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1/f* noise from self-organized critical models with uniform driving
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Using the well-known Olami-Feder-Christensen model as our paradigm, we show how to modify uniform
driven self-organized critical models to generat& Tloise. This model can reproduce all the main features of
1/f* noise: (1) a is close to one and does not depend on the dimension of the sy®ehe 1f* behavior
is found for very low frequencieq3) The spatial correlations do not obey a power law. That proves that
spatially extended systems based on activation-deactivation processes do not have to be point-driven to pro-
duce 1f“ noise. The essential ingredient is a local memory of the activation-deactivation process.

PACS numbgs): 05.40.Ca, 05.65:b, 05.45.Ra, 02.56:r

A time signalX(t) with zero mean is called 17 noise or  fied assumptions, or they catch a glimpse of the physics only
1/f« signal if its power spectrur(f) is proportional to 1f*  of some particular system, therefore missing to address the
at low frequencie$ with a~1. Here, the power spectrum is widespread occurrence of the phenomeieee Refs[6,7]
defined as the amplitude squared of the Fourier-transformegnd references thergin
signal, i.e., In 1987 Bak, Tang, and WiesenfelBTW) introduced the

notion of self-organized criticalitySOQ to explain the uni-

1) versality of 1f* noise[8]. SOC systems are nonequilibrium
systems driven by their own dynamics to a—in a statistical
sense—stable stat@elf-organization Fluctuations around

According to the Wiener-Khinchin theorerg(f) is the Fou- this state, so-called avalanches, are characterized by power-

rier transform of the autocorrelation functi@(r) which is  law distributions in time and spaceriticality) implying

1 2

T
— i _ —i2wft
S(f) _Tlinm 5T fﬁTth(t)e

defined as long-range correlationgfor a recent review on SOC see
L Refs.[9,10]). This automatically leads to a power spectral
o density exhibiting a X/ decay. However, this approach has
=lim —= X(t+ 7)X(1). 2 . . . .
) T[nm ZTJ,Tdt (t+ XM @ several shortcomings: First and most important, there is no

evidence for power-law space correlations in most systems
Consequently, it follows for the autocorrelation function of aexhibiting 1£ noise[11]. This already means that the no-
signal with S(f)=1/f* and 0<a<1 that C(7)=|7|* 1.  tion of self-organized criticality and 17 noise is mutually
Hence, a 1f* signal with « close to but smaller than 1 is exclusive in most cases. Secomndis seldom close to one in
related to(statistica) long-time correlations which is the rea- SOC systems. Moreover, the exponent strongly depends on
son why 1f“ noise is considered to be a particularly inter- the dimension of the SOC system, at least below the upper
esting phenomenoa priori. Moreover, the omnipresence of critical dimension. Finally, as we will show later on, thé“l/
1/f¢ noise in nature is one of the oldest puzzles in contembehavior in SOC models is observed for high frequencies
porary physics. It appears in a variety of systems from physrather than in the low-frequency range.
ics, geophysics, astrophysics, technology, sociology, and bi- Recently, several authors have successfully modified
ology. Specific examples are the flow of the river Nild,  originally self-organized critical models to overcome these
sunspot activity 2], pressure variations in the air caused by problems[12—15. Despite the diversity of introduced modi-
music and speec}8], human coordinatiofd], and neuronal fications (continuous driving12], dissipation[13], (quasi)
spike trains[5]. One of the most famous examples is the one-dimensional geometf{4,15), there is one common de-
measurement of the voltage dr¥jmn a resistor of resistance nominator. All these models have a preferred propagation
R through which a currenitis flowing. The power spectrum direction of the avalanches. This is implicitly defined via
of the fluctuations around the expected valtre Rl clearly  specific driving mechanisms. The systems in REf8—15
shows a 1 behavior over many decades in the frequencyare essentially point driven and the system in R&g] is

domain([6]. boundary driven. Without these special driving mechanisms
It is natural to expect that there might be a general printhe models are not able to generaté*lioise.
ciple which explains the occurrence off i/signals in many In this paper, we will show that such a preferred propa-

of these different systems. However, no generally acceptedation direction is not a necessary condition to obtaiff 1/
explanation of the ubiquity of 1# noise has been proposed noise from SOC models. We propose a simple model with
yet. Indeed, it is possible to find in the literature somdehoc  uniform driving able to reproduce the above mentioned char-
formulas and theories, but most of them are based on unveracteristics of 1f* noise.
One of the main features believed to be relevant for the
description of 1f“ noise is an activation-deactivation pro-
*Email address: davidsen@theo-physik.uni-kiel.de cess[16]. This is, for example, realized in stick-slip models
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spectrum of the OFC model is shown for different values of
B. The guantity we use as our time signal is the avalanche
signal

