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Mean first passage time for anomalous diffusion

M. Gitterman
Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

~Received 12 June 2000!

When the random force acting on a particle diffusing in an interval@0,L# and subjected to a constant
external force is a Gaussian white noise, the ‘‘Brownian’’ mean-squared displacement is described by the
seminal relation̂ x2&52Dtg with g51. However, for more complicated random forces the diffusion may be
slower (g,1, ‘‘subdiffusion’’! or faster (g.1, ‘‘superdiffusion’’! than the ‘‘normal’’ diffusion. For both
these cases we calculated the mean free passage time~MFPT!—the time needed to reach one of the traps at
boundaries. The simple formulas for the different diffusive regimes are compared quantitatively for the sim-
plest case of the absence of an external field and for an initial position in the middle of the interval. It turns out
that the MFPT’s for anomalous diffusion can be both larger or smaller than that for normal diffusion depending
on the values of the length of the interval and the diffusion coefficient. Moreover, the MFPT can show
nonmonotonic changes with the degree of departure from normal diffusion.

PACS number~s!: 05.40.2a
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I. INTRODUCTION

Noise is a very common feature in many fields of physi
chemistry, biology, and social science@1#. A one-
dimensional stochastic processx(t) can be described eithe
by a stochastic differential equation of the Langevin type,
by the Fokker-Planck equation for the probability dens
function P(x,t) to find a particle atx at time t. For the
simplest case of a constant external forceF and the diffusion
coefficientD this equation has the form

]P

]t
52F

]P

]x
1D

]2P

]x2
~1!

subject to the proper boundary and initial conditions. F
diffusion on an interval@0,L# with absorbing boundaries th
boundary conditions are

P~0,t !5P~L,t !50 ~2!

with the conventional initial condition

P~x,t50!5d~x2x0!. ~3!

It is easy to verify that the solution of Eq.~1! subject to
conditions~2! and ~3! has the form

P~x,t !5
2

L
expFF~x2x0!

2D
2

F2t

4D G (
n51

`

sinS pnx

L D
3sinS pnx0

L DexpS 2
p2n2Dt

L2 D . ~4!

All the properties of the stochastic processx(t) can be
described through the use of the probability density funct
~4!. The hallmark of the Brownian motion described by E
~1! is the expression for the mean-squared displacem
^(x2x0)2&5*0

Lx2P(x,t)dx, which is equal, forF50, to

^~x2x0!2&52Dt. ~5!
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This defines the normal diffusion process driven by Gauss
white noise.

Another interesting area of exploration in the theory
random processes is extrema statistics, where the questio
‘‘How long does it take a random quantity to reach a giv
value?’’ The latter is defined by the first passage time—
time at which a stochastic process first reaches some ‘‘c
cal value.’’ For our problem the so-called mean first pass
time T ~MFPT! means the time elapsing before reaching o
of the absorbing boundariesx50 or x5L. It can be easily
shown@1# that T is expressed in terms ofP(x,t) as

T5E
0

L

dxE
0

`

dtP~x,t !

5
2p

DL2 (
n51

`
n@12~21!n#exp~2Fx0/2D !sin~npx0 /L !

~n2p2/L21F2/4D2!2
.

~6!

The explicit form ~4! of P(x,t) has been used in the las
equality in Eq.~6!.

In the absence of an external force,F50, Eq.~6! reduces
to

T5
x0~L2x0!

2D
. ~7!

All of the preceding refers to ‘‘normal’’ diffusion. How-
ever, considerable interest has been attached in recent y
to ‘‘anomalous’’ diffusion, characterized by the violation o
the Brownian law~5!, which is replaced by the more gener
form

^~x2x0!2&;Dtg ~8!

with g,1 ~subdiffusion! or g.1 ~enhanced diffusion or su
perdiffusion! describing diffusion processes slower or fas
than ordinary Brownian diffusion.

It is interesting to note that non-Brownian behavior@g
53 in Eq. ~8!# was mentioned as early as 1926 by Richa
6065 ©2000 The American Physical Society
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son@2# in the study of turbulence in the atmosphere. In fa
his explanation of this phenomenon~‘‘eddies of many sizes
acting together’’! is close to the spirit of the modern view o
turbulence. Different aspects of anomalous diffusion and
applications have been discussed in the review articles@3–5#.
Additional references can be found in a recent article@6#, in
which the authors describe many important results includ
some of their own.

