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We study the price dynamics of stocks traded in a financial market by considering the statistical properties
of both a single time series and an ensemble of stocks traded simultaneously. Werusettiks traded on the
New York Stock Exchange to form a statistical ensemble of daily stock returns. For each trading day of our
database, we study the ensemble return distribution. We find that a typical ensemble return distribution exists
in most of the trading days with the exception of crash and rally days and of the days following these extreme
events. We analyze each ensemble return distribution by extracting its first two central moments. We observe
that these moments fluctuate in time and are stochastic processes, themselves. We characterize the statistical
properties of ensemble return distribution central moments by investigating their probability density functions
and temporal correlation properties. In general, time-averaged and portfolio-averaged price returns have dif-
ferent statistical properties. We infer from these differences information about the relative strength of corre-
lation between stocks and between different trading days. Last, we compare our empirical results with those
predicted by the single-index model and we conclude that this simple model cannot explain the statistical
properties of the second moment of the ensemble return distribution.

PACS numbd(s): 05.40—a, 89.90+n

I. INTRODUCTION financial market on a given trading d4¢0]. The variety
provides statistical information about the amount of varied

In recent years physicists have begun to interact wittbehavior observed in the stock return in a given ensemble of
economists to construct models of financial mark&éjsThis ~ stocks at a given trading time horizg¢m the present case,
inspired a group of physicists to analyze and model pricéone trading day We observe that the distribution of variety
dynamics in financial markets using paradigms and tools of6 Sensitive to the composition of the portfolio investigated
statistical and theoretical physi¢g]. One goal of this re- (especially to the capitalization of the considered stpcks
search is to implement a stochastic model of price dynamics The return distribution shows a typical shape for most of
in financial markets that reproduces the statistical propertiee trading days. However, the typical behavior is not ob-
observed in the time evolution of stock prices. Over the pas$erved during crash and rally days. The shape and parameters
few years, physicists interested in financial ana'ysis havéharacteri.Zing the ensemble return distribution are relatively
performed several empirical research studies investigatingtable during normal phases of the market activity, but be-
the statistical properties of stock price and volatility time Come time dependent in the periods following crashes. The
series of a single stocjor of an index at different temporal ~ Variety is characterized by a long-range correlated memory
horizons[3,4]. This kind of analysis does not take into ac- showing that no typical time scale can be expected after a
count any interaction of the considered financial stock withrally or a crash for the expected relaxation to a “normal”
other stocks traded simultaneously on the same market. It iarket phase. Moreover, a simple model such as the single-
known that the synchronous price returns time series of difindex model cannot reproduce the statistical properties em-
ferent stocks are pair correlatdd,6] and several studies Pirically observed.
have also been performed by physicists to extract informa- The paper is organized as follows. In Sec. Il we illustrate
tion from the correlation propertigg—9|. A precise charac- Our database and the ensemble of stocks considered. Section
terization of collective movements in a financial market is of!!l is devoted to the investigation of the statistical properties
key importance in understanding the market dynamics and iRf the time evolution of each single stock. In Sec. IV, we
controlling the associated risk to a portfolio of stocks. Thediscuss the statistical properties of ensemble return distribu-
present study contributes to the understanding of collectivéion. Specifically, we consider the behavior of the first two
behavior Of a portfo“o Of StOCkS in normal and extreme day§3entra| momentS, their distribution and time Correlation, a
of market activity. comparison of time and portfolio average, and the role of the

Specifically, we address the following question: Is theSize and homogeneity of the investigated portfolio. In Sec. V
complexity of a financial market essentially limited to the We compare the statistical properties observed in a real fi-
statistical behavior of each financial time series or, ratherfancial market with the prediction of the single-index model.
does a Comp|exity of the overall market exist? To answe'ln Sec. VI we present a discussion of the results obtained.
this question, we present the results of an empirical analysis
performed adopting the following point of view. We inves-
tigate the price returns of an ensembleno$tocks simulta-
neously traded on a financial market on a given day. With The market investigated is the New York Stock Exchange
this approach, we quantify what we call thariety of a  (NYSE) during the 12-year period from January 1987 to De-