X<t>=$ g;8(t—t;), (6)

Log S(0)

whereg; denotes the sizé.e., the number of topplingsof
the jth avalanche and its time of occurrence on the time
scale of the driving. The explicit definition of a time scale
leads to a time signal with varying temporal distances be-
tween avalanches. This is in contrast to other signals consid-
ered so far in the context of SOC andf1/noise. Thed

FIG. 1. Logglogy, plot of the power spectrum ok(t) in the  function is motivated by the time scale separation, i.e., we
two-dimensional OFC model with open boundaries for diffef@st  are not able to observe events on the time scale of the relax-
andN=2500F =10 =0.1. There is clearly no sign of fff noise.  ation. This is also reasonable because we are only interested

in the low-frequency range where f/ noise is usually

and, hence, in a model introduced by Olami, Feder andound.
ChristensefOFC) in 1992 which was intended to mimic the  The time signal was recorded after the system had
dynamics of earthquakd47]. In this model, a real variable reached a stationary state as described in [R6]. For non-
Fi, called stress, is attached to each pointof a zero dissipation, a characteristic frequency occurs in the
d-dimensional cubic lattice of siz¢=LY. In the initial state, spectrum as already discussed in R¢19,21). Above and
the values ofF are randomly distributed if0,1] obeying a  especially below the characteristic frequency, there is clearly
uniform distribution. The dynamic evolution is characterizedno sign of 11 noise. Rather a white noise behavior can be

by slow driving and fast relaxation. All sités=1, ... N are  identified. This is not in contradiction to the observations in
driven at the same rate as long a¥;<F, i.e., Refs.[21,27. In Ref.[21], a 1% behavior was found for
frequencies larger than the characteristic frequency. How-
Fl=v. 3 ever, a different time signal was used, namely a stress signal

which is the stress averaged over the lattice sites as a func-

valueF . the stres§, is redistributed to the@nearest neigh-  1he authors measured the avalanche signal in terms of the
bors of sitei, time scale of the relaxation, i.e., the time between different

avalanches was essentially set to zero. Hence, they observed
F =0 4) a high-frequency phenomenon characterizing the internal
b temporal development of the avalanches. Therefore, their
findings cannot be considered a$“Lhoise. As we will see
Fan=Fnnt BFi. ©) later, our modifications lead to aflbecay in the power
spectrum below the characteristic frequency which is the
Here, 3 describes the level of dissipation. The model is conrange where I noise should be looked for.
servative forB=1/2d and dissipative for & 8<1/2d. The Our model is basically an extension of the OFC model.
local relaxation continues until aif;’s are subcritical again. We just add a single new element: The threshold véue
The sequence of discharges triggered in this way is called abbecomes a function of space and time mimicking a local
avalanche. If more than one site is supercritical at any timememory such that each site remembergdtsmulative his-
the discharges are assumed to happen simultaneously. Afteary of discharges. The simplest way to model such a
the avalanche is over the slow drivifilgg. (3)] sets in again. memory is to implement it by a random process. After each
It is important to note that this time scale separation formallytoppling the respective (i) evolves according to a random

impliesv—0. walk with the Gaussian step length
In two dimensions, the OFC model is considered to be a
SOC model provided that open boundary conditions are ap- Fei)=F¢ . .—1()+on(i,n), 7

plied. However, it is not clear whether this is only true in the

conservative case. Recent investigations seem to imply thathere 7 denotes the number of topplings of siteand

in two dimensions the OFC model could only be classified ag 7(i,7)} the sequence of uncorrelated normally distributed

“almost critical” for values of 8 close to but smaller than random variables with zero expectation and unit variance.

0.25[18]. This is in contradiction to claims by other groups The strength of the white noise source is givervbylo omit

that the model is self-organized critical even in a certainnegative threshold values and to confine the random walk,

range of dissipative values ¢# [17,19,2Q. However, the we impose reflecting boundaries at 0 andFgt=2F.. As

distribution of avalanches with respect to their size obeys #he initial condition, we us& o(i)=F..

power law in the numerically accessible range of system Computing the power spectrum for our model, we find a

sizes even for a small amount of dissipation. clear 1f* decay over several decades for dissipatis/s
The model, as it stands, is not a good candidate to deboth in one and two dimensionsee Figs. 2 and)3 The

scribe 1f* noise as follows from Fig. 1. There the power exponent decreases slightly with decreasth@nd lies be-
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. FIG. 4. Logglog,q plot of the power spectrum of(t,i) in our