We limit ourselves here only by the comment that in s
tistical language superdiffusion can be induced by ano
lously long random walks, while subdiffusion can be asso
ated with an anomalously long waiting time betwe
successive walks. A physical example of the long walks
the so-called Levy walks@7#, while as an example of the
long waiting time one can mention@8# the motion near sta
bility islands imbedded within a chaotic sea, where a f
diffusion particle sticks at such islands for a long time.

Since the number of applications of anomalous diffus
is increasing dramatically, it is of some interest to study
problem of the mean free passage time for this case. T
problem is just the aim of the present article. In the tw
sections that follow we show how to modify the method
calculation of the MFPT described in Eqs.~1!–~6! for
anomalous diffusion. The final section contains discuss
and conclusions.

II. MFPT FOR SUBDIFFUSION

From the different frameworks for describing anomalo
diffusion, we choose to use the fractional calculus@9,10#
where the first order time derivative in Eq.~1! is replaced by
the fractional derivative of ordera with 0,a,1, i.e.,

]aP

]ta
52Fa

]P

]x
1Da

]2P

]x2
. ~9!

The fractional derivative in Eq.~9! is understood in terms o
the Riemann-Liouville integral

]aP~x,t !

]ta
[

1

G~2a!
E

0

t P~x,t!

~ t2t!11a
dt. ~10!

Equations~9! and ~10! have been derived for the field-fre
case,F50, by Balakrishnan@11# using a generalization o
Brownian motion, and solved in terms of the so-called F
function by Schneider and Wyss@12#. The full solution of
these equation for free boundary condition was given
cently @13#.

We will use the technique of the Laplace transform

f ~s!5L$ f ~ t !%5E
0

`

f ~ t !exp~2st!dt ~11!

which when applied to Eq.~10! gives

LH ]aP~x,t !

]ta J 5saP~x,s!2sa21P~x,t50!

5saP~x,s!2sa21d~x2x0! ~12!

where the initial conditions of Eq.~3! have been used.
,
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The Laplace transform of Eq.~9! yields

Da

]2P~x,s!

]x2
2Fa

]P~x,s!

]x
5saP~x,s!2sa21d~x2x0!.

~13!

It is convenient to eliminate the term]P/]x from Eq.~13! by
defining a new functionW(x,t) as

P~x,s!5expS Fax

2Da
DW~x,s!, ~14!

which, finally, results in

Da

]2W~x,s!

]x2
2S Fa

2

4Da
1saDW~x,s!

52d~x2x0!sa21expS 2
Fax

2Da
D . ~15!

Due to the singular termd(x2x0) in Eq. ~15! one has to
solve this equation separately in two intervals@0,x0# and
@x0 ,L#, and then match these solutions atx5x0. Designating
these solutions asW1 andW2, respectively, one obtains

W1~x,s!5C1exp~gx!1C2exp~2gx!,
~16!

W2~x,s!5C3exp~gx!1C4exp~2gx!,

where

g5A Fa
2

4Da
2

1
sa

Da
. ~17!

The constantsC1, . . . ,C4 have to be found from the
boundary conditionsW1(x50,s)5W2(x5L,s)50 and from
the matching conditions atx5x0. The latter are the continu
ity of functions W1(x5x0 ,s)5W2(x5x0 ,s), and the con-
nection between the derivatives of these functions, which
be found by integrating Eq.~15! with respect tox between
x5x02e andx5x05e with the infinitesimale. This yields

DaS dW2

dx D
x5x01e

2DaS dW1

dx D
x5x02e

52sa21expS 2
Fax0

2Da
D . ~18!

Solving these four equations forC1–C4 and substituting
them into Eqs.~16! and ~14! one gets

P1~x,s!5
exp@Fa~x2x0!/2Da#sinh@g~L2x0!#sinh~gx!

Dags12a sinh~gL !
,

P2~x,s!5
exp@Fa~x2x0!/2Da#sinh@g~L2x!#sinh~gx0!

Dags12asinh~gL !
.

~19!

