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Nontrivial extension of the two-dimensional Ising model: Thed-dimensional “molecular”
model
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A recently proposed molecular model is discussed as a nontrivial extension of the Ising modket Ftre
two models are shown to be equivalent, while dor 2 the molecular model describes a peculiar second order
transition from an isotropic high-temperature phase to a low-dimensional anisotropic low-temperature state.
The general mean-field analysis is compared with the results achieved by a variational Migdal-Kadanoff real
space renormalization group method and by standard Monte Carlo samplihg &rBy finite size scaling the
critical exponent has been found to be=0.44+0.02, thus establishing that the molecular model does not
belong to the universality class of the Ising model dior 2.

PACS numbsd(s): 64.60.Cn, 64.60.Fr, 62.50p, 05.50:+q

[. INTRODUCTION served under pressuf®] has recently been shov0] to be
affected by the presence of a crystal field which breaks the
Most molecular liquids retain their molecular structure isotropy. Quite recently, similar lattice models have been
even in the solid phase, where some long range order usuallysed for describing the diffusion of particles and molecules
shows up as a consequence of intermolecular interactiomnside a polymer, and the growth of one-dimensional islands
However, in the solid the orientational order of the mol- (polymeric chains[11].
ecules may change according to the thermodynamic condi- The molecular model has already stimulated some recent
tions, giving rise to quite rich phase diagrams as recentlyvork on molecular orientation in nitrogefil2,13 where
observed for hydrogen under high pressiure some experimental dafd4] confirm the existence of an ori-
The most studied theoretical models for orientational or-entational disordering temperature in the solid below the
der describe a molecular interaction that arises from dipolénelting temperature. However, the molecular systems which
fluctuation, is weak, and gives rise to the observed threeseem to be more closely described by the molecular model
dimensional ordering of most molecular van der Waals solare the hydrogen halidesXd (X=F,ClI,Br,l). Their low-
ids. The thermodynamic behavior of such weakly interactingemperature structures are known to consist of planar chains
systems can be analyzed in termsQ{f3) symmetric vecto- of molecules in the condensed state, while a totally disor-
rial models. Conversely, the “molecular” model was first dered structure has been observed with increasing tempera-
motivated[2] by a description of almost covalent molecular ture at ambient pressuf@]. The opposite transition, from
solids where the interaction has a covalent main componemtrientational disorder to an ordered chain structure, has also
and is characterized by some level of frustratisince the been reported on increasing pressufge
coordination number for the covalent bond is quite Joim In fact the molecular model undergoes a transition from
such solids each molecule must choose a few partners ar@h high-temperatur¢or weakly interacting fully isotropic
cannot accept any further invitation. The lower is the al-disordered system to a low-temperat(oe strongly interact-
lowed coordination number, the higher the frustration, whiching) anisotropic low-dimensional broken-symmetry phase.
gives rise to the low-dimensional structures observed irAs a consequence of frustration the breaking of symmetry is
polymers(one dimensionalor in iodine[3—5] and hydrogen accompanied by a sort of decomposition of the system into
halides[6,7] (two dimensional Moreover, we expect that a low-dimensional almost independent parts, as observed in
covalent interaction should show up for all molecular solidssolid iodine and hydrogen halides. Such remarkable behavior
under high pressurg8], as the intermolecular distance ap- requires a space dimensidn>2, while ford=2 the model
proaches the intramolecular length, provided that some imis shown to be equivalent to the exactly solvable two-
portant structural transition does not occur fifldte disso- dimensional Ising mode]l15]. As shown below by Monte
ciation). Carlo calculations, in the broken-symmetry phase the system
The “molecular” model is a simple frustrated lattice displays the presence of correlated chains of molecules
model which can describe some aspects of molecular orierpolymerg which point toward a common direction inside
tation in covalently bound molecular solids. It consists of aeach two-dimensional subset of the lattig@ang. Such
d-dimensional hypercubic lattice with a randomly orientedplanes are weakly correlated in the low-temperature phase,
linear molecule at each site. In its simplest version each moland the system has a two-dimensional behavior even for
ecule is allowed to be oriented toward only one of its nearestl>3.
neighbors. There is an energy gain for any pair of neighbors In this paper the relevance of the molecular model as a
that are oriented along their common bdaccovalent bond  nontrivial extension of the Ising model is pointed out. Thus,
The existence of preferred orientational axes breaks the r@part from the physical motivations, the model is fully ex-
tational invariance of the single molecule, as is likely to oc-amined and the phase transition is described by several meth-
cur for any real molecular system under pressure. In factpds: mean field, real space renormalization group, and nu-
even in hydrogen, the broken-symmetry phase transition obmerical simulations. Exactly solvable models are important
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for our understanding of more complex systems, and provide
a test for approximate techniques. Thalimensional mo-
lecular model shares with the Ising model the 2 realiza-
tion, since their equivalence fak=2 has been proved to be
exact[2]. In this paper we will focus on thé=3 model, but

