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Cluster diversity and entropy on the percolation model: The lattice animal
identification algorithm

I. J. Tsang, I. R. Tsang, and D. Van Dyck
VisionLab–Department of Physics, University of Antwerp-RUCA, Groenenborgerlaan 171, Antwerp B-2020, Belgium

~Received 4 May 2000!

We present an algorithm to identify and count different lattice animals~LA’s ! in the site-percolation model.
This algorithm allows a definition of clusters based on the distinction of cluster shapes, in contrast with the
well-known Hoshen-Kopelman algorithm, in which the clusters are differentiated by their sizes. It consists in
coding each unit cell of a cluster according to the nearest neighbors~NN! and ordering the codes in a proper
sequence. In this manner, a LA is represented by a specific code sequence. In addition, with some modification
the algorithm is capable of differentiating between fixed and free LA’s. The enhanced Hoshen-Kopelman
algorithm@J. Hoshen, M. W. Berry, and K. S. Minser, Phys. Rev. E56, 1455~1997!# is used to compose the
set of NN code sequences of each cluster. Using Monte Carlo simulations on planar square lattices up to
200032000, we apply this algorithm to the percolation model. We calculate the cluster diversity and cluster
entropy of the system, which leads to the determination of probabilities associated with the maximum of these
functions. We show that these critical probabilities are associated with the percolation transition and with the
complexity of the system.

PACS number~s!: 02.70.Lq, 05.70.Jk, 64.60.2i
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I. INTRODUCTION

The statistics of cluster size has been widely studied
various problems in statistical physics, such as percola
@1#, fragmentation processes@2#, cellular automata@3,4#, and
complex systems@5–7#. An important breakthrough in the
computational analysis for cluster size statistics occur
with the introduction of the Hoshen-Kopelman~HK! algo-
rithm @8#. This algorithm made possible the analysis of s
tems with very large lattice size, due to its linear time a
memory space requirements as a function of lattice size
applications encompass diverse fields from basic scienc
technology@9#. However, the measurement studied with t
HK algorithm is the cluster size, which does not conv
information on the shape structure of the clusters.

Several problems in physics require a proper definit
and recognition of cluster or in a more general sense patt
which can be distinguished by some physical properties.
introduce an algorithm to identify and count clusters w
different shape structures, defined as lattice animals. La
animals~LA’s ! are clusters of connected sites, distinguish
from each other not only by their sizes but also by th
shapes. The statistics and enumeration ofn-cell LA’s have
been of much interest and various papers have been wr
on LA’s in connection with percolation@1,10–12#, branched
polymer problems@13#, the renormalization group@14#, and
self-organized criticality@15#. They are also called polyomi
noes@16,17#. It is usual to make a distinction between fixe
and free LA’s @11,17#. A free LA is considered similar to
another if it can be derived by a symmetry operation, wh
in fixed LA’s they are regarded as different. Figure 1 sho
some examples of LA’s. By the definition of a fixed L
there are eight different animals, while as free LA’s they a
all considered the same. The exact enumeration of LA’s
problem still not solved and much work has been done c
cerning this subject@17–20#. Algorithms that take up this
PRE 621063-651X/2000/62~5!/6004~11!/$15.00
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challenge have been proposed@17,21# and succeeded in
counting the number of LA’s up ton525 @12,22#.

Recently, the enhanced Hoshen-Kopelman~EHK! algo-
rithm @9# has been proposed. It is a natural extension of
original HK algorithm and can determine information n
only on the cluster size but also on the structure of the c
ters, such as, for example, the internal perimeter, radiu
gyration, or spatial moments. Even though these parame
yield information on the shape structure of the clusters a

FIG. 1. Some configurations of five-cell lattice animals. Fro
the definition of a fixed LA, there are eight different cluste
whereas, if defined as free LA’s they are all considered the sam
6004 ©2000 The American Physical Society
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are very important measurements in statistical physics, t
do not differentiate between the LA’s. The present algorit
deals with the problem of differentiating and counting t
huge number of possible LA’s on a lattice, so that a m
refined definition and recognition of clusters~patterns! can
be obtained.

Using the enhanced Hoshen-Kopelman algorithm
clusters are discriminated and each of the cells is coded
cording to the nearest-neighbor~NN! sites. A cluster is rep-
resented by a sequence of NN code, which is unique for e
LA configuration. As a result, the identification of a LA
performed by comparison of each code in the proper
quence.