Il. DATABASE AND VARIABLES INVESTIGATED
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cember 1998, which corresponds to 3032 trading days. WeZ,
consider the ensemble of all stocks traded on the NYSE. Thé5
number of stocks traded on the NYSE increases in the inve35
tigated period, ranging from 1128 at the beginning of 1987 to©

2788 at the end of 1998. The total number of data recordsg
exceeds six million. a2
The variable investigated in our analysis is the daily priceg
return, which is defined as [
7
R (D= Yi(t)—Y;(t—1) W £

T vy

whereY;(t) is the closure price of thgth stock at dayt (t
=1,2,...). Foreach trading day, we considem returns, . N )
wheren depends on the total number of stocks traded on the FI_G. 1. Surface .plot of the logarithm of the probability density

NYSE on the selected dayIn our study we use a “market function of normalized daily return§R;(t) —u;]/o; of aII_ the _
time.” With this choice, we consider only the trading days stocks traded on the NYSE. The stocks are sorted according to their

and we remove the weekends and holidays from the calend§fP!talization on June 10, 1996.

time.
A database of more than six million records unavoidably B 1(d 5
contains some errors. Direct control of a so large database is gi= T tzl (Ri() =), ©)

not realistic. For this reason, to avoid spurious results we

filter the data by not considering price returns that are, ir\NhereTi is the number of trading days of the stoickluring
absolute values, greater than 50%. o the investigated period. The quantjiy gives a measure of
The companies traded on the NYSE are quite differenthe gyerall performance of stodkduring this period. The
from one another. Differences between the companies aigangard deviatiow, is calledhistorical volatility in the fi-
observed both with respect to the sector of their economiancia| literature and quantifies the risk associated with the
interests and with respect to their size. One measure of thgy siock. This quantity is of primary importance in risk man-
size of a company is its capitalization. The capitalization of 8agement and in option pricing.
stock is the stock price times the number of outstanding ~the ppF of normalized daily returns of all the stocks
shares. In this study, we discuss the role of the d'ffe””gsequenced by capitalization is shown in Fig. 1. The central

capitalization in the price dynamics. part of the distribution of the most capitalized stocks has a
bell-shaped profile. Moving towards less capitalized stocks,
lll. SINGLE-STOCK PROPERTIES the central part of the distribution becomes more peaked and

the tails of the distribution become fatter. The PDF of the

The distribution of returns with different time horizons of igss capitalized stocks is therefore more leptokurtic than the

a single stock or index has been studied by several autho DE of the more capitalized ones
[2—6]. The stocks traded on a financial market have differen ; capr : .
The typical estimation of the degree of leptokurtosis of a

capitalizations. An important issue is whether or not the dif- : o : .

. T . L PDF is done by considering its kurtosis. The evaluation of
ferences in capitalization are reflected in the statistical PIOPi o Kurtosis of the PDE is. in aeneral. difficult for a small set
erties of the price returns of the stocks. To answer this ques- INg '

. . . o . of data because the fourth moment and all the moments

tion, we investigate the distribution of daily returns of 2188 higher than the second are extremely sensitive to the highest

stocks traded on the NYS.E' . . . absolute returns. This implies that the kurtosis calculated
We compare the statistical properties of daily price returrhom a relatively small set of records is dominated by the

S\IISefr'SZUtLoenng; ?r?ghzig:;gikz Ezngéls;;);ill:s g?ggfgiacg?gi‘ﬁi hest absolute returns rather than by the shape of the PDF
q 9 d therefore it is not a good statistical estimate. To avoid

to their capitalization at an arbitrarily _chosen day tha_t Wetthis problem, we quantify the distance between the empiri-
select as June 10, 1996. Our sequencing procedure gives 10 .

- : cally calculated PDF of the daily returns of thit stock and
the most capitalized stodkhe General Electric Co., Githe the Gaussian distribution by considering the quantit
ranki=1, to the second onghe Coca Cola Companyhe y 9 q y

ranki=2, and so on. An analysis of the return probability (X))
density function(PDF for the 2188 stocks shows that the h=——% (4)
distributions are different. This is due in generalitodiffer- V(X%) = (x)

ent scale andii) the different shape of the return PDFs. In
order to eliminate one source of difference, we analyze thd he quantityh is nondimensional and depends on the first
PDF of the normalized returns[R;(t)—uil/o; (i two moments. For the Gaussian distribution
=1,2,...,2188), whereu; and o; are the first two central

moments of the time serid’(t) defined as 1 exp( (X— pg)?

