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Local minimal energy landscapes in river networks

Achille Giacometti
INFM Unita di Venezia, Dipartimento di Scienze Ambientali, Univérsitd/enezia, Calle Larga Santa Marta DD2137,
1-30123 Venezia, Italy
(Received 19 April 2000

The existence and stability of a universality class associated with local minimal energy landscapes is
investigated. Using extensive numerical simulations, we first study the dependence on a payaofeter
partial differential equation, which was proposed to describe the evolution of a rugged landscape toward a local
minimum of the dissipated energy. We then compare the results with those obtained by an evolution scheme
based on a variational princip(éhe optimal channel networkst is found that both models yield qualitatively
similar river patterns and similar dependencesyorHowever, the aggregation mechanism is strongly depen-
dent on the value of. A careful analysis suggests that scaling behaviors may depend weakly oy hath
on initial conditions, but in all cases are within observational data predictions. Consequences of our results are
finally discussed, and the most plausible scenario is presented.

PACS numbegps): 64.60.Ht, 92.40.Fb, 05.60k

[. INTRODUCTION observation that the network representing the river has an
evolution mirroring that of the evolution profile. Other meth-
Understanding the development of a landscape in terms ajds have also been devised which directly address the topo-
fundamental mechanical principles is a formidable t#§k  logical properties of the network itself, the best known being
In spite of this high complexity, recent theoretical studiesthe optimal channel networkOCN) [14]. This is a lattice
resulted in considerable progress by considering the issumodel where a functional describing the dissipated energy is
from a viewpoint analogous to the one taken in conventionaminimized in order to find the optimal configuration, and it is
critical phenomend2-8], where simple models were ex- based on the idea that, presumably, the erosional process
ploited to identify universality classes. The main idea of thistaking place on a landscape is driven by a striving for opti-
approach is indeed to focus on a few fundamental ingredientsality. A simulating annealing procedurfed5] has been
which, in the spirit of critical phenomena, are expected toimplemented to this end both at zg@| and finite tempera-
provide a reasonable description of the large-scale propertigares[16]. While the latter aimed to find the absolute mini-
of the network. mum, the former is expected to display local minima only.
The remarkable properties of river networks have beerJsing exact bounds and finite-size scaling, Maritan and co-
known for some time, and they can be condensed in a feworkers[17,18 showed that the absolute minimum belongs
phenomenological scaling laws which have been confirmedb a mean-field universality class, which, in turn, means that
to hold in observational datg9]. While these laws do not the corresponding network has a highly symmetric pattern
explain the underlying physical mechanisms, they neverthewith small rivers draining into larger rivers in a predictable
less provide guidelines for their search. Hence any newlyvay (this network is akin to the Peano ba§ir®]). However,
proposed model for river networks ought to be tested againghis minimum is not easily reachable in the space of all con-
these laws. In the language of critical phenomena, those scdigurations, and one is then led to suspect that real rivers are
ing laws can be used to derive critical exponents, and thubetter described by configurations related to local minima.
discriminate among different universality classes. AmongWe further note that stationary states of the aforementioned
such laws is the fundamental role in the physics of the erodynamical equations are also expected to be associated with
sion of a landscape due to the flow of water over it, playedocal minima for the same reason.
by the slope-area lavisee Ref[1] for a review. In view of the above discussion, it is apparent that a more
A few Langevin-like equations were recently proposed tocomplete description of the stability and the scaling behavior
describe the evolution of the landscape under the effect adissociated with these local minima would be desirable. The
erosional processes. In Rgb], reparametrization invariance present work is an attempt in this direction. Our aims are
argumentg[10] were used to derive a dynamical equationthreefold. Our first goal is a full characterization of the pos-
which yields the slope-area law as a stationary state. Thsible universality class associated with local minima. Using
same equation was obtained by Somafai and Saidars-  the SC numerical procedure envisaged in R&f. we extend
ing Landau arguments. Other proposals were also advancgulevious numerical results both in size and statistics, and we
[6,11-13. use a finite size procedure for a more accurate estimate of the
The equation proposed in R¢6] was studied both ana- exponents. We then compare these exponents with those cal-
lytically in 1+ 1 dimensiongone spatial and one temporal culated using a zero-temperature simulation in the OCN
and numerically using a self-consistef8C) solution in 2 framework with similar sizes and statistics. Our second goal
+1 dimensions. It was shown to predict a fairly reasonablds the generalization of the dynamical equation to include a
stationary state quite different from the starting network acttunable parameter which turns out to be related to tiey0
ing as initial condition. This type of analysis hinges on the<1 parameter considered in OCN'’s, and which is respon-
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sible for the aggregation mechanism. In REE8] it was linear term is able to account for the correct relationship
shown that thebsoluteminimum is insensitive to a variation between local slope and water flowrate.
of v in the interval 1/2<y<1 [20]. We find that although
the final patterns display marked differences as a function of ;| cRITICAL EXPONENTS AND SCALING LAWS
v, critical exponents show a much smaller discrepancy,
which our results indicate to be margir{at the edge of error River networks are a remarkable example of systems gov-
barg, both in the SC and OCN cases. Finally we test theerned by scaling laws. Although the concept of power and
stability of our results against a variation in the initial con- scaling laws has been known to hydrologists for half a cen-
ditions. We find that even in this case a marginal differencdury, it was not until recently that this concept was put into a
appears in the effective critical exponents. well defined framework4,18] in analogy with conventional

