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The strong-property-fluctuation theory is developed for the homogenization of the linear dielectric, mag-
netic, and magnetoelectric properties of a two-constituent bianisotropic composite. The notion of a bianisotro-
pic comparison mediuntBCM) is introduced to serve as a springboard for the Dyson equation satisfied by the
ensemble-averaged electromagnetic field. With the constitutive properties of the BCM serving as the zeroth-
order solution of the Dyson equation, the first-order correction, known as the bilocal approximation, is ob-
tained. Wave propagation in the composite can be described in this manner by a nonlocal effective medium
containing information about the spatial correlations of the constitutive properties. For scales larger than the
correlation length, the nonlocality vanishes and a local effective medium emerges. Analytical results for the
local effective constitutive properties are presented after assuming a spherical particulate topology for the
constituent mediums. lllustrative numerical results are provided.

PACS numbdss): 05.40—-a, 82.70-y, 83.70.Hq

I. INTRODUCTION [4], as well as chiral-in-chiral composit¢5]. Additionally,
the SPFT is not restricted only to particulate composites.
The fabrication of composite materials provides an effec- During the past 15 years, there has been an explosion in
tive way for combining the desirable electromagnetic prop-the literature on bianisotropic materials, both on theoretical
erties of two or more different materials, provided the con-and experimental aspedi§—9]. Bianisotropic materials are
stituent material phases do not chemically react with eaclcharacterized by three types of constitutive properties: di-
other. Prediction of the effective electromagnetic propertie®lectric, magnetic, and magnetoelectric. Composite bianiso-
of linear composites, from the properties of their constitu-tropic materials have been treated by the Maxwell Garnett
ents, has been a focus of research for over two centuries armthd the Bruggeman formalism4.0], but not yet by the
it continues to be a matter of considerable scientific and techSPFT. The chief difficulty in the application of SPFT arises
nological importanc¢l,2]. Until recently, however, analyses from the source-region singularity of the corresponding dy-
have been confined to isotropic dielectric and/or magneti@adic Green function which can result in the generation of
composites. Furthermore, the limitations of most homogenisecular termgi.e., terms resulting in divergencin the per-
zation approaches—exemplified by the Maxwell Garnett andurbation expansion of the electromagnetic-field equations
the Bruggeman formalisms, and their variants—arise fronj11,12. However, Michel and Weiglhofdrl3] recently de-
their simplistic treatments of the distributional statistics ofveloped a treatment of this singularity in bianisotropic medi-
the constituent phases. ums, thereby enabling the SPFT formulation for
A notable exception is the so-called strong-property-bianisotropic-in-bianisotropic composites. Accordingly, we
fluctuation theory(SPFT), which provides a method to de- are initiating a research program in this direction, this paper
termine both local and nonlocal constitutive properties ofbeing the first of a series.
composites while allowing for a sophisticated handling of The objectives of the present study are twofold. The first
the distributional statistic$3]. In the SPFT a preliminary is to generalize the SPFT to bianisotropic composites. In so
ansatz is made about the nature of the composite; the ansatoing we follow closely the argumentation of Michel and
is used to perturbatively calculate corrections in orders ofakhtakia[5] for isotropic chiral composites. Allowance is
statistical cumulants of the spatial distribution of the con-made for a nonisotropic distribution of constituent material
stituent phases. The appeal of SPFT lies in its generalityphases, such as may arise if the constituent phases comprise
even the simplest SPFT result represents an advancemegitipsoidal particles. The second objective is to implement
over the Bruggeman formalism. The theory has already beethe developed equations in the case of reciprocal biaxial bi-
developed for isotropic dielectrig3], anisotropic dielectric anisotropic composites.
The layout of this paper is as follows: Following a general
presentation of the statistical parameters used to describe bi-
IFAX: +44 141 330 4111. Email address: tm@maths.gla.ac.uk anisotropic composites, we introduce the notion bfamniso-
2FAX: +1 814 863 7967. Email address: axl4@psu.edu tropic comparison mediurtBCM). The BCM is a local ho-
SFAX: +44 141 330 4111. Email address: wsw@maths.gla.ac.uknogeneous medium which plays a central role in SPFT. We
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develop theDyson equatiorfor the average electromagnetic

field in a two-phase composite and utilize the BCM in a L(V)=
lowest-order estimate of the effective medium electromag- )
netic properties. This lowest-order estimate—which is
equivalent to that provided by the Bruggeman formalism for®
bianisotropic composites—serves as our initial ansatz in the
iterative process resulting in the SPFT estimate of constitu- F(r)=[ , C(r)z[B
tive properties. The first-order correction, known aslifie- - T B(1)
cal approximation is then presented. Next we derive the . . . .

relation between the constitutive dyadics of the exact effec?Vith | denoting the X3 unit dyadic.

