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Unattainability of Carnot efficiency in the Brownian heat engine
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We discuss the reversibility of the Brownian heat engine. We perform an asymptotic analysis of the Kramers
equation on a Bitiker-Landauer system and show quantitatively that Carnot efficiency is unattainable even in
the fully overdamped limit. The unattainability is attributed to inevitable irreversible heat flow over the
temperature boundary.

PACS numbds): 05.40—-a, 05.10.Gg, 05.70.Ln, 87.10e

How efficiently can a Brownian heat engine work? This later. These studies remind us that there is difficulty concern-
guestion is important not only for the construction of aing the energetic description of Brownian systems, because a
theory of molecular motorgl] but also for the foundations naive application of conventional energetics formulated in a
of nonequilibrium statistical physics. Like the Carnot cycle,thermodynamic and/or equilibrium system to a Brownian
the Brownian heat engine can extract work from the differ-system may lead to incorrect results.
ence of temperature between heat baths, where the Brownian The operation of Brownian engines is done by the engines
working material operates as a transducer of thermal energyemselves and the engines are, therefoue pfequilibrium.
into mechanical work. The features of this engine &t¢it  To clarify the nonequilibrium nature of Brownian heat en-
operates autonomously, a(® it is driven by afinite differ-  gines and to discover how we should apply energetics to
ence of temperature between heat baths which both Contafﬁem' it is important to make a quantitative ana|ysis of the
the working material simultaneously. Thus, this engineefficiency without adopting oversimplifications for the analy-
works because the system is out of equilibrium. Feynmarsjs that lose the function of a heat engine. Because Feyn-
et al. [2] devised what is called Feynman’s ratchet, which,an's ratchet is somewhat complex to make a rigorous
can rectify thermal fluctuations to produce work us_i_ng theanalysis, it seems more suitable to discuss thetilga-
difference of temperature between two thermal bathgt-Bu Landauer([3,4] system, which is the simplest system of

iker [3] and Landauef4] proposed a simpler type of Brown- Brownian motors. Recently, Matsuo and Sasa analyzed the

i?srinrgoaiosririr;)?epk?g:te gncicii;éh\?\}hgrr]ee gogigﬁ:i;ici)z\;\ig::ll(eei;e%nergetics of the Btiker-Landauer system by a renormaliza-
periodic potential is subject to heat baths of spatially periodicé%?nrgftehfggi[;:l' -Eze%gl?)ﬂfgatriiainthelir?i/tStdeL:?inapgroi(;hs?-s
temperature$s]. y ping gaq

One crucial point in Brownian engines is the efficiency StAliC Proces$18]. Their analysis was based on a rigorous
[2,6-17. Feynmanet al. claimed that their thermal ratchet calculation starting fror_n Kramers equation, and the result is
can operate reversibly, resulting in Carnot efficiency. Re-léar except for one point: They assumed that the momentum
cently, however, some authors have claimed that this is indegree of freedom is always in equilibrium with the heat
correct, while some have supported it. Parrondo and TedpanbPath because the system is overdamfged]. This assump-
suggested that Feynman’s ratchet should not work reversibitjon is not easy for us to accept because the system is singu-
since the engine is simultaneously in contact with heat bathlar at the transition poinf20] where the temperature of the
at different temperaturd$]. Sekimoto devised the so-called heat bath changes suddenly. We conjectured that the essence
stochastic energetics and applied it to Feynman’s rafdfet of the mechanism of the Brownian heat engine is concen-
He showed numerically that the efficiency is much less tharrated at these singular points and that the nature of these
that of Carnot. Hondou and Takagi showed that reversibléonequilibrium engines will emerge by analysis of them.
operation of Feynman'’s ratchet is impossible by useduc-  Thus we will discuss the energetics of thetiRker-Landauer
tio ad absurdum[10]. Magnasco and Stolovitzky studied system paying attention to the transition points. The result
how the engine generates motion by a detailed analysis of itwill also give us insight about how we should apply ‘“sto-
phase spacgll]. On the other hand, Sakaguchi suggestecthastic energetics(7] to overdamped systems with space-
that Feynman’s ratchet can operate reversibly by using dependent temperature.

