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Mean first passage time for anomalous diffusion
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When the random force acting on a particle diffusing in an intef@ll] and subjected to a constant
external force is a Gaussian white noise, the “Brownian” mean-squared displacement is described by the
seminal relationx?)=2Dt? with y=1. However, for more complicated random forces the diffusion may be
slower (y<1, “subdiffusion”) or faster (y>1, “superdiffusion”) than the “normal” diffusion. For both
these cases we calculated the mean free passagdNiFeT)—the time needed to reach one of the traps at
boundaries. The simple formulas for the different diffusive regimes are compared quantitatively for the sim-
plest case of the absence of an external field and for an initial position in the middle of the interval. It turns out
that the MFPT's for anomalous diffusion can be both larger or smaller than that for normal diffusion depending
on the values of the length of the interval and the diffusion coefficient. Moreover, the MFPT can show
nonmonotonic changes with the degree of departure from normal diffusion.

PACS numbdps): 05.40—a

[. INTRODUCTION This defines the normal diffusion process driven by Gaussian
white noise.

Noise is a very common feature in many fields of physics, Another interesting area of exploration in the theory of
chemistry, biology, and social sciencgl]. A one- random processes is extrema statistics, where the question is,
dimensional stochastic proces&) can be described either “How long does it take a random quantity to reach a given
by a stochastic differential equation of the Langevin type, ovalue?” The latter is defined by the first passage time—the
by the Fokker-Planck equation for the probability densitytime at which a stochastic process first reaches some “criti-
function P(x,t) to find a particle atx at timet. For the cal value.” For our problem the so-called mean first passage
simplest case of a constant external fofcand the diffusion  time T (MFPT) means the time elapsing before reaching one
coefficientD this equation has the form of the absorbing boundaries=0 or x=L. It can be easily

shown[1] that T is expressed in terms &¥(x,t) as

oP F(?P+Da2P @ )
gt ox X2 T:j dxf dtP(x,t)
o Jo
subject to the proper boundary and initial conditions. For o n .
diffusion on an intervaj 0,L] with absorbing boundaries the ~ _ 27 s n[1—(—1)"]exp(—Fxc/2D)sin(naXy/L) |
boundary conditions are DL? n=1 (n27?/L%+ F2/4D?)2
P(Ot)=P(L,t)=0 2 (6)

The explicit form (4) of P(x,t) has been used in the last

with the conventional initial condition e
equality in Eq.(6).

P(X,t=0)=8(X—Xg). (3) In the absence of an external forées 0, Eq.(6) reduces
to
It is easy to verify that the solution of Eql) subject to
conditions(2) and(3) has the form _ Xo(L —Xo)
T= ~—>p (7)

All of the preceding refers to “normal” diffusion. How-
ever, considerable interest has been attached in recent years
to “anomalous” diffusion, characterized by the violation of

(4) the Brownian law(5), which is replaced by the more general
form

2 [F(x—x,) F%]<& | [wnx
P“’”‘E‘”"{T‘ﬁ 2 sinl ——

TNXg m2n?Dt
&R~ 7
All the properties of the stochastic procesd) can be {(X—Xq)?)~Dt” (8)

described through the use of the probability density function

(4). The hallmark of the Brownian motion described by Eq.with y<1 (subdiffusion or y>1 (enhanced diffusion or su-
(1) is the expression for the mean-squared displacemerierdiffusion describing diffusion processes slower or faster

X sin

((x—xo)2>=f3x2P(x,t)dx, which is equal, foF=0, to than ordinary Brownian diffusion.
It is interesting to note that non-Brownian behavjor
{(X—Xq)?)=2Dt. (5) =3 in Eg.(8)] was mentioned as early as 1926 by Richard-
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son[2] in the study of turbulence in the atmosphere. In fact, The Laplace transform of E¢9) yields
his explanation of this phenomendteddies of many sizes

acting together’ is close to the spirit of the modern view on 9?P(X,s) dP(x,s) I
turbulence. Different aspects of anomalous diffusion and its Pa P Fa— =5 P(x,8) —s* *6(X—Xo).
applications have been discussed in the review artjéle§]. (13)