tive medium(which includes all correlation effegtand the We consider a two-phase composite consisting of two bi-
so-calledmass operatorof the Dyson equation. We then anisotropic constituent phases mixed at the microscopic, but
consider the case where principal electromagnetic wavelot molecular, length scale. Let all space be divided into
lengths are long compared with the correlation length, andlisjoint partsV, andV,, containing the phases labeladnd

the composite medium can therefore be regarded as homé, respectively. For e V, (p=a,b), we write

geneous. Finally we implement the SPFT, in the long-

wavelength and bilocal approximations, for the case of recip- €(r)=e,, &(r)=¢&,, {(N)={p, pm(r)=pp, reVy,

rocal bianisotropic composites. Both chiral and biaxial S S . ) 9)
composites are considered in the illustrative numerical re-

sults presented here, and a detailed numerical study 8o that
planned to appear latgi4]. The SPFT estimates of the con-

e(r) &),
¢ p(0)

= 1 (7)

0
-Vl
nd

E(r)
H(r)

D
—([)}, ®)

stitutive properties of all composites considered are com- K(=Kp, reVp. (10
pared and contrasted with those provided by the Bruggeman | o )
and the incremental Maxwell Garnett formalisfi$,16. We introduce two characteristic functions as

We adopt the following notation: three-vectofsix- 1 rev
vectorg are in normal(bold) face and underlined, whereas 0,(r)= » LEVp (11)
3X 3 dyadics (6x6 dyadic$ are in normal(bold) face and P~ 0, reVp,
underlined twice. The adjoint, determinant, inverse, and trace
of the dyadicQ are denoted by adff), detQ, Q %, and thus
tr Q, respectively.

= 0.(r)+0n(r)=1, reV,uV,. (12

Il. GENERAL Any of the r-dependent constitutive quantities can be ex-

We start with the frequency-dependent version of thePressedeverywheren terms of the characteristic functions

source-free Maxwell curl postulates, 0p(r); for example,
VXE(r)=iwB(r), (1) K(r)=Kaba(r)+Kpbp(r), reVaUVy. (13

] Throughout this work we use the concept of ensemble
VXH(r)=—iwD(r), (2 averaging, i.e., averaging over a large number of different
samples of the two-phase composite, and we denote en-
where we have assumed an expgt) time dependence with semble averages by). The complete statistical information
w as the angular frequency. The constitutive relations of about the composite is containedrimomentof the charac-

nonhomogeneous bianisotropic medium are given as teristic function,(r). The nth moment is the expectation
value(ﬁa(rl)---ea(Fn)) and represents the probability for
D(r)=e(r)-E(r)+£&(r)-H(r), (3 r,,...r, being insideV,; equivalently, we may usé in-
stead ofa due to Eq.(12). We assume that, on average, the
B(r)=¢(r)-E(r)+pu(r)-H(r), (4)  composite is homogeneous.
h - The first moment for the phaseis its volume fraction

where e(r) and u(r) are the permittivity and permeability f.=(6.(1) (14)
dyadics, respectively, ang(r) and {(r) are the magneto- a aram
electric dyadics. Equationd)~(4) can be represented com- which is constant with respect o The same holds for the
pactly in six-vector/dyadic notation as volume fractionf,=(68(r)) of phaseb. Obviously,f,+f,
=1
The two volume fraction$, andf,, contain only minimal
geometrical information about the composite. A more de-
C(r)=K(r)-F(r), (6)  tailed description is provided by the second moment
B (0a(r)05(r")) of 8,(r), or, equivalently, by the secorali-
where mulantor covariance

L(V)-F(r)=—iwK(r)-F(r), (5)
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T(R)=(0a(r) 0a(r")) —(0a(r)){(0a(r")) =(Op(r) Op(r"))

I_:([):EBCM([)_iwf Ggem(r—r")-[K(r")
—(Op(1))(Op(r")), (19
—Kgeml-F(r')d3. (21)

whereR=r—r". If the composite is disordered, it is usually
possible to define a correlation lengthsuch thatr(R) is  Clearly, Fgcm(r) now serves as a solution of the homoge-
negligible for|R|>L, i.e., on scales larger thdn the com-  neous version 0f20), i.e., Fgcu(r) is the complementary
posite may be_considered homogeneous. function Here and hereafter, integration is performed within

The formulation of SPFT requires the introduction of ainfinite limits if the domain of integration is not indicated
bianisotropic comparison medium, which allows an approxi-explicitly.
mate treatment of electromagnetic fields\lRuV,. The Equation (21) cannot be evaluated perturbatively when
constitutive dyadicsgem, £sem Ssem. and uacu of this the constitutive parameters K(r) fluctuate strongly. This is
medium are not dependent; hence it is not only homoge- due to secular terms produced by the singularities of the
neous but also spatiallpcal. The BCM will later on serve dyadic Green functiorGgcy(R) in the source region. The
as the preliminary ansatz for the SPFT and will be shown irsingularities can be removed from the right side of E24)
Sec. Il to actually be in agreement with the Bruggemanby taking advantage of E¢19); thus,
formalism. Electromagnetic wave propagation in the BCM is

described by F(r)= '_:BCM([)_inf Ggem(r—r")-[K(r")