FIG. 2. Loglogyo plot of the power spectrum OK(t) in our  \qqe) with open boundaries for different sitesind B=0.22¢

model with open boundaries for differefits and o=0.04d=2,N =0.04d=2,N=2500F .= 1p=0.1. For bulk sitesae=1.2 which
=2500F.=1p=0.1. The solid line with exponent 1.0 is drawn for ;g exactly the same as fot(t). For boundary sitesy=1.1.

reference. The dissipative version of the model clearly generates

1/f* noise. Ford=1 as well as for larger system sizes, we obtain

similar results. similar power spectra. Even variations in the dynamic rules

of the present model as realized, for example, in the Feder-

. Feder mode]23] do not alter our results. This points towards
tween 0.9 and 1.2. As a rule, the range of the* Tiehavior a generic behavior strongly supporting the view in Refs.

also decreases with decreasing dissipation shrinking to €193 16 that nonlinearity(here, the activation—deactivation of

in the conservative limit. In this limit, the crossover leads t0gjiaq with evolving thresholdnd dissipation are among the
a white-noise type of behavior at low frequencies. Our modi-

s S relevant features for generatingf 1/noise.
fication e}lso des_troys the power-law (_jlstr|but|on of the_ ava- - The explanation of our results is the following: Due to the
lanches in the dissipative case. We find an exponential dlsab

LT . sence of critical behavior, only small avalanches occur in
tribution instead. Hence, avalanches cannot establish longs,,. 1 odel for dissipative8’s. Consequently, one can think
range correlations anymore through the system. This i ' ’

®f S(f) in a first approximation as the superposition of local
expected since the responsible mechanism for the critical S(f) PP perp

“almost critical” behavior is marginal synchronization O;Sower spectra&(f.1),

[19,20. This synchronization is necessarily destroyed as N

soon as the threshold varies localipr quenched random _ .

thresholds see Ref21]). S(h)~2 S(f.i). ®)
Extensive numerical simulations show that our results are

very stable with respect to variations in the parameters. Difypq ocal signalX(t,i) generating the respective(f,i) is
ferent values ofr andF lead to the same results as long aSjust the avalanche signal at sitei.e., the number of top-

F,>0>0 (see Fig. 3 This is true for different types of ‘jings of this site during an avalanche at tim&his means
distributions of the random incremertg(i, 7)}, too. EXcept  hat the sum over of the X(t,i) is justX(t).

for the transients, the behavior of the model is also indepen- \ye have investigated the local power spectra and we find
dent of the ir)itia}l distribution of thé& o(i)’s on the interval indeed that Eq(8) is a good approximation. This underlines
[0.F,]. Our findings do not depend on the choice of bound-ggpecially that there is no dependence on the dimension of
ary conditions as well. Periodic and open boundaries givgnq system. It turns out that tH&(f,i) are almost indepen-
dent ofi and that they show a flf behavior themselvesee

Fig. 4).

This result can be understood to a certain extent by map-
ping our model to a model introduced by Kaulakys and
Meskauskasg[24]. In order to do so, we have to neglect all
interactions between different sites. This means considering
the limit =0 or, equivalentlyN= 1. Additionally, the ran-
dom walk of the threshold is no longer confined by two
reflecting boundaries. A parabolic potential centered around
F. and characterized by the relaxation ratés used instead,

Log S

5 -~ - - = Fe.=Fc+AF., 9

FIG. 3. Logglog, plot of the power spectrum of(t) in our AFc=(1=y)AFc 1t on(7), (10

model with open boundaries for differeats and 8=0.18d=2N

=2500F .= 1 =0.1. The solid line with exponent 1.0 is drawn for With AF;,=0. Since we consideN=1, the time signal
reference. Fod=1 as well as for larger system sizes, we obtain X(t) simplifies considerablyg;=1 for all j and, due to the
similar results. uniform driving, thet;’s are given by
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_ APPENDIX: COMPUTATION OF THE POWER
Fej=Fecj-1=v(Fej-1=Fo+an()), (12) SPECTRAL DENSITY
with F;=F¢/v andto=0. Hence,X(t) is already deter- _ Consider a signaK(t)=2;46(t—t;) as in the KM model.

mined by the series aft;=t;—t; _, which evolve according DefineAt;=t;—t;_,. It follows for the power spectral den-
to a random walk in a parabolic potential. This correspond$ity [see Eq(1)]:
to one particle moving in a closed contour with the period of

the drift of the particle around the contour fluctuating about S(f)= lim i E e i2mfy 2, (A1)
the average valu€./v. Thet;'s are then the transit times Toow 2719
measured at a certain point.