“stochastic boundary condition[8]. A similar result is also Let us consider the one-dimensional Brownian system

found in Ref.[15] (not for Feynman’s ratchet but for the that Bltikker and Landauer discussed, where working par-

Buttiker-Landauer systemwhich we will discuss in detail ticles operate due to the broken uniformity of the tempera-
ture of the heat bathg3,4]. While Bitikker and Landauer

started their discussion from the overdamprd equation of the

*Email address: hondou@cmpt.phys.tohoku.ac.jp system, we start from the more basic standpoint of the un-

"Email address: sekimoto@yukawa.kyoto-u.ac.jp derdamped description, from which the overdamped equa-
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tion is obtained by eliminating the momentum variable. Thethat of thermal equilibrium. The length, is the product of
probability density in phase spapép,q) obeys the Kramers the thermal velocityw,(~ vkgT/m) and the velocity relax-

equation[21] ation time 7(=m/v): l;y~v7. The choice ofl, does not
alter the following result as long as the inequality E2). is

Ip(P.9) _ _(ﬂ+ﬂ> satisfied. Although we will discuss only one transition re-

at aq  ap gion, the asymptotic behavior does not differ in the other

transition region. Hereafter we apply a normalization of the
_ _K(q) PP _ P p(pP.0) probability densityp(p,q) as[23]
ap m dq

d

+1—[pp<p,q>+kaT(q>

© I
ap(p,d) f dpf dap(p,q)=1. ®)
m Jp e Ao

o @

Now, we will formulate the irreversible heat transfer from
a heat bath to the working particle. The right-hand side of
Kramers equatiofEq. (1)] has two parts. The first and the
second terms are a Liouville operator on the probability den-
sity p(p,q) and thus preserve the energy. The last term is
é/vhat describes the energy transfer between the heat bath

spatial period as the potential(q+L)=T(q). In this and the particle, for which the probability current in

. ; irr _
Biittiker-Landauer system, there are two heat baths with temT0mentum  space is writtenJ, =—(y/m)[pp(p,q)
peraturesT, (for the hot bath and T, (for the cold bath ~ + MkeT(A)dp(p,G)/dp]. Because the probability current

Thus, there are two transition points in a spatial period,disappearsJ',)’E%, for the probability density at equilibrium
where the thermal bath affecting the particle changes. Her&(P,9)> exp{—[p72m+U(a)]/kgT}, the energy flow
we restrict ourselves to the case tHalT,=O(1) for sim-  through J;" can be sufficiently described only wherg
plicity. The system is known to operate as a molecular en=[—In.lc]. The average heat transfer from the hot bath to
gine[3,4,8,19 because the particle camoveagainst the glo- the particle per unit time(dQy,/dt), is

bal gradient of the potential. The globally unidirectional

motion is attributed to the difference between the tempera- % NJ’“’ d 0 d EJirr
tures of the baths, since the hot bath can activate the working dt x, P q&p P
particle more than the cold bath. Suppose that two working

where K(q) =—-dU/dq; vy, m, Jq, andJ, are the friction
constant, the mass of the particle, and the probability cur
rents in space and in momentum, respectiJ@&]. The po-
tential U(q) satisfiesU(q)=U,(q)+g9q, whereU,(q+L)
=U,(q), g (>0) is the gradient of the global slopghe
load), and L is the period. The temperature has the sam

particleclimb the potential, where one is in the hot bath and _ j"" d fo d Py (p.)

the other is in the cold bath. Then the working particle in the e P _ qm m Prip.q

hot bath reaches the top of the potential hill more frequently

than that in the cold bath, leading to global motion in the +mkgT( )0P(p,qw @
system. Thus, one can store work in proportion to the prob- q ap

ability current. To make an energetic analysis, we consider a
“replica” particle, of which the energy iSE=p?/2m By integration by parts through momentum spacand the
+U(q). Here, the ensemble average over the replicas corrgroperty thatp(p,q) exponentially decreases to zero s
sponds to the thermodynamic linjif]. — *oo, we obtain

It has been shown that this engine can have Carnot effi-
ciency if the irreversible heat transfer at the transition points /dQ
is physically negligible. Any Brownian motor is irreversible dt
when it operates with finite probability current. Thus, opera-
tion with Carnot efficiency, if possible, must be in the v/ p? kgTh
“stalled state” [15], where the probability current in space 2m<2m 2 >
disappears,J,(q)=0 (in an overdamped descriptipror h

