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Prediction of pattern selection due to an interaction between longitudinal rolls
and transverse modes in a flow through a rectangular channel heated from below
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Convection patterns in a flow through a horizontal channel that is heated from below are predicted on the
basis of a weakly nonlinear theory. At a certain value of the Reynolds number and the Rayleigh number, the
conduction state with steady shear flow becomes linearly unstable to both longitudinal rolls and transverse
modes, simultaneously. The longitudinal rolls align along the streamwise direction whereas the transverse
modes are periodic in the streamwise direction. Amplitude equations for the interaction between the longitu-
dinal rolls and the transverse modes are derived in a consistent manner. Coefficients in the equations are
determined numerically for a wide range of parameters. The longitudinal rolls are found to bifurcate super-
critically. On the other hand, the transverse modes bifurcate subcritically or supercritically, depending on the
Prandtl number, the aspect ratio of the channel, and the boundary conditions on the sidewalls. Stable convec-
tion patterns are classified in a parameter space. A mixed mode pattern, which is a mixture of the components
of the longitudinal rolls and the transverse modes, is found to be stable for some sets of parameters.

PACS numbe(s): 47.20.Bp, 47.54tr, 47.20.Ky, 47.60+i

[. INTRODUCTION are transverse. On a linear basis, both the longitudinal rolls
and the transverse modes can set in simultaneously, at cer-
Rayleigh-B@ard convection with superimposed through tain values of the Reynolds number (RBg, , say and the
flow is of interest in many fields of science and engineeringRayleigh number (RaRa, ). We shall call (Rg¢.Ra,) a
In particular, a practical interest is growing in thermal CVD crossover point in the Re-Ra plane. In the neighborhood of
(chemical vapor depositigrof compound films. The unifor- the crossover point, the linear stability theory loses its valid-
mity of film thickness is influenced by the convection pat- ity to predict convection patterns. This is because a nonlinear
terns in the CVD reactorfl]. Spatiotemporal patterns of INteraction between the two coexisting modes plays a signifi-
convection depend on parameters characterizing the therm&®Nt role in pattern selection. The interaction may produce a
stratification and the through flow: the Rayleigh number RaN€W Pattern, a mixture of the components of the longitudinal
the Prandtl number Pr, the Reynolds number Re, and th@Ils and the transverse modes. We call this the mixed mode
aspect ratio of the channel. Our goal is to determine th

attern. The question then arises: which pattern is stable—
convection patterns achieved for a given set of these paramhfa longitudinal rolls, the ToIImien—thIichting waves, or the
oters mixed mode patte_rn? Weakly _nonllnear analy_S|s _revealed
) . S - that stable convection patterns involve the longitudinal rolls
We begin by considering an unstably stratified layer of

. d ) fand the mixed mode pattefd].
Boussinesq fluid between two horizontal parallel plates o As well as the shear flow, the finiteness of the horizontal

infinite extent. If no through flow exists, the conduction stategyent also exerts a pattern selection mechanism. O&yis
is isotropic and homogeneous in the horizontal plane. Congyamined the linear stability of the conduction state in a
vection rolls, caused by thermal instability, may thereforethree-dimensional enclosure. He assumed a quasi-two-
align in arbitrary directions. When a steady shear flow isgimensional disturbance with two nonzero velocity compo-
superimposed, the preferred rolls align along the streamwisgents depending on all spatial variables. The preferred pat-
direction. The imposed shear thus exerts pattern selectiofern was concluded to consist of the rolls aligned along the
mechanism on the convection rolls. When the Reynoldshorter sidewalls. The quasi-two-dimensional disturbance
number of the through flow exceeds the critical valug Re does not exactly satisfy the linearized disturbance equations,
the hydrodynamic instability causes Tollmien-Schlichtingas was proved by Davies-Joné. Nevertheless, the quasi-
waves. The critical Reynolds number increases as the Raywo-dimensional disturbance gives a close approximation of
leigh number decreases, and.R&772.2218 at Ra= 0. See  the preferred patterns in some cases.
Gage and Reidl2] or Kelly [3], for instance. Let us now consider a flow in a rectangular channel with
In what follows, we call the instability mode longitudinal infinite length. The Davis result suggests that, in the absence
if it aligns along the streamwise direction. We call the modeof through flow (Re=0), the preferred pattern consists of
transverse if it is periodic and its wave-number vector isthermal convection rolls, which align along the spanwise di-
parallel to the superimposed flow. Previous analyses of theection. This was confirmed in Reff6] for a channel with
linear stability concluded that, under the influence of thefree horizontal walls and rigid sidewalls. When we superim-
shear flow, the most unstable thermal convection rolls ar@ose a through flow, the convection rolls aligned along the
longitudinal. The most unstable Tollmien-Schlichting wavesspanwise direction lie across the flow. The critical Rayleigh
number for these transverse modes increases as Re increases
[7,8]. That is, the through flow stabilizes the conduction state
*Email address: kato@damp.tottori-u.ac.jp against the transverse modes. The through flow has, on the
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contrary, no effect on the critical condition for the longitudi- horizontal walls az* = +h/2. We apply a pressure gradient
nal rolls. The critical Rayleigh number for the longitudinal in the x* direction in order to drive a through flow. The
rolls is exactly the same as the critical Rayleigh number forchannel is heated from below and cooled from above at dif-
the convection in a two-dimensional bf&-11]. As aresult, ferent but uniform temperature3*=T,+AT/2 at z*
the critical mode is transverse for sufficiently small Re, and==h/2. Here, T, is the reference temperature measured at
longitudinal for large Re. As above, the effects of the sidez* =0, andAT (>0) is the temperature difference on the
walls and the through flow compete. A crossover thus occurgop and bottom walls. We introduce dimensionless variables,
between the longitudinal rolls and the transverse modes, botlis usual, by a characteristic lendtha characteristic tem-
of which are due to the thermal instability. When the aspecperatureAT, and a characteristic velocity,, which is equal
ratio of the channel exceeds 3.2, nonuniform shear may drivey the maximum velocity of the basic flow. We denote the
the hydrodynamic instability: Tollmien-Schlichting waves dimensionless variables by letters without an asterisk. We
set in for much larger R€12]. The crossover between the define the aspect ratio of the channelAes d/h. The cross
Tollmien-Schlichting waves and longitudinal rolls is, how- section of the channel is normalized R§<A/2 and|z]
ever, beyond the scope of the present paper. <1/2. Pressurep(x,t), velocity u(x,t)=(u(x,t),v(x,t),