The paper is organized as follows. In Sec. I, we reviewnonequilibrium critical phenomena where power laws are as-
the dynamical equation, whereas in Sec. Il scaling laws angociated with critical exponents. For the sake of complete-
critical exponents are briefly recalled. Section IV containsness, here we shall briefly review a few of the central laws
the definition of the OCN, and our results are presented ippearing in river networks, which we regard as the most
Sec. V. Finally Sec. VI contains some concluding remarkgundamental.
and future perspectives. Hack observed that the total araalraining into a given
point, and the upstream lengtlyoing from that point to the
source though the path of maximum water flow, were not
independent but related B21]

A rather general dynamical equation consistent with gen-
eral principles, and capturing the physics of erosional pro- |~a", ()
cesses occurring in a river basin,[57]

II. DYNAMICAL EQUATION

whereh is often referred as Hack’s exponent, and ranges in

dh(x,t) ) N 5 the interval[0.5-0.9 in real rivers. The distributions of
oo UtV D) = QU DIVh(X, O™+ 7(x,1). drainage areas and upstream lengths also follow a power law.
(1) Within the context of finite-size scaling, these may be writ-
ten as[3,4]
Hereh(x,t) andQ(x,t) are the height of the landscape and B
the flow rate at positionx and timet, »(x,t) is a noise term, p(aL)=a "f(a/L?) 4

anda is a parameter which will be related to(see below

The constant term on the right-hand side of E¢1) mimics ~ for areas, and
the so-called geological uplift, which is known to originate

by tectonic forces. The second term represents a local diffu-

sion term of strengthy, condensing both smoothir{gound- . e :
ing of hilltops and sedimentatiorfilling of valleys) pro- for lengths. In Eq(4), p(a,L) is the distribution of drainage

cesses. The third term is nonlocal, and corresponds to &H€as On a basin of size andf(x) is a finite-size function.
erosion driven by the water flow on a surface wiitx, t) It defines two cr_lthal exponents and ¢ v_vhu_:h are not in-
representing the flow through site The exponeni is a dependen{4]. Similarly 7(l,L) is the distribution of the
parameter of the model which was assumed to be equal to 4PStréam lengths on a basin of sizeg(x) is a finite-size
in Refs.[5] and[7]. The last noise term is added to accountfUnction, and there exists a relation betwe,elandd,d; Note
for small-scale stochastic processes such as rainfall fluctud?@t ¢ and d, } define the “typical” area &,,~L") and
tions. In the attempt of extracting the basic features assocl€Ngth (y,~L™). Finally we remark that one usually distin-
ated with the third term, one can ignore both the diffusionduishes between self-affine basing £ 1,¢<2) and self-
and noise terméthe accuracy of this approximation was dis- Similar basins ¢,>1,¢=2) [22], and in both cases only one.
cussed in Ref[5]). In this case, a stationary state is obtainedeXPonent out of four is independent. They are related via
when the uplift term balances the flow dependent erosionaicaling relations ag4,18,22

term, that is, when

w(l,L)=1"Yg(l/L%) (5)

d, 1
_ h=—, 7=2-h, =-, 6
IVh(x)|~Q7X(x,b), @ o "h ©
where, for later convenience, we define=1— a/2. Most IV. ZERO-TEMPERATURE OCN: LOCAL MINIMA

