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We present an algorithm to identify and count different lattice anirtiadss) in the site-percolation model.
This algorithm allows a definition of clusters based on the distinction of cluster shapes, in contrast with the
well-known Hoshen-Kopelman algorithm, in which the clusters are differentiated by their sizes. It consists in
coding each unit cell of a cluster according to the nearest neighibldés and ordering the codes in a proper
sequence. In this manner, a LA is represented by a specific code sequence. In addition, with some modification
the algorithm is capable of differentiating between fixed and free LA’s. The enhanced Hoshen-Kopelman
algorithm[J. Hoshen, M. W. Berry, and K. S. Minser, Phys. Re\6@&: 1455(1997)] is used to compose the
set of NN code sequences of each cluster. Using Monte Carlo simulations on planar square lattices up to
2000x 2000, we apply this algorithm to the percolation model. We calculate the cluster diversity and cluster
entropy of the system, which leads to the determination of probabilities associated with the maximum of these
functions. We show that these critical probabilities are associated with the percolation transition and with the
complexity of the system.

PACS numbe(s): 02.70.Lq, 05.70.Jk, 64.60i

I. INTRODUCTION challenge have been propos¢ti7,21] and succeeded in
counting the number of LA’s up ta=25[12,22.

The statistics of cluster size has been widely studied in Recently, the enhanced Hoshen-Kopeln{&tiK) algo-
various problems in statistical physics, such as percolatiofithm [9] has been proposed. It is a natural extension of the
[1], fragmentation processga], cellular automat3,4], and  original HK algorithm and can determine information not
Comp|ex Systemés_ﬂ_ An important breakthrough in the Only on the cluster size but also on the structure of the clus-
computational analysis for cluster size statistics occurred€’s, such as, for example, the internal perimeter, radius of
with the introduction of the Hoshen-KopelmaHK) algo- g_yran_on, or spaual moments. Even though these parameters
rithm [8]. This algorithm made possible the analysis of sys_y|eld information on the shape structure of the clusters and
tems with very large lattice size, due to its linear time and
memory space requirements as a function of lattice size. Its
applications encompass diverse fields from basic science to
technology[9]. However, the measurement studied with the | |
HK algorithm is the cluster size, which does not convey
information on the shape structure of the clusters.

Several problems in physics require a proper definition
and recognition of cluster or in a more general sense pattern,
which can be distinguished by some physical properties. We
introduce an algorithm to identify and count clusters with | |
different shape structures, defined as lattice animals. Lattice
animals(LA’s) are clusters of connected sites, distinguished
from each other not only by their sizes but also by their
shapes. The statistics and enumeratiom-gell LA’s have
been of much interest and various papers have been written
on LA’s in connection with percolatiofil,10—13, branched
polymer problemg13], the renormalization groufil4], and | |
self-organized criticality15]. They are also called polyomi-
noes[16,17. It is usual to make a distinction between fixed
and free LA’s[11,17]. A free LA is considered similar to ] ]
another if it can be derived by a symmetry operation, while
in fixed LA's they are regarded as different. Figure 1 shows
some examples of LA’s. By the definition of a fixed LA
there are eight different animals, while as free LA’s they are
all considered the same. The exact enumeration of LA’'s is @ FIG. 1. Some configurations of five-cell lattice animals. From
problem still not solved and much work has been done conthe definition of a fixed LA, there are eight different clusters,
cerning this subjecf17-20. Algorithms that take up this whereas, if defined as free LA's they are all considered the same.
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are very important measurements in statistical physics, the) 12 0110 | 0011

do not differentiate between the LA’s. The present algorithm 5T, 15 [ o110 | 1101 | 1101 | oot
deals with the problem of differentiating and counting the [77T5 9 [10] [o100 | 1011 1110 | oo
huge number of possible LA’s on a lattice, so that a more ™ ; 2[5 1000 [o100 | 1001
refined definition and recognition of clustefjgatterng can —

be obtained. @ (b)

Using the enhanced Hoshen-Kopelman algorithm the
clusters are discriminated and each of the cells is coded ac- FIG. 2. (a) The order sequence for each cell of a clustierThe
cording to the nearest-neighb@iN) sites. A cluster is rep- NN vector(n,e,s,w for each cell.
resented by a sequence of NN code, which is unique for each
LA configuration. As a result, the identification of a LA is content of the NN vectors. Here, two LA’s will be compa-
performed by comparison of each code in the proper serable only if they have the same number of cells. A change in
quence. the position of any celld will imply a change in its ordering