L(V)-Fgcm(r)=—ioKgew Feem(r), (16) )
B B B - ) ) _EBCM]'E([')dsf'—lwg[5([)_|§BCM]"_:([)-
where (22
_|esem  €eem _ | Egem(r) Next, after introducing thexciting field
Keem= ‘ , Feem(n)= H ol
= ¢BCM MBCM _BCMUL

(17 Fexd 1) ={l +iwD-[K(r)=Kgcml}-F(r), (23

with Fgcm(r) denoting the local spatially averaged electro- e rewrite the integral equatio22) as
magnetic field. We introduce the<66 dyadic Green function

Ggcm(r—r’") which satisfies the differential equation
= - '_:exc([)zl_:scm([)+|3f Geem(r—r")-x

[L(V)+ioKgcm] Geem(r—r")=1a8(r=r’"), (18 ) ) o
- B h h X([ )‘l_:exc(f )'l_:exc([ )d [ ) (24)
wherel is the unit 6<6 dyadic ands(r —r’) is the Diracé

function. The singular behavior @gcy(r —r’) in the limit ~ With a generalizegolarizability dyadicdefined as

r—r’ can be accommodated through ) . .
- X(N)=—io[K(r)=Kgcu]-{l +iwD-[K(r) =Kgcul} -

Gecm(R)=PGgcm(R) +DA(R), (19 (29

The next steps are canonical: we calculate the ensemble
erage(FeXC(r)> of the exciting field by ensemble averag-

éng both sides of the integral equati¢®4). For this purpose,

we formally represent the equation in terms of a Born series
and average each term of the series separ@igly We fix
the lowest-order estimate of the effective-medium properties
by demanding that

where P is the principal value operation excluding a certam
infinitesimal region centered oR=0 and D is the corre-
sponding depolarization dyadic_of the spe=cified region in th
BCM [13]. The dyadicD is fixed at a later stage in the
analysis. )

IIl. DYSON EQUATION (x(1))=0, (26)

With the foregoing generalities established, we now pro-
ceed to derive the central equation in the SPFT: the Dysowhich condition removes the secular terms from the Born

equation. From Eq(5) we obtain series expansiofil1]. Inserting Egs(13) and (14) into Eq.
. . (26), we obtain
[L(V)+iwKgem]-F(r)=—iw[K(r)—Kgcm]-F(r).
(20 (Ka=Kgcm) [1+iwD- (Ka=Kgew)] *fa
By virtue of Egs.(16) and(18), the solution of Eq(20) may +(Kp=Kpem) [ +iwD- (Kp— EBCM)]ilfb

be represented by the followingredholm equation of the

third kind [17]: (27

I
||p
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which is the Bruggeman equation for bianisotropic compog$it€ Thus, we see that electromagnetic wave propagation in
V,UV, can indeed be approximately described by means of the BCM.

Equation(24) may now be ensemble averaged using the Feynman-diagrammatic technique introduced byl Efiszh
arrive at the Dyson equation

<l_:exc([)>:|_:BCM([)+PJ QBCM([—[’)~U§([’—[”)~<Eexc([”)>d3[”}d3[’. (28)

where the quantity®(r'—r") is called themass operator 5

The mass operator consists of an infinite series, each term of “5([) ' '_:([)>: J EDy( R)- <E([_ R))d°R (33
which contains products ovenG%CM(r —r") and the statis-

tical cumulants ofy(r’). In practice, approximations to the due to translational invariance. The dyadlig,(R) contains

Dyson equation are unavoidable. They are usually implethe constitutive properties of the effective medium consistent
mented by truncating the series expansion of the mass oper@ith the SPFT. In generaKDy(R) is spatially nonlocaland,

tor 2 To the lowesti.e., secongorder i iny we have therefore, signifies spatial dispersion.
2([—['):@([)'P@BCM([—['){([')% 29 Equations(23) and (25) yield
which is called thebilocal approximation19]. Since X(1)-Fexdr)= —1o[K(r)=Kgcml-F(r), (34
X()=xaba(r) + xp0p(r), (30 whence

Eq. (29 leads to ()=(([)"_:exc([)>= —iw[<P=<([)~E([))‘EBCM'(E([)H-

2(R)=(R)(xa~ xb) PGacu(R)- (xa=xo) (3D (35

after some algebraic manipulations exploiting E26), the  The ensemble-averaged counterpart of §) is given by
covariancer(R) having been introduced in E¢L5).
(Fexd1))=(1=i@D-Kgcy) - (F(1)+iwD-(K(r)-F(r)).
IV. NONLOCAL EFFECTIVE MEDIUM (36)

In order to complete the SPFT formulation, we go on tOFurthermore on taking the ensemble average of(#.and
determine the relation between the ensemble-averaged fields 9 9

(C(r)) and(F(r)). The ensemble average of the constitutivecomparmg it with the Dyson equatid@s), we get
relation(6) may be stated as

(C)=(K(1)-F(r). 32 <l‘(f)'fex45)>:f =) (Fadt)er’. 37

The relationship betwee(K(r)-F(r)) and(F(r)) must be  Finally, after rearranging Eq¢35)—(37) and inserting the
linear, because the composite is linear. Furthermore, this reensemble-averaged constitutive relati@8) in Eq. (33), we
lation has to be of the form of a convolution integral obtain