Po(X)=
a(X) 2ol

the parameteh is equal to

®)

1 T 20'(23
m=7 2 Ri(b), )
i t=1
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FIG. 2. Each circle represents thgparameter defined in E¢) FIG. 3. Surface plot of the logarithm of the ensemble return

of the daily return distribution of a stock as a function of its capi- distribution for the 12-year period of investigation from January
talization. The dashed line is the valu@/7=0.80, which is the 1987 to December 1998. In this figure the 1987 crash is clearly
lower bound forhg expected for a Gaussian distribution of daily recognizable(trading day index equal to 2pOand the high-
return. Values oh smaller tharhg indicate a leptokurtic distribu-  volatility two-year period 1997-199@rading day index from 2500
tion of returns. The parametérslowly increases by increasing the to 3032.

capitalization.
T ™ p
exp( - —Gz + \[E—GErf e
20 7e occurring in the market on the selected trading day

h \F
¢ ™ V20g
Figure 3 shows the logarithm of the PDF as a function of

The parametehg is a function of the ratiqug /o ranging  the return and of the trading day. In this figure we show the
from the lower bound/2/m whenug/o¢=0 to infinity. For interval of daily returns from—25% to 25%. The central
a leptokurtic PDF, as, for example, a Laplace distribution opart of the distribution is roughly triangular in a logarithmic
a Student'st distribution with finite varianceh is always  scale and this shape and its scale are conserved for long time
smaller thanhg . The distance oh from hg quantifies the  periods. Sometimes the shape and scale of the ensemble re-
degree of leptokurtosis of the PDF considered. Figure Zurn PDF changes abruptly in the presence of either large
shows the parametérfor the stocks traded on the NYSE as average positive returns or large average negative returns.
a function of their capitalization. In this figure, we also show Figure 4 shows the same data as Fig. 3 in a contour plot. The
the lower bound ohg for comparison. The empirically cal- contour lines describe equiprobability regions. In order to
culated parameten is systematically smaller thans. The  point out the properties of the central part of the distribution,
mean valug(h) of the overall market igh)=0.67 and its in Fig. 4 we plot only the returns that are less than 15% in
standard deviation igr,=0.06. Hence this result suggests absolute value. Only a few points of the contour lines lay
that, as a first approximation, one can assume that the largrutside this limit during the 1987 and 1998 crises. In Fig. 4
majority of stocks are characterized by a roughly similarthere are long time periods in which the central part of the
PDF. However, we wish to point out that this conclusion isdistribution maintains its shape and the equiprobability con-
only valid as a first approximation because a trench@$  tour lines are approximately parallel one to each other. As an
clearly detected in Fig. 2. Specificallyy increases as the example, one can consider the three-year period 1993-1995.
capitalization increases. Therefore, the less capitalized stockSn the other hand, there are time periods in which the shape
have a more leptokurtic daily return PDF than the more capiof the distribution changes drastically. In general, these pe-
talized ones. riods corresponds to financial turmoil in the market. For ex-

The second moment of return distribution has been founémple a dramatic change in the shape and scale of the PDF is
finite in recent researchi1-14. In order to verify the con- observed in Fig. 4 during and after the Oct. 19, 1987 crash,
vergence of the PDF towards a Gaussian PDF at large tenat the beginning of 1991, and at the end of 1998. A system-
poral horizons, we evaluate tiheparameter for weeklyh,)  atic analysis of the change of the shape and scale of the
and monthly(h,,) return PDFs. We obtain from our analysis ensemble return distribution during extreme events of the
(hy)=0.70 andh,,) = 0.74. These results show that the val- market has been discussed elsewljéfg

the NYSE. Toward this end we extract theeturns of then
stocks for each trading day The distribution of these re-
. (6) turnsP(R) provides information about the kind of activity

ues ofh moves toward$i= /2/7=0.80 when the time ho- One key aspect of the ensemble return distribution con-
rizon of returns is increased, supporting the conclusion oterns its shape during the normal periods of activity of the
finite second moment. market. Is the distribution approximately Gaussian or is a
systematic deviation from a Gaussian shape quantitatively