This is indeed the model introduced in Rg24]. Kaul- 1 )
akys and Mékauskas(KM) were able to compute analyti- = lim >= > > et (A2)
cally the power spectral density and obtained a power law == b
with «=1. This behavior can be found in any desirably wide 1
range of frequencies for a sufficiently small The crucial i ;
point is that the law of large numbers is not valid for T“Hl 2T 2 2 exp<|2wfq2k (Atk/q))'
lim,,_..(1n)SZgAt; (see the Appendix (A3)

Their results explain at least qualitatively our findings in o
the limit 8=0. However, the exponent differs. In our  With | =lim+_..(1/2T)(jmax— Jmin+ 1), this leads to
model, we findae=0.91+0.02 for 8=0. This is due to an
important difference between the KM model and our model. S(f):T< 2 ox
As already notedy has to be small to generatef 2/noise. 3 P
Moreover, the asymptotic distribution of tid’s is a Gauss-
ian with mean 0 and varian(zEZ/Zy. This means that there is Where<. . > denotes the average over the ensemble and over
a non-neglectable probability of negativat's. Conse- j. Hence, all we need is the probability distributi#nof the
quently, ;. , can be smaller tham; implying a causality 1/qxJ-IAt,. For the KM model with an average periad,
backwards in time. Hence, the KM model is somewhat ||||t was shown thatV is a Gaussian with meaft and vari-
defined. In our model, negativét’s are not possible since anceg?/2y for > y*¥% 7o [24]. Hence, 143 At, obeys the

the threshold has to be larger than or equal to zero. This als§gme distribution adt; and does not depend ap This can
implies that the 1/ behavior cannot be extended to any de-pe ysed to further simplify EqA4),

sirable wide range of frequencies.

In conclusion, we have shown that uniform driven SOC )
models are generally not able to generate® hoise without S(H=12> <exp< |27qu2k (Atk/Q)) > . (AY)
further modifications. The essential ingredient that has to be a

added is a local memory. This proves that spatially extendegy, small enougH, the summation can be replaced by an

systems based on activation-deactivation processes do nﬁ:\rtegral.[ln the KM model, this is valid fof <2/ o and

have to be point driven to producef /noise. f<(27At)" 1.1 Chanaina variables fronu to o’ =af and
In the present model, the local memory is realized in theeva(lugting)j thg integrg;sggi://esl mtoa=q

easiest possible way by a random walk of the threshold. We
showed that the dynamics of the threshold is equivalent to —Tx
the KM model of transit times under certain assumptions in S(1)=1¥(0)/f. (A6)

the limit ,8_—>O. This means that our mo_del can be consideredl-he fact that the probability distribution of (d)/EE;éAtk
as a physically reasonable generalization of the KM model Qoes not depend og merely means that the law of large

tsys(tjergs AW'th a threshold—ttar\]/en i thety arg Ispatlatl)l_y ext- umbers is not valid due to the correlation between different
.sn eh. Slf,f} consequence, Iefpreserr: mlo €l com ]'cnis ‘?k’s. This is of course different in the case of independent
dea that noise may result from the clustering of the ., variableat,, i.e., for y=1. In this case the distri-

signal pulses[24] with the view that an activation- . q-1 i
deactivation process and dissipation are the main fez‘;lturebslmon of (L&) X, oAt does depend og. To be more pre

relevant for the description of fiY noise[13,16. The robust- ;Isset;etpoiedIsgtlbtl;]tclaor\]/e{fi:r:ileabizgsaa% g W'tlrr'] tthhz Sl?nr::te mean
ness of our results strongly supports these views. q- q

As an experimental realization of our model, we suggest &>’ the variance vanishes. A short calculation gives as ex

stick-slip system with a Markovian threshold evolution. Fi- pected

nally, we would like to point out that the present model is

similar to the coupled “integrate-and-fire” oscillators stud- S(f)= _
ied in the context of neuronal networks and biology. Work is 2+,
in progress to investigate these connections further and

might lead to an explanation for the occurrence df'Iioise  This is exactly what happens in the KM model fdr
in cortical neurong5]. > %2 o [24)].

i2wfq2k (Atk/q))>, (A4)

(A7)
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To summarize, the crucial ingredient to obtaif ibise is  implemented by a random walk dynamics. In general, other
the generation of strong enough correlations between differstochastic mechanisms are capable of generating such corre-
ent At; such that 1> At, obeys the same distribution as lations as well, e.g., shot noise in combination with fast re-
At, does. The specific form oF is not important as long as laxation giving rise to random flows of events without
W(0)#0. In the KM model, the strong correlations are memory and Cauchy statistif25,26.
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