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Strong-property-fluctuation theory for homogenization of bianisotropic composites: Formulation
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The strong-property-fluctuation theory is developed for the homogenization of the linear dielectric, mag-
netic, and magnetoelectric properties of a two-constituent bianisotropic composite. The notion of a bianisotro-
pic comparison medium~BCM! is introduced to serve as a springboard for the Dyson equation satisfied by the
ensemble-averaged electromagnetic field. With the constitutive properties of the BCM serving as the zeroth-
order solution of the Dyson equation, the first-order correction, known as the bilocal approximation, is ob-
tained. Wave propagation in the composite can be described in this manner by a nonlocal effective medium
containing information about the spatial correlations of the constitutive properties. For scales larger than the
correlation length, the nonlocality vanishes and a local effective medium emerges. Analytical results for the
local effective constitutive properties are presented after assuming a spherical particulate topology for the
constituent mediums. Illustrative numerical results are provided.

PACS number~s!: 05.40.2a, 82.70.2y, 83.70.Hq
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I. INTRODUCTION

The fabrication of composite materials provides an eff
tive way for combining the desirable electromagnetic pro
erties of two or more different materials, provided the co
stituent material phases do not chemically react with e
other. Prediction of the effective electromagnetic proper
of linear composites, from the properties of their consti
ents, has been a focus of research for over two centuries
it continues to be a matter of considerable scientific and te
nological importance@1,2#. Until recently, however, analyse
have been confined to isotropic dielectric and/or magn
composites. Furthermore, the limitations of most homoge
zation approaches—exemplified by the Maxwell Garnett a
the Bruggeman formalisms, and their variants—arise fr
their simplistic treatments of the distributional statistics
the constituent phases.

A notable exception is the so-called strong-proper
fluctuation theory~SPFT!, which provides a method to de
termine both local and nonlocal constitutive properties
composites while allowing for a sophisticated handling
the distributional statistics@3#. In the SPFT a preliminary
ansatz is made about the nature of the composite; the an
is used to perturbatively calculate corrections in orders
statistical cumulants of the spatial distribution of the co
stituent phases. The appeal of SPFT lies in its genera
even the simplest SPFT result represents an advance
over the Bruggeman formalism. The theory has already b
developed for isotropic dielectric@3#, anisotropic dielectric

1FAX: 144 141 330 4111. Email address: tm@maths.gla.ac.u
2FAX: 11 814 863 7967. Email address: axl4@psu.edu
3FAX: 144 141 330 4111. Email address: wsw@maths.gla.ac
PRE 621063-651X/2000/62~5!/6052~13!/$15.00
-
-
-
h
s
-
nd
h-

ic
i-
d

f

-

f
f

atz
f

-
y:
ent
en

@4#, as well as chiral-in-chiral composites@5#. Additionally,
the SPFT is not restricted only to particulate composites

During the past 15 years, there has been an explosio
the literature on bianisotropic materials, both on theoreti
and experimental aspects@6–9#. Bianisotropic materials are
characterized by three types of constitutive properties:
electric, magnetic, and magnetoelectric. Composite bian
tropic materials have been treated by the Maxwell Garn
and the Bruggeman formalisms@10#, but not yet by the
SPFT. The chief difficulty in the application of SPFT aris
from the source-region singularity of the corresponding d
adic Green function which can result in the generation
secular terms~i.e., terms resulting in divergence! in the per-
turbation expansion of the electromagnetic-field equati
@11,12#. However, Michel and Weiglhofer@13# recently de-
veloped a treatment of this singularity in bianisotropic me
ums, thereby enabling the SPFT formulation f
bianisotropic-in-bianisotropic composites. Accordingly, w
are initiating a research program in this direction, this pa
being the first of a series.

The objectives of the present study are twofold. The fi
is to generalize the SPFT to bianisotropic composites. In
doing we follow closely the argumentation of Michel an
Lakhtakia @5# for isotropic chiral composites. Allowance i
made for a nonisotropic distribution of constituent mater
phases, such as may arise if the constituent phases com
ellipsoidal particles. The second objective is to impleme
the developed equations in the case of reciprocal biaxial
anisotropic composites.

The layout of this paper is as follows: Following a gene
presentation of the statistical parameters used to describ
anisotropic composites, we introduce the notion of abianiso-
tropic comparison medium~BCM!. The BCM is a local ho-
mogeneous medium which plays a central role in SPFT.k
6052 ©2000 The American Physical Society
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develop theDyson equationfor the average electromagnet
field in a two-phase composite and utilize the BCM in
lowest-order estimate of the effective medium electrom
netic properties. This lowest-order estimate—which
equivalent to that provided by the Bruggeman formalism
bianisotropic composites—serves as our initial ansatz in
iterative process resulting in the SPFT estimate of cons
tive properties. The first-order correction, known as thebilo-
cal approximation, is then presented. Next we derive th
relation between the constitutive dyadics of the exact eff
tive medium~which includes all correlation effects! and the
so-calledmass operatorof the Dyson equation. We the
consider the case where principal electromagnetic wa
lengths are long compared with the correlation length, a
the composite medium can therefore be regarded as ho
geneous. Finally we implement the SPFT, in the lon
wavelength and bilocal approximations, for the case of rec
rocal bianisotropic composites. Both chiral and biax
composites are considered in the illustrative numerical
sults presented here, and a detailed numerical stud
planned to appear later@14#. The SPFT estimates of the con
stitutive properties of all composites considered are co
pared and contrasted with those provided by the Brugge
and the incremental Maxwell Garnett formalisms@15,16#.

We adopt the following notation: three-vectors~six-
vectors! are in normal~bold! face and underlined, wherea
333 dyadics (636 dyadics! are in normal~bold! face and
underlined twice. The adjoint, determinant, inverse, and tr
of the dyadicQ

=
are denoted by adj(Q

=
), detQ

=
, Q
=

21, and
tr Q

=
, respectively.

II. GENERAL

We start with the frequency-dependent version of
source-free Maxwell curl postulates,

¹I 3EI ~rI !5 ivBI ~rI !, ~1!