previous work was performed with=1 (y=1/2) (there are

a few exceptions with aims and methodologies different Within the context of OCNs, the “dissipated energy” of a
from ours; see, e.g., Rdfl]). In this case Eq(2) is known as  river network at a given time, can be written, in continuum
the slope-area laWl], which is a robust empirical law veri- notations, a$14]

fied by real field observational data. We shall see later on

how « is related to the dissipated energy functional. Here we

note that if we assuméas we shall do hereafteuniform E(t):J dx Vh(x,H[Q(X,1). ()
rainfall (and no ground water then Q(x,t) ~a(x,t) where

a(x,t) is the area of the basin draining into poinat timet.  The local gradientVh(x,t)| and the water flow rat®(x,t)
The basic result of this dynamical equation is that the nonare expected to satisfy E€R). Hence one obtains
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FIG. 1. A spanning tree on a 6464 square lattice with eight
nearest neighbors, four in the north-south and east-west directions,
and four along the diagonal directions. The outlet is on the west 2500 0 560 1000
side (out flowing, and on the east side there is an infinite wall, t
whereas there are periodic boundary conditions in the north-south . . .
direction. The thickness of the line at each point is proportional to FIG. 3. Dissipated energy per unit of length, as a function of the

the flow through that point. The seeming loops are just an artifact opumber of |terat|pn$t|me t,) of the self-con5|§tent SOIUt'On_ of the
the drawing. dynamical equation, starting with the spanning tree of Fig 1. The

parametery is the value appearing in Eq2). The system size is
L=512, and each point of the curve is an average over all configu-

E(t)= f dx Q7(x,t). (8) rations w.h.ich have gon.e at 'Ieast that far in the ngmber of iter'ations.
All quantities reported in this and the following figures are dimen-
sionless.

We note that although the energy express@®nvas derived
in the context of OCNZ2], in principle it could be defined in

the evolution equatioitl) as well, thus providing a way of .4 racterization of the local and absolute minim&olt was

monitoring the rate of approach to steady state. shown[17,18, that theabsolute minimunof E is insensitive
The basic assumption of the OCN is that there is a teny 5 yariation of the value of in the interval 1/2= y<1

dency of any real river basin to assume a configuratiorlzo] and thenh=1/2, 7=3/2, andd,=1. The analogous
issue in the case of local minima is much less clear. In fact,

which minimizes Eq.8). A natural question arising is the

! —"F} T Fo ‘HjJ ‘ | when y=0.5, numerical wor 18] suggested that there ex-
ists a set of local minima which presumably corresponds to a
new universality class that is the relevant one for real rivers.

w'.‘ Indeed, only exceptional events are able to radically modify

! river courses, and so local minima of dissipated energy trap

the system with a high probability and therefore dominate
the statistics. It is then a vital issue to discriminate whether
or not local minima configurations are indeed related to a
well defined and robust universality class independeny.on

AT

A
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In this section, we describe numerical procedures and re-
sults in detail for each case. All calculations are carried out
on aL XL square lattice with periodic boundary conditions
in one direction, which we identify as the transverse direc-
tion. Multiple outlet are allowed in the outflowing longitudi-

EW R Ik H nal d_irection(the west side in_ the_figurkwhereas an infinite

- - wall is set up on the opposite sideast sidg All averages

FIG. 2. A Scheidegger network with=64. Boundary condi- considered in the statistics are carried out only over the river
tions are the same as in Fig. 1. The directness of the network pravith the largest flow. It is worth stressing that the choice of
vides a privileged east-west direction. considering only the maximum river in a multiple outlet en-
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FIG. 4. A typical network obtained as a final output of the
self-consistent procedure described in Sec. V B. Here64 and
vy=0, and the initial condition is the spanning tree of Fig. 1.
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FIG. 6. Same as in Fig. 4, witk=0.5.

the two choices are consistent within the statistical errors.
Finally, in all our networks, the drainage araéx,t) is

vironment corresponds to considering the statistical behaviofomputed, at each time step, in a standard way according to

of rivers that are in competition to drain a given region. On[1]
the other hand, a single river within a given region is more

appropriate if geological constraints are known to exist.
Typically eight nearest neighbof®N's)—four, associ-

ated with the square lattice and four associated with the two

a(x,t):(E) a(y,t)+1, 9
y(X

diagonal directions—are allowed. A somewhat more reyyparev(x) denotes all siteg which drain intox, and the last

stricted choice considers only the four natural NN’s associ

term on the right hand side represents a unit rainfall input on

ated with the square lattice structure. In view of universalityeach site at all times.