1
<(_:([)>+f2([_[,)'9'<(}([1)>d3[,:EBCM'('_:([»_Efg([_[,)‘“:_iwlg'I§BCM)‘<'_:([I)>d3[,- (38)

This integral equation gives a linear relation betwé€fr)) - _
and(F(r)). Its solution for(C(r)) enables the emergence of E(g):f (F(r))exp(—ig-r)dr, (39
the desired constitutive dya_di_éDy(I_R) of the nonlocal effec-
tive medium.
Since the integral equatid38) is of the convolution type,
it can be solved by the Fourier-transform technidaé]. = .
Therefore, we defin){a the following quantities: dael C_I(g)=f (C_:([)>exp(—|g-[)d3[, (40
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~ 1
2(q)=f S(r)exp(—ig-r)dr, (41) Cmacro(r):vj (C(r+r1"))d%”, (48)
i mp 00 = - vl - -
~ . . 3 1 ” 3.m
‘SDy(g)_ }SDy([)qu_lg'[)d t’ (42 FmacrdI) = v <F(I’+I’ )>d r- (49)
= - i - WAV -
q being the three-dimensional spatial frequency vector. The-e minimum linear cross-sectional extent of the region
Fourier-transformed version of E(BS) reads as follows: must be |arger than, but smaller than the maximum prin_
~ ~ cipal electromagnetic wavelength. Inserting E¢32) and
[1+2(q)-D]-C(q) (33) into Eq.(48), we find
14 . = 1 " 3 3.1
= EBCM_EE(Q)'(L_le'EBCM) '_:(9) (_:macro([):v v EDy(B)“_:(["'[ _R»d R d r
(43

~ - - :f ISDy(Ez)'[_:macro([_liz)dsli2
But C(q) =Kpy(q)-F(q) by virtue of the foregoing rela- )

tions; hence, Eq43) yields
w3y ~ [ Koy(R)-Fnacid R (50

~ 1 - -
— _ -1
Koy(@)=Kscm o [L+§(9)"2] '2(9)' 44 This leads to the macroscopic constitutive relation

The constitutive dyadi&p,(r) then emerges as the inverse Qmacro([):EDy(Q)"_:macro([)- (52)

Fourier integral . . I .
The constitutive properties of a two-phase bianisotropic

1 - _ . composite in the long-wavelength approximation are thus
Koy(D=Zm3 f Koy(@expliq-r)d®g. (49 gpecified by the dyadi&p,(0). Evidently from Eqs.(44),
(41), and (32), the key step in estimating_Dy((_)) is the

The Dyson equatiof28) involves the ensemble-averaged evaluation of

exciting field(lfexc([». In order to determine the ensemble-

averaged electromagnetic fig|E(r)) itself, we take the en- « J’ 3
i\ = R)d°R

semble average of E¢5) and use Eq(33) to get §(9) g(— JaR

g(V>~<E(g>>+iwf Koy(R)-(F(r—R))d°R=0. (46) =<§a—¥b>'[Pf m(R)Geem(RIA°R |- (xa = xb)-

2
The Fourier-transformed version of this equation is 2

( 0 i x| We note that the presence of(R) within the above

+i0)RDy(q)}'Tﬁ(q):0’ (47)  principal-value integration is justified, becausgd)=f,(1
i —fa)=f,(1—f,) cannot be null-valued for nontrivial prob-

- lems.
from whichF(q) may be extracted by standard dyadic tech-  Although an explicit expression fdBgcy(R) cannot be

niques[21]. Thus, depending on a specific choice for thewritten down, its Fourier transform
evaluation ofD, the SPFT homogenization formulation is

now complete=in the bilocal approximation @BCM(g):f QBCM(I_?)exp(—ig-l_?)d3l_? (53

~igx 0

V. LOCAL EFFECTIVE MEDIUM can be obtained by taking the Fourier transforms of both

When the principal electromagnetic wavelengths areSIdes of Eq(18). Thus,

much larger than the correlation lendthwe can achieve a 1 ad[Agey(q)]
macroscopialescription of the composite as a homogeneous Geem(9)= — $, (54)
local continuun1]. Although it has a different provenance, = o detAgem(a)
this description is conceptually no different from that avail- = -
able from the Maxwell Garnett and the Bruggeman formal-yhere
isms: the mixture is considered homogeneous in the so-
calledlong-wavelength approximation ~ 0 (q/w)x1

Suppose the long-wavelength approximation is appropri- éBCM(g): —(qlw) X1 0 HfBCM' (59
ate. Let us then introduce the macroscopic fielids, . o) - = =
andFmyacro(r) by spatially averaging the microscopic fields For later convenience, we note that E§5) can be manipu-

(C(r)) and(F(r)) over a regiorV; thus, lated to delive@BCM(g) in the following general form:
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T4(@)(9/@)*+T3(9)(a/ @)+ T2(9)(a/ 0)*+ T1(9)(9/ @) + To(Q)
to | t4(9)(al0)*+t5(Q) (/@) >+ t5(9) (Al @)*+ t1() (a/ @) +to(q)