The structure of this paper is as follows. In the next s
tion we analyze the LA structure and apply the EHK alg
rithm to compose the NN codes and to determine the pro
sequence. The third section describes how the algorithm
ceeds to identify the fixed or free LA’s. In the fourth sectio
we discuss cluster diversity and cluster entropy meas
ments. The fifth section presents some results of nume
simulations on a planar square lattice, where the algorithm
used to measure both the diversity and the entropy of
system. Also, we discuss the complexity of the algorithm
both computational time and memory requirement. Furth
more, in the sixth section we obtain the probabilities
which the maxima of these variables occur, taking into c
sideration the finite size effect. We relate these results to
percolation transition and complexity of the system. Fina
the last section discusses the limitations and further app
tions of the algorithm.

II. STRUCTURAL CHARACTERIZATION
OF LATTICE ANIMALS

Each unit cell of a cluster is coded according to its nea
neighbors. A vectorV is created where each component
dicates a neighbor in one of the four directions. Therefo
V5(n,e,s,w) where each letter, respectively, represents
presence or absence of a neighbor cell in the directions no
east, south, and west; hence we callV the NN vector. An
order sequence for each cell is associated with the NN v
tors. This order sequence must be generic and a natural
to implement it is to follow the order in which the cells of th
cluster are scanned. In this way, the structural information
the clusters is represented by a set of NN vectors, wh
forms a distinct LA. For the identification of free LA’s, it i
necessary to take into account symmetry operations. T
means an extra allocation of memory space to store the c
sequences generated by each symmetry operation. Co
quently, a higher efficiency in run time and memory requi
ment for the identification of fixed LA’s is achieved in com
parison to the identification of free LA’s. Figure 2~a! shows
an example of the order sequence and Fig. 2~b! the NN vec-
tors associated with each cell of a cluster.

A. Nearest-neighbor code

It is important to verify if the proposed method is suf
cient to distinguish uniquely all the possible LA’s. Hence,
demonstrate that no two LA’s will have the same set of N
vectors in the same sequence, let us try to perform a st
tural change on a LA without altering the order sequence
ey
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content of the NN vectors. Here, two LA’s will be compa
rable only if they have the same number of cells. A change
the position of any cellA will imply a change in its ordering
label and/or its NN vector content. Moreover, it also cause
change in at least one other cellB neighboring cellA, since
all the cells must be connected, causing a change in at l
one other NN vector and/or its ordering label. Consequen
a change in any cluster cell will cause a change in at le
one NN vector and/or its ordering label. This shows that a
possible LA will have a distinct code sequence, and also
this method is not invariant to symmetry operations.

In practice, the NN vector can be coded as an inte
where the first four bits are used to assign a possible nea
neighbor configuration. As a result, there are 16 possible
codes~see Table I!. Now, consider ann-cell LA and lets(n)
be the total number of fixed LA’s with sizen. Not taking into
account the code 0, because it represents the unintere
case of a cluster with just one cell, an upper bound for p
sible LA configurations iss(n),15n, since using the above
coding and ordering scheme there are 15 possible codesn
possible positions. This upper bound is in agreement with
upper bounds(n),(27/4)n derived by Klarner@18#, that is,
s(n),(27/4)n,15n. Clearly, our derivation resulting in a
higher upper bound value is due to the fact that not all c
figurations generated by the combinations of 15 codes on
n-word represent a possible LA. Moreover, it serves to de
onstrate that the present coding and ordering scheme is
ficient to characterize the LA’s and also that a better cod
scheme is still possible. Figure 3 shows two similar clust
and the NN code sequence generated by each one; note
even though the shapes of the clusters are similar the c
sequences correctly differentiate them.

B. Algorithm implementation

For implementation of the algorithm to identify LA’s, w
used the EHK algorithm to discriminate the clusters and
tract the NN vectors. The use of this algorithm is ideal sin
it is a generalization of the HK algorithm and thus a ve
efficient cluster identification algorithm. In addition, the H

FIG. 2. ~a! The order sequence for each cell of a cluster.~b! The
NN vector ~n,e,s,w! for each cell.

TABLE I. All possible NN codes. For each letter, 1 represen
the presence while 0 represents the absence of a neighbor cell i
direction north, east, south, and west, respectively.

(nesw) Code (nesw) Code (nesw) Code (nesw) Code

0000 0 0100 4 1000 8 1100 c
0001 1 0101 5 1001 9 1101 d
0010 2 0110 6 1010 a 1110 e
0011 3 0111 7 1011 b 1111 f
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algorithm is a well-known and widely used algorithm in st
tistical physics~we assume that the reader has some kno
edge of both the HK and EHK algorithms in what follows!.