In the neighborhood of the crossover point (RRa,),  w(x,t)), and temperatur@(x,t) of the fluid satisfy the fol-
nonlinear interaction between the coexisting thermal convecowing basic equations:
tion modes may form a mixed mode pattern. To predict the

stable patterns achieved in a channel with finite aspect ratio, V.u=0, (1a
heavy numerical work is unavoidable even on a weakly non- R
linear basis. To avoid the difficulty, Braret al. introduced du+(u-V)u=—Vr+RaPriRe 2[T-Ty/(AT)]z
model equationg13], whereas Mlier et al modeled the 12

effect of the sidewall$14]. Both of their analyses are based +Re VA, (1b)
on envelope equations. Brawed al. show that mixed modes 9T+ (u-V)T=Pr 'Re V2T, (10

may be stable in addition to the longitudinal rolls and trans-
verse modes. On the other hand, IMuet al. show that the where 7= p-{-ghz/Ué g is the gravitationa| acce|eration,

mixed modes are unstable, and only the longitudinal r0"Sa dzis a unit vector in the direction. Equation$l) involve

and the transverse modes can be stable. This dlsagreem?ﬂ ee nondimensional parameters. They are the Reynolds

r.nalnly. comes'from the difference of the cqefflments of NONhumber Re, the Prandtl number Pr, and the Rayleigh number
linear interaction terms. Ouazzaei al. carried out experi- Ra defined by

ments on this subje¢il5,16. The aspect ratio of their chan-
nel was 3.63. The sidewalls of their apparatus are regardedto Re=hU,/v, Pr=v/k, Ra=aATgh¥/(vk).
be insulating. Using water as the working fluid, they ob-
served an irregular flow structure as well as longitudinal rollsHere, v is the kinematic viscosityx is the thermal diffusiv-
and the transverse modes in the neighborhood of the crosi#y, and« is the coefficient of cubical expansion. We impose
over point. the nonslip conditionsu=0 on the rigid boundariesy

In the present paper, without introducing any model, we=*A/2 andz= = 1/2. The temperatures on the top and bot-
derive amplitude equations governing the longitudinal rollstom walls areT=Ty/(AT)+ 1/2 atz= *=1/2. The sidewalls
and the transverse modes for (Re, RéRe, ,Ra, ). Ourde- aty=*A/2 are assumed to be perfectly conducting, satisfy-
rived equations are thus consistent with the fundamentahg T=T,/(z), or perfectly insulating, satisfying),T=0.
equations of fluid motion in a rectangular channel. We deHere, T, (2)=Ty/(AT)—z.

termine the coefficients in the equations numerically. The Consider the conduction statél(U,T) corresponding to
amplitude equations have four equilibrium solutions; theythe hasic flow. The basic flow is steady, parallel, and uniform
exhibit the conduction state, longitudinal rolls, transversen the x direction. The temperature satisfying the boundary

modes, and mixed modes. We analyze the stability of eac o o T _ :
We take account of both perfectly insulating and perfectlyrbo(nadglogsolz) %;Szfi:gT To/(AT)~2. The velocity U

conducting sidewalls, to compare our results with the experi=
mental results. =
In Sec. Il, we describe the fundamental equations of fluid (dyytdzU=c, )

motion, their steady solution corresponding to the conducwherec on the right hand side is a negative constant propor-
tion state, and equations for disturbance added to the steagipnal to the applied pressure gradient in theirection. The

solution. In Sec. IlIl, we outline the linear stability character- ., .-\ is chosen so that mé&Ky,2)=1 holds. We impose
istics with respect to the longitudinal rolls and transverse L L .
modes, and determine the crossover point, numerically. wi'e Poundary condition =0 aty=*A/2 andz=*1/2.

derive the amplitude equations in Sec. IV, and predict stable We expandU in Chebyshev polynomiafsThe solution

patterns for given sets of parameters in Sec. V. U is an even function of andz, and is expanded as

Il. FORMULATION _
IWe may expand) in sinusoidal and hyperbolic functions, too. In
We consider the motion of a Boussinesq fluid in an infi-this case, we have an analytical solution in an infinite series form.
nitely long horizontal channel. The cross section of the chanThe Chebyshev expansion, however, gives a more accurate solution
nel is a rectangle bounded by sidewallsydt=+d/2 and  when we truncate the series at a finite level.
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My Ny TABLE I. Parity of the linear eigenfunctions. The subscrépt
U(y,2)= 2 2 UpnTam(2y/A)Ton(22), (3)  denotes an even function, ancan odd function. The function with
m=0 n=0 eo, for instance, is even in thedirection and odd in the direction.
whereT,(x) is the Chebyshev polynomial of degreeSub- Type of parity Parity of disturbance
stituting Eq.(3) into Eq. (2) and applying the tau collocation - .~ _
method, we obtain algebraic equations for the expansion co- ~ Parity 1 (PeosUeo:Voo:Wee, fee)
efficientsU,,,. We solve them by the Newton-Raphson it- Parity 2 (Poo+Uoo:Ueo,Woe, oe)
eration. We correlate the truncation lewdl, ,N with the Parity 3 (Poe:Uee, U oe s Weo,: feo)

aspect ratioA of the cross section al=AM;. We set Parity 4
My=20 for A=1.0,2.0,M =23 for A=3.0, andM =17
for A=4.0. Then, the expansion coefficients of the last terms
in Eq. (3), Uy,,n andU ,y,, were ofO(10°°). The relative  The transverse modes are three dimensional, since the side-
error in U was typically ofO(10%). The influence of this Walls prevent a uniform motion in the spanwise direction.
error on the linear stability characteristics is small enough; it Substituting Eq(5) into Eq.(4) and linearizing the result-
will be mentioned again in Sec. Il B. ant equations, we have