IV. ENSEMBLE RETURN DISTRIBUTION observed? We already cited that a direct inspection of Fig. 3

suggests that the central part of the empirical return distribu-
In the preceding section we focused on the statistication is roughly Laplaciar(triangular in a logarithmic scale
properties of the time evolution of price returns for eachand not Gaussian. To make this analysis more quantitative,
single stock traded on the NYSE. In this section we performwe show in Fig. 5 the ratio between the valuelotieter-
a synchronous analysis on the return of all stocks traded omined for each trading day from the ensemble return distri-
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FIG. 5. Ratio between thie parameter defined in E¢4) of the
ensemble return distribution and the valuehgf expected from a
Gaussian distribution and defined by E) for each trading day.
The ratioh/hg is systematically smaller than one, indicating that
the ensemble return distribution is leptokurtic for each trading day.

moments on each of the 3032 trading days. Specifically, we
1993 1994 1995 consider the average and the standard deviation defined as

! “ I 1 Nt
, ‘ u(t)= o .21 Ri(1), @)

oz 00 g

1996 1997 1998

FIG. 4. Contour plot of the logarithm of the ensemble return

distribution for the 12-year period January 1987 to December 1992% Tge fmtﬁan of ﬁrlcet rgzturr_lri(t) ﬁu%ntlgeg thet.genteral
(same data as in Fig).3The contour plot is obtained for equidistant ren, 0 € marke af hay . ﬁ Sfaﬂ ar eV'? lonr(t) .
intervals of the logarithmic probability density. The brightest areaprovldes a measure of the width of the ensemble return dis-

of the contour plot corresponds to the most probable value. tribution. We call this quantity theariety of the ensemble
because it provides a measure of the variety of behavior ob-

bution and the quantitieBg calculated by determining the served in a financial market on a given day. A large value of

mean and the standard deviationR{R) and hypothesizing o (t) indicates that different companies are characterized by

a Gaussian shape by using E6). The ratioh/hg is system-  rather different returns on daty In fact, on days of high

atically smaller than one and this implies that the Gaussiaariety some companies experience great gains whereas oth-

hypothesis for the shape of the distribution is not verified byers have great losses. The mean and the standard deviation of

the empirical analysis. In other words, the Gaussian distribuprice returns are not constant, but fluctuate in time. We study

tion is not a good approximation for either the central part otthe temporal series qi(t) anda(t) in order to characterize

the tails of the distribution, and the deviation from the the temporal evolution of the ensemble return distribution

Gaussian behavior is systematically observed for all tradingluantitatively. We investigate these fluctuating parameters

days of the 12-year time period analyzed in our study. by investigating their time correlation properties and their

In summary, the ensemble return distribution well characPDFs.

terizes the market activity. It has a typical shape and scale

during long periods of “normal” activity of the market char- B. Probability distributions of the central moments

acterized by moderately low average daily returns._During The empirical PDF of the meaa(t) for the 3032 trading

extreme events the Sh_"’?pe and S(_:ale c_hange dramatically Indﬁys investigated is shown in Fig. 6. The central part of this

systematic way. Specifically, dl.mng crises the ensemble "Sistribution is non-Gaussian and is roughly described by a

tuTllj dlstnbu'qtqn bekcomes nggattl)vely\[zlé?w;d, whirelas ?u”ngaplace distribution.

rallies a positive skewness is obser . Figure 4 clearly ; .

shows that extreme eventsuch as the October 1987 crash The meanu(t) is proportional to the sum af random

: " " S variablesR;(t) (i=1,2,...n). The central limit-theorem
:Eg?i;ﬁ?as??;rs;ggﬁOdpeg]!osde\'/grgemeonnstﬁ?ble return I:)D':prescribes that the sum of independentandom variables

with finite variance converges to a Gaussian PDF. By assum-
ing a finite value for the volatility of stocks, the observation
that the PDF of the mean retug(t) is non-Gaussian can be

In order to characterize more quantitatively the ensembléherefore attributed to the presence of correlation between
return distribution on day, we extract the first two central the stocks.