we will take advantage of the existence of an exactly solv-
able realization ford=2. For d>2, as the frustration in-
creases, the model shows a very different behavior from the
Ising or Potts [16] models. These last show a fully
d-dimensional broken-symmetry phase while the molecular
model is characterized by a low-dimensional ordering inside
the planes with negligible correlation among different
planes. Moreover, fod= 3 the molecular model is shown to
belong to a different universality class, since its critical ex-
ponentr turns out to bev=0.44+0.02 by finite size scaling.
We expect that such a universality class should describe a FIG. 1. An allowed configuration fod=2.
broad group of isotropic physical systems characterized by a

low-dimensional ordering in their low-temperature phase.axesxa_ The versors§<a are assumed to be orthonormal:

Such a broad class of phase transitions should be explored by ~ . L
. . ) . . X,-X,=48,,. The partition function is
experiments in order to compare with the theoretical predic=« "7 Y

tions for the critical universal properties. In this respect the o R
driving parameter does not need to be the temperature, as the Z:Z es=z exp{4,82 (We X)) (Wris Xo) |, (D)
bond strength can be directly modified by a change of pres- {w} {w} he

sure in several systems. . ] )

This paper is organized as follows. Section Il contains avhere{w} indicates a sum over all configurations, runs
formal definition of thed-dimensional molecular model, and from 1 to d, and the lattice spacing is set to unity. The
a proof of its equivalence to the Ising model for=2. In  inverse temperaturg (in units of the binding energycan be
Sec. Ill the mean-field solution is discussed for the generidegative for aepulsivemodel, but is assumed positive in the
d-dimensional model. In Sec. IV a modified variational molecular context. _ _ .
Migdal-Kadanoff method is presented and its application is The model may be generalized by introducing an external
discussed fod=2 andd=3. At variance with a previous d-dimensional vectorial fielth(«) at each link. The depen-
calculation[17] which yielded a quite poor result, the varia- dence omx means that the field differs according to the space
tional method is shown to work very well provided that somedirectiona of the lattice link that joins the sites. The modi-
assumptions are made about the nature of the broken phadigd partition function reads
Section V contains the results of a numerical simulation by
Mp_nte Carlo sampling, and the numeric_all estimation Qf both thz eShZZ ex 4ﬂ2 [(\7Vr'>A<a)(VAVr+§< .;(a)
critical temperature and exponent by finite size scaling. In wh w ra @
Sec. VI the main findings are summarized and discussed.

+h(a)'Wr+h(a)-Wr+;a]}- )
Il. MOLECULAR MODEL

Let us consider d@-dimensional hypercubic lattice, with a It is evident that if the field satisfies the condition
randomly oriented linear molecule at each site. The mol-
ecules are supposed to be symmetric with respect to their
center of mass which is fixed at the lattice site. Only a dis-
crete number of space orientations are allowed for each mol-
ecule: we assume that each of them must point toward one tfien S, does not depend dm andS,=S. In such a case the
its 2d first neighbor sites. This choice can be justified by theextra degree of freedom provided hycan be regarded as a
existence of covalent interactions along preferred axes. Thesort of internal symmetry of the model. This global symme-
each molecule had different states corresponding to mo- try can be made local by allowing the fieldto depend on
lecular orientation along the hypercube axe®lecules are the site positiorr. We will only take advantage of the global
symmetrig. Finally, each couple of first neighbor molecules, symmetry in this paper. We notice that such symmetry can-
when pointing one toward the other, are assumed to gain Aot be seen as a gauge invariance, since in lattice gauge
bonding energy for their directional covalent bofitiey = models any gauge change leaves the energy gain unchanged
touch each othgr As shown in Fig. 1 fod=2, bonding in  at any link. Here the fieldh changes the energy gain of all
one direction excludes any possible bond along the othethe links while the whole action is invariant.

(d—1) directions. The coordination number is 2 for any Adopting a more compact notation, the partition function
value ofd, and the frustration increases with increasihg reads

According to this description we introduce a versor vari-

ablg W, for eaAch of.th.eN sitesr of the lattice, withw, thz eshzz eZr,oL(r ) (4)
e{X1,X2, . .. Xq} pointing toward one of thel hypercube {w} {w}

> h(a)=0 3)
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where the Lagrangian density follows as
L(r,a)=WM,(B,h)W, 5 . (5)

Here the canonical-dimensional column vector representa-
tion of RY is employed with x;=(1,00...), X,
=(0,1,0...),etc. ThedxXd matrix M, does not depend on
the configurations of the system, and entirely characterizes
the model.