We now add a disturbance to the basic flow._ We denote Lid=ioTib ©6)
the disturbance components of pressure, velocity, and tem- ! 1
perature as%(x,t), G(x,t)=(ﬂ(x,t),8(x,t),\7v(x,t)), and  where.; is an operator defined by
B(x,t), respectively. Substitutingr=1II+ 7, u=U+U, and
6=T+ 0 into Eqg. (1) and subtracting the equations satisfied -
by II, U, and T, we have the disturbance equations nik Sy U, U, 0

0

Lo=| ¢ O S; 0

(PoesUoesVeesWoo, boo)

0 nik 9y 9, 0

V.u=0, 4
“3 9, 0 0 S —RaPrlRe?
4,0+ (U-V)0+(0-V)U+ (G- V) 0 0 0 -1 Si
= -V7+Re V2i+RaPr!Re 207, (4b) (n=0.1...), @)

A — A A ~ o A 1_ ikl _pal  n2L2

,0+Ud0—w+(u-V)9=Pr1Re 1V2?0. (40 Sp=nikU—Re (dyy+d;,—nk?),
2_ i1 pr1 —1 _ n2L2

Boundary conditions for the disturbance components are im- Sp=nikU—Pr“Re *(dyy+d;;—nk?).

posed as=0and#=0 atz==1/2, andu=0aty==*A/2.  The subscripty or z denotes the partial derivative with re-
We imposef=0 on the perfectly conducting sidewalls or spect to itself. The operatdr; on the right hand side of Eq.

ayfgzo on the perfectly insulating sidewalls yt = A/2. (6) is a unit matrix whose diagonal component in the first
row is replaced by zero. Equatidf) and the boundary con-
Il LINEAR STABILITY ditions for ¢ have reflection symmetries about the horizontal

and vertical mid-planes of the channel. The symmetries en-

In this section, we outline the linear stability characteris-able us to classify the solutions into four classes with differ-
tics of the basic flow with respect to the longitudinal rolls ent parities. We call them parity 1, 2, 3, and 4 as defined in
and transverse modes, and determine the crossover pointsble I.
numerically. Since the linear stability was studied in Refs.
[7-11], as stated in Sec. |, we give only a brief outline in A. Longitudinal rolls (k=0)
order to proceed to the weakly nonlinear analysis.

We consider an infinitesimal disturbance periodic inxhe
direction. We assumab(x,t)=(m(x,t),u(x,t), 8(x,t))T in
the normal mode,

The eigenvaluev is purely imaginary for the longitudinal
rolls. Neutral stability (Imw=0) therefore impliesw=0,
i.e., the principle of exchange of stabilities holds. The Ray-
leigh number giving neutral stability corresponds to the criti-
cal Rayleigh number. We denote it RaTo find Ra, we
substitutek=0 andw=0 into Eq.(6). The first equation of
(6), coming from the equation of continuitf#a), allows us to

introduce a stream functiony(y,z) such that v

=(7 U y: T =, /(PrRe) andv= — ¢, /(Pr Re). Elimination of the pres-
Hy.2)=(m(y.2),uly.2),6(y.2)) sure terms in Eq(6) yieldys a closed form of equations fer
The imaginary part ofw is the growth rate of the distur- and 6
bance. The disturbance witk=0 forms longitudinal rolls ~
aligned along thex axis. The disturbance witk#0 forms (dyy+d,)°¢y—Re 6,=0, (8
transverse modes, whose wave-number vector is parallel to ~
the basic flow. The longitudinal rolls are two dimensional. (dyyt 3,7 0— ik, =0. (8b)

D(x,t)=d(y,z)exdi(kx—wt)], (5)

with wave numbek and complex frequency, where
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TABLE Il. Reynolds number Re, Rayleigh number Ra, wave numbek., and frequency. at the
crossover point. The third column represents the parity of the longitudinal rolls. The transverse modes always

have parity 1.

Perfectly conducting sidewalls

Perfectly insulating sidewalls

Pr A Parity Re Ra, ke ¢ Re, Ra, ke O
0.71 1.0 2 81.14 5011.71 2.55 1.72 16.61 2585.02 3.07 1.95
2.0 1 37.46 2384.87 2.24 1.59 16.99 2013.21 2.74 1.96
3.0 2 24.36 1996.28 2.70 2.00 16.74 1870.58 2.81 2.08
4.0 1 18.42 1867.65 2.89 2.17 14.12 1810.27 2.94 2.20
7 1.0 2 14.00 5011.71 2.70 2.18 1.779 2585.02 3.13 2.17
2.0 1 8.079 2384.87 2.14 1.79 3.335 2013.21 2.69 2.22
3.0 2 5.317 1996.28 2.58 2.19 3.491 1870.58 2.74 2.32
4.0 1 3.972 1867.65 2.80 2.40 2.993 1810.27 2.87 2.45

The boundary conditions ang= ,=6=0 atz=+1/2, and
b=,=0 aty=*+A/2. We imposed=0 on the perfectly
conducting sidewalls 09y~0=0 on the perfectly insulating
sidewalls aty= = A/2. The critical Rayleigh number I%aie—

pends only on the aspect ratio, and is independent of th

Reynolds number and the Prandtl number.
To solve Eq.(8) numerically, we expang as

M N
¢(y,z>=mE:O go YimnF m( 2YIA)F(22). (9)