fdpJq(p,q) :.O (in an unde_rdamped descriptionQuasi- This is the formula for the heat transfer from the hot bath to
static operation requires this stalled state. Therefore, Wa e particle24]. When the system is in equilibrium with the
evaluate whether and how heat flows irreversibly at the trang .ot bath. the heat transf@&Q, /dt) disappears, because the
sition point by obtaining the stationary sol_utlon in Kramerstheory of’equipartition require&p?/2m) = kBT/2’. This also
eqlrano?'lr: bl st?lled tstaﬁ}Eq. (1)]. .FIO r th'.s purpicisel, We  shows that the energy exchange between the replica particle
WITL Testrict ourselves 1o the specia regunpe[ hs c] and the thermal bath is dominant only near the thermal tran-
around the transition poing=0, wherel,, (I.) is the width sition pointq=0, where the average kinetic energy/2m
between the transition point and a point in the (oatid) bath deviates frormk 'I:/2
that satisfies the following inequality: We discuss here how the energy flows around the transi-
ln<l <L, (x=h orc) (2)  tion point. As we are analyzing the stalled state, the prob-
o ’ ability densityp(p,q) is stationary. Thus, the energy density
whereL;, (L) is the width of the hotcold) bath L, +L.  pe(@)=S"..dp[p?2m+U(q)]p(p,q) is stationary. Be-
=L), andl, is the characteristic length scale of the transi-cause there is no work in the stalled state, the conservation of
tion region in which the probability density is different from energy requires that(Qp+ Q.)/dt=0. This shows that the

(e (0 p>  kgT(q)

©)
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same quantity of the heat that flows from the hot bath to thdzq. (1), we obtain a simple equation that describes stationary
particle also flows from the particle to the cold bath: flow in phase space around the boundqryO:
(dQp/dt)y=—(dQ./dt). It should also be noted that, in the

stalled state, the efficiency vanishes except wie@y,/dt) p dp(p,q)
=—(dQ./dt)=0, because work, the numerator of the effi- m 4q
ciency, is absent here. Quasistatic operation is reversible

only if Eq. (5) vanishes. Therefore the quantifgQ,/dt)  We find here that this equation has a scaling property in mass
sufficiently characterizes the operation in the stalled state anghd friction: The generic probability densip(p,q) is ex-

thus we will analyze it in detail. Note that the following pressed using the probability density of the reference state
equality is simultaneously derivd@5]: p*(p,q),

ap(p,d)
ap

A
m

5 . (8

pp(p,q)+mkgT(q)

th> jw p? p *(p Y )
< at AP35 P(Pa) o (6) p(p,q)=cp N ﬁq : 9
This formula confirms that the irreversible heat transfer ighhere the constant factershould be determined by normal-
carried microscopically as the kinetic energy of the particle’Zation [Eq. (3)] [29]. - _
at a transition point. As q departs from the transition poif=0 farther than

It is known, for example, from the kinetic theory of gasesthe characteristic lengthly,, the probability density
[26], that there is finite heat transfein the system where a approache32 that of equilibrium, wherepy(p,q)
Brownian particle of finite mass and friction is crossing over=CneXP—p2mkgTp} (for q<—Iy), and pe(p,q)
two regions with different temperatures, even if the two ther-= Ccexp{—p72mkgTc} (for g>Iy,). The coefficientE,, and
mal baths have no direct contact. This implies that C. are then required to satisfy the condition of continuity of
=(dQ,/dt)>0. The authors of Ref15] assumed that the the probability current. Thus we have
heat transfer should disappear in the overdamped limit, 3 a2
m/y—0. However, their assumption is not evidenpriori. CpTi"=CcTc", (10
To reveal the validity of the assumption we have to perform = i ) . )
an appropriate energetic analysis on the Kramers equatioM‘{h'Ch is consistent with the_ (_:ond|t|on_qler|ved for the over-
which includes the degree of momentyminstead of on the damped I|m|t[4]._ The remaining condition that determines
overdamped Fokker-Planck equation, which does not. C, is the normalization. Note that normalization of the prob-

Hereafter, we will consider the asymptotic behavior of the@bility densityp is satisfactorily carried out even if the con-
heat transfet in the limit of the overdamped process- tribution from the transition region is neglected because the
+o and/orm—0). To find the asymptotic behavior, it is characteristic scal_e of the transition regidp is much
convenient to use the reference heat trankfeof unit mass ~ Smaller than the width, : 14 /1,<1 (x=h or c) [Eq. (2)].
and friction in an arbitrary set of unit$*=I(m=1,y=1)  ThenC, andC, are determined as
[27]. By Eq. (5), the reference heat transfer reads:

1 T,

C = L
I*__2<p_2_kBTh> " \ZkaBTh TC|h+Th|C
B 2 2 (12)
h
* 0 p2 kg Th Cc= ! L .
Z—ZJ dpf I dC](?— 2 )p*(p,Q), (7) \/27kaBTC Tc|h+Th|c
—» ~In

With these solutions and E¢), we obtain the relation be-

where p* (p,q) is the probability density in the reference tween the two normalized probability densitipsand p*
statem=1 andy=1. We call the probability density and  [29]:
the heat transfer of arbitrary mass and friction in the units the

generic probability density and the generic heat transfer. 1 Y
Note that the following result is not altered if we have a p(p,q)= —=p*| —=,—=q]. (12
different reference state. The choice of the valoes1 and \/E m vym

y=1 for the reference state is only for simplicity. In the . o . . .
reference state, the characteristic length of the transition ré¥ote that this equation is valid even within the transition

gionl?, , where the probability density in momentymis out ~ "€9!0N- ,
of equilibrium isl, =v% 7* = JkgT We can now express the heat transfén terms of the
t t '

To evaluate the generic heat trandfeqg. (4)] in terms of reference heat transfét. We rewritel as

the reference heat transfétq. (7)], we will find the relation . 0 2 T

between the generic probability density with arbitrary mass | = _zlj dpf dq(p__ B_h)p(p,q)_ (13
and frictionp(p,q) and the reference on€* (p,q). The po- mJ —e “1, \2m 2

tential termKdp/dp of Kramers equation, Edl), is negli-

gible when one discusses the asymptotic behavior of th8y a change of variables such that'=p/\ym, q’
overdamping 28]. With the stationary conditioa/at=0, in = (y/\/m)q [29], we obtain
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= [0 P> KgTh Jmg
l=-=2 dp _dqg ST P
—w —ylp/ym

Y
This yields, using Eq(12),

when we discuss work out of the Brownian system, because
. the work is a function only of the displacement of position.
Thus, we start the evaluation of the work using the over-
(14 damped Fokker-Planck equation for the probability density
P(q) of the system:

dP(q) d 1 9 [aU(q) aksT(q))

o[ [ et L B Gt R o L)

- ZJ_mdp —ylh/\mdq(z 2 | P (P g ydq| dq q .
(19

Jmp,

where a periodic boundary condition is applieB(0)
This integrand is dominant only near the transition pajnt =P(L) and @P/dq|q-o) =(dP/dq)|4-. . Explicit mass de-
=0, with characteristic lengthf;,. As we are analyzing the pendence on the displacement of the system disappears in the
asymptotic behavior such that—0 and/ory—c, the in- overdamped limit. In stationary stat&lP(q)/dt=0, the
equality (% <)l ,<yl,//m is satisfied. Because the contri- Probability currenti(q) is independent of. The probability
bution from the intervaje [ — y1,,/y/m, —1,,] to the integral ~ currentJ reads

is negligible in Eqg. (15 compared with that fromq 179U TkaT
e[ —14,0], the interval of this integral may adequately be J=— —{ (@) + ke (q)]}P(q). (19
replaced byq e[ —1,,0]. Using Eq.(7), we obtain one of the vl 99 99
main results of our papgB0]: The equation folP(q) reads
2 (= 0 p’° kBTh) 1 g 19U(q) a[kaT(ODJ}
I~——f d f d (—— *(p,q)=—=I*. — + P(q)=0. 19

(16) This equation shows that change of the friction constant

Because the characteristic length of the transition region varfloes not alter the probability densiB(q). Thus, with Eqg.
ishes in the overdamped limit, the scaling property is exacf18), the probability currend scales agly™*. For a fixed
asymptotically. load potential, the work per unit timéW/dt is proportional
From this result, we learn that the irreversible heat transto the probability current. Thus the sole operatiph- o
fer at the transition point does not decrease when one takélpes not lead the system to Carnot efficiency, because the
the overdamped limit, which is in contrast to the claim ininduced work(proportional toJ) decreases while the irre-
Ref.[15]. One way to take this limit is to increase the fric- versible heafEq. (16)] does not decrease.
tion constanty; then the heat transfer does not decrease, TO find the mass dependence of the work, we consider a
because the heat transfedoes not depend op. The other ~ Working particle obeying Stokes’ law with radiug, where
way is to decrease the massthen the heat transfer does not the mass and the friction are specified by one paramgter
decrease either, it increases with the power ofnl/ The  ¥*r's andmery. Thus we havelW/dteJocy~ tocrgt . The
result justifies the intuitive estimation by Desg¢ and As- irreversible heat transfedQ;, /dt that is independent of
tumian[19]. The heat flow is the result of broken symmetry wWork is just the heat transfer [Eq. (16)]. Thus we have
of the probability density in momentum at the transition dQ;,, /dteem™Y2x<r 532, The work-induced heat transfex,
point, because the heat transfer disappears if the probabilityhat is proportional to the workV is proportional to the
density is symmetric in phase space, as shown by(&q. probability currentJ [15]. Thus we obtaindQy,y/dte=J
Since an overdamped equation has no degree of freedom torgl. The three components determine the efficiency. We
describe the irreversible flow caused by the discontinuity ohave
the temperature, the previous literature found Carnot effi-