one would expect that the details of the lattice structure
should not matter. This second choice has the considerable
advantage of being less time consuming for numerical pur-

A. Initial condition

poses. For this reason, although all following figures display There are many possible initial conditions that can be
patterns obtained with eight-NN'’s, the results reported in thisised in numerical analysis of river networks. A popular one
work are obtained with statistics based on four NN’s. In oneamong hydrologists is a deterministic comblike strucfure
example, we have explicitly checked that the outcomes usinglowever, this initial condition suffers from various draw-
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FIG. 5. Same as in Fig. 4, witlk=0.25.
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FIG. 7. Same as in Fig. 4, witk=0.75.
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backs[23] and its use in multiple outlet cases, such the one

treated here, appears to be somewhat inconvenient. Hence
we consider here two other physically reasonable choices,
namely a spanning tre€ST) and a Scheidegger network
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FIG. 10. Finite-size 1/ extrapolation for the value af obtained

(SN). Although ST’s are well known in statistical physics with the dynamical equation for the casgs 0, 0.25, and 0.5. In all

mainly due to their relation with thg— 0 limit of the Potts
model [24], only recently have their topological properties
been studied in detajR5]. A suitable variation of spanning
trees was even proposed as a topological model for river
networks[22,26. We have generated ST's with multiple

cases the initial condition is the spanning tree of Fig. 1.

gutlets by using an adapted Broders algorittsme Ref[25],
and references therginWe have considered sizes ranging

2.0 T T

19

18

1.7

16

1.4 + .

13

12

11 ¢

1.0

0 200 400
a

600 800 1000

from L=232 to 512, and statistics based on a number of con-
figurations ranging from 500 to 100, respectively. We then
performed the finite-size analysis described in Sec. V B to
extract the most reliable values of the exponents. Our best
result for the exponents are=1.378-0.002, =1.596
+0.003, h=0.633+0.003, d;=1.25+£0.01, and ¢=2.00
+0.01 in excellent agreement with the exact resuits
=1.375, 4#=1.6, h=0.625, andd,=1.25 [25]. This also
provides a good test of the quality of our data analysis. Note
that the exact value o, albeit not known, can be derived
from the knowledge ofh using Eq.(6). This predicts¢
=2.0, in perfect agreement with our computed value. We
also note that the obtained results are nearly identical to the
one predicted and numerically generated for a single outlet
[26].

A ST is a self-similar network in that it is undirected and
isotropic. A quite different choicédirected and anisotropic
and hence self-affings a SN. This was again proposed as a
topological model for river network&ee, e.g., Refl]) and
the 7 exponent was exactly determined via a mapping to a
one-dimensional model for mass aggregafi®n]. A similar
mapping to a diffusion-reaction model also provides the so-
lution in general dimensionality28]. Our best results for the
critical exponents with the same statistics as above rare
=1.337+0.003, #=1.49+0.02, h=0.69+0.02, d;=0.96
+0.01, and¢p=1.53+0.02, which are in excellent agree-

ment with the expected valuds being exact, the others
determined via Eq(6)]; that is, 7=4/3, =1.5, h=0.75,
d=1, and¢=1.5.

FIG. 9. Effective exponent as a function of the areain the
stationary state of the dynamical equation wigs=0.5. HerelL
=256, and the initial condition is the spanning tree of Fig. 1.
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TABLE I. Critical exponentsr, ¢, andh as a functions ofy for both the self-consistefiSC) procedure
and the optimal channel network®CN'’s) at zero temperature. The values in parentheses are those obtained
from the computed value of using the scaling relations. For=0, the OCN exponents reported are the
exact ones corresponding to the initial conditidgasspanning tree in the present casence the energy is a

constant.
Y TOCN Tsc bocn sc hocn hsc
0.00 1.38 1.460.01 1.6 1.690.03 (1.67) 0.625 0.6%0.02 (0.60)

0.25 1.42:0.01 1.42:0.01 1.710.07 (1.72) 1.680.05 (1.72) 0.640.03 (0.58) 0.580.01 (0.58)
0.50 1.44-0.01 1.46-0.01 1.8:0.1(1.79) 1.82:0.05 (1.85) 0.6%0.03 (0.56) 0.56:0.01 (0.54)