The global symmetry of the action provides a simple way
to show the equivalence between molecular and Ising models
for d=2. For the two-dimensional lattice the conditi@) is
satisfied by the fieldh(1)=h(x;—x,), h(2)=—h(1). The
matrix M , follows:

_(43(1+2h) o)
M= 0 —-8ph)’

(a)

(6)

_(—8,8h 0
27l 0 4B(1+2h)

s

Then forh=—1/4, M;=M,, and L reads

FIG. 2. Ground state configurations for the two-dimensiatal

L(r,a)=,8+\7v;r Y 7) tractive (a) andrepulsive(b) models.

-8B B

Identifying the two-dimensional column versasswith spin
variables, apart from an inessential factérreduces to the (. % (W, 5 - X)~A 4 (W, Xo)+ A (W45 -X,)—AZ,
partition function of a two-dimensional Ising model, “ @ “(9)

glecting second order fluctuation terms

Z=e"MZ ging, (8 - s
where A ,=(w,-X,) is an average over the configurations,
and is exactly solvable. Fg8— +« a ground state is ap- and X,A,=1 (with the obvious bounds €A ,<1). Here
proached with all the molecules oriented along the same dithe order parametea , gives the probability of finding a
rection, and with formation of one-dimensional polymeric molecule oriented along the direction ®f. The partition

chains [Fig. 2@)]; for B— —« the repulsive model ap- fynction factorizes as
proaches a zero-ener@gyo bond$ ground state analogous to

the antiferromagnetic configuration of the Ising moffel. N

2(b)]. ZMF=(E eBBAa) exp(—4NBE Ai) (10)
For d=3 the analogy with the Ising model breaks down, “ “

and this is evident from a simple analysis of the ground stat

configuration. Due to frustration the model has an infinitely%nd the free energy follows as

degenerate ground state in the thermodynamic Izt .

; . - i 1 1
For instance, in the casg= 3, the minimum energy is ob- Fur=— ——INZyp=4>, A%— —In( > eSﬁAa)_
tained by orienting all the molecules along a common direc- NB @ B a
tion, as ford=2. However, the ground state configuration is (11)

not unique: the number of molecular bonds does not change

if we rotate together all the molecules belonging to an entirel "€ derivative with respect ta, yields, for the stationary

layer that is parallel to the original direction of orientation. POINtS,
As a consequence of frustration the total degeneracy is IR
/ . g
3(2(N13)), and the system could even behave like a glass for A“:WAZ’ (12
a

the large energy barriers that separate each minimum from
the others. The phase diagram is expected to be quite rich, . o o
with at least a transition point between the high-temperaturdhich satisfies the conditioB ,A,~=1.

disordered phase and an ordered broken-symmetry low- N the high-temperature limi8—0 Eq. (12) has the
temperature phase. unique solutiomA ,=1/d which reflects the completely ran-

dom orientation of molecules. In the opposite lingit-oo,
apart from such a solution, Eq12) is satisfied by the
broken-symmetry field ,=1, A ,=0 for a# u, which ob-
For the generid-dimensional model, some analytical re- viously corresponds to a minimum fét,- . Thus at a criti-
sults can be obtained in mean-fiddF) approximation: ne- cal point 8= 3. the high-temperature solution must become

IIl. MEAN-FIELD APPROXIMATION



PRE 62 NONTRIVIAL EXTENSION OF THE TWO-DIMENSIONAL . .. 6029

unstable toward a multivalued minimum configuration. The
Hessian matrix is easily evaluated at the stationary points by =2 T,(rr). (18)
using Eqs(12) and(11):
L 2 Replacing the ar(ctiorSh by the sumS,+1I', and assuming
MF that the conditior{3) is satisfied'so that we can drop thein
=g A, IA, =0, (1-8BA,)+8BAA,. (13 S, andZ, which are invariant the modified partition func-
tion Z can be approximated by cumulant expansion as
In the high-temperature phasg< g.), insertingA ,=1/d,

the eigenvalue problem ZF:E es+r:Z<er>%Z[e<r>e(<r2>7<r>2)/z]. (19)
{w}
defH,,—\6,,/|=0 (14 _
then, sincgI'y=0,
ields
Y Zp~2eTR2, (20)
d-1
(1_ S_ﬁ_)\) (1-\)=0. (15  For instance, the sum in E@18) could run over alla#1,
d and for appropriate values of the vectars’, in order to

yield a displacement of links that are orthogonab?tp To

Thus the Hessian matrix is positive definite if and onlyif second order ifi’, the error introduced by link displacement