¹I 3HI ~rI !52 ivDI ~rI !, ~2!

where we have assumed an exp(2ivt) time dependence with
v as the angular frequency. The constitutive relations o
nonhomogeneous bianisotropic medium are given as

DI ~rI !5e
=
~rI !•EI ~rI !1j

=
~rI !•HI ~rI !, ~3!

BI ~rI !5z
=
~rI !•EI ~rI !1m

=
~rI !•HI ~rI !, ~4!

wheree
=
(rI ) and m

=
(rI ) are the permittivity and permeabilit

dyadics, respectively, andj
=
(rI ) and z

=
(rI ) are the magneto

electric dyadics. Equations~1!–~4! can be represented com
pactly in six-vector/dyadic notation as

L
=
~¹!•FO ~rI !52 ivK

=
~rI !•FO ~rI !, ~5!

CO ~rI !5K
=
~rI !•FO ~rI !, ~6!

where
-
s
r
e
-

c-

e-
d
o-
-
-

l
-
is

-
an

e

e

a

L
=
~¹!5F 0

=
¹3I

=

2¹3I
=

0
=

G , K
=
~rI !5F e

=
~rI ! j

=
~rI !,

z
=
~rI ! m

=
~rI !

G , ~7!

and

FO ~rI !5F EI ~rI !

HI ~rI !G , CO ~rI !5FDI ~rI !

BI ~rI ! G , ~8!

with I
=

denoting the 333 unit dyadic.
We consider a two-phase composite consisting of two

anisotropic constituent phases mixed at the microscopic,
not molecular, length scale. Let all space be divided i
disjoint partsVa andVb containing the phases labeleda and
b, respectively. ForrIPVp (p5a,b), we write

e
=
~rI !5e

= p , j
=
~rI !5j

= p , z
=
~rI !5z

= p , m
=

~rI !5m
= p , rIPVp ,

~9!

so that

K
=
~rI !5K

= p , rIPVp . ~10!

We introduce two characteristic functionsup as

up~rI !5H 1, rIPVp

0, rI¹Vp ,
~11!

thus

ua~rI !1ub~rI !51, rIPVaøVb . ~12!

Any of the rI -dependent constitutive quantities can be e
pressedeverywherein terms of the characteristic function
up(r ); for example,

K
=
~rI !5K

= aua~rI !1K
= bub~rI !, rIPVaøVb . ~13!

Throughout this work we use the concept of ensem
averaging, i.e., averaging over a large number of differ
samples of the two-phase composite, and we denote
semble averages bŷ&. The complete statistical informatio
about the composite is contained inmomentsof the charac-
teristic functionua(rI ). The nth moment is the expectatio
value ^ua(rI1)¯ua(rIn)& and represents the probability fo
r 1 ,...,rIn being insideVa ; equivalently, we may useb in-
stead ofa due to Eq.~12!. We assume that, on average, t
composite is homogeneous.

The first moment for the phasea is its volume fraction

f a5^ua~rI !&, ~14!

which is constant with respect torI . The same holds for the
volume fractionf b5^ub(rI )& of phaseb. Obviously, f a1 f b

51.
The two volume fractionsf a and f b contain only minimal

geometrical information about the composite. A more d
tailed description is provided by the second mome
^ua(rI )ua(rI8)& of ua(rI ), or, equivalently, by the secondcu-
mulantor covariance
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t~RI !5^ua~rI !ua~rI8!&2^ua~rI !&^ua~rI8!&5^ub~rI !ub~rI8!&

2^ub~rI !&^ub~rI8!&, ~15!

whereRI 5rI2rI8. If the composite is disordered, it is usual
possible to define a correlation lengthL such thatt(RI ) is
negligible for uRI u@L, i.e., on scales larger thanL, the com-
posite may be considered homogeneous.

The formulation of SPFT requires the introduction of
bianisotropic comparison medium, which allows an appro
mate treatment of electromagnetic fields inVaøVb . The
constitutive dyadicse

=BCM , j
=BCM , z

=BCM , and m
= BCM of this

medium are notrI dependent; hence it is not only homog
neous but also spatiallylocal. The BCM will later on serve
as the preliminary ansatz for the SPFT and will be shown
Sec. III to actually be in agreement with the Bruggem
formalism. Electromagnetic wave propagation in the BCM
described by

L
=
~¹!•FO BCM~rI !52 ivK

= BCM•FO BCM~rI !, ~16!

where

K
= BCM5F e

=BCM j
=BCM

z
=BCM m

= BCM
G , FO BCM~rI !5F EI BCM~rI !

HI BCM~rI !G ,
~17!

with FO BCM(rI ) denoting the local spatially averaged electr
magnetic field. We introduce the 636 dyadic Green function
G
= BCM(rI2rI8) which satisfies the differential equation

@L
=
~¹!1 ivK

= BCM#•G
= BCM~rI2rI8!5I

=
d~rI2rI8!, ~18!

whereI
=

is the unit 636 dyadic andd(rI2rI8) is the Diracd
function. The singular behavior ofG

= BCM(rI2rI8) in the limit
rI→rI8 can be accommodated through

G
= BCM~RI !5PG

= BCM~RI !1D
=
d~RI !, ~19!

where P is the principal value operation excluding a cert
infinitesimal region centered onRI 50I and D

=
is the corre-

sponding depolarization dyadic of the specified region in
BCM @13#. The dyadicD

=
is fixed at a later stage in th

analysis.

III. DYSON EQUATION

With the foregoing generalities established, we now p
ceed to derive the central equation in the SPFT: the Dy
equation. From Eq.~5! we obtain

@L
=
~¹!1 ivK

= BCM#•FO ~rI !52 iv@K
=
~rI !2K

= BCM#•FO ~rI !.
~20!

By virtue of Eqs.~16! and~18!, the solution of Eq.~20! may
be represented by the followingFredholm equation of the
third kind @17#:
i-

n
n
s

-

n

e

-
n

FO ~rI !5FO BCM~rI !2 ivE G
= BCM~rI2rI8!•@K

=
~rI8!

2K
= BCM#•FO ~rI8!d3rI8. ~21!