Additional references can be found in a recent artiéle in
which the authors describe many important results includingt is convenient to eliminate the teraP/Jx from Eq.(13) by

some of their own. defining a new functioW(x,t) as
We limit ourselves here only by the comment that in sta-

tistical language superdiffusion can be induced by anoma- F X

lously long random walks, while subdiffusion can be associ- P(x,s)=exp< 5p_ | W), (14)
ated with an anomalously long waiting time between “

successive walks. A physical example of the long walks iswhich, finally, results in

the so-called Levy walk$7], while as an example of the

long waiting time one can mentid®] the motion near sta- 9*W(X,S) F2

bility islands imbedded within a chaotic sea, where a fast D, PR 4Da+5“ W(x,s)

diffusion particle sticks at such islands for a long time.

Since the number of applications of anomalous diffusion F X
is increasing dramatically, it is of some interest to study the =- 5(X—Xo)5alexl< D ) (15
problem of the mean free passage time for this case. That “
problem is just the aim of the present article. In the two  pye to the singular termd(x—x,) in Eqg. (15) one has to
sections that follow we show how to modify the method of so|ye this equation separately in two intervaix,] and

calculation of the MFPT described in Eqél)—(6) for [y, | ] and then match these solutionsatx,. Designating
anomalous diffusion. The final section contains discussiofyese solutions a8/, andW,, respectively, one obtains

and conclusions.

Wi(x,8) = Ciexp(yX) + Coexpl — yX),

Il. MFPT FOR SUBDIFFUSION (16)
W,(X,s) = Czexp( yx) + Cexp( — yX),
From the different frameworks for describing anomalous 2(,8) = CaexXplyX) + Coxpl = 7X)

diffusion, we choose to use the fractional calcu[@s10] where
where the first order time derivative in E(d) is replaced by

the fractional derivative of ordax with 0<a<1, i.e., Fi S
Y= >t = (17)
9P IP 9°P 4p? D,
=—F,—+D,—. 9)
ate 28 X The constantsC, ...,C4 have to be found from the

] o ) i boundary conditiongV;(x=0,) =W,(x=L,s)=0 and from
The fractional derivative in E(9) is understood in terms of ¢ matching conditions at=x,. The latter are the continu-

the Riemann-Liouville integral ity of functions W;(x=Xq,5)=W,(X=X,,5), and the con-
nection between the derivatives of these functions, which can
oP(xt) _ 1 f‘ P(x,7) dr (10  be found by integrating Eq(15) with respect tox between
ot F(=a)Jo(t—r)tte X=Xg— € andx=Xqy= € with the infinitesimale. This yields
Equations(9) and (10) have been derived for the field-free (dW2> (dW1>
case,F =0, by Balakrishnaf11] using a generalization of o\ Tgx CPal gy
Brownian motion, and solved in terms of the so-called Fox XXote Xome
function by Schneider and Wyg$42]. The full solution of F.Xo
these equation for free boundary condition was given re- =—S“16XF{ ~ %D ) (18
cently [13]. “
We will use the technique of the Laplace transform  golying these four equations fo€,—C, and substituting

them into Egs(16) and(14) one gets

f(s):"{f(t)}:fo f(hexp(—stdt Y Xt F,(X—X0)/2D , ]sinH y(L — xo) Jsinh yx)

Pl(X,S)Z 1o y

which when applied to Eq10) gives D,ys™ “sinh(yL)
9“P(X,t) . - PL(x.5) = exfLF o(X—X0)/2D ,]sinH y(L —x) ]sinh( yXo)
L T =s“P(X,s) —s* "P(x,t=0) 2(X, D_ys' “sinh(7L) .