=(1-8pB/d)>0. Beyond the critical poini3=pB.=(d/8) : : ;
the solutionAM=1/d is not a minimum, and a multivalued is controlled by the exponential factor in E@0).

minimum configuration shows up. Such a result obviouslymola'glk Sd‘;stalggeniﬁser?tt) ?gﬁagfi:]r\];rilgﬁrfl:) ?Ias;\y”;irglzt?:/hga tZe
agrees with the MF prediction for the Ising mod@sing ’ r 9 y 9

—1/(2d), only for the special dimensiati=2. Ford=>2 we subject to the conditiot3). Thus we may improve the ap-
observe’an increase @, with d, to be co.mpared to the prp>_<in_1a_tion by u_sing the extra freedom in the .ChOiC@M’r..
opposite trend shown bycthe Isiné model. Such behavior mafnmizing the difference between the approximate partition

. : : : : unction Zr and the exact.
be interpreted in terms of the low dimensionality of the or- If h satisfies the conditioid) then ah satisfies such a
dered phase. Due to frustration the ordering may occur onl ondition as well for anv choice of the scalar parameter
on a low-dimensional scale: for instance, in three dimension% y P

each layer has an independent internal ordering. Thus w gsgrit?ezplfuslcﬁfﬁseo;f |{r1]\;a2ta:2Eetﬁrar;?;mta;tls:r&%ﬁ]an be
expect a largerB; for d>2 since the increase af only y 9 gih p 9

introduces larger fluctuations, with each molecule havin haes;‘llelgg aznpéf;:gg'grt‘gl:t?"e-rrZ?a]:)slgvg}q[gﬁggosri?ﬂ?igﬁg de-
(d—2) allowed out-of-plane orientations. Fdr= 3 the low- y be g

temperature phase can be regarded as a quenched disordeﬁ%ﬁbed by more than one parameter. Sificis linear in the

superposition of layers that are internally ordered along dif- dh, then in general

ferent in-plane directions. As a consequence of frustration I'2=[A+hBJ?, (21)

the system shows a two-dimensional character below the

critical point while behaving as truly three dimensional in thewhere A and B depend on the configuration of the system.

high-temperature domain. In a MF analysis the neglecting ofor the average we have

some fluctuations usually leads to a critical temperature that

overestimates the exact val(iee., the critical inverse tem- (T?y=(A%)+2h(AB)+h*B?). (22

peratureB, is underestimatgd For d=2 the MF prediction . . ] )

is 8.=0.25 to be compared with the exact valy  Thislastequation, inserted in EQO), leads to the following

—0.4407. Ford=3 the MF prediction 8.=d/8=0.375 considerations(i) the coeff|C|enl(B_2>_ is positive definite, so

should provide a lower bound to the unknown exact value. the averagdI'?) always has a minimum for an appropriate

value of h=hg; (ii) in general(AB)#0, sohy#0, and a

direct use of the Migdal-Kadanoff method on the original

model (with no field consideredwould yield a larger error;

(iii ) to the considered order of approximatiép is stationary
According to the Migdal-Kadanoff15,18 method, a link ath=hg and is symmetric around that point, so all the physi-

displacement may be introduced by considering that the corfal properties described by such a partition function must be

figurational average of the Lagrangian densityn Eq. (5)  Symmetric with respect thy. Moreover, at the same order of
must be translationally invariant, approximation, any physical observalbiill acquire an un-

physical dependence dn and the symmetry arouna re-
(L(r,a))y=(L(r",a)). (16)  quires thadf/dh=0 for h=hg. Thus we expect that all such
observables should be stationary ket hy, and their best
Then defining estimate should coincide with the extreme value.
As a consequence of the above statements, the Migdal-
L (r,r")y=L(r,a)— L(r', a) 17 Kadanoff method can be improved by taking advantage of
the global symmetry of the model. By use of the approximate
we can state thatl’,(r,r’'))=0 and the same holds for any partition functionZ the critical temperature acquires a non-
sumI over an arbitrary set of such terms, physical field dependence, but the best estimatgois its

IV. VARIATIONAL MIGDAL-KADANOFF
APPROXIMATION
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stationary value corresponding fie= ho. The method can be f(B,h)=n1/n;, (30
seen as a variational method with the best approximation
achieved by the minimum in the inverse temperature. apart from a regular multiplicative factor for the partition

Such a stationary condition resembles the principle ofunction, the scaling equatio28) reads
“minimum sensitivity” introduced by Stevensdri 9] for de- _
termining the best renormalization parameters whenever the [f(B,M]*=F(By1.h). (3D
physical amplitudes depend on théand they should ngt ] . .
In our context, since the critical temperature should not defor any fixedh, the fixed points follow through the standard
pend on the choice of the field strendththe best value for Migdal-Kadanoff equations
such a field is the one that makes the critical temperature less w1 NN
sensitive, i.e., the stationary point. However, according to [T M =158, h). (32
Egs.(20) and(22), here we have a formal proof of the sta- Whenh\ is analytically continued up to 1 such equations give

gic;r:]ary condition up to second order of the cumulant €XPaNthe same isotropic fixed poir8.. In fact, the expansion of