In accordance with Eq.~6! the MFPT can be obtained
from P(x,t) by integration overx and t,
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T5E
0

`

dtE
0

L

dxP~x,t !

5E
0

`

dt
1

2p i EC
dsexp~st!

3F E
0

x0
dxP1~x,s!1E

x0

L

dxP2~x,s!G
5E

0

`

dt
1

2p i EC
dsexp~st!

3F12
sinh„Asa/Da~L2x0!…exp~2Fax0/2Da!

sinhAsa/DaL

2
sinh~Asa/Dax0!exp@Fa~L2x0!/2Da#

sinh~Asa/DaL !
G , ~20!

where Eq.~19! has been substituted in Eq.~20!, and integra-
tion over x has been performed in the last equality in E
~20!.The contourC in Eq. ~20! and subsequent equations
the usual Bromich contour for the inverse Laplace transfo

Three integrals in Eq.~20! have a pole at the origin while
the second and third integrals also have extra poles at
zeros of sinh(Asa/DaL), i.e., at iAsa/DaL5np or s5
2(n2p2Da /L2)1/a, (n51,2,3, . . . ). The residues at the
poles can be easily calculated, and one finds

1

2p i EC

ds

s

sin~Asa/2!

sin~Bsa/2!

5H sinh~AFa/2Da!

sinh~BFa/2Da!
12(

n51

`

~21!n

3expF2S Fa
2

4Da
1

n2p2

B2 D 1/a

tG sin~npA/B!

anpA/B

3
p2n2Da /B2

~F2/4Da1p2n2Da /B2!
J . ~21!

On substituting Eq.~21! into Eq. ~20! one gets

T512
sinh@Fa~L2x0!/2Da#

sinh@FaL/2Da#
2

sinh@Fax0/2Da#

sinh@FaL/2Da#

1
2pexp~2Fax0/2Da!

aL2Da
1/a

3 (
n50

`
n@exp~FaL/2Da!2~21!n#sin~npx0 /L !

~n2p2/L21Fa
2/4Da

2 !111/a
.

~22!

For F50, Eq. ~19! reduces to

P1~x,s!5
sinh@Asa/Da~L2x0!#sinh~Asa/Dax!

ADas12a/2 sinh~Asa/DaL !
;

.

.

he

P2~x,s!5
sinh@Asa/Da~L2x!#sinh~Asa/Dax0!

ADas12a/2 sinh~Asa/DaL !
~23!

and Eq.~22! becomes

T5
2

ap S L

pADa
D 2/a

(
n51

`
@12~21!n#sin~npx0 /L !

n112/a
.

~24!

The sum overn in Eq. ~24! contains only odd powers ofn;
therefore one finally obtains

T5
4

ap S L

pADa
D 2/a

(
m51

`
sin@~2m11!px0 /L#

~2m11!112/a
. ~25!

Let us check that for normal diffusion,a51, Eq. ~24!
reduces to~6!. To this end, taking the second derivative
Eq. ~24! with respect tox0 and using the well-known rela
tions @14# (k50

` sin(kx)/k5(p2x)/2 and(k50
` (21)ksin(kx)/k

5x/2, one obtainsd2T/dx2521/D with Da515D, which
leads to Eq.~7!.

Let us assume, for simplicity, that att50 a particle was
placed in the middle of the interval@0,L#. Then, x05L/2,
and sin(npx0 /L)5sin(np/2) vanishes for evenn and is equal
to (21)m for odd n52m11. Consequently, Eq.~25! re-
duces to

T5
4

ap S L

pADa
D 2/a

(
n51

`
~21!m

~2m11!112/a
. ~26!

Taking into account that@14# (m50
` (21)m/(2m11)3

5p2/32, one obtains the correct limitT5L2/8D for normal
diffusion, a51, with x05L/2.

The sum in Eq.~26! resembles the Riemann zeta functio
and can be expressed in integral form@15# so that Eq.~26!
can be rewritten as

T5
4

ap S L

pADa
D 2/a

1

2G~112/a!
E

0

` t2/adt

cosh~ t !
. ~27!

In the final section we compare the results obtained ab
for subdiffusion with those obtained in the next section
superdiffusion.