(19
=SP(X,s)—S* 18(x—Xo) (12
In accordance with Eq(6) the MFPT can be obtained
where the initial conditions of Eq3) have been used. from P(x,t) by integration ovex andt,



PRE 62

% L
T=f dtf dxP(x,t)
0 0

w1
=f0 dtz—wiJCdsexp(st)

Xg L
X j dxP;(x,s)+ f dxP,(Xx,s)
0 Xg

e 1
=J;) dtmfcdsexp(st)

|1 sinh(y/s*/D (L —Xg))exp —F ,Xo/2D )
sinhys*/D ,L

B sinh(s“/D axg)exd F (L —Xq)/2D ]
sinh(y/s*/D L)

where Eq.(19) has been substituted in EQO0), and integra-

. (20

tion overx has been performed in the last equality in Eq.
(20).The contourC in Eq. (20) and subsequent equations is
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sinf vs*/D (L —x)]sinh(/s*/D ,Xgq)

P,(x,s)= 23
2(%.9) D ,s'"*2sinh(/s*/Dal) @3
and Eq.(22) becomes
2 [ L 8 - (- D)Msinnmxg/L)
pPA g ) P 2 :
(24)

The sum ovemn in Eq. (24) contains only odd powers af;
therefore one finally obtains

sim (2m+1)wxg/L]
(2m+ 1)1+2/a

(29

4 ( L )2/&' 3
T=—
am\ 7D, m=1

Let us check that for normal diffusiony=1, Eq. (24)
reduces ta6). To this end, taking the second derivative of
Eq. (24) with respect taxg and using the well-known rela-
tions [14] =;_osinkX)/k=(7—x)/12 and=_(— 1)¥sinkx)/k
=x/2, one obtaingl®T/dx?=—1/D with D,_,=D, which

the usual Bromich contour for the inverse Laplace transform!€@ds to EQ(7).

Three integrals in Eq20) have a pole at the origin while

Let us assume, for simplicity, that &=0 a particle was

the second and third integrals also have extra poles at tH@aced in the middle of the intervaD.L]. Then,x,=L/2,

zeros of sinh(s*/D,L), i.e., atiys*/D,L=nm or s=
—(n?m?D,/L?Y* (n=1,2,3...). The residues at the
poles can be easily calculated, and one finds

1 [ dssin(As*?)

27 c's sinBs*?)

+2 ()"

n=1

sinh(AF,/2D )
sinh(BF /2D ,)

o

F2 .\ n272\ " | sin(nwA/B)
4D, B2 anTA/B

" m°n?D /B2 2
(F2/4D ,+ 7*n?D,/B?)|
On substituting Eq(21) into Eq. (20) one gets
. SinF(L=x0)/2D,]  sintFxo/2D ]
- sin{F,L/2D,]  sinf{F,L/2D,]
2mexp —F Xo/2D ,)
+
al?DYe
" i nexp(F,L/2D,)—(—1)"]sin(nmxy/L)
=0 (n?m?/L2+ F2/aD?%)t+ Ve '
(22

For F=0, Eq.(19) reduces to

sint vs“/D o(L —Xo) ]sinh(vs*/D oX)
JD,s*"*2sinh(\/s*/D L) ’

Pl(X,S) =

and sinfimxy/L)=sin(n7/2) vanishes for even and is equal
to (—1)™ for odd n=2m+1. Consequently, Eq25) re-
duces to

4

aT

T

2l o m
L ) (—1) 06

m\D,/ =1 (2m+1)1+e’

Taking into account that[14] =i _,(—1)™(2m+1)3
= 1?/32, one obtains the correct linilt=_L2/8D for normal
diffusion, a=1, with xo=L/2.

The sum in Eq(26) resembles the Riemann zeta function,
and can be expressed in integral fofirb] so that Eq.(26)
can be rewritten as

AL de g = t2ladt
~am\ 7D, 2T(1+2la)]o cosht)’

(27)

In the final section we compare the results obtained above
for subdiffusion with those obtained in the next section for
superdiffusion.