In the original HK algorithm a binary lattice is assumed
be occupied by two types~A andB! of molecule, which are
randomly distributed with probabilityp and 12p. The HK
algorithm proceeds by assigning to each site occupied b
molecule with concentrationp a cluster labelmt

a , wherea
denotes a specific cluster. In this way multiple labels, rep
sented by the set$m1

a ,m2
a ,...,ms

a ,...,mt
a ,...%, can be as-

signed to a single cluster. However, only one of this set is
proper cluster label, which is represented byms

a . From the
pseudolabelsmt

a , the proper cluster label can be determin
by the set of integers$N(m1

a),N(m2
a),...,N(ms

a),...,
N(mt

a),...%. In this expression,N(ms
a) denotes the size o

the cluster, while the other labels are negative integers l
ing the labelsmt

a with the proper labelms
a . The relation

between these labels can be found through the following
of equations:

mr
a52N~mt

a!, mq
a52N~mr

a!, . . . , ms
a52N~mp

a!,
~1!

where the solution follows from left to right.
In addition, the EHK algorithm extends the HK algorith

since one can calculate general cluster proper
F (1)(ms

a),F (2)(ms
a),... defined by quantities

f (1)( i ), f (2)( i ),..., respectively, wheref (n)( i ) represents
some properties of thei th lattice site. In the present cas
f ( i ) represents the NN code or the nonscalar quantityf ( i )
5(n,e,s,w). We drop the index~n! since we are intereste
in just one cluster site property, i.e., the NN codes. In b
algorithms a very important routineCLASSIFY ~see Ref.@8#,
@9# for details of this routine! determines the proper cluste
labels and coalesces different sites or clusters when they
found to form a single larger cluster. As a result only a sin
pass over the lattice is required to determine the clusters
NN codes, and the order sequence of these codes.

In a two-dimensional lattice the HK algorithm require
just a single line to store the labelsmt

a or ms
a assigned to

each occupied site. However, the information of these lab
denoted byma( i ), and the cluster propertiesf ( i ), both cor-
responding to thei th site, are necessary for the identificatio
of lattice animals. Thus,ma( i ) and f ( i ) need to be stored in
a structure representing the lattice topology. This can
done either using matrices, which will require memory p
portional to the lattice size, or by any other clever data str
ture, which may be proportional to the number of occup
sites.

FIG. 3. Two similar cluster with distinct code sequences.~a!
636dd34be1849; ~b! 636dd34be38c9.
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The next step is to arrange this information so that co
parison of the NN code sequence of each cluster can be d
efficiently. The labelsma( i ) indicate to which cluster a spe
cific cell belongs and they are used to identify each cell o
cluster~see Fig. 4!, while the propertyf ( i ) contains the NN
code of each cell and is used to compose the NN code
quence that uniquely characterizes each LA~see Fig. 5!.
Consequently, a list of NN code sequences, each one re
senting a cluster, is produced and they can be compared
each other. The next section shows the details of how
algorithm proceeds from here to the final identification
fixed or free LA’s.

III. IDENTIFICATION OF LATTICE ANIMALS

Since there are no known simple measurements to de
the LA’s, they were represented by a series of NN codes
proper order sequence. In this way, comparison of the c
sequences of each LA will determine if two LA’s are distin
or not. The order sequence of the codes must obey a gen
rule and an efficient way to implement it is to follow th
scanning sequence used by the HK algorithm, i.e., top
bottom and left to right. From the definition of LA’s, it is
only necessary to compare clusters of the same size. Ne
theless, in order to identify free LA’s, we need not only
proper sequence but also a transformation of the codes
respect to every symmetry operation.

FIG. 4. An 838 lattice, where the occupied sites are rep
sented by labelsmt

a . These label numbers, associated with the cl
ter cells, are due to the multiple labeling technique used in the
algorithm.

FIG. 5. The NN codes for each cluster cell. The codes are
rived from the NN vectors, which indicate the presence or abse
of sites in the directions north, east, south, and west. See Tabl
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A. Fixed lattice animals

The multiple labeling technique relies on assigning diff
ent labelsmt

a to the cells of a cluster. While a negative inde
in N(mt

a) indicates a pointer to the proper cluster label
positive index determines the proper labelms

a and the size of
the cluster. Note that the labelsmt

a are not stored on the
computer; they represent the position on arrayN(mt

a) where
the negative pointer or the cluster size is stored~see Fig. 6!.