We expandd as

<

N
T9<y,z)=m A go OnnGm(2y/A)GL(22)  (10)

for the perfectly conducting sidewalls, or as

M N
”0<y,z>=mZ:0 go OmeHm(2Y/A)G,(22) (12)

for the perfectly insulating sidewalls. Here, the functions

Fn(X), G,(x), andH,(x) are defined by

Fan(X)=Tan+4(X) = (N+2)*To(x) +(n+1)(n+3)Ty(x),

(129
1
Font1(X)=Tonss(X)— E(n+2)(n+3)T3(X)
1
+ E(n+ LH(n+4)T4(x), (12b)
Gon(X) =Ton12(X) = To(X), (129
Gont1(X) =Ton13(X) = T1(X), (120

Hon(X)=Tons2(X)—(n+1)2T,(x) for n#0, (128
Ho(X)=To(X), (12f)

Hant 1(X) = Tant3(X) = (2n+3)?Ty(x). (129

They satisfy boundary conditionsF,(=1)=F/(*1)

=G,(x1)=H;(*£1)=0. We substitute the expansio(®

and (10) [or (9) and (11)] into Eg. (8) and apply the collo-

cation method. This yields a linear algebraic eigenvalue
roblem with eigenvalue Ra and eigenvector

? 005 - - - s¥MnN 000y - - - O0un). We solve the eigenvalue

problem by the QZ method. Using the eigenvalue and eigen-

vector obtained as the initial guess, we make the solution

more accurate by Newton-Raphson iteration. We adopted the

truncation levelM = N=33.

The critical Rayleigh number is shown in the column,Ra
in Table Il. The table also involves stability information on
transverse modes (Rek:,w.); they have no direct relation
to this subsection. The critical modes fA=2.0 and 4.0
have parity 1, and the modes fA= 1.0 and 3.0 have parity
2. According to Refs[10,11], the critical mode has parity 1
for A<1.6, parity 2 for 1.6sA<2.7, parity 1 for 2.€A
<3.7, and so on. Our numerical data onSReve ten sig-
nificant figures, although we show only the first several fig-
ures in the table. They agree with the results of R&€]
based on the pseudospectral methadd the results of Ref.
[11] based on the Galerkin method.

B. Transverse modedq k#0)

Let us outline how to analyze the linear stability with
respect to the transverse modes.

Elimination of = andu in ¢ from Eq.(6) yields a closed
form of equations fow,w and é:

T(y,2)v + To(y, 2)W=i [ (dyy— k»v +dy,W], (133
To(z,¥)0 +T1(z,y)W+k?RaPr 1 Re 29

=iw[dy+ (9~ kKAW], (13b

2In Ref.[10], Leeet al examined the pseudospectral method and
the Galerkin method. The values of ‘Rhy these methods con-
verged to different values. They concluded that the latter method
gave better accuracy. The validity of their “less accurate” results is
confirmed by Ref.[11] and also by our computation. We also
adopted the Galerkin method with the expansi@r-(11), and ob-
tained the same value of Ras in Table II.
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1 2 3 4 FIG. 2. The critical Rayleigh number as a function of the Rey-
k nolds number of the through flow. The solid lines represel‘gtszi

. - . Ra for A=1, the dotted lines are foh=2, and the dashed lines
FIG. 1. The linear neutral stability curves for different values of are forA—4. Pr= 0.71. Perfectly conducting sidewalls. The criti-

Re. The solid lines represent the neutral curves for the transverse . - .
P cal Rayleigh number F{afor longitudinal rolls is independent of

mode with parity 1, and the dotted lines denote the ones with parit ) . .
2. (a) A=1.0. (b) A=2.0.(c) A=3.0.(d) A=4.0. Pr= 0.71. Per- )E%agr;leolglsosed circle denotes the crossover point, at whi¢ch Ra

fectly conducting sidewalls.

o~ L~ numbers for modes with parity 3 and 4 are much greater than
Sif-w=lwb, (139 those for modes with parity 1 and 2. When a neutral curve
where has a local minimum, we call this the critical Rayleigh num-
ber for the transverse modes for a prescribed Re. We write it
Ra, . The corresponding wave number and frequency are de-
noted byk, and w., respectively.

Tz(y,Z)=Siﬁyz+ik(Uyt92— UZ&y_Uyz)_ We calculated the critical conditions for a wide range of

the Prandtl number, P+ 0.001, 0.01, 0.1, 0.71, 1, 7, 10,

The operatorZ,(z,y) is obtained by exchanging andz in 100, and 1000, for the aspect ratids- 1.0, 2.0, 3.0, and 4.0,
T.(y,z) except for the arguments iE(y,z). The boundary and for perfectly conducting and insulating sidewalls. In all

conditions for the velocity are=w=w,=0 atz=+1/2 and  Co5CS: €xcept for Pr 0.1 andA=2.0, Rd is an increasing
~ o~ o~ z . ~ function of Re as shown in Fig. 2The closed circles in the
v=vy,=wW=0 aty=*+A/2. The boundary conditions fo#

o T figure are the crossover points. At the crossover points, the
are the same as the conditions for the longitudinal rolls. Weitica| Rayleigh number for the longitudinal rolls coincides
expand the amplitude functions of the normal modend  with that for the transverse modes, that is;R&g] holds.
w, so that they satisfy the boundary conditions We denote the crossover point by (R&a, ). For Re
voN <Re, , the transverse modes are critical, that is; RRd&
~ _ holds. For Re>Re, , the longitudinal rolls are critical, that
v(y,z)—mzzo nzo UmiFm(2Y/A)Gn(22), (143 is, RE<Ra holds. We omit the result foA=3.0 in Fig. 2
for clarity, since the value of Hafor A=3.0 is close to the
5 Mo N one forA=4.0.
W(y,2)= 2 2 WniGm(2y/A)F,(22).  (14b) Table Il summarizes the crossover point and correspond-
m=0 n=0 . . . .
ing parameters. We obtained Rap to ten significant figures
The functionsF,(x) and G,(x) are defined by Eq(12). and Re to seven significant figures, although we show only

Expansion ofd is given by Eq.(10) or Eq. (11), and is the the first several figures in the table. Our numerical data agree

same as that for the longitudinal rolls. We substitute Eqs\.NeII with the data of Platten and Legrpg] for the insulating