The method may be used by performing a displacement olt:‘qs'(32) around =1 implies (up to first order i\ —1)

links that are orthogonal t&; and then a one-dimensional
decimation along ther=1 axis. According to such a pro- Inf(Bc,h)=—(d=1)Bc

(33

Tag,’
gram let us define thdxd matrix t,(3,h), B Be
e a—wit (8,hw,.; . (23) which is an implicit equation fo3.. Such equations yield
re @ their best estimate g8, when the strength of the field is

The partition function follows: set to the stationary valu,. .
It is instructive to evaluate the stationary poimt for the

~ - cased=2, which is equivalent to the two-dimensional Ising
Zy=2 I1 [Wita(B. w5 1. (24 model for the choicéi=h, = — 1/4, as shown in Sec. II. The
{w} T . . . .
h invariance of the exact partition function guarantees the
After link displacement and decimation along the- 1 axis, equivalence of the two models for any choice lofh, .
the modified partition function reads However, the mere application of the Migdal-Kadanoff equa-
tions (32) to the simpleh=0 molecular model fails to pre-
dict even the existence of the fixed point. On the other hand,
for h=h,, the very same recurrence equatiof® are
known to predict the exact fixed point in the limit—1.
where the sum and the product run over the configuration¥hat can also be checked by inserting in E88) the exact

zr=2 IT W/t w5 1, (25

{W} ra

and the sites of the new decimated lattice, and expression for the fixed point of the two-dimensional Ising
5 model. Such contradictory results are not surprising since, as
t1(B,h)=[t:(8,N1", (26)  already discussed, link displacement breakshtlevariance
of the model, and the approximate solution is thus dependent
t,(B.,h)=t,(\B,h) for a#1, (27)  on the choice oh. It can be checkeflL7] that in this case, by

use of Eq.(6), the solution of Eq(393) is stationary ah=
with X being the scale factor between the new and the old- 1/4=h, for any 3. As expected, this is the value required

lattice. A renormalized inverse temperatie may be de- in order to recover the Ising model. Thus the Migdal-

fined according to Kadanoff approximation gives an improving estimate of the
critical point as we move from thenolecular toward the
T.(B,h)=t1(B1.h), (28)  Ising representatioifwhere the approximation yields the ex-
act fixed point. We stress that all such representations are
B,=\B for a#1. (29)  equivalent due to thé invariance of the action.

For d>2 no equivalence to standard studied models has
Eventually, the same scaling operation should be performeteen found, and the behavior seems to be dictated by the
consecutively for all the directions in order to obtain a hy-strong frustration which does not allow a higher coordination
percubic lattice again. For any finite scaling parameter number than 2, even for higher dimensions. We will focus on
>1 the renormalized inverse temperature is anisotropic, buhe d=3 model in order to compare the results with the
an isotropic fixed point can be recovered in the limit-1.  Monte Carlo findings of the next section. First of all the
Equations(28) and (29) define the flow of the renormalized fields h(«a) must be defined. An isotropic choice would be
inverse temperature, which changes for different values of

the field strengtth. Equation(28) has a more explicit aspect h(1)=h(x;— 3X,— 1X3),

in the representation of the common eigenvectors of the ma-

tricest; andt,;=[t;]*. The rank of such matrices is 2 for h(2)=h(x,— iX3— 1Xy), (34)
any space dimensioth as is expected from the definition of

the model. Then both the matrices can be represented in h(3)=h(xz— 2X;— 1X,).

terms of the two nonvanishing eigenvalues, 7,, which are
functions of 8 andh. Assuming thatr,# 0 and defining Now Eq. (30) reads
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= 09
7 (bX3+2)—(bx3—2)?+8x3 2
f(B.h)=— = ) g 085
72 (bx3+2)+(bx®—2)?+8x3 2 o8}
g 075
whereb=exp(48) andx=exp(4Bh). Differentiating with re- E o7}
spect tox we find that the derivative dfvanishes only for 2 065 b
g 06 \—J
11 £ oss L
h=hy=- 3t @'” 2, (36) -0.25 -0.24 -0.23 -0.22 -0.21 -0.2

h
which depends orB. For such a field strength,,(8) the

ratio between the eigenvalues reduces to FIG. 3. Numerical solutions of the two-dimensional Migdal-