§BCM(q)_ (56)

Here, T,(q) are 6<6 dyadic functions, ant,(q) are scalar functionsn(=0,1,2,3,4) of the unit spatial frequency vectpr
Furthermore@BCM(g) may be partitioned afl3,22]

Geem(@)=Ggem(@)+Cgem(@), (57)

where
G lim G = 58
=BCM(Q) q'LTL BCM(Q) o t4(q) (59)

and (suppressing the dependencesTgfandt, on q)

(taTa—t3T (A )3+ (t,To—t,T ) (A )2+ (t4T1 =1, T2) (a/ @) + (14 To— t0T4)

Gacu(9)= ol (0 0) T (@) Lalw) 2 ty(aw) T to] 59
|
Explicit coordinate-free representations @QCM(g) are al- fafp, I_?evﬁ
ready available for chiral5], general dielectrid22], and 7(R)= 0, Re Ve, (62)

dielectric-magneti¢23] mediums; we consider the structure
of @BCM(g) for reciprocal biaxial bianisotropic mediums in

Sec. VI. wherelL is the correlation length. Covariance functions in the
In order to advance our analysis, we have to specify théorm of step functions, of both isotrop{@5,26 and aniso-
depolarization dyadi®. That is best done by considering tropic [3] types, have been considered in previous SPFT

the topology of the composite, but unique answers are na@nalyses.

possible in genera[24]. Let V5(V5) be an ellipsoidal Let V§_,=V[—V$ and V{ _s=V{— V5. The principal-
(spherical region, centered at the origin of our coordinate value |ntegrat|on in Ec{52) now proceeds through the intro-
system, of size determined by the linear measyrewe  duction of the Fourier transform @&gcw(R), facilitated by
imagine that both constituent phases are distributed as cothe changes of variabld =U"~ 1.R andv—U w (whereH,

formal ellipsoids of surfaces parametrized by v, andw are dummy vector varlablﬁsas follows:

Re(6,¢)=7U-R(6,8), (60)
) (2m)® .
R ?Pf 7(R)Ggcm(R)A"R
where R(6,¢) is the radial unit vector depending on the alb = -7
spherical polar coordinatesand ¢, andU is a real symmet- f
VL S

ric dyadic with positive eigenvalues b, andc. We mean :L'Lno
here that both constituent phases are present with a distribu-

f QBCM(V_V)eXp(iVy-B)dSV_V}@B

tion of » such that there is no vacant space in the composite ) } 3 3
medium. The same fractal-like topology is inherent in the = lim f Gecm(U™*-v) fve expiv-H)d°H |d*v
Maxwell Garnett and Bruggeman formalisms, although it is o0 L=o

rarely mentioned. Having selectdd, we determineD as A7 [ sinvL
[13] B h fGBCM(U7 [02 ( —L COSUL) dsl_}

. ~ . 4 [sinvé
D=|imf Gecm(R)d°R= abcllmf Gecm(U-H)dH, —“mf(EBCM(E )5zl
= 50 504V 0—-07Y
(61)
—5c05u5) d3v. (63

where the spherical regionV$ has radius 5, and H
=U"1.R. We choose the covariane¢R) to reflect the el-
I|p50|dal topology relating t(D Accordingly, Now, from[22] we have
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N fé . L 0 0 £ 0 0
=5 3lim BCM v
= (2m)75 )y = = - =0 €& 0 £=10 & 0=y,
47 [sinvéd 3 0 0 & 0 0 &
X -z —ocosvd| (d (64)
pmy 0 0
1 ~ -1 Mp= O ,LLp 0 (68)
=22 ), CeemY0) =P o
B 0 0 uf
44 (sinvE 3
o7 —EcosvE||d% (65  where all diagonal entries are complex valued. Thorough re-

investigations of the correct formulation of constitutive rela-
for E>0. Thus, combining Eqs(63)—(65) along with Eq.  tions for biaxial mediums were recently providéal7,28.
(57), we find For simplicity, we choose a spherical particulate topology for
the constituent mediums, i.eJ=1I. Analytical as well as
3 numerical results for ellipsoidal particulate topology will be
Pf T(B)gBCM(B)d R presented in detail in future publications.
As emphasized in Sec. V, the crucial step in applying the
faf J J' f long-wavelength approximation is the calculation of the vol-
_772 9,=0 BCM '13) ume integral(66). We now proceed to evaluate the integra-
tion with respect ta in Eq. (66) by means of residue calcu-
lus, exploiting symmetries in the integrand along the way.

We begin by considering the singularities @ (v), i.e.,

sinvL
X

—L cosv L)sin 0,dvd6,de, .