(10) and(14) [or Egs.(11) and(14)] into Eq.(13), and apply 5|de(;/vaII§, an_((ij W'tr;léthg (:1atg of Yﬁmsdm al. [2] for th.e
the collocation method. We then obtain an algebraic eigen(-:On ucting sidewalls.Both Re.and Rq are decreasing
value problem with the eigenvalue for given values ofA,

Pr, Re,k, and Ra. We solve the eigenvalue problem by the

QZ method. The accuracy of the numerical results was im- 3To our knowledge, it was Platten and Legf@$ who first illus-
proved by means of the Newton-Raphson iteration under thtsated the critical conditions in the Re-Ra plane and obtained the
constraint Imw=0. We adopted the truncation leviel=N crossover point for several parameters under insulating sidewall

=33. The accuracy of the linear stability characteristics mayonditions. Later, Yamadat al. [8] made a similar plot for the
be affected by the numerical error in the basic flowThe perfectly conducting situation.
relative error inw due to the error i was ofO(10 °); it

7u(y,2) = S1(dyy—k?)—ikUyy,

“Yamadaet al determined the crossover point by usingtha
. . : - Refs.[10] and[11]. The values of Racalculated by the Galerkin
resulted in an error in Re at the crossover point® 10 2). ; ) . . )
Figure 1 shows the neutral curves for the transverstgnethOd n REf.[lo] disagree with th.ose in Refl1]; YamadaEt al
. . LSS~ Showed two kinds of crossover point based on the different values
modes with parity 1 and 2, i.€.pko,Ueo:Vo0sWeesfee) AN of Re . Our crossover points agree with their data based dniRa
(Poo1UooVeosWoe,Ooe), respectively. The neutral Rayleigh Ref.[11].
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TABLE llI. Coefficients in the amplitude equations under perfectly conducting sidewall conditions. The
superscript denotes the real part of the attached quantity.

Pr A A oRa MiRe NiRa N ooo Mo Mg Noo1

0.71 1.0 —0.752309%<10°* —20.110 —0.75398<10°* 0.110272 5.445 2.206 0.1209
2.0 —2.13415210°* —-6.3972 —2.2157x10°* 1.453285 3.589 1.566 3.804
3.0 —3.57615% 104 —3.98138 —3.6702<x10"* 0.1812198 2.353 2.299 0.3933
4.0 —4.891387x107* —2.4984 —4.9875<107* 2.357924 4.021 3.027 4.817

7 1.0 —0.894029% 107 —-3.660 —0.87713<107* 0.120587 1.788 1.759 0.1348
2.0 -1.656756<107* —0.92208 —1.6966x10°* 1.087214 1.385 0.8465 2.417
3.0 —2.695566<10"% —0.598330 —2.7548<10"* 0.1343626 1.094 1.1887 0.2063
4.0 —3.71246710"* —0.387217 —3.7786x10°* 1.762920 1.639 1.611 2.950

functions of the aspect ratio for perfectly conducting side- (—niwZ;+ Ly)®,=0 for n=0,1. (16)

walls. They are not, however, for insulating sidewalls.
In what follows, we set K,Re, Ra)=(k.,Re, ,Ra,) in the

IV. WEAKLY NONLINEAR REDUCTION operatorq7). Since the operators in E(L6) are independent
TO THE AMPLITUDE EQUATIONS of time, the solution is written as
Except for the neighborhood of the crossover point, the D =An(ty,to, .. ) @na(y,z) for n=0,1.

linear stability theory well predicts the convection pattern

due to primary bifurcation. In that neighborhood, the linearThe function ¢, ;= (n1,Un1,6,1)" is the linear eigenfunc-
theory loses its validity, since nonlinear interaction plays aion of the longitudinal rolls forn=0 and the transverse
significant role in the pattern formation. In the following modes forn=1. The eigenfunction is indeterminate by a
sections, we focus on the interaction between the longitudimultiple. To obtain a unique function, we normalizs;,,
nal rolls and transverse modes. In this section, we deriveuch that 6,,(0,00=1 for modes with parity 1 or
amplitude equations governing the temporal evolution ofd, 6,,(0,0)=1 for parity 2.

these modes. At O(€?), we have
Our weakly nonlinear reduction is based on a perturbation _
expansion about the crossover point (RRa,). We intro- (—niw i+ Ly)®P,=N,, for n=0,1,2.  (17)

duce a small parameterdefined by i ) )
The nonlinear ternN,, consists of¢y,; and ¢,,. For its

, 1 1 explicit form, see the Appendix. We can write the solution as
€ =—— — —
Re, Re
Doy= Agobort (Ao > ot |Avil > i,
D1,= A1t A5,

®y= (A11)2 %%

and set
Ra=Ra, + €°R

whereR=0(1). Exactly at the crossover point€0), the

dominant modes are the critical longitudinal rolls wikh ~where ¢} is a function ofy andz and is obtained numeri-
=0 and the critical transverse modes witk k. (#0). All cally. New amplitude function®\yp, and A, of t;,t,, ...
the other modes decay on a linear basis. Nonlinear interaarise at this order of approximation.

tion between the dominant modes excites their higher har- At O(€®), we have

monics. Assuming|®||=0(e), we expand the disturbance
P as (—niwZ;+ L,)®P3=N,3 for n=0,1. (18