Kadanoff equations for a single layer of the three-dimensional mo-
f(8,h,) =tanhB), (37) lecular _model. The critical tem_peratuﬁei_s rc_eported as a function
of the field strengtth. The stationary point is di=hy=—0.2349
which is exactly the same expression holding for the IsingVhere 8=p.=0.6122. Forh>—0.226 there is no physical solu-
model[15]. However, we must point out that in such a caselio™
h,, is not the stationary poirtt,. Sinceh,, depends o8, the

vanishing of the derivative dfdoes not imply that the solu- Notice that this is a X3 matrix since we are using tr
tion of Eq. (33 is stationary. In fact, fod=23, the choice =2 method but we are still dealing withd=3 molecular

h=h,, yields the knowr[17] poor result3.=0.1398 by in- model. T_he two _matricesl andt, share the same eigenval-
sertion of Eq.(37) in Eq. (33). On the other hand, by inser- U€S- Their ratio is

tion of the general expression féy Eq. (35), the scaling ) ) 5 53 >
equation(33) can be numerically solved fg8, as a function HB.h) = (bX2+1+1x%) = V(bx2—1— 1/x?) 2+ 4(1+X?)
of h. At the stationary poinB, has a minimum, and thus the ’ (bX%+ 1+ 12+ \(bx2— 1— 1/x%)2+ 4(1+x?)

variational method yields an even worse predictig8 ( (39)
~(.12 at the stationary pointThese shortcomings show that

the isotropicd= 3 variational method does not suit the mo- Inserting this result in the scaling equati@®8) evaluated at
lecular model. Actually, both MF and Monte Carlo methodsd=2 yields an implicit equation foB, versush. The nu-
predict a largerB. and, as pointed out at the end of the merical solutions are reported in Fig. 3. They share most of
previous section, the exag, should be larger than the MF the features of thel=2 molecular model(i) There are sev-
prediction By, =0.375. eral solutions but there is no repulsive fixed point liet O;

We could have guessed such a disagreement since we die) the physical solution starts at a negatlvevhich in this
using an isotropic version of the variational Migdal- case ish~—0.226; (iii) the physical solution has just one
Kadanoff method for a system that is not isotropic in itsstationary pointh, where 8. reaches its minimum value.
ordered phase. At the transition point the system choosesHowever, in this case the stationary point is lag=
direction, as is usual for any symmetry breaking mechanism--0.2349 where3,=0.6122. This best estimate of the criti-
However, at variance with the usual models, in the orderedal point is not too far from the finite size scaling prediction
phase the correlation length cannot be isotropic: order occursf the next section3.=0.53. The result is encouraging, and
inside all layers that are orthogonal to the chosen directiongives us more confidence in our understanding of the physics
while there is a negligible correlation along that direction. Itdescribed by the molecular model. Strictly speaking, this
would be more sensible to describe the ordering that takes 2 variational method describes the transition occurring in a
place inside a single layer, thus neglecting any correlatiosingle layer of molecules. However, at variance with the
among different layers. Inside each layer the correlationr=2 molecular model, each molecule is now allowed to be
length is isotropic, and thed=2 variational Migdal- oriented along three different axésvo in-plane and one
Kadanoff method should give a better description of the traneut-of-plane orientations Thus this reasonable prediction
sition. The same argument should hold for the generidor 8. could be regarded as an indirect proof that the corre-
d-dimensional molecular model. Moreover, despite the coslation between two different layers is negligible, and that in
of this further approximation, the Migdal-Kadanoff method the ordered phase the system behaves as a truly two-
is known to work better for lower dimensions, andla&2  dimensional one.
variational method could provide a tool for describing the

genericd-dimensional molecular model even for3. V. MONTE CARLO SAMPLING
A d=2 version of the variational method requires a dif- o . _
ferent choice for the fieldfi(a) which do not need to be  In order to check the prediction achieved by different ap-

isotropic any more. Let us take the same field we used ifProximate methods it would be desirable to have an accurate
sec. II, namelyh(1)=h(X; - %,), h(2)= —h(1). andh(3 numerlcal estimate o_f the_ crltlcal_ temperature. That can eas-
yh(1)=h(x1=x), h(2) 1) 3 ily be obtained by finite size scaling. Moreover, according to

=0. The matrixt, is : ) "
! the scaling hypothesis, the critical exponenttan be ex-

g4B+8ph 1 g4Bh tracted from the numerical data with good accuracy.
1 —8gh —4ph Cubic sampledNXNXN with N=10,15,20,25,30 have
= € € : (38 peen considered. All the averages have been evaluated by

ehh  gm4hh 1 Monte Carlo sampling with no special boundary conditions.
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In this model any ordering is characterized by the pres- 3F o orees | N=15 -~ ]
ence of some degree of correlation along one-dimensional & eI 20 -
chains of molecules. Fat=3 there are X NXN different = =25 -o

