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Prediction of pattern selection due to an interaction between longitudinal rolls
and transverse modes in a flow through a rectangular channel heated from below

Yuki Kato* and Kaoru Fujimura
Department of Applied Mathematics and Physics, Tottori University, Tottori 680-8552, Japan

~Received 18 October 1999!

Convection patterns in a flow through a horizontal channel that is heated from below are predicted on the
basis of a weakly nonlinear theory. At a certain value of the Reynolds number and the Rayleigh number, the
conduction state with steady shear flow becomes linearly unstable to both longitudinal rolls and transverse
modes, simultaneously. The longitudinal rolls align along the streamwise direction whereas the transverse
modes are periodic in the streamwise direction. Amplitude equations for the interaction between the longitu-
dinal rolls and the transverse modes are derived in a consistent manner. Coefficients in the equations are
determined numerically for a wide range of parameters. The longitudinal rolls are found to bifurcate super-
critically. On the other hand, the transverse modes bifurcate subcritically or supercritically, depending on the
Prandtl number, the aspect ratio of the channel, and the boundary conditions on the sidewalls. Stable convec-
tion patterns are classified in a parameter space. A mixed mode pattern, which is a mixture of the components
of the longitudinal rolls and the transverse modes, is found to be stable for some sets of parameters.

PACS number~s!: 47.20.Bp, 47.54.1r, 47.20.Ky, 47.60.1i
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I. INTRODUCTION

Rayleigh-Bénard convection with superimposed throu
flow is of interest in many fields of science and engineeri
In particular, a practical interest is growing in thermal CV
~chemical vapor deposition! of compound films. The unifor-
mity of film thickness is influenced by the convection pa
terns in the CVD reactors@1#. Spatiotemporal patterns o
convection depend on parameters characterizing the the
stratification and the through flow: the Rayleigh number R
the Prandtl number Pr, the Reynolds number Re, and
aspect ratio of the channel. Our goal is to determine
convection patterns achieved for a given set of these par
eters.

We begin by considering an unstably stratified layer
Boussinesq fluid between two horizontal parallel plates
infinite extent. If no through flow exists, the conduction sta
is isotropic and homogeneous in the horizontal plane. C
vection rolls, caused by thermal instability, may therefo
align in arbitrary directions. When a steady shear flow
superimposed, the preferred rolls align along the streamw
direction. The imposed shear thus exerts pattern selec
mechanism on the convection rolls. When the Reyno
number of the through flow exceeds the critical value Rc ,
the hydrodynamic instability causes Tollmien-Schlichti
waves. The critical Reynolds number increases as the R
leigh number decreases, and Rec55772.2218 at Ra5 0. See
Gage and Reid@2# or Kelly @3#, for instance.

In what follows, we call the instability mode longitudina
if it aligns along the streamwise direction. We call the mo
transverse if it is periodic and its wave-number vector
parallel to the superimposed flow. Previous analyses of
linear stability concluded that, under the influence of t
shear flow, the most unstable thermal convection rolls
longitudinal. The most unstable Tollmien-Schlichting wav
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are transverse. On a linear basis, both the longitudinal r
and the transverse modes can set in simultaneously, at
tain values of the Reynolds number (Re5Re* , say! and the
Rayleigh number (Ra5Ra* ). We shall call (Re* ,Ra* ) a
crossover point in the Re-Ra plane. In the neighborhood
the crossover point, the linear stability theory loses its va
ity to predict convection patterns. This is because a nonlin
interaction between the two coexisting modes plays a sign
cant role in pattern selection. The interaction may produc
new pattern, a mixture of the components of the longitudi
rolls and the transverse modes. We call this the mixed m
pattern. The question then arises: which pattern is stab
the longitudinal rolls, the Tollmien-Schlichting waves, or th
mixed mode pattern? Weakly nonlinear analysis revea
that stable convection patterns involve the longitudinal ro
and the mixed mode pattern@4#.

As well as the shear flow, the finiteness of the horizon
extent also exerts a pattern selection mechanism. Davis@5#
examined the linear stability of the conduction state in
three-dimensional enclosure. He assumed a quasi-t
dimensional disturbance with two nonzero velocity comp
nents depending on all spatial variables. The preferred
tern was concluded to consist of the rolls aligned along
shorter sidewalls. The quasi-two-dimensional disturba
does not exactly satisfy the linearized disturbance equati
as was proved by Davies-Jones@6#. Nevertheless, the quas
two-dimensional disturbance gives a close approximation
the preferred patterns in some cases.

Let us now consider a flow in a rectangular channel w
infinite length. The Davis result suggests that, in the abse
of through flow ~Re50!, the preferred pattern consists o
thermal convection rolls, which align along the spanwise
rection. This was confirmed in Ref.@6# for a channel with
free horizontal walls and rigid sidewalls. When we superi
pose a through flow, the convection rolls aligned along
spanwise direction lie across the flow. The critical Raylei
number for these transverse modes increases as Re incr
@7,8#. That is, the through flow stabilizes the conduction st
against the transverse modes. The through flow has, on
601 ©2000 The American Physical Society
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602 PRE 62YUKI KATO AND KAORU FUJIMURA
contrary, no effect on the critical condition for the longitud
nal rolls. The critical Rayleigh number for the longitudin
rolls is exactly the same as the critical Rayleigh number
the convection in a two-dimensional box@9–11#. As a result,
the critical mode is transverse for sufficiently small Re, a
longitudinal for large Re. As above, the effects of the sid
walls and the through flow compete. A crossover thus occ
between the longitudinal rolls and the transverse modes,
of which are due to the thermal instability. When the asp
ratio of the channel exceeds 3.2, nonuniform shear may d
the hydrodynamic instability: Tollmien-Schlichting wave
set in for much larger Re@12#. The crossover between th
Tollmien-Schlichting waves and longitudinal rolls is, how
ever, beyond the scope of the present paper.