Ill. MFPT FOR SUPERDIFFUSION
Analogous to Eq.(9) one can write the Fokker-Planck
equation for superdiffusion in the form
IPP(X,t)
axP

JP(X,t) B dP(x,t) D 08
P ax B : (28)

where 0<B<2. Using the Fourier transform with respect to
the coordinate,

P(q,t)= fwwde(x,t)exp(—iqx),
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P(x,t)=Jm dgP(q,t)expigx), (29
one can rewrite Eq28) as
JP(q,t
G L [Dyal+iaFIP@n=0. (30

The solution of Eq. (300 has the form P(q,t)
= Cexf(—D4lq/’—igFgt] where the constan€ has to be
found from the initial condition. Assume that initially a par-
ticle was atx=xy, i.e., P(x,t=0)= §(x—Xg) or P(q,t=0)
=exp(—igXy). Then the solution of Eq.30) is
P(a,t)=exd —igxo— (Dglg|’+igFg)t]. (3D
Equation(31) is the Laplace transform of the well-known
symmetry Levy stable densifyl 6] with (x™)=c for m>g.

The latter follows from the properties of the characteristic

function (x"(t))=i"[d"P(q,t)/dq"]|q-o. Superdiffusion

with 1< 8<2 was considered recently by Barkai and Silbey

[17] who discuss also the problem of diverging moments.
The boundary conditions for Eq28), P(x=0,)=P(x

=L,t)=0, can be written for the Fourier transforr®$q,t)

by Eq.(29) as

| darian- 32

and

fc dqP(q,t)expigL)=0. (33

Condition(32) will be obeyed ifP(q,t) is an odd function of
q, i.e., one has to take the imaginary part of BB{), namely,

P(q,t)= sinfa(Xe+F gt)Jexp(—Dglal’t). (39

Both the real and imaginary parts of the integral in E2B)
will vanish if and only if

(39

On substituting Eq(35) into Egs.(34) and (29) and taking
the sum ovemn in order to satisfy the initial condition, one
finally obtains

©

2
P(x,t)=—

L n=1
nar

o o

nar
1 (Xot+ Fgt)

3

We are interested in the mean free passage finfer
one-dimensional diffusion on a segmédil ] which, accord-
ing to Eq.(6) can be obtained from the distribution function
P(x,t) by the integration(36) over x andt, which gives

sin — sin —

nw
1 (X+Fgt)

3 (36)
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FIG. 1. The characteristic suB},_,(—1)™(2m+1)*** ap-

pearing in the expressioi40) for MFPT as a function ok. Normal

diffusion corresponds ta=2, and this sum is equal t6°/32.

2

P [1—(— 1)”]S|n(n7-rx0/L)

R

n=1

2(n77F,3/L)2+ Dﬁ(nﬂ-/L)zﬁ

3
4(n77FB/L)2+Dﬁ(n7T/L)2ﬁ 37
For F ;=0 Eq.(37) reduces to
= [1-(=1)"]sin(nmxq/L)
= WDﬁ( )nz nt*h
4 Z(—1)™sin(2m+1)7X,/L]
~@Dg\m ) nz (2m+1)t4 - (39

If at t=0 a particle was placed in the middle of the interval
[OL], i.e.,xo=L/2, then Eq.(38) reduces to

I
;) 2

A=1 (2m+1)1A’

4

T:

(39

which for normal diffusion,8=2, yields the correct result
T=L28D.

IV. DISCUSSION AND CONCLUSION

The mean first passage time of a diffusive particle moving
in an intervall O,L ] with absorbing boundaries and subjected
to a constant force is given by E@) which, in the absence
of the force, reduces to the simple expression This well-
known result refers to “normal” diffusion when a white
Gaussian noise is acting on a particle. This Brownian motion
is characterized by the mean-squared displacenggfit
=2Dt.