ciency[15]. dw/dt cirgt c;
Up to now, we have discussed how heat transfer betweer” ™ qQ, /dt+dQ;, /dt  cor= 4 car=32 cotcaf/dra’
the two heat baths behaves in the overdamping process. We W " 2B ¥B 203 @0)

found that the irreversible heat transfer does not decrease in
the process. One finds, however, that the possible work owtrherecq, ¢,, andc; are constants. The result shows that the
of the system may also vary according to the overdampedfficiency decreases monotonically to zero when one takes
limit, because the probability current may vary due to changehe overdamped limitg— 0. This result is not altered even if
of the parametersy and m. Thus, it is not yet obvious one includes another transition point in the same period, be-
whether nonvanishing heat transfeitself reveals that the cause the asymptotic behavior of the two is the same.
system cannot attain Carnot efficiency in any condition in- In this paper, we have analyzed the energetics of a
cluding the nonstalled state. Thus, in addition to the irreversBrownian motor of Bitiker-Landauer type. We showed
ible heat transfer discussed above, we will estimate the worluantitatively that irreversible heat transfer does not disap-
and work-induced heat transfer in an overdamped process.pear even if one takes the overdamped limit-{ + < and/or

We will return to the original Kramers equatid&qg. (1)] m—0). This result is in contrast to the claims in Refs.
for a Butiker-Landauer system. We have analyzed this equaf8,15]. The mass dependence of the irreversible heat is con-
tion retaining both degrees of freedgnandg. However, we  sistent with the intuitive estimation in Rgf19]. We further
do not have to consider a momentum degree of freedoranalyzed the effect of nonvanishing irreversible heat transfer
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on the efficiency and showed that, even in the fully over-particle has smaller kinetic energy than that expected by the
damped limit, Carnot efficiency is unattainable for a particleequipartition theorem, it receives kinetic energy from the
obeying Stokes’ law. This shows that the maximum effi-heat bath on average. Thus, if we lose the degree of momen-
ciency of the Brownian motor is not attained in the stalledtum as in the overdamped equation, we cannot describe this
state. The result revealed that the Brownian heat engine igxisting physical process properly.
qualitatively different from heat engines for which the most  The present system cannot have maximum efficiency in a
efficient operation is quasistatic: A quasistatic process is thquasistatic condition. This means that the maximum effi-
worst condition for the Brownian heat engine to work, while ciency is achieved with finite probability current, which is
it is the best for the Carnot cycle. therefore accompanied by irreversible dissipation. Thus, the
The location of the irreversible heat transfer is the transinext challenging question is, “Is there any principle that de-
tion region characterized by the thermal length Itis cer-  termines the optimal efficiency in Brownian heat engines?”
tain that the characteristic length, can disappear in the
fully overdamped limit. However, the irreversible effect in
the transition region cannot be eliminated. From the result We would like to thank T. Chawanya, T. Mizuguchi, F.
we also learn how to apply energetics to overdamped sysluicher, H. Hayakawa, H. Nishimori, M. Matsuo, S. Sasa, T.
tems with a space-dependent temperature: We should app8hibata, Y. Hayakawa, M. Sano, F. Takagi, Y. Sawada, and
energeticsbefore taking the overdamped limit. Otherwise, T. Tsuzuki for helpful discussions. This work was supported
we might fail in proper evaluation of the irreversible heatin part by a Japanese Grant-in-Aid for the Science Research
transfer within the transition regidi8,15], because energetic Fund from the Ministry of Education, Science and Culture
interaction between the heat bath and the particle is carrie@Grant Nos. 09740301, 11156216, and 12740228 by the
out by the momentum exchange between them. When thmamori Foundation.
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