The structure of this paper is as follows. In the next seciabel and/or its NN vector content. Moreover, it also causes a
tion we analyze the LA structure and apply the EHK algo-change in at least one other c8lineighboring cell4, since
rithm to compose the NN codes and to determine the propegll the cells must be connected, causing a change in at least
sequence. The third section describes how the algorithm pr@ne other NN vector and/or its ordering label. Consequently,
ceeds to identify the fixed or free LA’s. In the fourth section a change in any cluster cell will cause a change in at least
we discuss cluster diversity and cluster entropy measuresne NN vector and/or its ordering label. This shows that any
ments. The fifth section presents some results of numericgossible LA will have a distinct code sequence, and also that
simulations on a planar square lattice, where the algorithm ighis method is not invariant to symmetry operations.
used to measure both the diversity and the entropy of the |n practice, the NN vector can be coded as an integer
system. Also, we discuss the complexity of the algorithm inwhere the first four bits are used to assign a possible nearest-
both computational time and memory requirement. Furtherneighbor configuration. As a result, there are 16 possible NN
more, in the sixth section we obtain the probabilities atcodes(see Table)l. Now, consider am-cell LA and lets(n)
which the maxima of these variables occur, taking into conpe the total number of fixed LA’s with size Not taking into
sideration the finite size effect. We relate these results to thgccount the code 0, because it represents the uninteresting
percolation transition and complexity of the system. Finally,case of a cluster with just one cell, an upper bound for pos-
the last section discusses the limitations and further applicasible LA configurations is(n)<15", since using the above

tions of the algorithm. coding and ordering scheme there are 15 possible codes in
possible positions. This upper bound is in agreement with the
Il. STRUCTURAL CHARACTERIZATION upper bounds(n) <(27/4)" derived by Klarnef18], that is,
OF LATTICE ANIMALS s(n)<(27/4)"<15". Clearly, our derivation resulting in a

. . . ) higher upper bound value is due to the fact that not all con-
.Each unit cell of a <_:Iuster Is coded according o its nea.resﬁgurations generated by the combinations of 15 codes on an
nglghbors. A. VeCtO".’ is created where e.ach.component N1 word represent a possible LA. Moreover, it serves to dem-
dicates a neighbor in one of the four directions. Therefore, oy a6 that the present coding and ordering scheme is suf-
V=(n,e,s,w) where each letter, respectively, represents thgisient o characterize the LA's and also that a better coding
presence or absence of a neighbor cell in the directions nortiiupeme s still possible. Figure 3 shows two similar clusters
east, south, and west; hence we calthe NN vector. An o4 the NN code sequence generated by each one; note that

order sequence for each cell is associated with the NN VeGsye though the shapes of the clusters are similar the code
tors. This order sequence must be generic and a natural w quences correctly differentiate them.

to implement it is to follow the order in which the cells of the
cluster are scanned. In this way, the structural information of
the clusters is represented by a set of NN vectors, which
forms a distinct LA. For the identification of free LA's, it is For implementation of the algorithm to identify LA's, we
necessary to take into account symmetry operations. Thigsed the EHK algorithm to discriminate the clusters and ex-
means an extra allocation of memory space to store the codeact the NN vectors. The use of this algorithm is ideal since
sequences generated by each symmetry operation. Congkis a generalization of the HK algorithm and thus a very
quently, a higher efficiency in run time and memory require-efficient cluster identification algorithm. In addition, the HK
ment for the identification of fixed LA’s is achieved in com-

B. Algorithm implementation

parison to the identification of free LA’s. Figuréa shows TABLE I. All possible NN codes. For each letter, 1 represents
an eX&mp'? of th? order sequence and Fig) the NN vec-  the presence while 0 represents the absence of a neighbor cell in the
tors associated with each cell of a cluster. direction north, east, south, and west, respectively.

A. Nearest-neighbor code (nesw Code fesw Code fesw Code fesw Code

It is important to verify if the proposed method is suffi- 0000 0 0100 4 1000 8 1100
cient to distinguish uniquely all the possible LA’s. Hence, to 0001 1 0101 5 1001 9 1101
demonstrate that no two LA’s will have the same set of NN 0010 2 0110 6 1010 a 1110
vectors in the same sequence, let us try to perform a struc-op11 3 0111 7 1011 b 1111
tural change on a LA without altering the order sequence and
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FIG. 3. Two similar cluster with distinct code sequences. 1 12 2 8
636dd34bel849; (b) 636dd34be38c9. 11 13 14
11 15113 16|16 |14

algorithm is a well-known and widely used algorithm in sta-

tistical physics(we assume that the reader has some knowl- FIG. 4. An 8x8 lattice, where the occupied sites are repre-

edge of both the HK and EHK algorithms in what follows sented by labels®. These label numbers, associated with the clus-
In the original HK algorithm a binary lattice is assumed to ter cells, are due to the multiple labeling technique used in the HK

be occupied by two type@ andB) of molecule, which are algorithm.