After applying the EHK algorithm the next step is to com
pose the NN code sequences representing each cluste
that they can be systematically analyzed. Thus, an index
dicating the labelsmt

a is coupled to eachN(mt
a). The set

containingN(mt
a) is sorted; nevertheless the indexmt

a still
preserves the correct link between the pseudo labelsmt

a and
the proper labelms

a .
Once the setN(mt

a) is sorted, the classification of cluste
with desired properties, such as clusters with a specific s
or the counting of cluster diversity can be done without d
ficulty. As our objective here is to determine the diversity
LA’s on a lattice, it is not necessary to keep the clusters
size 1 and the clusters with a size that appears just o
since they will contribute a unit increase in the divers
measure~see Fig. 7!. Consequently, anew propercluster
label r a is defined and is related to the labelsmt

a by the
following set:

$K~m1
a!,K~m2

a!,...,K~ms
a!,...,K~mt

a!,...%. ~2!

To assign the relationship betweenK(mt
a) and the new

proper labelr a, we follow the sorted set ofN(mt
a). For the

positive integers~proper label! that do not have size 1 or tha
appear more than once, setK(mt

a)5r a, while for the nega-
tive integersK(mt

a)5K„2N(mt
a)…. Hence, the clusters ar

relabeled according to a specific criterion. It is necessar
follow the positiveN(mt

a) first, since they represent a prop
label, so that the pseudo labels are correctly linked to
new proper labelr a. If the previous sort is performed in suc
a fashion that the rearrangement of its elements is in
scending numerical order, verifying the positive integers
N(mt

a) before the negatives becomes an easy task. This
also cause the clusters to be classified in descending o
according to their size, which is ideal for comparison of t

FIG. 6. Due to the multiple labeling technique,N(mt
a) contains

either the size of the cluster or a negative value pointing to
proper label. The index above each value represents the labelmt

a .

FIG. 7. After sortingN(mt
a) in descending numerical order, th

coupled indexmt
a indicates the correct link between the pseu

labels and the proper label. From the bottom up, the third r
indicates the new proper label after ignoring the clusters of siz
and the clusters whose size appears just once.
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NN code sequence of each cluster. Figure 8 shows the va
of K(mt

a) assuming the example given from the previo
figures. For comparison of the codes that compose the L
each NN code sequence is arranged according to its clu
size ~see Fig. 9!. The following sets represent the NN cod
sequences:

$C1
a ,C2

a ,...,Cn
a%,

$C1
b ,C2

b ,...,Cn
b%,

$C1
g ,C2

g ,...,Cn
g%,

]

wherea, b, andg represent different clusters andCn is the
NN code of thenth cell.

A second scan on the lattice is necessary to extract the
of NN code sequences. As the array containing the inform
tion of the labels~Fig. 4! is scanned, an occupied site wit
label l is assigned to the clustera by the relationa5K( l ).
Let n(a) be the site number of clustera, attributed as they
are scanned. The NN code sequences of a lattice anima
arranged by assigning the codef ( i ) to the positionn(a) of
Cn

a . The NN code sequences are placed in descending o
according to cluster size. Hence, it is a straightforward t
to compare the NN code sequences.

B. Free lattice animals

In the case of free LA identification one must take in
account the symmetry operations. The NN code seque
equivalent to each symmetry requires scanning the im
according to the rotation and reflection operations. Furth
more, the NN codes must be transformed into an equiva
code with respect to these operations.

e

1

FIG. 8. K(mt
a) contains the new proper labelr a. The index

above each value represents the labelmt
a .

FIG. 9. The NN code sequence for each cluster according to
cluster size. Note that clusters with size 1 and cluster sizes
appear just once are not present.
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The scanning sequence establishes the orientation
which the lattice is observed. At first, a 0° orientation
associated with scanning the lattice from left to right and
to bottom, while the NN vector coordinates~north, east,
south, and west! are determined for each cell of a cluste
Assuming that a LA is presented with a 90° counterclo
wise rotation, to find an equivalent code in 0° one must s
this rotated LA from bottom to top and left to right, and th
vector coordinate must be changed according to Table I
we fix on a specific pixel and rotate the lattice, it is qu
intuitive that a rotation will represent an exchange of co
dinates on the NN vectors. In the same way, reflection
erations represent an exchange between the elements
and south or between east and west.

Consequently, for identification of free LA’s we resca
the label lattice~Fig. 4! in the directions equivalent to th
symmetry operations and transform the NN codes accord
to the transformation matrixAls ~see Fig. 10!. In matrix Als
the rowsl represent the labels in comparison to the 0° ori
tation, while the columnss represent the symmetry oper
tions. Hence, the second column represents a counterc
wise rotation of 90°, followed by 180° and 270° rotatio
and the equivalent reflection operations. In practice wh
comparing two LA’s,X andY, if Y is assumed to be a 90
clockwise rotation ofX, one must apply an inverse operatio
~counterclockwise rotation! on the NN codes ofY, so that
they will correctly match.