1 &
o(t)= \/ nT( > [Ri(t)—u(t)]z), ®

wheren, indicates the number of stocks traded on tlay

A. Central moments
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FIG. 6. Linear-log plot of the probability density function of the
mean u(t) of the ensemble return distributiofwhite diamonds
and of the mean of the daily retugy of all the stocks traded in the
NYSE (black squares

Figure 7 shows the PDF of the varieti(t). The central

part of this distribution is approximated by a log-normal dis-
tribution. A deviation from the log-normal behavior is ob-
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proximated by a power-law functioR(7)=7 ¢ . By per-
forming a best fit with a maximum time lag of 50 trading
days, we determine the exponeht 0.230+0.006. This re-
sult indicates that the variety(t) has a long-range memory
in the market. We recall that the historical volatility is char-
acterized by long-range memory of the same ndtliée-18.

Another way to investigate the long-range correlation is to
determine the power spectrum of the investigated variable.
We evaluate the power spectrum @ft) and we perform a
best fit of the power spectrum with a functional form of the
kind

1
S(f)“ﬁ- (10

Our best fit for the power spectrum of(t) gives for the
exponentp~1.1. This result confirms that the variefyt) is
a long-range time-correlated random variable.

D. Time and portfolio average

Figure 6 shows two curves. In fact, in Fig. 6 we also show

served in the tail of higher values of variety. This deviationthe PDF of the meap; . The quantityu; [see Eq(2)] is the
depends on the size of the portfolio and will be discussed irmean return of stock averaged over the investigated time

subsection IV E.

C. Correlations in the central moments

Another important statistical property q@f(t) and o(t)
concerns their correlation propertigl0]. For the considered

portfolio, we calculate the autocorrelation function of a vari-

ablex(t) which is defined as

(X(OX(t+ 7)) — (X)X (t+ 7))
(x(H%) = (x(1))? '

In agreement with previous results0], we find that the

R(7)= ©)

interval. The PDF ofu; is non-Gaussian and it is much more
peaked than the PDF qif(t). Hence, the statistical behavior
observed by investigating a large portfolio in a market day is
not representative of the statistical behavior observed by in-
vestigating the time evolution of single stocks.

This comparison can be performed as well for the second
moment of the distributions. In Fig. 7 we compare the PDF
of the volatility o; with the PDF of the varietyr(t). Also in
this case, the statistical propertiesqgfand o(t) are differ-
ent. Specifically, the PDF of(t) is more peaked than the
PDF of o; .

In order to understand the differing behavior of the time-
averaged and the portfolio-averaged quantities, for the sake

mean u(t) is approximately delta correlated, whereas theof simplicity we consider a portfolio composed bystocks

autocorrelation function ofr(t) is long-range correlated.
The empirical autocorrelation function af(t) is well ap-
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FIG. 7. Log-log plot of the probability density function of the

variety o(t), i.e., the variance of the ensemble return distribution

(white diamondsand of the volatilityo; , i.e., the variance of the
daily return, of the all the stocks traded in the NYS$Black
squares

traded in a period of trading days. We first study the prop-
erties of the two meang,; and w(t). It is straightforward to
verify that

(mii (11)
where(- - - ), indicates temporal average afd - ); indicates
ensemble average. The variancegfind i (t) are, in gen-
eral, different. We obtain for the variance @ft) the expres-
sion

=(u(t))=u,

1
N2

T N N
2, uO-pl=15 2 2 of. (12

e

Varf u(t)

where o}

defined as

is the return covariance between stoékand j

=(RI(OR (1)) = (Ri(1))«(Rj(1)): - (13
The width of the PDF ojx(t) (shown in Fig. 6 is the square
root of Vaf u(t)]. Equationg(12) and(13) indicate that this

quantity depends on both the ensemble-averaged square
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volatility [terms withi=j in Eq. (12)] and the mean of the 3
synchronous cross-covariances between pairs of stocks
[terms withi #j in Eq. (12)].