In Figs. 1 and 2, we depict typical patterns for a ST and a The convergence of the above procedure as a function of
SN, respectively. The presence of multiple outlets magnifieghe number of iterations is reported in Fig. 3 for various
the main difference between a ST and a SN. A ST is convalues ofy. Two remarks are in order. First we note that the
structed in such a way that total freedom is given to thedissipated energy as obtained from the above SC procedure
meandering of streams, the only constraint being that they afloesnothave any physical meaning the transient statein
terminate on the same linghe west sides in the figures Other words, the definition of “time” for the independent
Typically this allows the formation of a main big river of Variable appearing in Fig. 3 should be considered only as a
size considerably larger with respect to the others. For SN'S?horthand notation for “number of iterations.” Second, it is

the east-west preferred direction prevents the forming offPParent that the valug=0.5 seems to be the one with the
such a larger river, and many smaller rivers are usually?OWeSt convergence ratio. This is probably due to the par-
present, as shown in Fig. 2 ticular role played by the valug=0.5, as will become clear

shortly.
Figures 4—8 depict typical patterns obtained on changing
the parametey in the interval[ 0,1]. The effect of the value
As we discussed in Sec. I, we seek the stationary stategf ¥ on the aggregation pattern is evident. Asincreases
of the simplified equation from O to 1, single large rivers draining the entire basin in a
snakelike form are less and less favored. The patternyfor
ah(x,t) . 2 =0 has a strong memory of the original initial tree. The
o U QUXDIVAX DT+ 7(x,t), (10 gyerall effect of the SC procedure is to disfavor a long me-
andering of the streams, thus providing a self-affine character
where a=2(1— 7). The stationary averaged states of Eg.to the final tree. The main river becomes rather straight for
(10) are expected to conform to E). Despite the apparent y=0.25, and the whole pattern appears to be more symmet-
simplicity of the equation, an explicit numerical solution ric with respect to the case gf=0. A noteworthy feature is
proves to be rather slof]. The reason for this can be traced that this tendency is inverted 35-0.5 and returns back for
back to the particular form of the erosion term. According to¥=0.75. As y—1, rivers become very directed, as one
Eg. (10) only sites with a non-negligible combination Woulo_l expect on the ground that this limit corresponds to the
Q%(x,t)[Vh(x,t)]? will affect the change of the pattern. As Scheidegger net_worﬂ(L.S]. The fact thaty= 0.5 most closely
it turns out, this yields a long time transient during which theresembl_es real rivers is a reflgctlon of t_he natural selection by
elevation profile evolves very slowly. the erosional processes of thl_s valueph terms of Eq.(2),
Since we are mainly interested in stationary states, there @S already well documented in the literatusee, e.g., Ref.
a way out from this situatiofi5]. The main idea is to start ] ] o
with an arbitrary networke.g., a ST or a SN and recur- In our numerlc_al estimates _of the exponents,_for simplic-
sively construct the heights starting from the outlets with they, We shall restrict our attention to the half regipd,0.5].
aid of Eq.(2). From the derived landscape, a new networkWe also note that this is the region inaccessible to the ana-
(in general different from the original opean then be ob- IYtical scheme of Ref{17]. _ .
tained by assuming that at each site the outward direction is FOr @ more accurate evaluation of the critical exponents
along the steepest descent path, and using®gThe noise anq'z/./, it proves convenient to introduce the integrated prob-
term in Eq.(10) is mimicked by the unity term in Eq(9).  abilities
The procedure can then be iterated until self-consistency is a a
finally achieved. The final configuration is, by definition, a p(a,L)ZJ da’ p(ar,L)zalrF(_) (11)
stationary state of Eq10). 0 L

B. Dynamical equation: A self-consistent solution

TABLE II. Critical exponent$ stemming from both the SC procedure and the OCN scheme, as a function
of the value ofy and of the value of the ordey of ratios defined in Eq913) and (14).

q y=0.00(SC) y=0.25(SC) y=0.50 (SC) y=0.00 (OCN) y=0.25 (OCN) y=0.50 (OCN)
1 2.1+0.1 2.2:0.1 2.200.1 - 2.0:0.1 2.1+0.1
2 2.1+0.1 2.2:0.1 2.260.1 - 2.0:0.1 2.1+0.1
3 2.1+0.1 2.2:0.1 2.3:0.1 - 2.0:0.1 2.0:0.1
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TABLE lll. Critical exponentd, obtained from both the SC procedure and the OCN scheme, as a function
of the value ofy and of the value of the ordey of ratios (13) and (14) .

g v=0.00 (SC) y=0.25 (SC) y=0.50 (SC) y=0.00 (OCN) »=0.25 (OCN) y=0.50 (OCN)
1 1.3+0.1 1.3t0.1 1.1+0.1 - 1.2£0.1 1.3t0.1
2 1.3+0.1 1.4£0.1 1.2+0.1 - 1.3t0.1 1.3t0.1
3 1.3+0.1 1.4:0.1 1.2-0.1 - 1.3:0.1 1.3:0.1
and Figure 9 shows one typical result on a 25856 lattice.