Clearly, FO BCM(rI ) now serves as a solution of the homog
neous version of~20!, i.e., FO BCM(rI ) is the complementary
function. Here and hereafter, integration is performed with
infinite limits if the domain of integration is not indicate
explicitly.

Equation ~21! cannot be evaluated perturbatively whe
the constitutive parameters inK

=
(rI ) fluctuate strongly. This is

due to secular terms produced by the singularities of
dyadic Green functionG

= BCM(RI ) in the source region. The
singularities can be removed from the right side of Eq.~21!
by taking advantage of Eq.~19!; thus,

FO ~rI !5FO BCM~rI !2 ivPE G
= BCM~rI2rI8!•@K

=
~rI8!

2K
= BCM#•FO ~rI8!d3rI82 ivD

=
•@K

=
~rI !2K

= BCM#•FO ~rI !.

~22!

Next, after introducing theexciting field

FO exc~rI !5$I
=
1 ivD

=
•@K

=
~rI !2K

= BCM#%•FO ~rI !, ~23!

we rewrite the integral equation~22! as

FO exc~rI !5FO BCM~rI !1PE G
= BCM~rI2rI8!•x

=

3~rI8!•FO exc~rI8!•FO exc~rI8!d3rI8, ~24!

with a generalizedpolarizability dyadicdefined as

x
=
~rI !52 iv@K

=
~rI !2K

= BCM#•$I
=
1 ivD

=
•@K

=
~rI !2K

= BCM#%21.
~25!

The next steps are canonical: we calculate the ensem
averagê FO exc(rI )& of the exciting field by ensemble averag
ing both sides of the integral equation~24!. For this purpose,
we formally represent the equation in terms of a Born se
and average each term of the series separately@12#. We fix
the lowest-order estimate of the effective-medium proper
by demanding that

^x
=
~rI !&50

=
, ~26!

which condition removes the secular terms from the Bo
series expansion@11#. Inserting Eqs.~13! and ~14! into Eq.
~26!, we obtain

~K
= a2K

= BCM!•@ I
=
1 ivD

=
•~K

= a2K
= BCM!#21f a

1~K
= b2K

= BCM!•@ I
=
1 ivD

=
•~K

= b2K
= BCM!#21f b

50
=
, ~27!
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which is the Bruggeman equation for bianisotropic composites@18#. Thus, we see that electromagnetic wave propagatio
VaøVb can indeed be approximately described by means of the BCM.

Equation~24! may now be ensemble averaged using the Feynman-diagrammatic technique introduced by Frisch@12# to
arrive at the Dyson equation

^FO exc~rI !&5FO BCM~rI !1PE G
= BCM~rI2rI8!• H E S

=
~rI82rI9!•^FO exc~rI9!&d3rI9J d3rI8, ~28!
m

e
le
e

to
e
ve

r

ent
where the quantityS
=
(rI82rI9) is called themass operator.

The mass operator consists of an infinite series, each ter
which contains products over PG

= BCM(rI82rI9) and the statis-
tical cumulants ofx

=
(rI8). In practice, approximations to th

Dyson equation are unavoidable. They are usually imp
mented by truncating the series expansion of the mass op
tor S

=
. To the lowest~i.e., second! order inx

=
we have

S
=
~rI2rI8!5^x

=
~rI !•PG

= BCM~rI2rI8!•x
=
~rI8!&, ~29!

which is called thebilocal approximation@19#. Since

x
=
~rI !5x

= aua~rI !1x
= bub~rI !, ~30!

Eq. ~29! leads to

S
=
~RI !5t~RI !~x

= a2x
= b!•PG

= BCM~RI !•~x
= a2x

= b! ~31!

after some algebraic manipulations exploiting Eq.~26!, the
covariancet(RI ) having been introduced in Eq.~15!.

IV. NONLOCAL EFFECTIVE MEDIUM

In order to complete the SPFT formulation, we go on
determine the relation between the ensemble-averaged fi
^CO (rI )& and^FO (rI )&. The ensemble average of the constituti
relation ~6! may be stated as

^CO ~rI !&5^K
=
~rI !•FO ~rI !&. ~32!

The relationship between̂K
=
(rI )•FO (rI )& and ^FO (rI )& must be

linear, because the composite is linear. Furthermore, this
lation has to be of the form of a convolution integral
of
of

-
ra-

lds

e-

^K
=
~rI !•FO ~rI !&5E K

= Dy~RI !•^FO ~rI2RI !&d3RI ~33!

due to translational invariance. The dyadicK
= Dy(RI ) contains

the constitutive properties of the effective medium consist
with the SPFT. In general,K

= Dy(RI ) is spatially nonlocaland,
therefore, signifies spatial dispersion.

Equations~23! and ~25! yield

x
=
~rI !•FO exc~rI !52 iv@K

=
~rI !2K

= BCM#•FO ~rI !, ~34!

whence

^x
=
~rI !•FO exc~rI !&52 iv@^K

=
~rI !•FO ~rI !&2K

= BCM•^FO ~rI !&#.
~35!

The ensemble-averaged counterpart of Eq.~23! is given by

^FO exc~rI !&5~ I
=
2 ivD

=
•K
= BCM!•^FO ~rI !&1 ivD

=
•^K

=
~rI !•FO ~rI !&.

~36!

Furthermore, on taking the ensemble average of Eq.~24! and
comparing it with the Dyson equation~28!, we get

^x
=
~rI !•FO exc~rI !&5E S

=
~rI2rI8!•^FO exc~rI8!&d3rI8. ~37!

Finally, after rearranging Eqs.~35!–~37! and inserting the
ensemble-averaged constitutive relation~32! in Eq. ~33!, we
obtain
^CO ~rI !&1E S
=
~rI2rI8!•D

=
•^CO ~rI8!&d3rI85K

= BCM•^FO ~rI !&2
1

iv E S
=
~rI2rI8!•~ I

=
2 ivD

=
•K
= BCM!•^FO ~rI8!&d3rI8. ~38!
This integral equation gives a linear relation between^CO (rI )&
and^FO (rI )&. Its solution for^CO (rI )& enables the emergence
the desired constitutive dyadicK

= Dy(RI ) of the nonlocal effec-
tive medium.