. . . . €t 25 =30
chains in each sample. Each chain may be labeled by its 2
directiona=1,2,3 and by two integer coordinatks|, run- g
ning over a lattice layer orthogonal to the axis. For any £ 27
chain we define an order parameter é

LN 15t RN T
m(a,ly,12)=§ 21 [W(Jel1.12) Xo ], (40) 03 04 05 06 07
Ja= Inverse temperature (B)
wherew(J,,11,1,) is the versom, at the chain site whose FIG. 4. The fourth momerg=(y*) versus the inverse tempera-

integer coordinates are determinedXyalong the chain and  ture g for N=15,20,25,30. FoN =30 only a few points around the

by the coupld 4,1, in the orthogonal directions. If there is no critical point have been evaluated. The curves are a linear interpo-
correlation at all B—0) then m(a,l4,1,)~1/3 for any lation between points and are reported as a guide for the eye.
chain in the sample. By averaging over all the chains of each

sample and over all the configurations, we obtai)=1/3.  namic limit we expect that the fourth momesishould be-

For largeN, according to the central limit theorem, in this have like a step function with constant values3 ands
statistical ensemble the variabiefollows a Gaussian distri- =1.5, respectively, above and below the critical temperature,
bution centered at its average value. In the opposite limiand a sharp jump at the critical point. For finite size samples
(B— ) one-third of the chains in each sample have a largéhe fourth moment is expected to be continuous across the
m~ 1, while m~0 for two-thirds of them. Since any inter- transition, but according to the scaling hypothesis the critical
mediate value ofn is unlikely, the statistical distribution of value should not depend on the sample size if we assume a
m can be regarded as the superposition of two differenpne-parameter scaling law across the critical point:

peaked distributions centered at=0 and m=1. If N is

large enough, and for a large number of configurations, such s=s(L/&(B)), (43)
distributions are very peaked and their width is very small. : i .
Actually, just below the critical point the Gaussian distribu- whereL 'S.hefe the sa_mple length, agdis the cor_relatlon
tion already splits into a double-peak distribution. We Canlength,wmch is a function of temperature. According to such

: o : a scaling laws=s(0) at the critical point for any..
monitor the transition by use of the new variable We have checked this prediction by standard Monte Carlo

m—(m) sampling. For any fixed sample size, we have taken a com-
N — (41) pletely random initial configuration, and thermalized it at a
V{m?)—(m)? very high temperature 4~0.02) by 5x10* complete
sweeps. The temperature is then decreased by stefig of
By its definition the configurational average pfis vanish- ~ =0.02. At each step a good thermalization is achieved by

ing (y)=0 and the second momeff’)=1. The variabley ~ 8x 10° complete sweeps, and then the averages are evalu-
differs fromm only by a shift and a rescaling; thus the sta- ated over the successive<20® sweeps. Once a sufficiently
tistical distribution fOf‘y follows the same trend already dis- low temperature is reache(;B@ 1), the process is reversed
cussed form. However, the fourth momerst=(»*) is now  and the temperature increased up to the initial value. We
strongly dependent on the number of peaks characterizingave checked that the hysteresis is small in the whole range
the statistical distribution. For a single Gauss&n3 ex-  of temperature considered. Moreover, the small differences
actly. Below the critical temperature the distribution splits. observed in going up and down give a measure of the errors
In the thermodynamic limiN—< the width of each peak on the configurational averages that have been approximated
vanishes, while the two peaks separate by a finite quantityby the mean values. The fourth momeris reported in Fig.

For instance, assume that just below the critical point one4 for N=15,20,25,30. All the curves cross at the same point
third of the chains yieldn~1/3+ € wheree is a very small B.=0.53+0.01 as predicted by the one-parameter scaling
increase in the chain correlation that breaks the symmetry diypothesis. Moreover, for very large or very small tempera-
the sample. The other two-thirds of the chains must yieldures the correlation length becomes very small and the
m~1/3—€/2 since by its definition(m)=1/3 exactly. Ne-  fourth moments should approach its thermodynamic-limit
glecting the width of the peaks we may approximate theyalue s—s(%), which is expected to bs(«)=3 at high
statistical distribution fom as the superposition of twé  temperature and()=1.5 at low temperature. As shown in

functions with weight factors Fig. 4 the measures approaches such limits far away from
) 1 1 1 the critical point.
€ . _ "
PM)=2dlm—=+—|+28 m-—=—¢. (42) According to the usual definition of the critical exponent,
3 3 2/ 3 3
1
By use of such an approximate statistical distribution the &~ (B—B)"’ (44)