We can divide the obtained values roughly into four regions.
The first region ((ka<10) corresponds to a region of no
, (12)  scaling. Small rivers belonging to the second region<t&0
<100) have an exponent close to the absolute minimum
value 7=1.5. This is consistent with the picture of typical
rivers (see Fig. 6, where small rivers display a marked
straightness similar to the one of the absolute mininii&j;
this means that they quickly assume configurations consis-
tent with the absolute minimurindependent of the initial
conditions. Larger areas are associated with larger rivers
which have longer memory of the initial condition tf&T in

H(I,L)=fol di’w(1",L)=11"'G

L

whereF(x) andG(x) are related td (x) andg(x), defined

in Egs.(4) and(5), in an obvious way. An efficient way of
computing the exponents is through the so-called “effec
tive” (sometime also referred to as “‘running’éxponents.
In the present case they are defined as

Ha)=1— dlogP(a,L) (13) the present cageHence the corresponding exponent is sen-

Ja sibly smaller(closer to the ST value 1.38). The last region
corresponds to the finite-size cutoff, and must be discarded.

and After discarding the first and fourth regions, the obtained
values can then be grouped into local bins, and a local aver-
dlogII(l,L) age exponent can be associated with each of them. Statistical

ph)=1- - (14 fluctuations within each box then yield an estimate of error

bars. This provides our best estimate of the exponent for

One then obtains an effective exponent for each value of thach value ot, and a simple 1/ extrapolation is then car-
independent variablea(or I). ried out to extract the final values. This is depicted in Fig. 10,

and the corresponding best estimates of this method are re-
2500 T

2.0 . . .
0v=025
19 | 0y=0.50 1
2000 18 ]
1.7 F g
16 g
=3
1500
= pe o
P 15+ KoX 1
o I o=
= Ir
1.4 .
1000 - ] 13 - 1
1.2 .
500 Lo ' T i
0 50000 100000
t
1'% 00 061 062 063 0.04
FIG. 11. Dissipated energy per unit of length, as a function of ) ) 1/L ) )

the number of iterations in the OCN procedure. Here the site is

=256, and again each point of the curves are averaged over all FIG. 12. Finite-size 1/ extrapolation for the value af obtained
configurations which have reached that tim&he initial condition  with the OCN (T=0) for the casey=0.25 and 0.5. In both cases
is the spanning tree of Fig. 1. the initial condition is the spanning tree of Fig. 1.
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TABLE V. Critical exponentsr, ¢, andh for y=0.5 as a function of the initial conditions. As in the
text, ST and SN stand for a spanning tree and a Scheidegger network, respectively. SC and OCN have the
same meanings as above. Values in parentheses are scaling predictions.

TocN Tsc Yocn ¥sc hocen hsc

ST 1.44-0.01 1.46:0.01 1.8:0.1(1.79 1.82-0.05(1.85 0.61+0.03(0.56 0.56+-0.01(0.54
SN 1.44:0.03 1.430.02 1.8-0.2(1.79 1.7+0.1(1.79 0.61+0.03(0.56 0.55+0.02(0.57)

ported in Table I. An analogous procedure leads to the begirocedure during a crossover from a self-similar regithe

estimates fory, as again reported in Table I. The sizes andinitial ST) to a self-affine patterrithe final configuration

statistics are identical to those considered for the initial conindeed we shall see later on that this feature is not present

ditions, and hence these simulations are rather time consumhen one starts with a self-affine netwaekg., a SN from

ing. the outset. A seemingly large value @f appears, probably
One can note a weak dependenceyofor both  and ¢. due to the same reason. Overall, one can note a rather weak

One way of computing) andd, is through the collapse plots (if any) dependence ory, and almost no dependence gn

of the probabilitiesP(a,L) andII(l,L). However we have Finally Hack’s exponenh was computed from its definition

found that a satisfactory collapse can be achieved onlyEq.(3)] using an effective exponent method to be described

within a limited range of the appropriate variab&/ (¢ and  below.