In the neighborhood of the crossover point (Re* ,Ra* ),
nonlinear interaction between the coexisting thermal conv
tion modes may form a mixed mode pattern. To predict
stable patterns achieved in a channel with finite aspect ra
heavy numerical work is unavoidable even on a weakly n
linear basis. To avoid the difficulty, Brandet al. introduced
model equations@13#, whereas Mu¨ller et al. modeled the
effect of the sidewalls@14#. Both of their analyses are base
on envelope equations. Brandet al. show that mixed modes
may be stable in addition to the longitudinal rolls and tra
verse modes. On the other hand, Mu¨ller et al. show that the
mixed modes are unstable, and only the longitudinal ro
and the transverse modes can be stable. This disagree
mainly comes from the difference of the coefficients of no
linear interaction terms. Ouazzaniet al. carried out experi-
ments on this subject@15,16#. The aspect ratio of their chan
nel was 3.63. The sidewalls of their apparatus are regarde
be insulating. Using water as the working fluid, they o
served an irregular flow structure as well as longitudinal ro
and the transverse modes in the neighborhood of the cr
over point.

In the present paper, without introducing any model,
derive amplitude equations governing the longitudinal ro
and the transverse modes for (Re, Ra).(Re* ,Ra* ). Our de-
rived equations are thus consistent with the fundame
equations of fluid motion in a rectangular channel. We
termine the coefficients in the equations numerically. T
amplitude equations have four equilibrium solutions; th
exhibit the conduction state, longitudinal rolls, transve
modes, and mixed modes. We analyze the stability of ea
We take account of both perfectly insulating and perfec
conducting sidewalls, to compare our results with the exp
mental results.

In Sec. II, we describe the fundamental equations of fl
motion, their steady solution corresponding to the cond
tion state, and equations for disturbance added to the st
solution. In Sec. III, we outline the linear stability characte
istics with respect to the longitudinal rolls and transve
modes, and determine the crossover point, numerically.
derive the amplitude equations in Sec. IV, and predict sta
patterns for given sets of parameters in Sec. V.

II. FORMULATION

We consider the motion of a Boussinesq fluid in an in
nitely long horizontal channel. The cross section of the ch
nel is a rectangle bounded by sidewalls aty* 56d/2 and
r
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horizontal walls atz* 56h/2. We apply a pressure gradien
in the x* direction in order to drive a through flow. Th
channel is heated from below and cooled from above at
ferent but uniform temperaturesT* 5T07DT/2 at z*
56h/2. Here,T0 is the reference temperature measured
z* 50, andDT (.0) is the temperature difference on th
top and bottom walls. We introduce dimensionless variab
as usual, by a characteristic lengthh, a characteristic tem-
peratureDT, and a characteristic velocityU0, which is equal
to the maximum velocity of the basic flow. We denote t
dimensionless variables by letters without an asterisk.
define the aspect ratio of the channel asA5d/h. The cross
section of the channel is normalized asuyu<A/2 and uzu
<1/2. Pressurep(x,t), velocity u(x,t)5„u(x,t),v(x,t),
w(x,t)…, and temperatureT(x,t) of the fluid satisfy the fol-
lowing basic equations:

“•u50, ~1a!

] tu1~u•“ !u52“p1Ra Pr21 Re22@T2T0 /~DT!# ẑ

1Re21
“

2u, ~1b!

] tT1~u•“ !T5Pr21 Re21
“

2T, ~1c!

where p5p1ghz/U0
2, g is the gravitational acceleration

andẑ is a unit vector in thez direction. Equations~1! involve
three nondimensional parameters. They are the Reyn
number Re, the Prandtl number Pr, and the Rayleigh num
Ra defined by

Re5hU0 /n, Pr5n/k, Ra5aDTgh3/~nk!.

Here,n is the kinematic viscosity,k is the thermal diffusiv-
ity, anda is the coefficient of cubical expansion. We impo
the nonslip conditionsu50 on the rigid boundariesy
56A/2 andz561/2. The temperatures on the top and b
tom walls areT5T0 /(DT)71/2 atz561/2. The sidewalls
at y56A/2 are assumed to be perfectly conducting, satis
ing T5Tw(z), or perfectly insulating, satisfying]yT50.
Here,Tw(z)5T0 /(DT)2z.

Consider the conduction state (P̄,Ū,T̄) corresponding to
the basic flow. The basic flow is steady, parallel, and unifo
in the x direction. The temperature satisfying the bounda
conditions is given byT̄5T0 /(DT)2z. The velocity Ū
5„Ū(y,z),0,0… satisfies

~]yy1]zz!Ū5c, ~2!

wherec on the right hand side is a negative constant prop
tional to the applied pressure gradient in thex direction. The
constantc is chosen so that maxŪ(y,z)51 holds. We impose
the boundary conditionsŪ50 at y56A/2 andz561/2.

We expandŪ in Chebyshev polynomials.1 The solution
Ū is an even function ofy andz, and is expanded as

1We may expandŪ in sinusoidal and hyperbolic functions, too. I
this case, we have an analytical solution in an infinite series fo
The Chebyshev expansion, however, gives a more accurate sol
when we truncate the series at a finite level.
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Ū~y,z!5 (
m50

MU

(
n50

NU

UmnT2m~2y/A!T2n~2z!, ~3!

whereTn(x) is the Chebyshev polynomial of degreen. Sub-
stituting Eq.~3! into Eq.~2! and applying the tau collocatio
method, we obtain algebraic equations for the expansion
efficientsUmn . We solve them by the Newton-Raphson
eration. We correlate the truncation levelMU ,NU with the
aspect ratioA of the cross section asNU5AMU . We set
MU520 for A51.0,2.0, MU523 for A53.0, andMU517
for A54.0. Then, the expansion coefficients of the last ter
in Eq. ~3!, UMUn andUmNU

, were ofO(1026). The relative

error in Ū was typically ofO(1026). The influence of this
error on the linear stability characteristics is small enough
will be mentioned again in Sec. III B.

We now add a disturbance to the basic flow. We den
the disturbance components of pressure, velocity, and t
perature asp̂(x,t), û(x,t)5„û(x,t),v̂(x,t),ŵ(x,t)…, and
û(x,t), respectively. Substitutingp5P̄1p̂, u5Ū1û, and
u5T̄1 û into Eq. ~1! and subtracting the equations satisfi
by P̄, Ū, andT̄, we have the disturbance equations

“•û50, ~4a!