_ The termN, 3 on the right hand side is given in the Appen-
D= > > €Dy exgni(kx—oct)]. (15 dix. A solution of Eq.(18) exists only if N, satisfies the
n=—o m=max(1/n|) . . . . f
solvability condition, i.e., only ifN,5 is orthogonal to the
For @ to be real, we requird>_,.=®*_for n=1, where solution of the adjoint problemThe adjoint problem is writ-
y — nm ) . . .
the asterisk denotes the complex conjugate. Notedigatis €N a_S_O""cIlJrﬁrT\) #;,=0, sub}gect to appropriate boundary
real. We assume that the amplitudds,,, vary slowly in  conditions. Here, the operatdr, satisfies
time, compared with the time scale 6fw_ *). Introducing . .
multiple time scaleg, = %t for k=1,2,.(.:., we setd,, ((=niwcTyt Lo)dh, dho)=(t, (NiwcTy+ L1) )
=d,.(y,z,t1,t5,...). Weignore spatial modulations of the
amplitudes throughout.
We now expand the disturbance equati¢dsabout the The solvability condition for Eq(17) is satisfied without any

crossover point (Rg,Ra,), and substitute E(15) into the  extra condition, sincéN,,, has a different parity from the parity of
resultant equations. AD(€), we have the adjoint function.
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for arbitrary functionsiys, , ¥, satisfying the boundary conditions. The angular bracket denotes the inner product defined by

12 (A2

(1, )= Y-, dydz (19
—-1/2J —A/I2
The explicit form of ] is
0 —nikg dy —d,
—nike St, O 0
-4, U, O st -1
0 0 0 —Ra PriRe)? 82,

When we writep! = (7! ,ul, 61T, the boundary conditions and[14]. The coefficients of nonlinear terms in this case are
are given byu!=0 aty=+A/2 andz=+1/2, andf]=0 at  exactly the same as the ones in EG).
z==*+1/2. We have¢9;=0 on the perfectly conducting side-

. . . V. CONVECTION PATTERNS
walls or§y03=0 on the perfectly insulating sidewalls wt

=+A/2. We analyze the nonlinear interaction at the lowest order
Finally, we define the amplitudes of the temperature dis-described by the cubic terms in Eq0). We setA,(t)
turbance at the center of the channelMs=eAg+€?Ay,  =a(t) and Aq(t)=b(t)exdip(t)], where the amplitudes

+ ... andA;= €A+ €?A,+ - - -, and use the original time  a(t),b(t) and the phase(t) are real functions. Then we
scalet. Two solvability conditions for Eq(18) yield the have
amplitude equations foh andAs:

a
q a+(_7\0+)\oocﬂz+)\110b2)a:0, (21a
AL -
WJFEZR)\O RaAL+ Nood AL+ N 11d A7|AL+ - - =0, db
(208 gt T (MDA o) b =0, (21b
dA ~ _ _ 2D r_— 2,\"  _DPy'l
T+62(_)\1 Re+ R)\l RB)AT+)\11]JAT|2AT+)\001(AL)2AT Where)\o— € R)\O Ra and)\l—f ()\1 Re R)\l Ra)' The su-

dt perscriptr denotes the real part of the attached quantity. The
coefficients\, and \}, respectively, represent the linear
growth rates of the longitudinal rolls and the transverse
. . . - . modes at (Re, Ra)(Re, ,Ra, ). While the phasep(t) de-
The amplitudeA, is a real fL!nctlon, and the coefﬂqent; in pends on t(he amagli(tugés, {akm)a amplitudx{ﬂ;)pandqt))((t)) are
Eq. (209 are real. The amplitudéy and the coefficients in  j,qenendent of the phase. We therefore omit the equation for
Eq. (20b) are complex. Tables Il and IV show the coeffi- ) “for the phase itself has little role in pattern selection.
cients for several values of Pr al We do not list the In this section, we obtain the equilibrium solutions of Eq.
imaginary parts of the coefficients, since they are not neceg21), examine their stability, and specify stable convection
sary to examine convection patterns in the next section. patterns. Since the genera"zed equatior(gm)‘ are ana|yzed
For simplicity of the analysis, we neglected the spatialin detail in Ref.[17], we mainly describe the stability of the
dependence oA, and Ay entirely. If we allow spatiotempo- mixed modes. Equation@1) are invariant under the trans-
ral dependence, we get coupled envelope equations, insteéglmationa— —a andb— —b. We confine ourselves to the
of Egs.(20). They are similar to the equations in Reff§3]  solutions with positivea andb.

+...=0. (20b)

TABLE IV. Coefficients in the amplitude equations under the perfectly insulating sidewall conditions.

Pr A NoRa NiRe NiRa Nooo N 110 N Noo1

071 1.0 —4.390980<1074 -3.14 —4.482627% 1074  0.28215649 10.03 8.048 0.410372
2.0 -5.110657x104 —2.06671 —5.301516% 104 3.1294303 5.8624 3.8104 7.52125792
3.0 —5.4371806<10° 4 —2.13913 —5.467975<10°%  0.257608870  3.82753  3.847184 0.55317991
4.0 —6.560997% 10 * —1.58386 —6.5597676<10° ¢ 3.1500921 5.2752 4.599 6.464147

7 1.0 —6.057652<10°* —0.502 —6.859375& 10 * 0.3862774 6.14 6.598 0.487160
2.0 —4.133704% 104 —0.30716 —4.5202766<10°*%  2.49173560 2.4592 2.0646 5.2725882
3.0 —4.2169145(x10° % —0.3240945 —4.299533%10"%  0.19689802 1.60487  1.904613 0.31546536

4.0 —5.038431x1074 —0.2418145 —5.0561005¢10°4 2.3847966 1.967257 2.2498 3.88803
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(a)Longitudinal rolls (b)Transverse modes (c)Mixed modes

FIG. 3. Planform of the tem-
perature disturbance on the hori-
zontal mid-plane=0. The lighter
shades are hot and the darker
shades are colda), (d) Longitu-
dinal rolls; (b), (e) transverse
modes;(c), (f) the mixed modes
with D, /Dy,=7/3.(a)—(c) A=2.0,
(b)—(d) A=3.0. Pr= 7. Perfectly
conducting sidewalls.

o
)
w
I
(4]