However, in many cases the random force acting on a
particle is more complicated than the simplest white noise.
As a result, by the action of such a noise on a particle its
mean-squared displacement may change in time more slowly
(“subdiffusion™) or faster(*superdiffusion”) than that of a
Brownian particle. For both these cases we found the mean
free passage tim& which is an important characteristic of
the random process defining the average time needed for a



PRE 62 MEAN FIRST PASSAGE TIME FOR ANOMALOUS DIFFUSION 6069

Tsub
Tncm
2.07
1.5
1.0
0.57
0 0.2 0.4 0.6 0.8 1.0 @
0.6 1.0 1.4 1.8 B
FIG. 2. The ratio of the MFPT of subdiffusion to that of normal
diffusion, Tsup/Tnorm, @s @ function of the “parameter of subdif- FIG. 3. The ratio of MFPT of superdiffusion to that of normal
fusion” « (a=1 corresponds to normal diffusipfor L*/8D=1. diffusion, Tsyper/ Tnorm, as the function of the “parameter of su-

perdiffusion” B8 (B=2 corresponds to normal diffusipnfor

particle to be trapped by one of the boundaries of the interval?/8D=1 and different values of the diffusion constdby. The
[OL]. upper graph is obtained fdb,=0.1, and the lower graph fdp,

Solutions of the Fokker-Planck equation for anomalous=10.
diffusion can normally be found after passing to the Fourier-
Laplace transforms. However, the inverse transformations In Figs. 1—-3 we compare the MFPT for different diffusive
are quite complicated, leading to some combinations of theegimes. All of them contain the surB;,_,(—1)™(2m
Fox functions[6]. In particular, one has to mention some +1)***, which we show in Fig. 1 as a function &f This
recent article$6,18| which appeared after completion of our sum is equal tar®/32 for normal diffusion k= 2), while the
work. On the other hand, for calculation of the MFPT oneparametersi=2/x andB=x correspond to subdiffusion and
can first perform integration ovex, and then the inverse syperdiffusion, respectively. The ratio of the MFPT for sub-
Fourier-Laplace transformation presents no problems. diffusion to that of normal diffusion is shown in Fig. 2 as a

The “Brownian” expressior(7) for the MFPT is replaced  fynction of the parameter, 0<a<1, for L¥8D=1. As
by Eq.( 22) for subdiffusion, and by Eq37) for superdif-  one can see from Fig. 2 the raffa,p/Thorm iS @ NONMONO-
fusion. To decrease the number of parameters we compaggnic function ofer. However, the ratiol gy, Tnorm Will stay
the MFPT for these three cases in the simplest case of th@onotonic for different values of the paramet&ysD,, re-
absence of an external field and for an initial position of amajining larger (for L%8D,>1) or smaller (for L%8D,
particle in the middle of the interval. The appropriate formu- 1) than the MFPT for normal diffusion.
las are Eqs(7), (26), and (39), which, for convenience, we |y contrast to subdiffusion, the ratio of the MFPT for
rewrite here in slightly different form superdiffusion to that for normal diffusion depends on the
parameters. andD ;4 both in the ratiol_2/8DB and individu-

T 412 (=" _ |—_2 (40)  ally. In Fig. 3 we show the ratidlsyper/ Thorm as a function
oMM 3D m=o (2m+1)3 8D’ of the parameteg for L2/8D =1 and different values db ;.
As one can see from this figure, the MFPT for superdiffusion
L2 \Va g ( g |V~ (—1)m can approach its value for normal diffusion@t 2, remain-
Tsub:(_) — | — T it ing larger (for D 3=0.1) or smaller(for D ;=10) than the
8Do) amiq?] @m0 (2m+1)t M%PT%or normal diffug,ion. s=10)
2\ B2 BI2 o m In conclusion, we found the mean free passage time for
T. ('—_) i % (-1 both subdiffusion and superdiffusion of a particle moving in
SPer 18Dy @D\ 42 Mm=0 (2m+1)1*#’ the interval[ O,L], which turn out to be smaller or larger than

the mean free passage time for normal diffusion depending
Notice that the MFPT'’s have a similar functional form aparton the parameters of the system.
from the coefficients of different dimensions since the diffu-
sion coefficients, according to Eq&) and (28), have the
dimensions (lengt) (time)* and (lengthf/(time) for the
sub- and superdiffusion, respectively. Of course, the two last | am grateful to Professor George Zaslavsky for very use-
expressions in Eq40) reduce to the case of normal diffu- ful discussions, and to the Physics Department of New York
sion whena=1 andgB=2. University for their hospitality.
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