Since the integral equation~38! is of the convolution type,
it can be solved by the Fourier-transform technique@20#.
Therefore, we define the following quantities:
FÕ ~qI !5E ^FO ~rI !&exp~2 iqI •rI !d3rI , ~39!

CÕ ~qI !5E ^CO ~rI !&exp~2 iqI •rI !d3rI , ~40!
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S
=̃
~qI !5E S

=
~rI !exp~2 iqI •rI !d3rI , ~41!

K
=̃ Dy~qI !5E K

= Dy~rI !exp~2 iqI •rI !d3rI , ~42!

qI being the three-dimensional spatial frequency vector. T
Fourier-transformed version of Eq.~38! reads as follows:

@ I
=
1S

=̃
~qI !•D

=
#•CÕ ~qI !

5FK
= BCM2

1

iv
S
=̃

~qI !•~ I
=
2 ivD

=
•K
= BCM!G•FÕ ~qI !.

~43!

But CÕ (qI )5K
=̃ Dy(qI )•FÕ (qI ) by virtue of the foregoing rela-

tions; hence, Eq.~43! yields

K
=̃ Dy~qI !5K

= BCM2
1

iv
@ I
=
1S

=̃
~qI !•D

=
#21

•S
=̃

~qI !. ~44!

The constitutive dyadicK
= Dy(rI ) then emerges as the invers

Fourier integral

K
= Dy~rI !5

1

~2p!3 E K
=̃ Dy~qI !exp~ iqI •rI !d3qI . ~45!

The Dyson equation~28! involves the ensemble-average
exciting field^FO exc(rI )&. In order to determine the ensembl
averaged electromagnetic field^FO (rI )& itself, we take the en-
semble average of Eq.~5! and use Eq.~33! to get

L
=
~¹!•^FO ~rI !&1 ivE K

= Dy~RI !•^FO ~rI2RI !&d3RI 50O . ~46!

The Fourier-transformed version of this equation is

F S 0
=

iqI 3I
=

2 iqI 3I
=

0
=

D 1 ivK
=̃ Dy~qI !G•FÕ ~qI !50O , ~47!

from which FO
˜ (qI ) may be extracted by standard dyadic tec

niques @21#. Thus, depending on a specific choice for t
evaluation ofD

=
, the SPFT homogenization formulation

now complete in the bilocal approximation.

V. LOCAL EFFECTIVE MEDIUM

When the principal electromagnetic wavelengths
much larger than the correlation lengthL, we can achieve a
macroscopicdescription of the composite as a homogene
local continuum@1#. Although it has a different provenanc
this description is conceptually no different from that ava
able from the Maxwell Garnett and the Bruggeman form
isms: the mixture is considered homogeneous in the
called long-wavelength approximation.

Suppose the long-wavelength approximation is appro
ate. Let us then introduce the macroscopic fieldsCO macro(rI )
andFO macro(rI ) by spatially averaging the microscopic field

^CO (rI )& and ^FO (rI )& over a regionV; thus,
e

-

e

s

-
o-

i-

CO macro~rI !5
1

V E
V
^CO ~rI1rI9!&d3rI9, ~48!

FO macro~rI !5
1

V E
V
^FO ~rI1rI9!&d3rI9. ~49!

The minimum linear cross-sectional extent of the regionV
must be larger thanL, but smaller than the maximum prin
cipal electromagnetic wavelength. Inserting Eqs.~32! and
~33! into Eq. ~48!, we find

CO macro~rI !5
1

V E
V
S E K

= Dy~RI !•^FO ~rI1rI92RI !&d3RI Dd3rI9

5E K
= Dy~RI !•FO macro~rI2RI !d3RI

'E K
= Dy~RI !•FO macro~rI !d3RI . ~50!

This leads to the macroscopic constitutive relation

CO macro~rI !5K
=̃ Dy~0I !•FO macro~rI !. ~51!

The constitutive properties of a two-phase bianisotro
composite in the long-wavelength approximation are th
specified by the dyadicK

=̃ Dy(0I ). Evidently from Eqs.~44!,

~41!, and ~31!, the key step in estimatingK
=̃ Dy(0I ) is the

evaluation of

S
=̃
~0I !5E S

=
~RI !d3RI

5~x
= a2x

= b!•FPE t~RI !G
= BCM~RI !d3RI G•~x

= a2x
= b!.

~52!

We note that the presence oft(RI ) within the above
principal-value integration is justified, becauset(0I )5 f a(1
2 f a)5 f b(12 f b) cannot be null-valued for nontrivial prob
lems.

Although an explicit expression forG
= BCM(RI ) cannot be

written down, its Fourier transform

G
=̃ BCM~qI !5E G

= BCM~RI !exp~2 iqI •RI !d3RI ~53!

can be obtained by taking the Fourier transforms of b
sides of Eq.~18!. Thus,

G
=̃ BCM~qI !5

1

iv

adj@A=̃ BCM~qI !#

detA
=̃ BCM~qI !

, ~54!

where

A
=̃ BCM~qI !5F 0

=
~qI /v!3I

=

2~qI /v!3I
=

0
=

G1K
= BCM . ~55!

For later convenience, we note that Eq.~55! can be manipu-
lated to deliverG

=̃ BCM(qI ) in the following general form:
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G
=̃ BCM~qI !5

1

iv S T= 4~qÎ !~q/v!41T= 3~qÎ !~q/v!31T= 2~qÎ !~q/v!21T= 1~qÎ !~q/v!1T= 0~qÎ !

t4~qÎ !~q/v!41t3~qÎ !~q/v!31t2~qÎ !~q/v!21t1~qÎ !~q/v!1t0~qÎ !
D . ~56!

Here,T
= n(qÎ ) are 636 dyadic functions, andtn(qÎ ) are scalar functions (n50,1,2,3,4) of the unit spatial frequency vectorqÎ .