] tû1~Ū•“ !û1~ û•“ !Ū1~ û•“ !û

52“p̂1Re21
“

2û1Ra Pr21 Re22û ẑ, ~4b!

] tû1Ū]xû2ŵ1~ û•“ !û5Pr21 Re21
“

2û. ~4c!

Boundary conditions for the disturbance components are
posed asû50 and û50 at z561/2, andû50 at y56A/2.
We imposeû50 on the perfectly conducting sidewalls o
]yû50 on the perfectly insulating sidewalls aty56A/2.

III. LINEAR STABILITY

In this section, we outline the linear stability character
tics of the basic flow with respect to the longitudinal ro
and transverse modes, and determine the crossover p
numerically. Since the linear stability was studied in Re
@7–11#, as stated in Sec. I, we give only a brief outline
order to proceed to the weakly nonlinear analysis.

We consider an infinitesimal disturbance periodic in thx

direction. We assumeF(x,t)[„p̂(x,t),û(x,t),û(x,t)…T in
the normal mode,

F~x,t !5f~y,z!exp@ i ~kx2vt !#, ~5!

with wave numberk and complex frequencyv, where

f~y,z!5„p̃~y,z!,ũ~y,z!,ũ~y,z!…T.

The imaginary part ofv is the growth rate of the distur
bance. The disturbance withk50 forms longitudinal rolls
aligned along thex axis. The disturbance withkÞ0 forms
transverse modes, whose wave-number vector is paralle
the basic flow. The longitudinal rolls are two dimension
o-

s

it

te
-

-

-

nts
.

to
.

The transverse modes are three dimensional, since the
walls prevent a uniform motion in the spanwise direction

Substituting Eq.~5! into Eq.~4! and linearizing the result-
ant equations, we have

L1f5 ivI1f, ~6!

whereL1 is an operator defined by

Ln5S 0 nik ]y ]z 0

nik S n
1

Ūy Ūz 0

]y 0 S n
1 0 0

]z 0 0 S n
1 2Ra Pr21 Re22

0 0 0 21 S n
2

D
(n50,1,. . . ), ~7!

S n
15nikŪ2Re21~]yy1]zz2n2k2!,

S n
25nikŪ2Pr21 Re21~]yy1]zz2n2k2!.

The subscripty or z denotes the partial derivative with re
spect to itself. The operatorI1 on the right hand side of Eq
~6! is a unit matrix whose diagonal component in the fi
row is replaced by zero. Equation~6! and the boundary con
ditions forf have reflection symmetries about the horizon
and vertical mid-planes of the channel. The symmetries
able us to classify the solutions into four classes with diff
ent parities. We call them parity 1, 2, 3, and 4 as defined
Table I.

A. Longitudinal rolls „kÄ0…

The eigenvaluev is purely imaginary for the longitudina
rolls. Neutral stability (Imv50) therefore impliesv50,
i.e., the principle of exchange of stabilities holds. The Ra
leigh number giving neutral stability corresponds to the cr
cal Rayleigh number. We denote it Rac

L . To find Rac
L , we

substitutek50 andv50 into Eq.~6!. The first equation of
~6!, coming from the equation of continuity~4a!, allows us to
introduce a stream functionc(y,z) such that ṽ
5cz /(Pr Re) andw̃52cy /(Pr Re). Elimination of the pres
sure terms in Eq.~6! yields a closed form of equations forc

and ũ:

~]yy1]zz!
2c2Rac

Lũy50, ~8a!

~]yy1]zz!ũ2cy50. ~8b!

TABLE I. Parity of the linear eigenfunctions. The subscripte
denotes an even function, ando an odd function. The function with
eo, for instance, is even in they direction and odd in thez direction.

Type of parity Parity of disturbance

Parity 1 ( p̃eo ,ũeo ,ṽoo ,w̃ee,ũee)
Parity 2 ( p̃oo ,ũoo ,ṽeo ,w̃oe ,ũoe)
Parity 3 ( p̃ee,ũee,ṽoe ,w̃eo ,ũeo)
Parity 4 ( p̃oe ,ũoe ,ṽee,w̃oo ,ũoo)
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TABLE II. Reynolds number Re* , Rayleigh number Ra* , wave numberkc , and frequencyvc at the
crossover point. The third column represents the parity of the longitudinal rolls. The transverse modes
have parity 1.

Perfectly conducting sidewalls Perfectly insulating sidewalls

Pr A Parity Re* Ra* kc vc Re* Ra* kc vc

0.71 1.0 2 81.14 5011.71 2.55 1.72 16.61 2585.02 3.07 1.
2.0 1 37.46 2384.87 2.24 1.59 16.99 2013.21 2.74 1.9
3.0 2 24.36 1996.28 2.70 2.00 16.74 1870.58 2.81 2.0
4.0 1 18.42 1867.65 2.89 2.17 14.12 1810.27 2.94 2.2

7 1.0 2 14.00 5011.71 2.70 2.18 1.779 2585.02 3.13 2.1
2.0 1 8.079 2384.87 2.14 1.79 3.335 2013.21 2.69 2.2
3.0 2 5.317 1996.28 2.58 2.19 3.491 1870.58 2.74 2.3
4.0 1 3.972 1867.65 2.80 2.40 2.993 1810.27 2.87 2.4
th
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The boundary conditions arec5cz5 ũ50 at z561/2, and
c5cy50 at y56A/2. We imposeũ50 on the perfectly
conducting sidewalls or]yũ50 on the perfectly insulating
sidewalls aty56A/2. The critical Rayleigh number Rac

L de-
pends only on the aspect ratio, and is independent of
Reynolds number and the Prandtl number.

To solve Eq.~8! numerically, we expandc as

c~y,z!5 (
m50

M

(
n50

N

cmnFm~2y/A!Fn~2z!. ~9!