Finally, the set containing the LA codes will also conta
the equivalent codes in the order sequence according to
ery symmetry operation:

$C1
a~s!,C2

a~s!,...,Cn
a~s!%,

$C1
b~s!,C2

b~s!,...,Cn
b~s!%,

$C1
g~s!,C2

g~s!,...,Cn
g~s!%,

].

In the above set of integers,s represents the differen
symmetry operations. The identification of free LA’s follow
by comparing a sequence of NN cod
$C1

a(1),C2
a(1),...,Cn

a(1)%, wheres51 is equivalent to the
0° orientation, with all the other sequenc
$C1

b(s),C2
b(s),...,Cn

b(s)%, which represent all symmetries

TABLE II. Changes of coordinate due to symmetry operato
The angles represent counterclockwise rotations. The row at 0°
resents the original coordinate. For each angle, the first row re
sents the rotational operator and the second row a reflection op
tor.

0° north east south west
north west south east

90° east south west north
east north west south

180° south west north east
south east north west

270° west north east south
west south east north
in

p

-
n

If

-
-
rth

g

-

k-

n

v-

In this case,a andb represent clusters of the same size, sin
from the definition of a LA it is not necessary to compa
clusters of different sizes.

IV. DIVERSITY AND ENTROPY

The macroscopic properties of a system are mostly de
mined by its microstructure. In percolation the microstru
ture, i.e., the clusters formed by this process, have been t
oughly studied and analyzed@1#. In addition, macroscopic
properties associated with cluster size, such as diversity
entropy, have recently been investigated@7#. By applying the
LA identification algorithm described in the last section, w
were able to enrich the analysis of cluster diversity and cl
ter entropy in the percolation model.

In the percolation model a site or a bond is chosen
random and occupied with a probabilityp. For the site-
percolation model, two occupied sites having one side
common are called nearest-neighbor sites, and the grou
sites connected by nearest neighbors is defined as a clu
A particular and important phenomenon in this model occ
when a cluster extends from one edge of the lattice to
opposite edge. This cluster is called the spanning clus
since it percolates or spans the system. At this point
system is said to pass through a geometrical phase trans
where the order parameter is the probability that an occup
site belongs to the spanning cluster. In this paper, we li
our investigation to the site-percolation model on a tw
dimensional Euclidean lattice. Further study on bond per

.
p-
e-
ra-

FIG. 10. Transformation matrix for the NN codes due to sy
metry operations. The second matrix shows the equivalent bin
form. The transformation can be seen as a change in the coordin
of vectorV5(n,e,s,w) following the scheme in Table II.
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lation and different lattice structures will be presented in
ture work.

Diversity is an important characteristic of nature and h
been used to describe the complexity of different syste
@4,5,7#. Here, the term ‘‘complexity’’ has been associat
with the diversity in the length scales that the clusters
assume in the model. Moreover, diversity can refer to diff
ent properties of the system, such as the size or configura
assumed by the clusters. Thus, ‘‘cluster diversity’’ is defin
as the differentiation of clusters with respect to their size
LA’s. The mathematical definitions of the cluster size a
fixed and free LA diversity are given by

Ds~p!5(
s

Q@N~s,p!#, ~3!

D f x~p!5(
f x

Q@N~ f x,p!#, ~4!

D f r~p!5(
f r

Q@N~ f r ,p!#, ~5!

wherep is the probability of occupying a site, andQ(x) is
the Heaviside function defined asQ(x)51 if x.0 and
Q(x)50 otherwise. Also,N(s,p) represents the number o
clusters of sizes and N( f x,p) and N( f r ,p) the number of
clusters with fixed and free LA configuration, respectively

Entropy is a fundamental concept in physics. It is rela
to the information content and order/disorder of a system
the present paper, we consider ‘‘cluster entropy,’’ which
defined using the probability that an occupied site belong
a cluster of sizes or is part of a specific free or fixed LA
This definition can be associated with the information e
tropy and the configurational or local porosity entropy d
fined in @23#. However, these entropies are based on the
formation content of a slidingm3m square region, thus
being basically a local or short-range measurement. C
versely, our definition of entropy depends on the structure
the clusters, which are not limited to a local region and
capable of spanning the whole lattice. The mathemat
definitions of cluster entropy are given by

Hs~p!52(
s

ws~p!ln ws~p!, ~6!