Furthermore,G
=̃ BCM(qÎ ) may be partitioned as@13,22#

G
=̃ BCM~qI !5G

=̃ BCM
0 ~qI !1G

=̃ BCM
` ~qÎ !, ~57!

where

G
=̃ BCM

` ~qÎ !5 lim
q→`

G
=̃ BCM~qI !5

1

iv

T
= 4~qÎ !

t4~qÎ !
~58!

and ~suppressing the dependences ofT
= n and tn on qÎ )

G
=̃ BCM

0 ~qI !5
~ t4T= 32t3T= 4!~q/v!31~ t4T= 22t2T= 4!~q/v!21~ t4T= 12t1T= 4!~q/v!1~ t4T= 02t0T= 4!

ivt4@ t4~q/v!41t3~q/v!31t2~q/v!21t1~q/v!1t0#
. ~59!
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Explicit coordinate-free representations ofG
=̃ BCM(qI ) are al-

ready available for chiral@5#, general dielectric@22#, and
dielectric-magnetic@23# mediums; we consider the structu
of G

=̃ BCM(qI ) for reciprocal biaxial bianisotropic mediums i
Sec. VI.

In order to advance our analysis, we have to specify
depolarization dyadicD

=
. That is best done by considerin

the topology of the composite, but unique answers are
possible in general@24#. Let Vh

e(Vh
s ) be an ellipsoidal

~spherical! region, centered at the origin of our coordina
system, of size determined by the linear measureh. We
imagine that both constituent phases are distributed as
formal ellipsoids of surfaces parametrized by

RI e~u,f!5hU
=
•RÎ ~u,f!, ~60!

where RÎ (u,f) is the radial unit vector depending on th
spherical polar coordinatesu andf, andU

=
is a real symmet-

ric dyadic with positive eigenvaluesa, b, and c. We mean
here that both constituent phases are present with a dist
tion of h such that there is no vacant space in the compo
medium. The same fractal-like topology is inherent in t
Maxwell Garnett and Bruggeman formalisms, although it
rarely mentioned. Having selectedU

=
, we determineD

=
as

@13#

D
=

5 lim
d→0

E
Vd

e
G
= BCM~RI !d3RI 5abclim

d→0
E

Vd
s
G
= BCM~U

=
•HI !d3HI ,

~61!

where the spherical regionVd
s has radius d, and HI

5U
=

21
•RI . We choose the covariancet(RI ) to reflect the el-

lipsoidal topology relating toD
=

. Accordingly,
e

ot

n-

u-
te

s

t~RI !5H f af b , RI PVL
e

0, RI ¹VL
e ,

~62!

whereL is the correlation length. Covariance functions in t
form of step functions, of both isotropic@25,26# and aniso-
tropic @3# types, have been considered in previous SP
analyses.

Let VL2d
e 5VL

e2Vd
e and VL2d

s 5VL
s2Vd

s . The principal-
value integration in Eq.~52! now proceeds through the intro
duction of the Fourier transform ofG

= BCM(RI ), facilitated by
the changes of variableHI 5U

=

21
•RI andvI 5U

=
•wI ~whereHI ,

vI , andwI are dummy vector variables!, as follows:

~2p!3

f af b
PE t~RI !G

= BCM~RI !d3RI

5 lim
d→0

E
V L2d

e F E
wI
G
=̃ BCM~wI !exp~ iwI •RI !d3wI Gd3RI

5 lim
d→0

E
vI
G
=̃ BCM~U

=

21
•vI !F E

VL2d
e

exp~ ivI •HI !d3HI Gd3vI

5E
vI
G
=̃ BCM~U

=

21
•vI !F4p

v2 S sinvL

v
2L cosvL D Gd3vI

2 lim
d→0

E
vI
G
=̃ BCM~U

=

21
•vI !F4p

v2 S sinvd

v

2d cosvd D Gd3vI . ~63!

Now, from @22# we have
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D
=

5
1

~2p!3 lim
d→0

E
vI
G
=̃ BCM~U

=

21
•vI !

3F4p

v2 S sinvd

v
2d cosvd D Gd3vI ~64!

5
1

~2p!3 E
vI
G
=̃ BCM

` ~U
=

21
•vI !

3F4p

v2 S sinvE

v
2E cosvED Gd3vI ~65!

for E.0. Thus, combining Eqs.~63!–~65! along with Eq.
~57!, we find

PE t~RI !G
= BCM~RI !d3RI

5
f af b

2p2 E
fv50

2p E
uv50

p E
v50

`

G
=̃ BCM

0 ~U
=

21
•vI !

3S sinvL

v
2L cosvL D sinuvdvduvdfv .

~66!

Although very cumbersome for reproduction here,
straightforward analysis shows that the determinant
A
=̃ BCM(wI ) is quadratic inw2 for reciprocal bianisotropic me
diums ~i.e., e

=
5e
=

T, j
=
52z

=

T, and m
=

5m
=

T) and general
dielectric–magnetic mediums~i.e., j

=
5z
=
50
=
). Consequently,

provided the numerator ofG
=̃ BCM

0 (wI ) is an even function of
w, the integration in Eq.~66! with respect tov may be evalu-
ated by conventional calculus of residues for such mediu
However, for the general bianisotropic case, the determin
of A

=̃ BCM(wI ) is not an even function ofw and alternative
methods may be required to compute the integral~66!.

In addition to being central to the calculation ofK
=̃ Dy(0I ),

the integral~66! provides a correction to the depolarizatio
dyadicD

=
when the exclusion regionVL

e is of finite size. This

is also reflected in the fact thatK
=̃ Dy(0I ) represents a modifi

cation ofK
= BCM ; indeed,

K
=̃ Dy~0I !5K

= BCM2
1

iv
@ I
=
1S

=̃
~0I !•D

=
#21

•S
=̃
~0I !. ~67!

This key equation is the focus of the remainder of this pap

VI. IMPLEMENTATION OF THE LONG-WAVELENGTH
APPROXIMATION

In order to illustrate the implementation of the lon
wavelength approximation in the bilocal SPFT framewo
we consider a two-phase composite for which both const
ent phases belong to the general class of reciprocal bia
bianisotropic mediums. The constitutive dyadicse

= p , j
= p5

2z
= p , andm

= p of the constituent phases are taken to have
same eigenvectors, i.e.,
f

s.
nt

r.