We expandũ as

ũ~y,z!5 (
m50

M

(
n50

N

umnGm~2y/A!Gn~2z! ~10!

for the perfectly conducting sidewalls, or as

ũ~y,z!5 (
m50

M

(
n50

N

umnHm~2y/A!Gn~2z! ~11!

for the perfectly insulating sidewalls. Here, the functio
Fn(x), Gn(x), andHn(x) are defined by

F2n~x!5T2n14~x!2~n12!2T2~x!1~n11!~n13!T0~x!,
~12a!

F2n11~x!5T2n15~x!2
1

2
~n12!~n13!T3~x!

1
1

2
~n11!~n14!T1~x!, ~12b!

G2n~x!5T2n12~x!2T0~x!, ~12c!

G2n11~x!5T2n13~x!2T1~x!, ~12d!

H2n~x!5T2n12~x!2~n11!2T2~x! for nÞ0, ~12e!

H0~x!5T0~x!, ~12f!

H2n11~x!5T2n13~x!2~2n13!2T1~x!. ~12g!
e

They satisfy boundary conditionsFn(61)5Fn8(61)
5Gn(61)5Hn8(61)50. We substitute the expansions~9!
and ~10! @or ~9! and ~11!# into Eq. ~8! and apply the collo-
cation method. This yields a linear algebraic eigenva
problem with eigenvalue Rac

L and eigenvector
(c00, . . . ,cMN ,u00, . . . ,uMN). We solve the eigenvalue
problem by the QZ method. Using the eigenvalue and eig
vector obtained as the initial guess, we make the solu
more accurate by Newton-Raphson iteration. We adopted
truncation levelM5N533.

The critical Rayleigh number is shown in the column R*
in Table II. The table also involves stability information o
transverse modes (Re* ,kc ,vc); they have no direct relation
to this subsection. The critical modes forA52.0 and 4.0
have parity 1, and the modes forA51.0 and 3.0 have parity
2. According to Refs.@10,11#, the critical mode has parity 1
for A<1.6, parity 2 for 1.6<A<2.7, parity 1 for 2.7<A
<3.7, and so on. Our numerical data on Rac

L have ten sig-
nificant figures, although we show only the first several fi
ures in the table. They agree with the results of Ref.@10#
based on the pseudospectral method2 and the results of Ref
@11# based on the Galerkin method.

B. Transverse modes„kÅ0…

Let us outline how to analyze the linear stability wi
respect to the transverse modes.

Elimination of p̃ andũ in f from Eq. ~6! yields a closed
form of equations forṽ,w̃ and ũ:

T1~y,z!ṽ1T2~y,z!w̃5 iv@~]yy2k2!ṽ1]yzw̃#, ~13a!

T2~z,y!ṽ1T1~z,y!w̃1k2 Ra Pr21 Re22ũ

5 iv@]yzṽ1~]zz2k2!w̃#, ~13b!

2In Ref. @10#, Leeet al. examined the pseudospectral method a
the Galerkin method. The values of Rac

L by these methods con
verged to different values. They concluded that the latter met
gave better accuracy. The validity of their ‘‘less accurate’’ results
confirmed by Ref.@11# and also by our computation. We als
adopted the Galerkin method with the expansion~9!–~11!, and ob-
tained the same value of Rac

L as in Table II.
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S 1
2ũ2w̃5 ivũ, ~13c!

where

T1~y,z!5S 1
1~]yy2k2!2 ikŪyy ,

T2~y,z!5S 1
1]yz1 ik~Ūy]z2Ūz]y2Ūyz!.

The operatorTn(z,y) is obtained by exchangingy and z in
Tn(y,z) except for the arguments inŪ(y,z). The boundary
conditions for the velocity areṽ5w̃5w̃z50 atz561/2 and

ṽ5 ṽy5w̃50 at y56A/2. The boundary conditions forũ
are the same as the conditions for the longitudinal rolls.
expand the amplitude functions of the normal mode,ṽ and
w̃, so that they satisfy the boundary conditions

ṽ~y,z!5 (
m50

M

(
n50

N

vmnFm~2y/A!Gn~2z!, ~14a!

w̃~y,z!5 (
m50

M

(
n50

N

wmnGm~2y/A!Fn~2z!. ~14b!

The functionsFn(x) and Gn(x) are defined by Eq.~12!.
Expansion ofũ is given by Eq.~10! or Eq. ~11!, and is the
same as that for the longitudinal rolls. We substitute E
~10! and~14! @or Eqs.~11! and~14!# into Eq.~13!, and apply
the collocation method. We then obtain an algebraic eig
value problem with the eigenvaluev for given values ofA,
Pr, Re,k, and Ra. We solve the eigenvalue problem by
QZ method. The accuracy of the numerical results was
proved by means of the Newton-Raphson iteration under
constraint Imv50. We adopted the truncation levelM5N
533. The accuracy of the linear stability characteristics m
be affected by the numerical error in the basic flowŪ. The
relative error inv due to the error inŪ was ofO(1029); it
resulted in an error in Re at the crossover points ofO(1028).

Figure 1 shows the neutral curves for the transve
modes with parity 1 and 2, i.e., (p̃eo ,ũeo ,ṽoo ,w̃ee,ũee) and
( p̃oo ,ũoo ,ṽeo ,w̃oe ,ũoe), respectively. The neutral Rayleig

FIG. 1. The linear neutral stability curves for different values
Re. The solid lines represent the neutral curves for the transv
mode with parity 1, and the dotted lines denote the ones with pa
2. ~a! A51.0. ~b! A52.0. ~c! A53.0. ~d! A54.0. Pr5 0.71. Per-
fectly conducting sidewalls.
e

.

n-

e
-
e

y

e

numbers for modes with parity 3 and 4 are much greater t
those for modes with parity 1 and 2. When a neutral cu
has a local minimum, we call this the critical Rayleigh num
ber for the transverse modes for a prescribed Re. We wri
Rac

T . The corresponding wave number and frequency are
noted bykc andvc , respectively.

