. Mantegna@Physica A269 ~1999!#;
Proceedings of the EPS Conference on Applications of Phy
in Financial Analysis, edited by J.-P. Bouchaud@Int. J. Theor.
Appl. Finance~to be published!#.

@3# R. N. Mantegna and H. E. Stanley,An Introduction to Econo-
physics: Correlations and Complexity in Finance, ~Cambridge
University Press, Cambridge, 2000!.

@4# J.-P. Bouchaud and M. Potters,Theory of Financial Risk,
~Cambridge University Press, Cambridge, England, 2000!.

@5# E. J. Elton and M. J. Gruber,Modern Portfolio Theory and
Investment Analysis~Wiley & Sons, New York, 1995!.

@6# J. Y. Campbell, A. W. Lo, and A. C. MacKinlay,The Econo-
metrics of Financial Markets~Princeton University Press
Princeton, NJ, 1997!.

@7# R.N. Mantegna, Eur. Phys. J. B11, 193 ~1999!.
@8# L. Laloux, P. Cizeau, J.-P. Bouchaud, and M. Potters, Ph
l

cs

s.

Rev. Lett.83, 1467~1999!.
@9# V. Plerou, P. Gopikrishnan, B. Rosenow, L.A.N. Amaral, a

H.E. Stanley, Phys. Rev. Lett.83, 1471~1999!.
@10# F. Lillo and R. N. Mantegna, Int. J. Theor. Appl. Finance~to

be published!; e-print cond-mat/9909302.
@11# V. Akgiray, and G.G. Booth, J. Business Econ. Stat.6, 51

~1988!.
@12# R.N. Mantegna and H.E. Stanley, Nature~London! 376, 46

~1995!.
@13# T. Lux, Appl. Financial Econ.6, 463 ~1996!.
@14# P. Gopikrishnan, M. Meyer, L.A.N. Amaral, and H.E. Stanle

Eur. Phys. J. B3, 139 ~1998!.
@15# F. Lillo and R.N. Mantegna, Eur. Phys. J. B15, 603 ~2000!.
@16# M.M. Dacorogna, U.A. Mu¨ller, R.J. Nagler, R.B. Olsen, and

O.V. Pictet, J. Intl. Money Finance12, 413 ~1993!.
@17# Y. Liu, P. Gopikrishnan, P. Cizeau, M. Meyer, C.-K. Pen

and H.E. Stanley, Phys. Rev. E60, 1390~1999!.
@18# M. Pasquini and M. Serva, Physica A269, 140 ~1999!; Eco-

nomics Lett.65, 275 ~1999!.
@19# P. Cizeau, M. Potters, and J.-P. Bouchaud, e-p

cond-mat/006034.
@20# V. Plerou, P. Gopikrishnan, L.A.N. Amaral, M. Meyer, an

H.E. Stanley, Phys. Rev. E60, 6519~1999!.