(66)  the zeros oft4(z:))det,§BCM(z_)). Taking the determinant of

Eq. (55), we find
Although very cumbersome for reproduction here, a 9. (59

straightforward analysis shows that the determinant of
;&BCM(W) is quadratic inw? for reciprocal bianisotropic me-

diums (.e., e=e', i=-{, and p= w') and general o o L A
dielectric— magnetlc mediunge., §= g 0) Consequently, t4y(v)=(v-egcm v)(v-pgemv)+(v-€gemv)

detAgci(v) =ta(0) (v/@)*+t2(0) (v/w) >+ 1o, (69)

provided the numerator c!BBCM(W) is an even function of X(0 - €aen-0) (70)

w, the integration in Eq(66) with respect tax may be evalu-
ated by conventional calculus of residues for such mediums. R - _ . _
However, for the general bianisotropic case, the determinant ta(v) =tr{[v X adj( egcm) - [v X adj wecm) ]

of ZSBCM(V_V) is not an even function ofv and alternative 1 xad “ < adi
methods may be required to compute the inte¢38). [vxad(£ecm)]-[v>a J(§BC'V')]}
In addition to being central to the calculation @fgy((_)),

the integral(66) provides a correction to the depolarization
dyadicD when the exclusion regiowy is of finite size. This —&gem- Flesem msem) - Eseml-v, (70

0 [eacur F(£acm acm) Lecu

is also reflected in the fact thgtDy(Q) represents a modifi-
cation ofKgcy; indeed, ) to=de( (), (72

- 1 - ~ = —ml- —nl— Ml—=m-
EDV(Q):EBCM_E[L”LE(Q)'Q]_l'%(Q)' (67) F(m,n)=[(trm)I —=m]-[(trn)l =n]—[(trm-n)| —m-n],
(73
This key equation is the focus of the remainder of this paper. Q= egen- paemt Escm- Escm (74)

VI. IMPLEMENTATION OF THE LONG-WAVELENGTH

APPROXIMATION wherem andn are arbitrary X 3 dyadics. The issues of the

location and nature of the singularities GfBCM(v) are

lenath imation in the bilocal SPET f K rather involved in the most general setting; see Cottis and
wavelength approximation in the biloca ramewor 'Kondylis [29] for a detailed discussion in the case of an

we consider a two-phase composite for which both Cor]St'tualnlsotroplc dielectric medium. We refrain from considering
ent phases belong to the general class of reciprocal biaxial

bianisotropic mediums. The constitutive dyad|q§ §p pathological special cases here: that is, for all valuaswé

—{p, andp,, of the constituent phases are taken to have th@ssume that(i) t,(v)#0, and (i) the v?
same eigenvectors, i.e., detABCM(v) are distinct, i.e.x, # k_, where

In order to illustrate the implementation of the long-

roots of
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L[ —t2(0) = Vt5(0) — 4ty(v)to we find that the odd terms in the numerator ®§c(v)
K= 2t(0) : (79 integrate to zero with respect to the angular variables in Eq.

(66). The remaining even term&,(v) (n=0,2,4) in the no-
We note that the possibilitx . = x_ is most likely to arise tation of Eq.(59) are conveniently expressed in terms of four
when we have isotropic constituent phases combined witx 3 dyad|csT"(v) (A=eeemmemm) as follows:
spherical topology, but SPFT in this instance has been
treated by Michel and Lakhtakia]. . A
With the foregoing simplifications in place, we find that Tov) TiMw)

], n=0,2,4. (77)

; " &0 : Th(v)= R -
the singularities OE’ch(lj) occur as simple poles at Mz Inme(l_’) Inmm(l_))
v="ks,—Vrp Vo_,—K_. (76) By symmetry considerations, only the diagonal entrieﬂ_;'ipf

give rise to nonzero integrals in E@6). Thus, in evaluating

Therefore, for definiteness, we take batk andyx_ tolie  Eq. (66), we can replac&3c,(v) by
in the upper half of the complax plane(inclusive of the real B B

axis). . R
We next turn our attention to symmetries Gf¢(v). 1 o(v)(v/w)*+ B(v) 79)
For reciprocal biaxial bianisotropic mediums, the numerator 0\ t,(0)(v/w)*+t,(0)(v/w) 2+t ’
of G3¢cw(v) is a dyadic function that is cubic in. However, i )
by a straightforward—albeit lengthy—utilization of E&5),  where we have
|
- 22 @y, mods=mods
[a(v) ;= ta(v) (79
0, I(mod3)# j(mod3)
and
[To(0)]ij— fo ——[T4v)]j, I(mod3=j(mod3)
~ 'o v) hj = 4(0) Jij » mo =](mo
[B(0)];= ') : (80)

0, [(mod3)# j(mod3J)

forl,j=12,...,6, and T,]; denotes théjth entry of the [TS%0) ]y =[{2€ adi u)—tr e- adj )]l + w-F(&€)}- vv
6X6 dyadicT,. =7 - - - = = =22

The dyadicsTo(v) andT,(v) are readily extracted from —F(p.é-£v0)—(v-ev)adip)ly,
the adjoint of@BCM(z_)). They are given in coordinate-free =123 (83)
form as )