III. MFPT FOR SUPERDIFFUSION

Analogous to Eq.~9! one can write the Fokker-Planc
equation for superdiffusion in the form

]P~x,t !

]t
52Fb

]P~x,t !

]x
1Db

]bP~x,t !

]xb
, ~28!

where 0,b,2. Using the Fourier transform with respect
the coordinatex,

P~q,t !5E
2`

`

dxP~x,t !exp~2 iqx!,
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P~x,t !5E
2`

`

dqP~q,t !exp~ iqx!, ~29!

one can rewrite Eq.~28! as

]P~q,t !

]t
1@Dbuqub1 iqFb#P~q,t !50. ~30!

The solution of Eq. ~30! has the form P(q,t)
5Cexp@(2Dbuqub2iqFb)t# where the constantC has to be
found from the initial condition. Assume that initially a pa
ticle was atx5x0, i.e., P(x,t50)5d(x2x0) or P(q,t50)
5exp(2iqx0). Then the solution of Eq.~30! is

P~q,t !5exp@2 iqx02~Dbuqub1 iqFb!t#. ~31!

Equation~31! is the Laplace transform of the well-know
symmetry Levy stable density@16# with ^xm&5` for m.b.
The latter follows from the properties of the characteris
function ^xn(t)&5 i n@dnP(q,t)/dqn#uq50. Superdiffusion
with 1,b,2 was considered recently by Barkai and Silb
@17# who discuss also the problem of diverging moments

The boundary conditions for Eq.~28!, P(x50,t)5P(x
5L,t)50, can be written for the Fourier transformsP(q,t)
by Eq. ~29! as

E
2`

`

dqP~q,t !50 ~32!

and

E
2`

`

dqP~q,t !exp~ iqL !50. ~33!

Condition~32! will be obeyed ifP(q,t) is an odd function of
q, i.e., one has to take the imaginary part of Eq.~31!, namely,

P~q,t !5 sin@q~x01Fbt !#exp~2Dbuqubt !. ~34!

Both the real and imaginary parts of the integral in Eq.~33!
will vanish if and only if

q5
np

L
. ~35!

On substituting Eq.~35! into Eqs.~34! and ~29! and taking
the sum overn in order to satisfy the initial condition, on
finally obtains

P~x,t !5
2

L (
n51

`

sinFnp

L
~x01Fbt !GsinFnp

L
~x1Fbt !G

3expF2DbS np

L D b

t G . ~36!

We are interested in the mean free passage timeT for
one-dimensional diffusion on a segment@0,L# which, accord-
ing to Eq.~6! can be obtained from the distribution functio
P(x,t) by the integration~36! over x and t, which gives
T5
2

pDb
S L

p D b

(
n51

`
@12~21!n#sin~npx0 /L !

n11b

3
2~npFb /L !21Db

2~np/L !2b

4~npFb /L !21Db
2~np/L !2b

. ~37!

For Fb50 Eq. ~37! reduces to

T5
2

pDb
S L

p D b

(
n51

`
@12~21!n#sin~npx0 /L !

n11b

5
4

pDb
S L

p D b

(
n51

`
~21!m sin@~2m11!px0 /L#

~2m11!11b
. ~38!

If at t50 a particle was placed in the middle of the interv
@0,L#, i.e., x05L/2, then Eq.~38! reduces to

T5
4

pDb
S L

p D b

(
n51

`
~21!m

~2m11!11b
, ~39!

which for normal diffusion,b52, yields the correct resul
T5L2/8D.

IV. DISCUSSION AND CONCLUSION

The mean first passage time of a diffusive particle mov
in an interval@0,L# with absorbing boundaries and subject
to a constant force is given by Eq.~6! which, in the absence
of the force, reduces to the simple expression~7!. This well-
known result refers to ‘‘normal’’ diffusion when a white
Gaussian noise is acting on a particle. This Brownian mot
is characterized by the mean-squared displacement^x2&
52Dt.