We calculated the critical conditions for a wide range
the Prandtl number, Pr5 0.001, 0.01, 0.1, 0.71, 1, 7, 10
100, and 1000, for the aspect ratiosA51.0, 2.0, 3.0, and 4.0
and for perfectly conducting and insulating sidewalls. In
cases, except for Pr5 0.1 andA52.0, Rac

T is an increasing
function of Re as shown in Fig. 2.3 The closed circles in the
figure are the crossover points. At the crossover points,
critical Rayleigh number for the longitudinal rolls coincide
with that for the transverse modes, that is, Rac

L5Rac
T holds.

We denote the crossover point by (Re* ,Ra* ). For Re
,Re* , the transverse modes are critical, that is, Rac

T,Rac
L

holds. For Re.Re* , the longitudinal rolls are critical, tha
is, Rac

L,Rac
T holds. We omit the result forA53.0 in Fig. 2

for clarity, since the value of Rac
T for A53.0 is close to the

one forA54.0.
Table II summarizes the crossover point and correspo

ing parameters. We obtained Ra* up to ten significant figures
and Re* to seven significant figures, although we show on
the first several figures in the table. Our numerical data ag
well with the data of Platten and Legros@7# for the insulating
sidewalls, and with the data of Yamadaet al. @8# for the
conducting sidewalls.4 Both Re* and Ra* are decreasing

3To our knowledge, it was Platten and Legros@7# who first illus-
trated the critical conditions in the Re-Ra plane and obtained
crossover point for several parameters under insulating side
conditions. Later, Yamadaet al. @8# made a similar plot for the
perfectly conducting situation.

4Yamadaet al. determined the crossover point by using Rac
L in

Refs. @10# and @11#. The values of Rac
L calculated by the Galerkin

method in Ref.@10# disagree with those in Ref.@11#; Yamadaet al.
showed two kinds of crossover point based on the different va
of Rac

L . Our crossover points agree with their data based on Rac
L in

Ref. @11#.

f
se
ty

FIG. 2. The critical Rayleigh number as a function of the Re
nolds number of the through flow. The solid lines represent Rac

L and
Rac

T for A51, the dotted lines are forA52, and the dashed line
are forA54. Pr 5 0.71. Perfectly conducting sidewalls. The crit
cal Rayleigh number Rac

L for longitudinal rolls is independent o
Re. The closed circle denotes the crossover point, at whichc

L

5Rac
T holds.
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TABLE III. Coefficients in the amplitude equations under perfectly conducting sidewall conditions.
superscriptr denotes the real part of the attached quantity.

Pr A l0Ra l1Re
r l1Ra

r l000 l110 l111
r l001

r

0.71 1.0 20.75230931024 220.110 20.7539831024 0.110272 5.445 2.206 0.120
2.0 22.13415231024 26.3972 22.215731024 1.453285 3.589 1.566 3.804
3.0 23.57615931024 23.98138 23.670231024 0.1812198 2.353 2.299 0.393
4.0 24.89138731024 22.4984 24.987531024 2.357924 4.021 3.027 4.817

7 1.0 20.894029331024 23.660 20.8771331024 0.120587 1.788 1.759 0.134
2.0 21.65675631024 20.92208 21.696631024 1.087214 1.385 0.8465 2.417
3.0 22.69556631024 20.598330 22.754831024 0.1343626 1.094 1.1887 0.206
4.0 23.71246731024 20.387217 23.778631024 1.762920 1.639 1.611 2.950
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functions of the aspect ratio for perfectly conducting sid
walls. They are not, however, for insulating sidewalls.

IV. WEAKLY NONLINEAR REDUCTION
TO THE AMPLITUDE EQUATIONS

Except for the neighborhood of the crossover point,
linear stability theory well predicts the convection patte
due to primary bifurcation. In that neighborhood, the line
theory loses its validity, since nonlinear interaction plays
significant role in the pattern formation. In the followin
sections, we focus on the interaction between the longitu
nal rolls and transverse modes. In this section, we de
amplitude equations governing the temporal evolution
these modes.

Our weakly nonlinear reduction is based on a perturba
expansion about the crossover point (Re* ,Ra* ). We intro-
duce a small parametere defined by

e25
1

Re*
2

1

Re

and set

Ra5Ra* 1e2R̃

whereR̃5O(1). Exactly at the crossover point (e50), the
dominant modes are the critical longitudinal rolls withk
50 and the critical transverse modes withk5kc (Þ0). All
the other modes decay on a linear basis. Nonlinear inte
tion between the dominant modes excites their higher h
monics. AssumingiFi5O(e), we expand the disturbanc
F as

F5 (
n52`

`

(
m5max(1,unu)

`

emFnmexp@ni~kcx2vct !#. ~15!

For F to be real, we requireF2nm5Fnm* for n>1, where
the asterisk denotes the complex conjugate. Note thatF0m is
real. We assume that the amplitudesFnm vary slowly in
time, compared with the time scale ofO(vc

21). Introducing
multiple time scalestk5e2kt for k51,2,. . . , we setFnm
5Fnm(y,z,t1 ,t2 , . . . ). Weignore spatial modulations of th
amplitudes throughout.

We now expand the disturbance equations~4! about the
crossover point (Re* ,Ra* ), and substitute Eq.~15! into the
resultant equations. AtO(e), we have
-

e

r
a

i-
e
f

n

c-
r-

~2nivcI11Ln!Fn150 for n50,1. ~16!

In what follows, we set (k,Re, Ra)5(kc ,Re* ,Ra* ) in the
operators~7!. Since the operators in Eq.~16! are independen
of time, the solution is written as

Fn15An1~ t1 ,t2 , . . . !fn1~y,z! for n50,1.

The functionfn15(pn1 ,un1 ,un1)T is the linear eigenfunc-
tion of the longitudinal rolls forn50 and the transverse
modes forn51. The eigenfunction is indeterminate by
multiple. To obtain a unique function, we normalizefn1
such that un1(0,0)51 for modes with parity 1 or
]yun1(0,0)51 for parity 2.

At O(e2), we have

~2nivcI11Ln!Fn25Nn2 for n50,1,2. ~17!