calculation of the fourth momerst={y*) is straightforward
and givess=1.5 for anye, no matter how small. This is the scaling equatiof43) allows for an accurate estimate of
one-half of the single Gaussian value. Thus in the thermodyits value: linearizings around the critical point yields
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4 - - - - ] rations: highly degenerate and anisotropic in the molecular
% model (with a two-dimensional character even for higher di-
351 1 mensiong with a small degeneration and fully isotropic in
sl § ) the Potts modelsincluding the Ising one as a special case
B By considering the two-dimensional character of the low-
@ 25 | % i temperature phase, the molecular model could be thought to
£ belong to the universality class of the simple two-
2t }} . dimensional Ising or three-state Potts models. However, in
7 the high-temperature unbroken-symmetry phase the molecu-
1.5 . lar model is fully isotropic and has a three-dimensional char-
acter.
' s 28 3 32 34 A formal proof of such statements comes from a compari-
In(L) son of the critical exponents. For the three-dimensional mo-

lecular model the finite size scaling calculation of the previ-
ous section yieldsv=0.44 to be compared to the two-
dimensional two-statélsing) and three-state Potts models,
whose exponents ane=1 andv=0.83, respectively15], to

the three-dimensional Ising model whose exponentvis
Wheres’(ﬁc) is the derivative of as a function O'B_ In F|g =0.64 [15], and to the three-state three-dimensional Potts
5 a best fit by the least squares method is reported yieIdin?wde' which is known to undergo a first-order transition
»=0.44+0.02. Here the error is the statistical one coming[20,21

FIG. 5. Linear fit for the critical exponent according to E4f).
The points have been evaluated for 15,20,25,30.

InL=vIn|s’(B.)|+ const, (45

from the linear fit. The molecular model belongs to a universality class char-

Of course this Monte Carlo calculation is far from being acterized by a sort of dimensional transmutation. In fact, or-
the best numerical simulation that can be achieved by modder occurs in chains that are arranged in layers, and the
ern computing machines. Our Samp|e sizes are re|ative|9|$0rder-0rder transition requires a decrease of the effective
small and a slight shift of the critical point cannot be ruleddimensionality of the system. In the ordered phase the mol-
out. However, the estimates for the critical temperature angcules are correlated inside layers, but there is no correlation
exponent are accurate enough for a comparison with experetween molecules that belong to different layers. This un-
mental findings and for a check of the analytical results ofderstanding of the ordered phase is in agreement with our
the previous sections, and that is just what we needed at tH#ding that the two-dimensional Migdal-Kadanoff varia-
moment. More refined calculations are called for in order totional method for a single layer yields a better prediction for

establish more accurate predictions. the critical point than the three-dimensional method applied
to the whole lattice. On the other hand, the very same two-
VI. DISCUSSION dimensional variational method provides a convenient ana-

lytical tool for describing the generid-dimensional molecu-

Here we summarize and discuss the main findings of théar model by a straightforward generalization.
previous sections. According to mean-field calculations and From such arguments the critical point has been given an
finite size scaling the three-dimensional molecular model haapper bound by the variational method, which yields
a second order continuous transition from an isotropic disor=0.61, while a lower bound is usually provided by mean-
dered high-temperature phase to an anisotropic twofield analysis, which in thisi=3 case giveg.=0.375. The
dimensional ordered low-temperature phase. k€3 real- numerical estimate of the previous sectigh=0.53 fits
ization of the model is the one that more closely describesicely inside such bounds.
real molecular systems. For this reason éve3 model has Having discussed some formal aspects of the molecular
been studied by the variational Migdal-Kadanoff method andnodel and a few approximate methods that throw some light
by numerical Monte Carlo simulation. The transition point iSon its phase transition, we would like to make contact with
characterized by a diverging correlation length according tahe phenomenology. Our main finding—that the order-
the one-parameter scaling hypothesis, which seems to be fullisorder transition described by the model belongs to a dif-
filled as shown by the data of the previous section. On thderent universality class—deserves some experimental test.
other hand, thel=2 model is special in itself for its equiva- Transitions of this kind have been observed in several sys-
lence to the two-dimensional Ising model, and for the existems, as discussed in the Introduction. Since the critical
tence of exact analytical results. Thus the3 model can be properties should not depend on the microscopic details of
seen as a nontrivial extension to higher dimension of thehe system we expect that the simple molecular model could
two-dimensional Ising model. Here “nontrivial” means that predict the correct critical exponent of real orientational tran-
thed= 3 molecular model does not belong to the universalitysitions occurring in complex real molecular systems espe-
classes of the standart=3 extensions of the Ising model cially under pressure. New experiments are called for in or-
(three-dimensional Ising and Potts modelkhe difference is der to test such ideas and explore this broad universality
evident from a comparison of the ground state0 configu-  class.
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