However, in many cases the random force acting o
particle is more complicated than the simplest white noi
As a result, by the action of such a noise on a particle
mean-squared displacement may change in time more slo
~‘‘subdiffusion’’ ! or faster~‘‘superdiffusion’’! than that of a
Brownian particle. For both these cases we found the m
free passage timeT which is an important characteristic o
the random process defining the average time needed f

FIG. 1. The characteristic sum(m50
` (21)m/(2m11)11x ap-

pearing in the expressions~40! for MFPT as a function ofx. Normal
diffusion corresponds tox52, and this sum is equal top3/32.
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particle to be trapped by one of the boundaries of the inte
@0,L#.

Solutions of the Fokker-Planck equation for anomalo
diffusion can normally be found after passing to the Fouri
Laplace transforms. However, the inverse transformati
are quite complicated, leading to some combinations of
Fox functions@6#. In particular, one has to mention som
recent articles@6,18# which appeared after completion of ou
work. On the other hand, for calculation of the MFPT o
can first perform integration overx, and then the inverse
Fourier-Laplace transformation presents no problems.

The ‘‘Brownian’’ expression~7! for the MFPT is replaced
by Eq. ~ 22! for subdiffusion, and by Eq.~37! for superdif-
fusion. To decrease the number of parameters we com
the MFPT for these three cases in the simplest case of
absence of an external field and for an initial position o
particle in the middle of the interval. The appropriate form
las are Eqs.~7!, ~26!, and ~39!, which, for convenience, we
rewrite here in slightly different form

Tnorm5
4L2

p3D
(

m50

`
~21!m

~2m11!3
5

L2

8D
, ~40!

Tsub5S L2

8Da
D 1/a 4

ap S 8

p2D 1/a

(
m50

`
~21!m

~2m11!112/a
,

Tsuper5S L2

8Db
D b/2 4

pD S 8Db

p2 D b/2

(
m50

`
~21!m

~2m11!11b
.

Notice that the MFPT’s have a similar functional form ap
from the coefficients of different dimensions since the dif
sion coefficients, according to Eqs.~9! and ~28!, have the
dimensions (length)2/(time)a and (length)b/(time) for the
sub- and superdiffusion, respectively. Of course, the two
expressions in Eq.~40! reduce to the case of normal diffu
sion whena51 andb52.

FIG. 2. The ratio of the MFPT of subdiffusion to that of norm
diffusion, Tsub/Tnorm , as a function of the ‘‘parameter of subdi
fusion’’ a (a51 corresponds to normal diffusion! for L2/8D51.
al

s
-
s
e

re
he

-

t
-

st

In Figs. 1–3 we compare the MFPT for different diffusiv
regimes. All of them contain the sum(m50

` (21)m/(2m
11)11x, which we show in Fig. 1 as a function ofx. This
sum is equal top3/32 for normal diffusion (x52), while the
parametersa52/x andB5x correspond to subdiffusion an
superdiffusion, respectively. The ratio of the MFPT for su
diffusion to that of normal diffusion is shown in Fig. 2 as
function of the parametera, 0,a<1, for L2/8D51. As
one can see from Fig. 2 the ratioTsub/Tnorm is a nonmono-
tonic function ofa. However, the ratioTsub/Tnorm will stay
monotonic for different values of the parameterL2/8Da , re-
maining larger ~for L2/8Da.1) or smaller ~for L2/8Da
,1) than the MFPT for normal diffusion.

In contrast to subdiffusion, the ratio of the MFPT fo
superdiffusion to that for normal diffusion depends on t
parametersL andDb both in the ratioL2/8Db and individu-
ally. In Fig. 3 we show the ratioTsuper/Tnorm as a function
of the parameterb for L2/8D51 and different values ofDb .
As one can see from this figure, the MFPT for superdiffus
can approach its value for normal diffusion atb52, remain-
ing larger ~for Db50.1) or smaller~for Db510) than the
MFPT for normal diffusion.

In conclusion, we found the mean free passage time
both subdiffusion and superdiffusion of a particle moving
the interval@0,L#, which turn out to be smaller or larger tha
the mean free passage time for normal diffusion depend
on the parameters of the system.
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FIG. 3. The ratio of MFPT of superdiffusion to that of norm
diffusion, Tsuper/Tnorm , as the function of the ‘‘parameter of su
perdiffusion’’ b (b52 corresponds to normal diffusion! for
L2/8D51 and different values of the diffusion constantDb . The
upper graph is obtained forDb50.1, and the lower graph forDb
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