,
-

ial

e

e
= p5F ex

p 0 0

0 ey
p 0

0 0 ez
p
G , j

= p5F jx
p 0 0

0 jy
p 0

0 0 jz
p
G52z

= p ,

m
= p5F mx

p 0 0

0 my
p 0

0 0 mz
p
G , ~68!

where all diagonal entries are complex valued. Thorough
investigations of the correct formulation of constitutive re
tions for biaxial mediums were recently provided@27,28#.
For simplicity, we choose a spherical particulate topology
the constituent mediums, i.e.,U

=
5I
=
. Analytical as well as

numerical results for ellipsoidal particulate topology will b
presented in detail in future publications.

As emphasized in Sec. V, the crucial step in applying
long-wavelength approximation is the calculation of the v
ume integral~66!. We now proceed to evaluate the integr
tion with respect tov in Eq. ~66! by means of residue calcu
lus, exploiting symmetries in the integrand along the w
We begin by considering the singularities ofG

=̃ BCM
0 (vI ), i.e.,

the zeros oft4(vÎ )detA
=̃ BCM(vI ). Taking the determinant o

Eq. ~55!, we find

detA
=̃ BCM~vI !5t4~vÎ !~v/v!41t2~vÎ !~v/v!21t0 , ~69!

t4~vÎ !5~vÎ •e
=BCM•v

=̂
!~vÎ •m

= BCM•vÎ !1~vÎ •j
=BCM•vÎ !

3~vÎ •j
=BCM•vÎ !, ~70!

t2~vÎ !5tr$@vÎ 3adj~e
=BCM!#•@vÎ 3adj~m

= BCM!#

2@vÎ 3adj~j
=BCM!#•@vÎ 3adj~j

=BCM!#%

1vÎ •@e
=BCM•F

=
~j
=BCM ,j

=BCM!•m
= BCM

2j
=BCM•F

=
~e
=BCM ,m

= BCM!•j
=BCM#•vÎ , ~71!

t05det~V
=

!, ~72!

F
=
~m
=

,n
=
!5@~ tr m

=
!I
=
2m

=
#•@~ tr n

=
!I
=
2n
=
#2@~ tr m

=
•n
=
!I
=
2m

=
•n
=
#,

~73!

V
=

5e
=BCM•m

= BCM1j
=BCM•j

=BCM , ~74!

wherem
=

andn
=

are arbitrary 333 dyadics. The issues of th

location and nature of the singularities ofG
=̃ BCM

0 (vI ) are
rather involved in the most general setting; see Cottis
Kondylis @29# for a detailed discussion in the case of
anisotropic dielectric medium. We refrain from consideri
pathological special cases here: that is, for all values ofvÎ we

assume that ~i! t4(vÎ )Þ0, and ~ii ! the v2 roots of

detA
=̃ BCM(vI ) are distinct, i.e.,k1Þk2 , where
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k65v2S 2t2~vÎ !6At2
2~vÎ !24t4~vÎ !t0

2t4~vÎ !
D . ~75!

We note that the possibilityk15k2 is most likely to arise
when we have isotropic constituent phases combined w
spherical topology, but SPFT in this instance has b
treated by Michel and Lakhtakia@5#.

With the foregoing simplifications in place, we find th
the singularities ofG

=̃ BCM
0 (vI ) occur as simple poles at

v5Ak1,2Ak1,Ak2,2Ak2. ~76!

Therefore, for definiteness, we take bothAk1 andAk2 to lie
in the upper half of the complexv plane~inclusive of the real
axis!.

We next turn our attention to symmetries ofG
=̃ BCM

0 (vI ).
For reciprocal biaxial bianisotropic mediums, the numera
of G

=̃ BCM
0 (vI ) is a dyadic function that is cubic inv. However,

by a straightforward—albeit lengthy—utilization of Eq.~55!,
e

its
th
n

r

we find that the odd terms in the numerator ofG
=̃ BCM

0 (vI )
integrate to zero with respect to the angular variables in
~66!. The remaining even termsT

= n(vÎ ) (n50,2,4) in the no-
tation of Eq.~59! are conveniently expressed in terms of fo
333 dyadicsT

= n
l(vÎ ) (l5ee,em,me,mm) as follows:

T
= n~vÎ !5F T

= n
ee~vÎ ! T

= n
em~vÎ !

T
= n

me~vÎ ! T
= n

mm~vÎ !
G , n50,2,4. ~77!

By symmetry considerations, only the diagonal entries ofT
= n

l

give rise to nonzero integrals in Eq.~66!. Thus, in evaluating
Eq. ~66!, we can replaceG

=̃ BCM
0 (vI ) by

1

iv S a
=
~vÎ !~v/v!21b

=
~vÎ !

t4~vÎ !~v/v!41t2~vÎ !~v/v!21t0
D , ~78!

where we have
@a
=
~vÎ !# l j 5H @T

= 2~vÎ !# l j 2
t2~vÎ !

t4~vÎ !
@T
= 4~vÎ !# l j , l ~mod3![ j ~mod3!

0, l ~mod3!Ó j ~mod3!

~79!

and

@b
=
~vÎ !# l j 5H @T

= 0~vÎ !# l j 2
t0

t4~vÎ !
@T
= 4~vÎ !# l j , l ~mod3![ j ~mod3!

0, l ~mod3!Ó j ~mod3!

~80!
ion
for l , j 51,2, . . . ,6, and@T
= n# l j denotes thel j th entry of the

636 dyadicT
= n .

The dyadicsT
= 0(vÎ ) andT

= 4(vÎ ) are readily extracted from

the adjoint ofA
=̃ BCM(vI ). They are given in coordinate-fre

form as

T
= 0~ v̂I !5Fm

= BCM•adj~V
=

! 2j
=BCM•adj~V

=
!

j
=BCM•adj~V

=
! e

=BCM•adj~V
=

!
G ~81!

and

T
= 4~ v̂I !5F ~ v̂I •m

= BCM• v̂I !v̂I v̂I 2~ v̂I •j
=BCM• v̂I !v̂I v̂I

~ v̂I •j
=BCM• v̂I !v̂I v̂I ~ v̂I •e

=BCM• v̂I !v̂I v̂I
G . ~82!