H f x~p!52(
f x

wf x~p!ln wf x~p!, ~7!

H f r~p!52(
f r

wf r~p!ln wf r~p!, ~8!

wherep is the probability of occupation of the lattice, an
ws(p) represents the probability that an arbitrary occup
site belongs to a cluster containings sites. Similarly,wf x(p)
andwf r(p) represent the probabilities that an arbitrary occ
pied site belongs to a fixed and a free LA configuratio
respectively. Cluster entropy is related to the possible len
scale or shape configuration that the clusters can assum
the system. Thus, its physical significance can be analy
by observing its behavior with respect to the probability
-

s
s

n
-
on
d
r

d
n

to

-
-
-

n-
f

e
al

d

-
,
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occupationp. Furthermore, this measurement is intrinsica
related to the notion of diversity, since the probability that
occupied site belongs to a certain cluster depends on
appearance of distinct clusters.

V. NUMERICAL SIMULATIONS

We performed Monte Carlo simulations on square lattic
with sizesL560, 100, 300, 600, 1000, and 2000, and av
ages taken on 6000, 5000, 2000, 500, 300, and 200 exp
ments, respectively. The lattices were randomly occup
with probabilitiesp ranging from 0.05 to 0.95 with steps o
0.01 betweenp50.25 and 0.30 andp50.40 and 0.65, and
steps of 0.05 in the other regions. In the case of free LA’s
simulations were performed untilL51000. However, for the
cluster size case we extended the simulations up toL
53000, 4000, and 8000, with averages over 100, 50, and
experiments, respectively. The variablesDs , D f x , andD f r
were measured as functions of bothL andp.

A. Simulation results

Figure 11 shows the behavior of cluster size diversity a
function of the probability of occupation for different value
of L. A tuning effect of the cluster size diversity by th
parametersL andp can be observed. Figures 12 and 13 sh
the fixed and free LA diversity, as a function of the probab
ity of occupation. These two plots are similar to each oth
and follow a bell shaped curve centered at the probability
maximum LA diversity. In addition, Fig. 14 shows the b
havior of the cluster size entropy. One can see that as
probability of occupation increases the entropy increases
to the percolation threshold, where the dominance of
spanning cluster causes a sharp decrease in the entropy o
system. Figures 15 and 16 showH f x andH f r as functions of
p. Even though these entropies have a slightly differ

FIG. 11. Cluster size diversity versus the probability of occup
tion p. The curves representL560 (n), 100 ~1!, 300 ~,!, 600
~3!, 1000~s!, 2000~.!, 3000~L!, 4000~h!, and 8000~v!.
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shape in comparison to theHs curves, they also present
sharp drop at the point where a single cluster dominates
lattice.

In respect to both cluster diversity and cluster entropy
behavior of fixed and free LA’s is similar. In these simul
tions this is to be expected, since the difference between t
definitions is just in the symmetry aspect of the cluster c
figurations. Conversely, the behavior of these measurem
when comparing the cluster size with LA diversity is qua
tatively different. The cluster size diversity curves presen
peak at the maximum of the functions, while in the LA d

FIG. 12. A log-linear plot ofD f x as a function ofp. The curves
representL560 (n), 100 ~1!, 300~,!, 600 ~3!, 1000 ~s!, and
2000 ~.!.

FIG. 13. Similar to Fig. 12, this figure showsD f r versusp. The
curves representL560 ,(n), 100 ~1!, 300 ~,!, 600 ~3!, and
1000 ~s!.
he

e

eir
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ts
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versity these curves are smoother. Analyzing the skewnes
these curves, we find thatDs(p) presents a leptokurtic dis
tribution, in contrast withD f x(p) and D f r(p), which have
mesokurtic distributions. This distinction is caused by t
enormous increase in configurational possibilities of LA
with increasing cluster size. The characteristics of the div
sity curves are reflected in the entropy functions, since
definition cluster diversity and cluster entropy are intrin
cally related, as mentioned in the last section.

B. Computational complexity

Using a Pentium 133 computer running theLINUX operat-
ing system, we measured the average computer central

FIG. 14. Hs versus the probability of occupationp. The curves
represent the same lattice sizes as in Fig. 11.