With similar methods we show that the varianceugfcan 1
be written as

1 N 1 I T %_1
Varul=g 2 (m—w)’=— 2 2 og, (149 a3
i=1 T t=1 t'=1 E (d)
where we define the return covariance between trading days '
tandt’ as
o =(RIOR()) —(R((RI(L))i. (15 1 o\ ‘
25 -20 -15 25 20 -15

This quantity gives an estimate of the correlation present in In(o(t))

.the whole portfolio on t'radlng daysandt’. The double sum FIG. 8. Log-log plot of the probability density function of the
in Eq. (14) (_:an be split into a term dependmg on the <"Wer"’lg(';'/ariety o(t) for the four considered ensemble of stocks)
Square variety {=t") and a term depending on the correla- p 3430, (b) SP100,(c) SP500,(d) NYSE. The solid lines are our

tion between different trading days#t’). _ best fit of the central part of the distribution according to a lognor-
We verify that the average square variance and volatilitymal distribution.

satisfy the sum rule

Var w1+ (o2 =Var w(t) 1+ (o2(1)): . 16 In fact, a trend is observed in the degree of non-Gaussian
il + o Tu(O]+(o V), (16 shape of the return distribution as a function of the stock
Combining Eqs(12), (14), and(16) we show that capitalization.

To test the degree of sensitivity of our results to the av-
T—1 2 N N—1 erage capitalization of the selected portfolio, we repeat the
—(o?(t) )+ - > > oizj =——(o?), analysis presented in subsection Il B for three other portfo-
T N®j=11i<) N lios of stocks traded on the NYSE. Specifically, we investi-
gate(a) the set of 30 stocks used to compute the Dow Jones
+ 3 E 2 ol,. (17) Industrial Average indexb) the set of stocks traded on the
T2 02 NYSE and used to compute the Standard & Poor’s 100 in-
dex, and(c) the set of stocks traded on the NYSE and used to
Since N,T>1, we approximate N—1)/N=(T—1)/T=1  compute the Standard & Poor’s 500 index. The results ob-

and Eq.(17) becomes tained for all the stocks traded on the NYSE are also consid-
ered for reference. The four sets are different with respect to
(02)i = (X)) =(08)i4j— (0o et (18  two aspects. They differ in the number of stocks present in
the set and in the average capitalization of the stocks consid-
or, equivalently, ered. The empirical PDFs qi(t) for the four sets consid-

ered are roughly the same. An evident different behavior is
Va’fﬂ(t)]_Var[Mi]EWizj)i;ej—<<Tt2tr>t;ev . (19 observed for the variety. In Fig. 8 we show the PDF of the
variety of the portfolios of stocks considered. Specifically,
Figure 6 shows that VR (t)]>Var u;]. This empirical ob- Panels(a), (b), (c), and(d) of Fig. 8 are the results obtained
servation, together with the last relation, tells us that thefor the Dow Jones 30, Standard & Poor’s 100, Standard &
synchronous cross-correlations between the stocks are, tPor's 500, and NYSE sets of stocks, respectively. By mov-
average, stronger than the single-stock correlation present iRg from the smallest to the largest stock portfolio, two ef-
the whole portfolio on two different trading days. This result fects take place. The PDF of the variety becomes progres-
is consistent with previous observations that synchronous resively sharper and deviates more from a log-normal profile.
turns of different stocks are significantly cross-correlated!he fact that the PDF of the variety becomes progressively

[5-9], whereas single price returns are poorly autocorrelate§harper is probably due to the fact that the number of ele-
in time. This conclusion is also verified by our empirical Ments in the set considered increases, whereas we interpret

observation thato?);>(a(t)),. the progressive deviation from the log-normal profile as a
direct manifestation of the progressive increase of the degree
of inhomogeneity of the stock portfolio.

In summary, the presence of inhomogeneity in capitaliza-

One key aspect of the previous results concerns the deion in the stock portfolio affects the statistical properties of
gree of generality of the observed stylized facts. In othethe variety, of the portfolio. This fact should be kept in mind
words, are the empirical properties of the variety dependenivhen results about the variety such as results about other
upon the portfolio considered? In Sec. Il we have shown thastatistical properties including return distribution, are ob-
all the stocks are not equivalent with respect to their statistained by considering the statistical properties of a set of
tical propertieqsee the spread of points observed in Fig. 2 inhomogeneous stocks.