I/L%). Hence we have opted for an alternative scheme hing- Let us assume a power-law dependence for a generic

ing on the calculation of the following ratios: function as given by
adtt f(x)~x% 6>0. 1
Mg('—)5¥~|—¢, q=12,..., (15 > 0
(@%)a On integratiljgf(x) (between lower and upper limits, say
where averages are over the probability densjigs L) (of andx), we find
the maximum river, and thel. dependence is straightforward [XF(X) = Xof (Xo)]
[4]. A similar relationship holds for the lengths = o1 (18)
X
(19+ 1y, J dzf(z)
Mi(L)=——~L% qg=1.2,.... (16) Xo
(19,

The effective exponent, obtained using E#8) in Eq. (3),

The results fog=1, 2, and 3 are reported in Table Il for the With f(x)=a, x=I, and#=1/, can then be analyzed with
exponent¢ and in Table Il for the exponerd,. Surpris- the same proceduréiocal average plus L/ extrapolation
ingly, the values fokp are consistently larger than the space-outlined above. We note that farwe have used an averaged

for this exponent. This is probably due to a deficiency of thisfinal results are reported in Table I, and one can see that
there is an overall good agreement with scaling laws.

; ‘. 2 \S- < /‘: "%
N NNCEES > C. OCN
% SRS GNERINA,

N %
AW\ ;“w‘ “@'% Zo ‘V'#A A The minimization of the energy functiongEq. (8)] goes
< j{fv;\w ’§ ”&’@ﬁ@ through an algorithm akin to the one exploited by Snal
- m./ “% [16]. It is based on the following steps.
G N o (1) An initial configuration(ST or SN is generated and

G NN
%’a.é( < SN0 “%v, its dissipated energy is computed according to ). By

N o%‘wb . definition, this initial k h |
K > ” A efinition, this initial network has no loops.
RN AN 29V \?} 7 NLARR A (2) A link is randomly selected, and its local outflow is
o < y
" 0‘% A «Mg also randomly chosen.
AL L SN | |
4 SO /%\ /\ S IR TABLE V. Comparison between exponengsas obtained from
R DISIZ AN > ‘%s both the SC procedure and the OCN scheme, as a function of the
= //%- < @% Q5 value of the initial conditions and of the value of the ordgof
/ ‘W = A\/”' >0 ratios (13) and (14). As in the text, ST stands for a spanning tree
& ~2 2/,%\:‘-2 SINNS and SN for a Scheidegger network. Here 0.5.
N ‘, N L < o
S WM
W AW@"&'@ N ‘?’. q #st (SC) osn (SC) ¢st (OCN) ¢sn (OCN)
= SO R S 1 22r01 1.8-0.1 2.1+0.1 1.7:0.1
FIG. 13. A typical 64< 64 network obtained as a final output of 2 2.2:0.1 1.8£0.1 2.1+0.1 1.7#0.1
the self-consistent procedure described in Sec. V B upon starting3 2.3+0.1 1.8-0.1 2.0:0.1 1.740.1

with the Scheidegger network of Fig. 2.
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TABLE VI. Comparison between exponends resulting from  starting with a ST, the two sets of critical exponents are
both the SC procedure and the OCN scheme, as a function of thgevertheless consistent within the statistical errors.
value of the initial conditions and of the value of the ordeof As a final comment, in this case we find values¢ofind
ratios (13) and (14)..As in the text, ST stands for a spanning tree d, in very good agreement with scaling predictions. The re-
and SN for a Scheidegger network. Heye 0.5. sults for different ratiog| in the casey= 0.5 for both the SC
and the OCN, along with the comparison with the corre-

d Gs1(SC)  dsn(SC)  dist(OCN)  dhisn (OCN) sponding values stemming from ST’s ,are reported in Tables
1 1.1+0.1 0.9+0.1 1.3:0.1 0.9-0.1 V and VI, respectively.

2 1.2+0.1 1.0:0.1 1.3:0.1 1.0:0.1

3 1.2+0.1 1.0:0.1 1.3:0.1 1.0:0.1

VI. CONCLUSIONS

In this paper we have addressed the issue of the existence
d robustness of the universality class associated with land-
capes corresponding to local minimal energies. To this end
we first extended previous studies for both the SC solution of
a Langevin equation and the OCN'’s variational methods.
Higher sizes and statistics were exploited in both cases and
(to our knowledgg for the first time, implemented the most
physical procedure of basing statistics only on the river with

(3) This new configuration is tested for loop creation. If a
loop has been created, the configuration is rejected and st
(2) is repeated.