FIG. 15. H f x versusp. The simulations were done using th
same lattice sizes as in Fig. 12.
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cessing unit~CPU! time for several experiments. The tim
and space complexity of this algorithm depend on its imp
mentation. The implementation of the EHK algorithm fo
lows Ref.@9#, where it is thoroughly analyzed. For creatio
and comparison of the tables containing the NN code
quence of the LA’s, we dynamically allocate a vector
pointers withv elements, wherev is equal to the number o
clusters, excluding the clusters of size 1 and the clusters
size that appears just once. Each of these pointers indica
vector of integers, and these have the sizes of the LA’s
shown in Fig. 9. The elements of these vectors are filled w
the NN codes, as described in Sec. III, and they can easil
accessed by array reference. As a result, the memory s
required is proportional to the number and size of LA’s to
distinguished. Once this data structure is created the a
rithm compares the element of thej th position of a NN code
sequence with another LA’s sequence of the same size.
lexicographic sort is applied to the NN code sequences
LA’s with the same size, a more efficient comparison alg
rithm is achieved, since fewer steps will be needed to co
pare all the sequences. Alternatively, hashing techniques
be used and may improve both the space and time comp
ity of the algorithm.

Figure 17 shows the CPU time as a function of the nu
ber of sites for the square lattice atp50.40. The computa-
tional time complexity for this algorithm is not linear as
the case of the EHK algorithm. The inset in this figure sho
the behavior of the CPU time as a function of the probabi
of occupation forL51000. Clearly, there is a maximum
computational time complexity, atp50.40, which means a
critical slowing down associated with the probability
maximum LA diversity. This maximum was found to be
p'0.45 for L→` ~see the next section!. The difference
from p50.40, obtained in Fig. 17, is due to the finite size
the lattice used in this simulation. The slowing down of t
algorithm happens because as the LA diversity increases
number of comparisons for different LA’s also increas

FIG. 16. H f r as a function ofp, using similarL as forD f r in Fig.
13.
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The algorithm requires a larger amount of memory space
comparison to the EHK algorithm, since the sets of NN co
representing the LA’s need to be stored. The computatio
complexity for the identification of free LA’s in both time
and space is higher than for fixed LA’s due to the symme
operations. However, considering the proposed task the
gorithm is quite efficient and yields useful measuremen
especially when the morphology of the system studied is
concern.

VI. CRITICAL PROBABILITY

In the model studied both cluster diversity and clus
entropy present a define maximum. In order to estimate
probabilities at which these maxima occur at the thermo
namic limit, L→`, finite size effects have to be taken in
consideration. In Ref.@7#, it was found thatpc(Ds max) has
statistically the same value as the percolation thresholdpc .
From percolation theory we have thatL;up2pcu2n, where
n5 4

3 for two-dimensional site percolation. Now, letp(L) be
the transition probability or in this case the probability whe
the maxima of the functions occur, for a system of linear s
L. One can estimatepc from the scaling relationp(L)2pc
;L21/n. Thus, fits ofp(L) againstL21/n produce straight
lines where the intercept at they axis give us reasonabl
estimates of the valuepc ~see Figs. 18 and 19!.

In the case of the cluster size diversity and cluster s
entropy, the present simulations yieldpc(Ds max)
5pc(Hs max)50.5860.02, which is a value closer to the pe
colation threshold (pc50.592 746) than the value previous
reported in@7#. The probabilities associated withD f x max and
D f r max at the thermodynamic limit are 0.4560.02 and 0.46
60.02, respectively. For cluster entropyp(H f x max)50.49
60.02 andp(H f r max)50.5060.02. It is important to note
that these probabilities are below the percolation thresh

FIG. 17. Plot of the computer CPU time as a function of numb
of lattice sites. The inset shows the CPU time versus the probab
of occupation forL51000. The curves represent the EHK alg
rithm ~s! and the fixed~h! and free~n! LA identification algo-
rithm for different experiments.
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However, the finite size scaling correction was done in re
tion to the percolation scaling, i.e.,L21/n. The use of the fit
L21 does not significantly change the estimates of th
probabilities atL→`.

Cluster entropy appears to be a better candidate for a
sible complexity measurement for processes that prese

FIG. 18. Plot of the finite size scaling fits.~a! pc(Ds max) for L
51000– 8000,~b! p(D f x max) for L560– 2000, and~c! p(D f r max)
for L560– 1000, versusL21/v.