The dyadicT
= 2(vÎ ) has a more complex structure, but only

diagonal components are needed to evaluate Eq.~66!,
@T
= 2

ee~ v̂I !# l l 5†$2e
=
•adj~m

=
!2tr@e

=
• adj~m

=
!#I
=
1m

=
•F
=
~j
=
,j
=
!%• v̂I v̂I

2F
=
~m
=

,j
=
•j
=
• v̂I v̂I !2~ v̂I •e

=
• v̂I !adj~m

=
!‡l l ,

l 51,2,3 ~83!

@T
= 2

em~ v̂I !# l l 5†@F
=
~e
=
,m
=

!•j
=
2det~j

=
!I
=
#• v̂I v̂I 2F

=
~e
=
,m
=
• v̂I v̂I ,j

=
!

2~ v̂I •j
=
• v̂I !adj~j

=
!‡l l , l 51,2,3 ~84!

@T
= 2

me~ v̂I !# l l 52†@F
=
~e
=
,m
=

!•j
=
2det~j

=
!I
=
#• v̂I v̂I 2F

=
~e
=
•m
=
• v̂I v̂I ,j

=
!

2~ v̂I •j
=
• v̂I !adj~j

=
!‡l l , l 51,2,3 ~85!

@T
= 2

mm~ v̂I !# l l 5†$2 adj~e
=
!•m

=
2tr@adj~e

=
!•m

=
#I
=
1e
=
•F
=
~j
=
,j
=
!%• v̂I v̂I

2F
=
~e
=
,j
=
•j
=
• v̂I v̂I !2~ v̂I •m

=
• v̂I !adj~e

=
!‡l l ,

l 51,2,3. ~86!

Residue calculus thereby results in the following evaluat
of the integral with respect tov in Eq. ~66!:
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E
f50

2p E
u50

p E
v50

`

G̃
= BCM

0 ~vI !S sinvL

v
2L cosvL D sinu dv du df

5
pv3

2i
E

f50

2p E
u50

p 1

t4~ v̂I ! H 1

k12k2
FeiLv~12 iLv !S a

=
~ v̂I !

v2 1
b
=
~ v̂I !

v2 D G
v5Ak2

v5Ak1

1
b
=
~ v̂I !

k1k2
J sinu du df. ~87!

Thus, Eq.~66! reduces to a surface integral which, in general, must be handled numerically.
An expression equivalent to Eq.~87! can be developed without explicit reference to the componentsT

= n(vÎ ) of the adjoint

dyadic ofÃ
= BCM(vI ). This derivation—though less instructive—leads to a surface integral more amenable to numerical

ation than that of Eq.~87!. Introducing

N
=
~vI !5

adj@Ã
= BCM~vI !#2det@Ã

= BCM~vI !#G̃
= BCM

` ~ v̂I !

~ v̂I •e
=BCM• v̂I !~ v̂I •m

= BCM• v̂I !1~ v̂I •j
=BCM• v̂I !~ v̂I •j

=BCM• v̂I !
, ~88!

we find that

E
f50

2p E
u50

p E
v50

`

G̃
= BCM

0 ~vI !S sinvL

v
2L cosvL D sinu dv du df

5
pv3

4i
E

f50

2p E
u50

p H 1

k12k2
FeiLv

v2 ~12 iLv !@N
=
~vI !1N

=
~2vI !#G

v5Ak2

v5Ak1

1
2N
=
~0I !

k1k2
J sinu du df. ~89!

The specification of the bilocal SPFT equations in the long-wavelength approximation for reciprocal biaxial bianis
composites with spherical topology is completed by the following expression for the corresponding depolarization dyad@13#:

D
=

5
1

4p iv E
f50

2p E
u50

p 1

t4~ v̂I ! F ~ v̂I •m
= BCM• v̂I !v̂I v̂I 2~ v̂I •j

=BCM• v̂I !v̂I v̂I
~ v̂I •j

=BCM• v̂I !v̂I v̂I ~ v̂I •e
=BCM• v̂I !v̂I v̂I

Gsinu du df. ~90!
th

s
e

a

the

di-

ure
o

ly.
ar-
on-
neral
re-

of
Thus, the constitutive dyadicK̃
= Dy(0I ) of the local effective

medium is fully specified through Eqs.~67!, ~52!, ~87!, ~89!,
and ~90!.

Finally, in this section we consider the long-waveleng
regime uLAk6u!1. Retaining terms only ofO(LAk6), we
see that the integrals~87! and~89! become null valued. This
is consistent with the finding reported for chiral medium
that the bilocal-approximated SPFT does not yield a corr
tion to the Bruggeman formalism in the static limit@25#.
However, on retaining terms up toO(L2k6), the eiLv(1
2 iLv) term in the integrand of Eqs.~87! and~89! reduces to
11(Lv)2/2; hence the principal-value integration~66! be-
comes

PE t~RI !G
= BCM~RI !d3RI

5
2 iv f af bL2

8p
E

f50

2p E
u50

p a
=

~ v̂I !

t4~ v̂I !
sinu du df.

~91!

For constituent mediums with real-valued constitutive p
rametersK

= p , the integrand of Eq.~91! is correspondingly
c-

-

real valued. Thus, it is clear from Eqs.~67!, ~52!, ~25!, and
~90! that scattering losses cannot be predicted under
long-wavelength approximation represented by Eq.~91!. A
similar result was reported for SPFT applied to chiral me
ums @25#.

VII. ILLUSTRATIVE NUMERICAL RESULTS

Since a detailed numerical study is the focus of a fut
paper@14#, here we present numerical results for only tw
classes of bianisotropic composites—for illustration on
The first class allows direct comparison of results with e
lier SPFT analyses, namely, the case involving chiral c
stituent phases. The second class comprises the more ge
reciprocal biaxial bianisotropic composites. An angular f
quencyv of 2p31010 rad s21 was used for all calculations
reported here.