The nonlinear termNn2 consists off01 and f11. For its
explicit form, see the Appendix. We can write the solution

F025A02f011~A01!
2f02

001uA11u2f02
11,

F125A12f111A01A11f12
01,

F225~A11!
2f22

11

wherefnm
pq is a function ofy andz and is obtained numeri

cally. New amplitude functionsA02 and A12 of t1 ,t2 , . . .
arise at this order of approximation.

At O(e3), we have

~2nivcI11Ln!Fn35Nn3 for n50,1. ~18!

The termNn3 on the right hand side is given in the Appe
dix. A solution of Eq.~18! exists only if Nn3 satisfies the
solvability condition, i.e., only ifNn3 is orthogonal to the
solution of the adjoint problem.5 The adjoint problem is writ-
ten as (nivcI11L n

†)fn
†50, subject to appropriate boundar

conditions. Here, the operatorL n
† satisfies

^~2nivcI11Ln!c1 ,c2&5^c1 ,~nivcI11L n
†!c2&

5The solvability condition for Eq.~17! is satisfied without any
extra condition, sinceNn2 has a different parity from the parity o
the adjoint function.
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for arbitrary functionsc1 ,c2 satisfying the boundary conditions. The angular bracket denotes the inner product define

^c1 ,c2&[E
21/2

1/2 E
2A/2

A/2

c1•c2* dydz. ~19!

The explicit form ofL n
† is

L n
†5S 0 2nikc 2]y 2]z 0

2nikc S 2n
1 0 0 0

2]y Ūy S 2n
1 0 0

2]z Ūz 0 S 2n
1 21

0 0 0 2Ra* Pr21~Re* !22 S 2n
2

D .
-

is

in

-

e

tia

te

re

der

he
r

rse

for
.
q.
on

e
-
e

When we writefn
†5(pn

† ,un
† ,un

†)T, the boundary conditions
are given byun

†50 at y56A/2 andz561/2, andun
†50 at

z561/2. We haveun
†50 on the perfectly conducting side

walls or ]yun
†50 on the perfectly insulating sidewalls aty

56A/2.
Finally, we define the amplitudes of the temperature d

turbance at the center of the channel asAL5eA011e2A02
1••• andAT5eA111e2A121•••, and use the original time
scale t. Two solvability conditions for Eq.~18! yield the
amplitude equations forAL andAT :

dAL

dt
1e2R̃l0 RaAL1l000~AL!31l110uATu2AL1•••50,

~20a!

dAT

dt
1e2~2l1 Re1R̃l1 Ra!AT1l111uATu2AT1l001~AL!2AT

1•••50. ~20b!

The amplitudeAL is a real function, and the coefficients
Eq. ~20a! are real. The amplitudeAT and the coefficients in
Eq. ~20b! are complex. Tables III and IV show the coeffi
cients for several values of Pr andA. We do not list the
imaginary parts of the coefficients, since they are not nec
sary to examine convection patterns in the next section.

For simplicity of the analysis, we neglected the spa
dependence ofAL andAT entirely. If we allow spatiotempo-
ral dependence, we get coupled envelope equations, ins
of Eqs.~20!. They are similar to the equations in Refs.@13#
-

s-

l

ad

and@14#. The coefficients of nonlinear terms in this case a
exactly the same as the ones in Eqs.~20!.

V. CONVECTION PATTERNS

We analyze the nonlinear interaction at the lowest or
described by the cubic terms in Eqs.~20!. We setAL(t)
5a(t) and AT(t)5b(t)exp@ir(t)#, where the amplitudes
a(t),b(t) and the phaser(t) are real functions. Then we
have

da

dt
1~2l01l000a

21l110b
2!a50, ~21a!

db

dt
1~2l1

r 1l111
r b21l001

r a2!b50, ~21b!

wherel052e2R̃l0 Ra and l1
r 5e2(l1 Re

r 2R̃l1 Ra
r ). The su-

perscriptr denotes the real part of the attached quantity. T
coefficients l0 and l1

r , respectively, represent the linea
growth rates of the longitudinal rolls and the transve
modes at (Re, Ra).(Re* ,Ra* ). While the phaser(t) de-
pends on the amplitudes, the amplitudesa(t) and b(t) are
independent of the phase. We therefore omit the equation
r(t), for the phase itself has little role in pattern selection

In this section, we obtain the equilibrium solutions of E
~21!, examine their stability, and specify stable convecti
patterns. Since the generalized equations of~21! are analyzed
in detail in Ref.@17#, we mainly describe the stability of th
mixed modes. Equations~21! are invariant under the trans
formationa→2a andb→2b. We confine ourselves to th
solutions with positivea andb.
2
91

2
36
TABLE IV. Coefficients in the amplitude equations under the perfectly insulating sidewall conditions.

Pr A l0Ra l1Re
r l1Ra

r l000 l110 l111
r l001

r

0.71 1.0 24.39098031024 23.14 24.482627831024 0.28215649 10.03 8.048 0.410372
2.0 25.110657231024 22.06671 25.301516731024 3.1294303 5.8624 3.8104 7.5212579
3.0 25.437180631024 22.13913 25.46797531024 0.257608870 3.82753 3.847184 0.553179
4.0 26.56099731024 21.58386 26.559767631024 3.1500921 5.2752 4.599 6.464147

7 1.0 26.05765231024 20.502 26.859375831024 0.3862774 6.14 6.598 0.487160
2.0 24.133704931024 20.30716 24.520276631024 2.49173560 2.4592 2.0646 5.272588
3.0 24.2169145031024 20.3240945 24.299533331024 0.19689802 1.60487 1.904613 0.315465
4.0 25.03843131024 20.2418145 25.056100531024 2.3847966 1.967257 2.2498 3.88803
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FIG. 3. Planform of the tem-
perature disturbance on the hor
zontal mid-planez50. The lighter
shades are hot and the dark
shades are cold.~a!, ~d! Longitu-
dinal rolls; ~b!, ~e! transverse
modes;~c!, ~f! the mixed modes
with Da /Db57/3. ~a!–~c! A52.0,
~b!–~d! A53.0. Pr5 7. Perfectly
conducting sidewalls.
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We call the solution equilibrium ifa andb are time inde-
pendent. The trivial solutiona5b50 represents the conduc
tion state. In addition to it, we have the following nontrivi
equilibrium solutions:~i! longitudinal rolls, a5Al0 /l000,
b50, ~ii ! transverse modes,a50, b5Al1

r /l111
r , and ~iii !

mixed modes,a5ADa /D, b5ADb /D, whereDa5l110l1
r

2l0l111
r , Db5l0l001

r 2l000l1
r , and D5l110l001

r

2l000l111
r . Figure 3 demonstrates typical convection p

terns exhibited by these solutions. While the longitudin
rolls exhibit steady patterns, the transverse and mixed mo
exhibit traveling patterns. The patterns of the mixed mo
depend on the value ofDa /Db . Figures 3~c! and 3~f! show
the patterns forDa /Db57/3.