FIG. 19. Same as Fig. 18, but for cluster entropy.~a! pc(Hs max),
~b! p(H f x max), and~c! p(H f r max) as functions ofL21/v.
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distribution of clusters, such as fragmentation, aggregat
and percolation models. It captures the notion of having l
values in both the ordered and disordered states, while
senting a maximum value in between. Moreover, it is rela
to the information content of the system, as derived by
formation theory. The system studied attains a maximum
formation content at a specific point between a low proba
ity of occupation, where small scattered clusters are pre
~disorder!, and a highp where a single cluster dominates th
system~order!. For the cluster size entropy we found th
this maximum occurs at the same point as the percola
transition. For a complexity measurement such a fact is v
important, since for this model it describes the point of pha
transition as the most complex state. Other researchers
also pointed to this fact; however, they arrived at this co
clusion through a different type of measurement. The m
surement proposed was based on a phase space appr
derived from a scale dependent entropy or information c
tent. As a result, a coarse-graining procedure measuring
entropy of various scales was obtained~for further details see
Ref. @24#!.

VII. DISCUSSION

Single measurements such as the radius of gyration
spatial moments are not sufficient to completely characte
different cluster shapes. Therefore, we introduce a metho
code and differentiate the fixed and free LA’s. It relies
coding each unit cell of a cluster using NN codes in a pro
order sequence. Consequently, the memory requiremen
this algorithm depends on the number of clusters presen
the system, which imposes a restriction on the algorithm
very large lattice sizes. However, as computer memory
comes more available this does not constitute a serious l
tation.

Another possible way to define LA’s is through the exte
nal perimeter of the clusters. In the percolation proble
LA’s appear in connection with an exact solution for th
cluster number, which is given by

ns5(
t

gstp
s~12p! t, ~9!

wheregst denotes the number of cluster configurations w
size s and perimetert @1#. Fixed LA’s are defined bygs ,
which encompasses the entire possible cluster configura
irrespective of their perimeters. The definition of free LA
also does not take into account the cluster perimeter. Co
quently, an alternative way to differentiate clusters is bygst ,
such that the external perimeter becomes a parameter to
tinguish the clusters. In the present simulations, the diver
of gst , Dgst

, would give a different value if compared t
fixed and free LA diversity. However, we do not address t
measurement. Even though the EHK algorithm calculates
internal perimeter, further modification in the algorithm
would be necessary to address theexternalperimeter. In ad-
dition, it is interesting to note that, due to the different de
nition of diversity, the following relation will hold:D f x
>D f r>Dgst

>Ds .
Despite its complexity, the proposed algorithm enhan

the analysis of cluster morphologies and can be used in



us
te
a
t

gu
th
a
th
te

o

e
lg
pa
in

f
on
ix

test

by
or

he
re of
he
e-

e of

io

PRE 62 6013CLUSTER DIVERSITY AND ENTROPY ON THE . . .
tistical physics as a fine-grained way of characterizing cl
ters. Thus, it can be applied whenever the analysis of clus
is appropriate, such as in the percolation, fragmentation,
branched polymer problems. Extension of the algorithm
higher dimensions or different lattice types, such as trian
lar or hexagonal lattices, is possible. Furthermore, ano
possible variation of the algorithm is to identify part of
cluster by matching part of the NN code sequence of
clusters. As a result, degrees of similarity between clus
can be assigned.

The HK algorithm has also been applied in the fields
technology and applied science as pointed out in@9#. Like-
wise, by extending the concept of coding a cluster c
~pixel! according to its nearest neighbors the present a
rithm can be used in the fields of image processing and
tern recognition. In this case, the pixels are coded accord
to the numbers of neighbors in the four directions~neighbor-
hood code!. In other words, if a pixel is in the inner part o
the image, the number of neighbors in one of the directi
is the number of pixels separating the aforementioned p
from the border of the image~see Fig. 20!. Each pixel is

FIG. 20. Neighborhood vectorV5(n,e,s,w). Each element of
the vector represents the numbers of neighbors in the direct
north, east, south, and west.
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represented by a vectorV5(n,e,s,w), which is transformed
into codeC5F(n,e,s,w) by the function

C5a
L21L

2
1b, ~10!

where

a5nL1s2
n~n21!

2
, ~11!

b5eL1w2
e~e21!

2
, ~12!

and the image is assumed to have a size ofL3L. These
equations take into consideration the fact that the grea
value thatn, e, s, or w can assume isL21, and the boundary
conditions

n1s,L, ~13!

e1w,L. ~14!

The possible number of codes can be enormous; thus
using a logarithmic quantization the codes are merged
reduced to a smaller set. The probability distribution of t
reduced set of codes is then used as a characteristic featu
the object. We successfully applied this algorithm for t
handwritten character recognition problem; for further d
tails of this procedure see Ref.@25#. This shows that the
ideas of the proposed code scheme have a broad rang
applications.
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