E. Portfolio size
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V. SINGLE-INDEX MODEL 0.1

In this section we compare the results of our empirica|€ 0 W‘*ﬂﬁ L L L
analysis obtained for the NYSE portfolio of stocks with the -0.1 ¢ ‘ (@ ]
results obtained by modeling the stock price dynamics with 0.1 ,
the single-index model. The single-index modBl6é] is a = " i PR,
basic model of price dynamics in financial markets. It as- 5 04 w (b) 1
sumes that the returns of all stocks are controlled by one :
factor, usually called the “market.” In this model, for any 0.1
stocki we have = 0.05 JL ()

© (IR L SO O Wbty Luwwu"i
Ri(t)=a;+ BRu(t) + &(b), (20 - |
whereR;(t) andRy,(t) are the return of the stodlkand of the % 0.05 - l (d) .9
“market” on day t, respectively,a; and B; are two real 0 , ‘ ,
parameters, ang(t) is a zero mean noise term characterized 0 1000 2000 3000

by a variance equal tmrii. The noise terms of different trading day

stocks are assumed to be uncorrelatggt) €;(t));=0 for
i #j. Moreover, the covariance betwe®y(t) and ¢(t) is
set to zero for any.

FIG. 9. (a) Time series of the mean of the ensemble return
distribution w«(t). (b) Time series of the mean of the ensemble

Each stock i lated with the * ket” and th return distribution for the surrogate data generated according to the
ach stockis correlated wi € ‘market ‘an € pres'single-index model(c) Time series of the variety(t) of the en-

enpe of such a cqrrelatlon induces a correlation between A mble return distribution(d) Time series of the variety of the
pair of stocks. It is customary to adopt a broad-based stoCknsemble return distribution for the surrogate data generated ac-
index for the “market” Ry(t). Our choice for the market cqrging to the single-index model.

time series is the Standard and Poor’s 500 index. The best

estimate of the model parameters, B;, and (rii is done  random variables; . Non-Gaussian statistics is indeed ob-

with the ordinary least-squares metH@d. In order to com-  served in the empirical analysis of stock retuf@s-6,12—
pare our empirical results with those predicted by the singlel4]. For example, a generalized single-index model with
index model, we build up an artificial market according to non-Gaussian noise terms has been shown to describe some
Eq. (20). To this end, we first evaluate the model parameter®f the statistical properties of stock returns observed in a real
for all the stocks traded on the NYSE and then we generate @arket[19]. To test if our results are still valid for a single-
set ofn surrogate time series according to E20) by using  index model with non-Gaussian noise terms, we generate, as
the customary assumption of Gaussian statisticseforTo  in Ref. [19], a second set ofi surrogate time series, still
make the simulation as realistic as possible, in the generatiorccording to Eq(20) but assuming that;= o, w, wherew is
of our surrogate data set we use as “market” time series tha random variable distributed according to Studehtien-
true time series of the Standard and Poor’s 500 index. sity function

We evaluate the central momenigt) and o(t) defined
in Egs.(7),(8) for the surrogate data. In Fig(® we show
the time series ofu(t) of the real data and in Fig.(B) we P(w)=
show the same quantity for the surrogate market data gener-

ated according to the single-index model. The agreement b§ghere C, is a normalization constant. Empirical investiga-

tween the two time series is pretty high and therefore th§jons of real dat@13,14,2Q suggest a value between 4 and 6
single-index model describes quite well the mean returns of

the market at time provided that the behavior of the “mar-
ket” Ry (t) is known. This result is also confirmed by Fig. 10
10, where the PDFs q#(t) for real and surrogate data are

shown. Also, the time correlation properties of surrogate

u(t) are pretty similar to the real ones. In fact, a fast decay- — 10" |
ing autocorrelation function gf(t) is observed in surrogate =
data. Good agreement is also observed when one investigates %
the statistical properties oft; and o;. The single-index

K

(1+W2/K)(K+l)/2' (21)

2 L

model approximates quite well the empirical distribution of 10

Mi and agj. O
Different behavior is observed for the variedyt). Fig- By o

ures 9c¢) and 9d) show the time series af(t) for real and 006 —-0.04 _0‘_02 0_‘00 0.‘02 0.04

surrogate data, respectively. The real time series of the vari- wu(t)

ety is nonstationary and shows several bursts of activity.