The equilibrium solutions vary their bifurcation characte
istics depending on the signs of the nonlinear coefficie
We classify the combinations of the cubic coefficients in
four types~type 1–type 4! as shown in Table V. According
to our numerical results, the coefficientsl000 and l110 are
positive irrespective of the values of Pr andA in all the cases
examined. From the definition ofD, we haveD,0 for type
2 andD.0 for type 3. For types 1 and 4, the sign ofD is
due to our numerical values of coefficients. We obtainD
.0 for type 1 andD,0 for type 4 in all cases. For P
50.71, 1, 7, 10, 100, 1000 andA51.0, 2.0, 3.0, 4.0, the
coefficients belong to type 1. For Pr<0.1, the nonlinear
interaction varies in type as shown in Table VI. For Pr5 0.1
andA52.0, we have not found the crossover point.

Longitudinal rolls exist in the region Ra.Ra* , since the
coefficientl0 Ra is negative.~See Tables III and IV.! Since
l000 is positive, the longitudinal rolls are stable in the a
sence of transverse components; in other words, they b
cate supercritically. The transverse modes exist wherel1

r has
the same sign asl111

r . For types 1 and 2 (l111
r .0), they

exist in the regionl1
r .0, or equivalently,l1 Re

r (1/Re*
21/Re),l1 Ra

r (Ra2Ra* ). Their bifurcation is supercritical
For types 3 and 4 (l111

r ,0), the bifurcation is subcritical
that is to say, the transverse modes are unstable even i
disturbance does not include a longitudinal component
Fig. 4, the equilibrium solutions for all the types are clas
fied in the Re-Ra plane.

Now, we examine the stability of the equilibrium solu
tions. First, we look into the type 1 solution in detail. Figur
5~a!–5~e! show the trajectories of the solutions of Eqs.~21!
belonging to type 1. Locally, all the trajectories approa
stable equilibrium solutions ast→`. In Fig. 5~e!, the trajec-
-
l
es
s

s.

-
r-

the
n
-

tories approach the longitudinal rolls or the transve
modes, according to their initial values. We summarize
stability of the equilibrium solutions for type 1 in Fig. 4~a!.
We find at least one stable equilibrium solution, includi
the trivial one, in an arbitrary neighborhood of the crosso
point. The mixed mode solution is unstable in any neighb
hood of (Re* ,Ra* ).

For all the cases belonging to type 1, our numerical co
putation results in positiveD. Let us setD negative. The
trajectories in regions a–d of Fig. 4 remain the same as
Figs. 5~a!–5~d! for positive D. The trajectory in region e
however, behaves as in Fig. 5~f! instead of Fig. 5~e!. The
mixed mode solution becomes stable. As above, the sig
D determines the stability of the mixed mode solution b
longing to type 1. In previous studies@13# and @14#, the
coefficients in the envelope equations belong to type
Brandet al. examined the cases of positive and negativeD,
and found stable mixed mode patterns for negativeD @13#.
Müller et al. obtained positiveD in their analysis@14#.

Next, we turn to types 2, 3, and 4. Figures 5~g!–5~l! dem-
onstrate the trajectories in the sectors g–l in Figs. 4~b!–
4~d!, where mixed modes exist. The mixed modes are sta
for type 2 and unstable for type 3. For type 4, the stability
the mixed modes depends on the value of~Re,Ra!. The
mixed modes are stable in the region k of Fig. 4, wheres
[2(l000Da1l111

r Db)/D is negative. They are unstable i
the regionl , wheres is positive. Whens50, the mixed
modes are neutral, and periodic solutions appear as show
Fig. 5~m!. Figure 4 summarizes the stability of all the equ
librium solutions for four types of cubic coefficients given
Table V.

When the transverse modes bifurcate subcritically@types
3 and 4, Figs. 5~i!–5~m!#, some solutions diverge to infinity

þ TABLE V. Four types of the combination of signs of the no
linear coefficients, and the sign ofD5l110l001

r 2l000l111
r . The sign

of D for types 2 and 3 is due to the sign ofl000,l110,l111
r , and

l001
r . The sign ofD for types 1 and 4 is due to the numerical valu

of the coefficients.

l000 l110 l111
r l001

r D

Type 1 1 1 1 1 1

Type 2 1 1 1 2 2

Type 3 1 1 2 1 1

Type 4 1 1 2 2 2
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b→`, according to the cubic amplitude equations~21!. This
suggests another stable equilibrium solution with mu
larger amplitude. To resolve such a strongly nonlinear so
tion, the range of validity of the amplitude equations is t
narrow; fully numerical analysis is necessary. This is beyo
the scope of our paper.

Let us now compare our results with experimental resu
Ouazzaniet al. @15# studied convection patterns, using a w
ter channel~Pr57! with the aspect ratio 3.63. They carrie
out pointwise measurement of the vertical velocity by me
of laser Doppler anemometry. They classified the pattern
five categories in their Fig. 18: the thermal conduction sta
longitudinal rolls, transverse modes, longitudinal rolls
transverse modes~depending on the initial state!, and an ir-
regular flow. In our analysis, all the nonlinear coefficien
have positive real parts for Pr57 andA53.0,4.0, for both
conducting and insulating sidewalls~see Tables III and IV!.
The coefficients relevant to their experiment thus belong

TABLE VI. Type of the nonlinear coefficients for Pr<0.1. We
have not found the crossover point for Pr5 0.1 andA52.