We call the solution equilibrium i& andb are time inde- tories approach the longitudinal rolls or the transverse
pendent. The trivial solutioa=b=0 represents the conduc- modes, according to their initial values. We summarize the
tion state. In addition to it, we have the following nontrivial stability of the equilibrium solutions for type 1 in Fig(&}-
equilibrium solutions:(i) longitudinal rolls,a=yAg/\gee  We find at least one stable equilibrium solution, including
b=0, (i) transverse modesa=0, b= \}/\};; and (iii) thg trivial one, in an arbitrary_ neighborhood _of the crossover
mixed modesa=+D,/D, b=1D,/D, whereD,=\10\} Eom{;. 'I;h(elexsd ;node solution is unstable in any neighbor-
—Aohi11,  Dp=MNohgor—Nooohi, a@and  D=\yjo\ggy 000 O L& .73 ). : ,
—X\ooo\111- Figure 3 demonstrates typical convection pat- qu all the Cases bel_o_nglng to type 1, our numerlcal com-
terns exhibited by these solutions. While the Iongitudinalputatlon results in positivd. Let us seiD negative. The

rolls exhibit steady patterns, the transverse and mixed modqt__'rsfug(:t;g)e_st_)('g) rfeogr'onossi%;g [())f 'ﬂ]ge ffrar'eelzltilp ti?‘erza:zﬁ 23 n
exhibit traveling patterns. The patterns of the mixed mod gs-. P ' J y 9 ’

ey, S : .
. owever, behaves as in Fig(fpinstead of Fig. &). The
depend on the value iﬁa/Db' Figures &) and 3f) show mixed mode solution becomes stable. As above, the sign of
the patterns foD,/Dy="7/3.

The equilibrium solutions vary their bifurcation character- D determines the stability of the mixed mode solution be-

istics depending on the signs of the nonlinear coefficientsl.onglng o type 1. In previous studigd3] and [14], the

We classify the combinations of the cubic coefficients mtocoefﬂments n thg envelope equations belong to type 1.
; . Brandet al. examined the cases of positive and negaliye
four types(type 1-type #as shown in Table V. According .
. - and found stable mixed mode patterns for negabvEL3].
to our numerical results, the coefficientggy and A1, are

o . : Muller et al. obtained positiveD in their analysig14].
positive irrespective of the values of Pr aAxdn all the cases . )
examined. From the definition &, we haveD <0 for type Next, we turn (o types 2, 3, and 4. Figureghs-S() dem

, X onstrate the trajectories in the sectors/gin Figs. 4b)—
2 andD>>0 for typ.e 3. For types 1 an'd'4, the sign f'S. 4(d), where mixed modes exist. The mixed modes are stable
due to our numerical values of coefficients. We obtBin

. for type 2 and unstable for type 3. For type 4, the stability of
>0 for type 1 andD<O0 for type 4 in all cases. For Pr thetympixed modes depends),/pon the vtglﬂe(ﬁia,Ra. They
=0.71, 1, 7, 10, 100, 1000 andi=1.0, 2.0, 3.0, 4.0, the ., o' 1o des are stable in the region k of Fig. 4, where
coefficients belong to type 1. For R£0.1, the nonlinear — — (ooDat \siDp)/D is negative. They are unstable in
interaction varies in type as shown in Table VI. For-P0.1 regg?on; wﬁéreba s positive Wheno—0. the mixed
andLér]: iztij%ir\?g Poa;l\.i, eer:(?;tfi?]utr;]o(la trhee &?S;gl\?/er pg;gge the modes are neutral, and periodic solutions appear as shown in

ng : . 9 G ; Fig. 5(m). Figure 4 summarizes the stability of all the equi-
coefficient\ g, IS Negative(See Tables Il and IV.Since

Nooo IS positive, the longitudinal rolls are stable in the ab_lll_k;rgljénvsolutlons for four types of cubic coefficients given in

sence of transverse components; in other words, they bifur- When the transverse modes bifurcate subcritickijpes
cate supercritically. The transverse modes exist whgreas 3 and 4, Figs. 6)—~5(m)], some solutions diverge to infinity
the same sign as';;. For types 1 and 2X},,>0), they

exist in the region\|>0, or equivalently,\] xd 1/Re, p TABLE V Four types of.the combination of signs of thg non-

—1/Re)<\} n{Ra—Ra,). Their bifurcation is supercritical, linear coefficients, and the sign Bf=A 130\ po; ~ Noook 121 The sign
R r ; PR " of D for types 2 and 3 is due to the sign Bfgg,A110,N\711, and

For types 3 and 4X3,,<0), the bifurcation is subcritical, _, _ _ 00,2110+ % 1111

that is to say, the transverse modes are unstable even if tﬁ‘?"l' The sign ofD for types 1 and 4 is due to the numerical values

disturbance does not include a longitudinal component. I the coeflicients.

Fig. 4, the equilibrium solutions for all the types are classi-

r r
fied in the Re-Ra plane. Moo Ao Mu Mooy °
Now, we examine the stability of the equilibrium solu- Type 1 + + + + +
tions. First, we look into the type 1 solution in detail. FiguresType 2 + + + - -
5(a)—5(e) show the trajectories of the solutions of E¢@1) Type 3 + + - + +
belonging to type 1. Locally, all the trajectories approachtype 4 + + _ _ _

stable equilibrium solutions @s-. In Fig. 5e), the trajec-
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TABLE VI. Type of the nonlinear coefficients for R£0.1. We
have not found the crossover point for Pr0.1 andA=2.