To(d) Mpcm-adi(Q) _§BCM'adj(Q)} (1) —(z_;-§-z_;)adj(§)]”, 1=1,2,3 (84)
v)=|7 N = L=
-2 Léscwradi®)  epom-adiQ) [T2%(0) i =—[[F(e,) - é—deXE)I]-00—F(e- - 00.£)
and —(v-¢-vad(dHly, 1=123 (85)
[T v)]||—[{2 adj e /.=L tl‘[adj(e) ,u]|+f |=: §§} vv
Te®)= (</§>) <f; §>) (82 (e 50 pad )
= - U-&pem U)UY BCM

1=1,2,3. (86)

The dyadicl’z(z:)) has a more complex structure, but only its Residue calculus thereby results in the following evaluation
diagonal components are needed to evaluate(@H), of the integral with respect to in Eq. (66):
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f ofe 0Ju= OQBCM(U)
J OL 0t4(v)[K+1K_

Thus, Eq.(66) reduces to a surface integral which, in general, must be handled numerically.
An expression equivalent to E(B7) can be developed without explicit reference to the compon‘_é,g(@ of the adjoint

sinvL

—LCOSUL)sinadv dode

w v

- (a<v>+,§(z})ﬂv=¢Z B(0)
( | U) 2 v=\/: KoK

]Sln9d0d¢ (87)

dyadic of,§BCM(z_)). This derivation—though less instructive—leads to a surface integral more amenable to numerical evalu-
ation than that of Eq(87). Introducing

ad[%BCM(lf)]_de[ABCM(l_))]E_’;;CM(;_})
N(v)=—= ~—= = = =, (88)
= (l_)'SBCM'l_))(l_J'EBCM'Q)+(1_)'§BCM'Q)(I_)'§BCM'1_))

we find that

sinvL
f j f GBCM(U) —LcosvL |sinddv dode¢
=0J6=0 - v

w3 e|Lv v:\/z 2N(0)
—f f — (1 —iLv)[N(v)JrN(—v)]} +—=——}sinddhde. (89
=0Jo=0| ky—K_| Vv S R i

The specification of the bilocal SPFT equations in the long-wavelength approximation for reciprocal biaxial bianisotropic
composites with spherical topology is completed by the following expression for the corresponding depolarizatiofil@yadic

U KeCwm U)UU _(U §Bcrv| U)UU

(U §BCM U)UU (U €BCcm-U)UV

||U

47le f& 0t4(v) sinfddedao. (90

Thus, the constitutive dyadip,(0) of the local effective  real valued. Thus, it is clear from Eq&7), (52), (29), and

. . = (90) that scattering losses cannot be predicted under the
;nnedd(lgg)] 's fully specified through Eqtb7). (52), (87). (89), long-wavelength approximation represented by &4). A

ar result was reported for SPFT applied to chiral medi-

Finally, in this section we consider the long- Wavelengths'm'l[zs]

regime|L \k.|<1. Retaining terms only o®(L J«-), we

see that the integral87) and(89) become null valued. This

is consistent with the finding reported for chiral mediums
that the bilocal-approximated SPFT does not yield a correc-

tion to the Bruggeman formalism in the static lini25]. Since a detailed numerical study is the focus of a future
However, on retaining terms up t0(L%«.), the €“(1  paper[14], here we present numerical results for only two
—iLv) term in the integrand of Eq$87) and(89) reduces to  classes of bianisotropic composites—for illustration only.
1+(Lv)?/2; hence the principal-value integrati¢66) be-  The first class allows direct comparison of results with ear-
comes lier SPFT analyses, namely, the case involving chiral con-
stituent phases. The second class comprises the more general
pf 7(R)Ggem(R)A°R reciprocal biaxial bianisotropic composites. An angular fre-
- = - T quencyw of 277X 10'° rad s'* was used for all calculations
—wa afpl?
f f sm 0dodde.
=0J o= ot4(v

reported here.
(97 . . .
To allow direct comparison with the SPFT analyses of
For constituent mediums with real-valued constitutive pa-Michel and Lakhtakid5,26], we choose the phaseto be a
rametersK ,, the integrand of Eq(91) is correspondingly chiral medium described by the constitutive dyadic

VII. ILLUSTRATIVE NUMERICAL RESULTS

A. Chiral constituent phases
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) 2.5 Re [€py0]
3 // N Re [gDyo]
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104 L [m] 0 0.2 0.4 0.6 0.8 1
fa
_____ £, =0.5 FIG. 2. (a) Real and(b) imaginary parts of the effective consti-
2f £ =04 tutive scalars of an isotropic chiral composite plotted as functions
2 T . f, for a correlation length. =5x 10" *m. See Sec. VII A foK,,
1 sf| T =03 / K, andRp,(0).
—_—— e e e e e e — — ,_/_ - -
7
1 Re ““I'Dyo] /,
e
. rd -
0.5 PR The computed values @b, {pyo, andupyg are plotted
Tm [y,0] x10° mE g (el as functions of correlation .Iengthln Fig. 1 for th'ree d|ffer.—
ent values of volume fractiof, . All three effective consti-
0 1 2 3 4 5 tutive scalars exhibit a similar dependencylortheir imagi-
10* L [m] nary parts increase sharply from zero as the correlation

length increases from zero, whereas their real parts remain
almost constant. Upon converting from the present Tellegen
notation to the Drude-Born-Federov notatidi], the com-
puted values of the effective constitutive scalard at 0.3

are found to be in complete agreement with those values
calculated previously26]. We note that the derivation pre-

FIG. 1. Effective constitutive scalars of an isotropic chiral com-
posite plotted as functions of the correlation lengtifor f,=0.3,

0.4, and 0.5. See Sec. VII A fof,, Ky, and@Dy((_)).