A. Chiral constituent phases

To allow direct comparison with the SPFT analyses
Michel and Lakhtakia@5,26#, we choose the phasea to be a
chiral medium described by the constitutive dyadic
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K
= a5F e0eaI

=
iAe0m0jaI

=

2 iAe0m0jaI
=

m0maI
=

G , ~92!

where ea52.304, ja50.724, and ma51.728, with e0
58.854310212F m21 and m054p31027 H m21 being the
permittivity and permeability of free space~i.e., vacuum!,
respectively. The phaseb is simply taken to be free spac
itself. For this isotropic example, the effective medium
characterized by the constitutive dyadic

K̃
= Dy~0I !5F e0eDy0I

=
iAe0m0jDy0I

=

2 iAe0m0jDy0I
=

m0mDy0I
=

G . ~93!

FIG. 1. Effective constitutive scalars of an isotropic chiral co
posite plotted as functions of the correlation lengthL for f a50.3,

0.4, and 0.5. See Sec. VII A forK
= a , K

= b , andK
=̃ Dy(0I ).
The computed values ofeDy0 , jDy0 , andmDy0 are plotted
as functions of correlation lengthL in Fig. 1 for three differ-
ent values of volume fractionf a . All three effective consti-
tutive scalars exhibit a similar dependency onL: their imagi-
nary parts increase sharply from zero as the correla
length increases from zero, whereas their real parts rem
almost constant. Upon converting from the present Telle
notation to the Drude-Born-Federov notation@21#, the com-
puted values of the effective constitutive scalars atf a50.3
are found to be in complete agreement with those val
calculated previously@26#. We note that the derivation pre
sented by Michel and Lakhtakia@5# proceeded in a some
what different manner to the one here, as an explicit exp
sion for the dyadic Green function is available for chir
mediums. Over the range 0.3< f a<0.5, the graphs in Fig. 1
clearly demonstrate that the degree of attenuation~due to
scattering losses! increases as the volumetric proportion
phasea increases. Attenuation is also predicted in theex-
tendedMaxwell Garnett and Bruggeman formalisms@30–
32# when the finite size of inclusions is explicitly considere
but the correlation length is not relevant to those formalism

This issue is pursued further in Fig. 2 where, for a fix
correlation lengthL5531024 m, the constitutive scalars o
the effective medium are plotted as functions off a . The
maximum degree of attenuation, as indicated by the ma
tude of the imaginary parts of the effective constitutive s

-

FIG. 2. ~a! Real and~b! imaginary parts of the effective const
tutive scalars of an isotropic chiral composite plotted as functi
f a for a correlation lengthL5531024 m. See Sec. VII A forK

= a ,

K
= b , andK

=̃ Dy(0I ).
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lars, occurs atf a'0.75. Beyond this value off a , fewer scat-
tering centers are present in a composite. The real part
the effective constitutive scalars follow an almost linear p
gression between the values they must hold take atf a50 and
f a51.

B. Biaxial constituent phases

For phasea we again choose a chiral medium: in th
notation of Eq.~92!, we takeea52, ja51, andma51.5. For
phaseb we select the biaxial dielectric-magnetic mediu
specified by

FIG. 3. Imaginary parts of the effective constitutive scalars o
reciprocal bianisotropic composite plotted as functions of the c
relation lengthL for f a50.3. See Sec. VII B forK

= a , K
= b , and

K
=̃ Dy(0I ).
of
-

K
= b5F e0S 1.5 0 0

0 2.5 0

0 0 3.5
D 0

=

0
= m0S 1.4 0 0

0 2.4 0

0 0 3.4
D G .

~94!

The effective medium arising from these constituent pha
has a reciprocal biaxial bianisotropic structure characteri
by the following constitutive dyadic:

a
r-

FIG. 4. Real parts of~a! jDy0
x , ~b! jDy0

y , and ~c! jDy0
z of a

reciprocal bianisotropic composite plotted as functions of the c
relation lengthL for f a50.3. TheL-independent values compute
using the Bruggeman and incremental Maxwell Garnett formalis

are also presented. See Sec. VII B forK
= a , K

= b , andK
=̃ Dy(0I ).



K̃
= Dy~0I !53 e0S eDy0

x 0 0

0 eDy0
y 0

0 0 eDy0
z

D iAe0m0S jDy0
x 0 0

0 jDy0
y 0

0 0 jDy0
z

D
2 iAe m

jDy0
x 0 0

0 jy 0 m

mDy0
x 0 0

0 my 0 4 . ~95!

PRE 62 6063STRONG-PROPERTY-FLUCTUATION THEORY FOR . . .
0 0S Dy0

0 0 jDy0
z

D 0S Dy0

0 0 mDy0
z

D

rin
-
d
se
e

tiv

d-
re
-
v

re

h
te

ent
gous
lars
y to
de,

fu-

M.
ks
n-
for
gh
The imaginary parts of the constitutive scalars appea
on the right side of Eq.~95! are plotted as functions of cor
relation lengthL in Fig. 3. As in the isotropic case illustrate
in Fig. 1, the magnitude of the imaginary parts increa
sharply with increasingL. The real parts of the constitutiv
scalars are largely insensitive to the correlation length.

Computed values of the real components of the effec
magnetoelectric scalarsjDy0

x , jDy0
y , andjDy0

z are displayed
in Fig. 4 as functions ofL. For comparison, the correspon
ing ~constant! values computed by the Bruggeman and inc
mental Maxwell Garnett~IMG! formalisms are also pre
sented. The IMG results were generated using fi
incremental steps@15,16#. The SPFT-estimated values a
seen to coincide with the Bruggeman estimates atL50, but
increasingly deviate from them asL increases. Note that bot
the Bruggeman and IMG formalisms do not predict scat
l-

l
a

ce

,

r-
rt
r-

l.
g

s

e

-

e

r-

ing losses in the effective medium when the constitu
phases are nondissipative, as is the case here. Analo
comparisons for the effective dielectric and magnetic sca
in K̃

= Dy(0I ) are not presented here as they behave similarl
the magnetoelectric scalars graphed in Fig. 4. To conclu
further numerical results will be presented in detail in a
ture paper@14#.
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