Conversely, the surrogate time series is quite stationary with F|G. 10. Comparison of the probability density function of the

the exception of the 1987 crash. meanu(t) of the ensemble return distribution obtained from real
One important point is to consider if these results are stilldata (diamondg with that obtained from surrogate data generated

observed when non-Gaussian statistics is assumed for thecording to the single-index mod@ontinuous ling
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10° : : among the stocks can be explained by the single-index model
only for normal periods in first approximations, whereas the
model completely fails to reproduce the correlation behavior
10° during extreme events.
E 10’ VI. CONCLUSIONS
a The present study shows that one needs to consider not
10° only the statistical properties characterizing the time evolu-
tion of price for each stock traded but also the synchronous
collective behavior of the portfolio considered to reveal the
10“0 pr overall complexity of a financial market. We show that such

collective behavior of a stock portfolio is efficiently moni-
tored by the variety of the ensemble return distribution. This
FIG. 11. Comparison of the probability density function of the yariablg is dife‘?t'Y Observable_' for ea_Ch portfolio ar!d pre_septs
variety o(t) obtained from real datadiamond$ with that obtained interesting statistical properties. It is nor.l-Gauss!ar.] distrib-
from surrogate data generated according to the single-index modéited and long-range correlated. The detailed statistical prop-
with Gaussian noise term&ontinuous ling or with studentst  erties depend on the considered portfolio. We verify that for
noise terms with probability density of E@1) with k=3 (dashed @ portfolio characterized by comparable capitalization, the

line). distribution of the variety is approximately log-normal. De-
viations from the log-normal behavior are observed for less
for the power-law exponent &?(w) for large values ofw|.  homogeneousin capitalization portfolios.

In our simulation we take the most leptokurtic distribution ~ The shape of the distribution and the long-term memory
within this interval that corresponds to=3. We also verify ~ of the variety are not reproduced by considering surrogate
that for greater values of the behavior of the surrogate data data simulated by using a single-index model with a realistic
is intermediate between that of the single-index model witiime series for the “market.” This implies that the complex-
customary Gaussian statistics and that of the single-indelty detected by the empirical analysis performed cannot be
model with Student’s statistics and«= 3. modeled with a similar simple stock price model. The corre-
By repeating the previous investigation for the new seriedations present in the market are more complex than those
of data, we evaluate the central momep(@) ando(t). As  hypothesized by the single-index model.
in the Gaussian case, we find good agreement between the The correct modeling of the statistical properties of the
statistical properties of.(t) of real and surrogate data. Fig- variety can then be used as a benchmark for stock price
ure 11 shows the PDF af(t) for real and surrogate data for models more sophisticated than the single-index model.
both Gaussian and non-Gaussian noise terms. Both the The ensemble return distribution shows a qualitatively
single-index model with Gaussian noise terms and the onand quantitatively different behavior in normal and extreme
with Student'st noise terms fail to describe the real distribu- trading days. The variety of a portfolio is then able to detect

tion of o (t). quite clearly shocks and aftershocks occurring in the market.
In summary, the single-index model gives a good apHence, it is a promising direct observable capable of mea-
proximation of the statistical behavior @f(t), u; ando;, suring how much pressure a portfolio is under and how dis-

whereas it describes poorly the statistical behavior of thdant it is from typical market activity on a specific trading

variety of a portfolio of stocks traded in a financial market. day. A theoretical challenge would be to relate this empirical

This conclusion is also supported by the observation that thensemble observation directly to the correlations active be-

autocorrelation function of the variety decays to the valueween pairs of stocks of a portfolio.

0.1 in 2—-3 trading days both under the assumption of In summary, we believe that the overall complexity of a

Gaussian and Studenttsnoise terms. On the other hand, financial market can be detected and modeled only by con-

long-range correlation of(t) is observed in real data. sjdering simultaneouslji) the statistical p_roperti(_es of the
A more refined analysis shows that the artificial ensembldime evolution of stock prices of the portfolio considesst

return distribution obtained with Gaussian noise terms is sysdi) the statics and dynamics of the correlations existing be-

tematically less leptokurtic than the real one, whereas th&veen stocks.

artificial ensemble return distribution obtained with Stu-

dent’st noise terms better mimics thg propgrties of Ieptokur— ACKNOWLEDGMENTS
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