Pr A Conducting sidewalls Insulating sidewalls

0.1 1.0 type 2 type 2
2.0 — —
3.0
4.0

0.01 1.0
2.0
3.0
4.0

0.001 1.0
2.0
3.0
4.0

WwWwWwn WWwwny Ww
WWE pWwweE o we

b— oo, according to the cubic amplitude equatid@4). This
suggests another stable equilibrium solution with much
larger amplitude. To resolve such a strongly nonlinear solu-

tion, the range of V.a“d'ty of the_amplltude equa_tlo_ns IS too FIG. 5. Trajectories of solutions of Eq&1) in a-b plane. The
narrow; fully numerical analysis is hecessary. This is beyonqigures(a)_(e), (g)—(1), respectively, represent the trajectories in the
the scope of our paper. _ _ regions a—e, g in Fig. 4. The figure(f) represents the trajectories
Let us now compare our results with experimental results, the region e in the case <0, and(m) shows the trajectories
Ouazzankt al. [15] studied convection patterns, using a wa-for ¢=0 and type 4. The closed circle denotes the stable equilib-
ter channelPr=7) with the aspect ratio 3.63. They carried rium solution and the open circle denotes the unstable one. The
out pointwise measurement of the vertical velocity by meansiotted line denotesia/dt=0, and the dashed line denotetb/dt
of laser Doppler anemometry. They classified the patterns ia-0.
five categories in their Fig. 18: the thermal conduction state,
longitudinal rolls, transverse modes, longitudinal rolls ortype 1. The stablétherefore experimentally observapleat-
transverse mode@epending on the initial stagteand an ir-  terns in Fig. 4a) agree with the observed patterns classified
regular flow. In our analysis, all the nonlinear coefficientsin Ref.[15], except for the irregular flow. The present analy-
have positive real parts for P7 and A=3.0,4.0, for both sis is thus valid to predict actual convection patterns in labo-
conducting and insulating sidewallsee Tables Ill and Iy  ratory experiments in the neighborhood of the crossover
The coefficients relevant to their experiment thus belong tgoint, to some extent.

(a) Ra — Rax

FIG. 4. Stability diagrams in
(Ra—Ra, ,1/Re, —1/Re) plane.
(@ Type 1 with positiveD, (b)
type 2 D<0), (c) type 3 O
>0), and(d) type 4 with negative
D. 0 denotes the trivial solutiom,
denotes the longitudinal rollsT
denotes the transverse modes, and
M denotes the mixed mode. DO,
T, M without parentheses denotes
the stable solution, whereas with
parentheses it denotes the unstable
solution. The solid line denotes
N;=0, the dotted line denotes
D,=0, the dashed line denotes
Dy=0. The bold solid line in(d)
denoteso=— (A goDa+ Nj1Dp)/
D=0.

~
. OL T, (0, M)
~

~
@T.(0L) ™,

- _-".:: @ L’ (0)

1 1
® T, (0) e, T

Ra — Ra.
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The only qifferencg between our_results and the experi-_ Noo=—(A11)°N( 11, d11).
mental ones is the existence of the irregular flow. Ouazzani
et al. observed a flow structure irregular in time. The irregu-  The termsN5 on the right hand side of Eq18) are as
lar flow involved the longitudinal and transverse compo-follows:
nents. They did not mention whether the irregularity is spa- ~
tiotemporal. The present analysis did not yield an irregulaMNos= —[9t,A01Z1 01+ Aos( — Lore™ RLora) o1
solution; neither did the analyses of the envelope equations .
[13,14]. To explain the irregular flow, we seem to need to +2A01A0N (o1, Po) + 2(AiAL,
take account of more complex interaction. Remember that * * 3 2
the critical longitudinal rolls change their parity/At=3.7 on T AALN( P11, b1) + (Ao) Moot [Asdl“AoiM 11ol,
the linear basi$10,11]. The eigenfunction of the least stable

mode exhibits three rollarity 2 for A<3.7 and four rolls Nig= ~{dArda bt A= Lire RLird du1

(parity 1) for A>3.7. The aspect ratio of the channel in the  (AcArat A N N
experiment is 3.63 and agrees with the value of 3.7. In fact, (Aorfazt AoAar) [N(or. 10) + N( b1, fod ]
Ouazzankt al. reported that four rolls almost always existed, + (Ag)*A1M oo+ | A1l PA1M 11 1),

and three rolls sometimes did in the parameter range where

the longitudinal rolls exist stably. This supports the fact thatvhere
the critical Rayleigh numbers are close together for three and _ 0 00
four longitudinal rolls. In such a case, the interaction be- Mooo=N( o1, ¢2) + N( 2. o),

tween two kinds of longitudinal rolls becomes important, in M. =N 11 N il +2N 01\ *
addition to the interaction between the longitudinal rolls and 110=N( o1 o2) + N oz, o) (b11,(6227)

the transverse modes. We have neglected the former interac- +2N(¢(1’%,¢’1‘1),

tion in this paper. We hope that the amplitude/envelope

equations describing the three-mode interaction will explain M 01=N( o1, %) + N( b33, ho1) + N( 11, d9)

the experimentally observed irregular flow. Analysis of the 00

three-mode interaction is in progress and will be reported +N( oz, b11),

elsewhere. 1 1" . 11

M111= N( 11, Pp2) + N( ez, b11) + N( b7y, 33
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APPENDIX: THE FUNCTIONS IN EQS. (17) AND (18) *

AND THE COEFFICIENTS IN EQS. (20) where the operatat,, is given by Eq.(7).

We define a vector and an operator: The coefficients in Eqg20) are
¢nm:(77nmvunma0nm)Ta Mre=(Lare®Pni)ns  Mnra={(Lnra®Pni)n,
N(¢nm:¢pq):(pikcunm+vnm&y+wnm&z)¢pq’ Mjk:(Mijk>k.
N i N The angular bracket with the subscript O or 1 denotes the
N(¢nma¢pq)=(_plkcunm+vnm0”y+wnm‘92) ¢pq1 operation
N(¢:m,¢pq):(pikCU:m+U:m5y+W:mﬁz)¢pq1 < > . <1¢$> (n_o 1)
In= e =0,
where the asterisk denotes the complex conjugate of the at- (bn1, bn)

tached quantity.

The nonlinear terms in Eq17) are as follows: where ¢, is the solution of the adjoint problemm{w Z;

+ L1 ¢! =0 defined in Sec. IV. To obtaig,, we eliminate

Noo= — [ (Ao 2N( o1, dhor) + 2| A1 2N( b1, %), 7} from the equatiorC [ ¢\ =0. To obtaing! , we eliminate
ul and =] from the equationi@w.Z;+ £ 1) #=0. We then
N1o=—AgiA11l N( g1, P11) + N( 11, Po1) 1, numerically solve the resultant equations.
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