€0€, iVeomoéal sented by Michel and Lakhtakig] proceeded in a some-
Ka=1| . = =, (92 what different manner to the one here, as an explicit expres-
= —IN foMofal MoMal

- sion for the dyadic Green function is available for chiral
mediums. Over the range 6<3,=<0.5, the graphs in Fig. 1
clearly demonstrate that the degree of attenuatiure to
scattering lossg@sncreases as the volumetric proportion of
phasea increases. Attenuation is also predicted in the
tendedMaxwell Garnett and Bruggeman formalisi30—
32] when the finite size of inclusions is explicitly considered,
but the correlation length is not relevant to those formalisms.
This issue is pursued further in Fig. 2 where, for a fixed
correlation lengtl. =5x 10”4 m, the constitutive scalars of
the effective medium are plotted as functions fgf. The
. . (93 maximum degree of attenuation, as indicated by the magni-
-1 \/60#0§Dyo|= /~LO/~LDyO|= tude of the imaginary parts of the effective constitutive sca-

where €,=2.304, £,=0.724, and u,=1.728, with ¢
=8.854x10 ?Fm* and uo=47x10 "Hm ! being the
permittivity and permeability of free spadée., vacuum,
respectively. The phage is simply taken to be free space
itself. For this isotropic example, the effective medium is
characterized by the constitutive dyadic

~ fofoyo[ i \/€0M0§Dy0|
lSDy((;)): ~ b
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FIG. 3. Imaginary parts of the effective constitutive scalars of a
reciprocal bianisotropic composite plotted as functions of the cor-
relation lengthL for f,=0.3. See Sec. VIIB foK,, Ky, and

gDy(Q)-

lars, occurs at ,~0.75. Beyond this value df,, fewer scat-
tering centers are present in a composite. The real parts of €o
the effective constitutive scalars follow an almost linear pro-
gression between the values they must hold takg=a0 and

f=1.

B. Biaxial constituent phases

For phasea we again choose a chiral medium: in the
notation of Eq.(92), we takee,=2, é,=1, andu,=1.5. For

14
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FIG. 4. Real parts ofa) &py, (b) &by, and(c) &gy Of @
reciprocal bianisotropic composite plotted as functions of the cor-
relation lengthL for f,=0.3. TheL-independent values computed
using the Bruggeman and incremental Maxwell Garnett formalisms

are also presented. See Sec. VIIB Ky, Ky, andKDy(Q).
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~
N
_bo
o O

" (94)

The effective medium arising from these constituent phases

phaseb we select the biaxial dielectric-magnetic medium has a reciprocal biaxial bianisotropic structure characterized

specified by

by the following constitutive dyadic:
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€oyo O 0 &y O 0
6| O e%yo 0 iveouo| O é%yO 0
RDy(O) _ 0 ) 0 GZDyo ) 0 0 §ZDyo 95
=0T éoyo O 0 HMbyo 0 0
—i M( 0 5)53/0 0 mol O ﬂ%yo 0
_ 0 0 &y 0 0 by

The imaginary parts of the constitutive scalars appearingng losses in the effective medium when the constituent
on the right side of Eq(95) are plotted as functions of cor- phases are nondissipative, as is the case here. Analogous
relation lengthL in Fig. 3. As in the isotropic case illustrated comparisons for the effective dielectric and magnetic scalars

in Fig. 1, the magnitude of the imaginary parts increasesn K, (0) are not presented here as they behave similarly to

sharply with increasing.. The real parts of the constitutive y,o" 4 onetoelectric scalars graphed in Fig. 4. To conclude,
scalars are largely insensitive to the correlation length. g, yher numerical results will be presented in detail in a fu-
Computed values of the real components of the eﬁ‘ecnve[ure papel14].

magnetoelectric scalagy,q, &by, andép,, are displayed

in Fig. 4 as functions of. For comparison, the correspond-

ing (constant values computed by the Bruggeman and incre-
mental Maxwell Garnet{IMG) formalisms are also pre- The present study was partially carried out while T.G.M.
sented. The IMG results were generated using fivevisited A.L. at Pennsylvania State University. T.G.M. thanks
incremental step$l15,16. The SPFT-estimated values are the Carnegie Trust for the Universities of Scotland for finan-
seen to coincide with the Bruggeman estimates=a0, but  cial support and also Pennsylvania State University for
increasingly deviate from them &sincreases. Note that both hospitality. W.S.W. thanks the Royal Society of Edinburgh
the Bruggeman and IMG formalisms do not predict scatterfor financial support.
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