(4) The energy of the new candidate configuration is com
puted. If it is smaller than the previous one, the new configu
ration is accepted; otherwise it is rejected.

(5) Steps(2)—(4) are repeated until the energy does not
change within a given tolerance. the largest flow.

_The final ct_)nfiguration is regarded as a local mINIMUM. go0nd. we monitored the dependence of critical expo-
This scheme is patterned after a standard Metropolis algGyents on a parameterassociated with the slope-area law in
rithm at zero temperature, and averages are over many difne casgSC), and with the dissipated energy in the other
ferent configurationgranging from 500 at =32 to 100 at  (the OCN. Our results give compatible critical exponents
L=256). Figure 11 depicts the dissipated energy per unit opetween SC and the OCN within the error bars, but a weak
Iength as a function of the convergence “time{l’.e., the and similar dependence onappears in both models.
number of total iterations of the algorithmThe similarity Finally we have tested the stability of the obtained results
with patterns obtained from the SC procedure is evidentfor both the SC and the OCN with respect to changes in the
Here, however, the typical convergence time is much longeinitial conditions. Although the obtained final patterns dis-
than before. play a dependence on initial conditions, critical exponents

Critical exponents are computed with the same prescripappear to be insensitive to this dependence.
tion given in Sec. V B. In Fig. 12 we show the resulting As a by-product of our investigation, we found that the
1/L extrapolation. The final best estimates are reported iSC solution of the dynamical equation is a very powerful
Table I. method to investigate river networks, as it is capable of pro-

Once more, a weak dependence pifr increases ay viding usgful information on the stgtionary state in a simpl_e
increasescan be noticed. All other exponents are consistennd phy3|cal way. _Another interesting point, _from a numeri-
with scaling relationg6). It is worth stressing that exponents €@l Point of view, is that this procedure typically achieves
are nearly consistertat the edge of statistical erroraith convergence much faster with respect to the OCN scheme.

those previously obtained from the dynamical equation. In view of our results we can now summarize the argu-
Regarding the exponents andd, , they can be found in ments favoring and disfavoring the appearance of a univer-

Tables Il and Ill, respectively. Here too, the same featuresa"ty class associated with local minima. As we mentioned

discussed in Sec. V B, in connection with the exponent vali! our discussion of Fig. 10, the typical evolution of a net-
ues of andd, appliés work appears to depend on the considered length scale.

Small rivers very quickly settle to their final state, whereas a
much longer time is required to large rivers to “forget” their
initial conditions. This is also reflected by the difficulty in
collapsing the distribution probabilities of bo#handl into a

Our final task is a test of the sensitivity of critical expo- single plot for a reasonably extended range of the corre-
nents to the initial conditions. To this end we have changedponding variable. It is then possible that although dnlyg
the initial condition from a ST to a SN for both the dynami- universality classeéne associated with the initial condition
cal equation and the OCN. The main difference between thand the other to the absolute minimuare present, an inter-
two initial conditions is that while the latter is a directed mediate universality class sets on due to both the averaging
network, the former is not. Table IV reports the comparisonover different regimes and the difficulty of reaching the ab-
for the casey=0.5, and Fig. 13 depicts the network resulting solute minimum.
from the SC scheme, for a typical final state. Despite the On the other hand, in support of the existence of a new
obvious memory of the initial networlsee Fig. 2, the typi-  universality class, we cite the fact that critical exponents are
cal distance among large rivers is larger than the initial onedifferent from those of both the ST and SN—on starting with
This in turn yields a higher value fat, and hence nontrivial these initial conditions, critical exponents in the final con-
exponents. It is remarkable that although these patterns afigurations clearly deviate from their initial values. Further-
pear to be considerably different from those obtained whemore, all exponents are found to be robust, and to obey to

D. Independence of the initial condition
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scaling relations summarized in Sec. lll. also be implemented in the OCN framework, upon starting

Overall we believe that the evidence suggested by ouwith the more general expression given in Eqf.
results favors this second possibility which was also hinted at
in a different co_n_tex{29]. In this respect the Weak_ depen- ACKNOWLEDGMENTS
dence of the critical exponents remains unexplained.
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