Pr A Conducting sidewalls Insulating sidewalls

0.1 1.0 type 2 type 2
2.0 — —
3.0 3 1
4.0 3 3

0.01 1.0 2 4
2.0 3 1
3.0 3 3
4.0 3 3

0.001 1.0 2 4
2.0 3 1
3.0 3 3
4.0 3 3
h
-

d

s.
-

s
in
,

r

o

type 1. The stable~therefore experimentally observable! pat-
terns in Fig. 4~a! agree with the observed patterns classifi
in Ref. @15#, except for the irregular flow. The present ana
sis is thus valid to predict actual convection patterns in la
ratory experiments in the neighborhood of the crosso
point, to some extent.

FIG. 5. Trajectories of solutions of Eqs.~21! in a-b plane. The
figures~a!–~e!, ~g!–~l!, respectively, represent the trajectories in t
regions a–e, g–l in Fig. 4. The figure~f! represents the trajectorie
in the region e in the case ofD,0, and~m! shows the trajectories
for s50 and type 4. The closed circle denotes the stable equ
rium solution and the open circle denotes the unstable one.
dotted line denotesda/dt50, and the dashed line denotesdb/dt
50.
nd

s
h
le

s

FIG. 4. Stability diagrams in
(Ra2Ra* ,1/Re* 21/Re) plane.
~a! Type 1 with positiveD, ~b!
type 2 (D,0), ~c! type 3 (D
.0), and~d! type 4 with negative
D. 0 denotes the trivial solution,L
denotes the longitudinal rolls,T
denotes the transverse modes, a
M denotes the mixed mode. 0,L,
T, M without parentheses denote
the stable solution, whereas wit
parentheses it denotes the unstab
solution. The solid line denotes
l1

r 50, the dotted line denotes
Da50, the dashed line denote
Db50. The bold solid line in~d!
denotess[2(l000Da1l111

r Db)/
D50.
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The only difference between our results and the exp
mental ones is the existence of the irregular flow. Ouazz
et al. observed a flow structure irregular in time. The irreg
lar flow involved the longitudinal and transverse comp
nents. They did not mention whether the irregularity is s
tiotemporal. The present analysis did not yield an irregu
solution; neither did the analyses of the envelope equat
@13,14#. To explain the irregular flow, we seem to need
take account of more complex interaction. Remember
the critical longitudinal rolls change their parity atA53.7 on
the linear basis@10,11#. The eigenfunction of the least stab
mode exhibits three rolls~parity 2! for A,3.7 and four rolls
~parity 1! for A.3.7. The aspect ratio of the channel in t
experiment is 3.63 and agrees with the value of 3.7. In f
Ouazzaniet al. reported that four rolls almost always existe
and three rolls sometimes did in the parameter range w
the longitudinal rolls exist stably. This supports the fact th
the critical Rayleigh numbers are close together for three
four longitudinal rolls. In such a case, the interaction b
tween two kinds of longitudinal rolls becomes important,
addition to the interaction between the longitudinal rolls a
the transverse modes. We have neglected the former inte
tion in this paper. We hope that the amplitude/envelo
equations describing the three-mode interaction will expl
the experimentally observed irregular flow. Analysis of t
three-mode interaction is in progress and will be repor
elsewhere.
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APPENDIX: THE FUNCTIONS IN EQS. „17… AND „18…
AND THE COEFFICIENTS IN EQS. „20…

We define a vector and an operator:

fnm5~pnm ,unm ,unm!T,

N~fnm ,fpq!5~pikcunm1vnm]y1wnm]z!fpq ,

N~fnm ,fpq* !5~2pikcunm1vnm]y1wnm]z!fpq* ,

N~fnm* ,fpq!5~pikcunm* 1vnm* ]y1wnm* ]z!fpq ,

where the asterisk denotes the complex conjugate of the
tached quantity.

The nonlinear terms in Eq.~17! are as follows:

N0252@~A01!
2N~f01,f01!12uA11u2N~f11,f11* !#,

N1252A01A11@N~f01,f11!1N~f11,f01!#,
i-
ni
-
-
-
r

ns

at

t,
,
re
t
d

-

d
ac-
e
n

d

e
n-

at-

N2252~A11!
2N~f11,f11!.

The termsNn3 on the right hand side of Eq.~18! are as
follows:

N0352@] t1
A01I1f011A01~2L0Re1R̃L0Ra!f01

12A01A02N~f01,f01!12~A11A12*

1A12A11* !N~f11,f11* !1~A01!
3M0001uA11u2A01M110#,

N1352$] t1
A11I1f111A11~2L1Re1R̃L1Ra!f11

1~A01A121A02A11!@N~f01,f11!1N~f11,f01!#

1~A01!
2A11M0011uA11u2A11M111%,

where

M0005N~f01,f02
00!1N~f02

00,f01!,

M1105N~f01,f02
11!1N~f02

11,f01!12N~f11,~f12
01!* !

12N~f12
01,f11* !,

M0015N~f01,f12
01!1N~f12

01,f01!1N~f11,f02
00!

1N~f02
00,f11!,

M1115N~f11,f02
11!1N~f02

11,f11!1N~f11* ,f22
11!

1N~f22
11,f11* !.

The operatorsLn Re andLn Ra are defined by

Ln Re5
]Ln

]~Re
*
21!

, Ln Ra5
]Ln

] Ra*
,

where the operatorLn is given by Eq.~7!.
The coefficients in Eqs.~20! are

ln Re5^Ln Refn1&n , ln Ra5^Ln Rafn1&n ,

l i jk5^Mi jk&k .

The angular bracket with the subscript 0 or 1 denotes
operation

^•&n5
^•,fn

†&

^fn1 ,fn
†&

~n50,1!

where fn
† is the solution of the adjoint problem (nivcI1

1L n
†)fn

†50 defined in Sec. IV. To obtainf0
† , we eliminate

p0
† from the equationL 0

†f0
†50. To obtainf1

† , we eliminate
u1

† and p1
† from the equation (ivcI11L 1

†)f1
†50. We then

numerically solve the resultant equations.
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