randomly distributed with probabilitp and 1-p. The HK

algorithm proceeds by assigning to each site occupied by a The next step is to arrange this information so that com-

molecule with concentratiop a cluster labelm, wherea  parison of the NN code sequence of each cluster can be done

denotes a specific cluster. In this way multiple labels, repreefficiently. The labelsn®(i) indicate to which cluster a spe-

sented by the sefmi ,m5,...mg,...mJ,...}, can be as- cific cell belongs and they are used to identify each cell of a

signed to a single cluster. However, only one of this set is theluster(see Fig. 4, while the propertyf (i) contains the NN

proper cluster label, which is represented by . From the  code of each cell and is used to compose the NN code se-

pseuddabelsm{, the proper cluster label can be determinedduence that uniquely characterizes each (ske Fig. 5.

by the set of integers{N(m$),N(mg),...N(m%),..., Consequently, a list of NN code sequences, each one repre-

N(m®),...}. In this expressionN(m<) denotes the size of senting a cluster, is producgd and they can be pompared with
the cluster, while the other labels are negative integers "nk(_aach other. The next section shows the details of how the

ing the labelsm® with the proper labem?. The relation algorithm proceeds from here to the final identification of
t S *

between these labels can be found through the following Sé{xed or free LA's.
of equations:

IIl. IDENTIFICATION OF LATTICE ANIMALS

mi=—N(m{), mg=—N(mg), ..., mi=—N(mg),
(1) Since there are no known simple measurements to define
the LA’s, they were represented by a series of NN codes in a
where the solution follows from left to right. proper order sequence. In this way, comparison of the code

In addition, the EHK algorithm extends the HK algorithm sequences of each LA will determine if two LA’s are distinct
since one can calculate genera| cluster propertiegr not. The order sequence of the codes must Obey a general

FOm?),FA(m2),... defined by guantities rule and an efficient way to implement it is to follow the
fO(i),f@)i),..., respectively, wheref™(i) represents Scanning sequence.used by the HK .al_g.orlthm, |.<,a., _to_p to
some properties of thith lattice site. In the present case, POttom and left to right. From the definition of LA's, it is
f(i) represents the NN code or the nonscalar quarity only necessary to compare clusters’of the same size. Never-
=(n,e,s,w). We drop the indexn) since we are interested €lEss, in order to identify free LA’'s, we need not only a
in just one cluster site property, i.e., the NN codes. In botHP"OPEr sequence but also a transformation of the codes with
algorithms a very important routineLASSIFY (see Ref[8], ~ €SPect to every symmetry operation.

[9] for details of this routingdetermines the proper cluster
labels and coalesces different sites or clusters when they are

- . 65| 3 0
found to form a single larger cluster. As a result only a single
pass over the lattice is required to determine the clusters, the 8 8 6[d]1
NN codes, and the order sequence of these codes. ) 4|9
In a two-dimensional lattice the HK algorithm requires ] | 5

just a single line to store the labetsy” or mg assigned to
each occupied site. However, the information of these labels, 8 413 619
denoted bym“(i), and the cluster propertidgi), both cor-

responding to théth site, are necessary for the identification 2 0 8 8
of lattice animals. Thusn*(i) andf(i) need to be stored in a 2 2
a structure representing the lattice topology. This can be 8 4|9 4|59

done either using matrices, which will require memory pro-

portional to the lattice size, or by any other clever data struc- FIG. 5. The NN codes for each cluster cell. The codes are de-
ture, which may be proportional to the number of occupiedrived from the NN vectors, which indicate the presence or absence
sites. of sites in the directions north, east, south, and west. See Table I.



PRE 62 CLUSTER DIVERSITY AND ENTROPY ON THE . .. 6007

0123 45 6 7 891011121314 15 16 012345678910111213 141516
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N(mt) = [0a571767_3757_3a_5a4737_8’ 3,1,3, 47_137_147'"] K(mf‘) = [0,1,0,0,0,2,0,2,3,5, 3,6,0, 7, 4, 7, 4]
FIG. 6. Due to the multiple labeling technique(my’) contains FIG. 8. K(m®) contains the new proper labef. The index

either the size of the cluster or a negative value pointing to theyhove each value represents the labgl.

proper label. The index above each value represents therghel

NN code sequence of each cluster. Figure 8 shows the values

of K(m{") assuming the example given from the previous
The multiple labeling technique relies on assigning differ-figures. For comparison of the codes that compose the LA’s,

ent labelsm{® to the cells of a cluster. While a negative index each NN code sequence is arranged according to its cluster

in N(m¢{") indicates a pointer to the proper cluster label, asize (see Fig. 9. The following sets represent the NN code

positive index determines the proper lab®] and the size of Séquences:

the cluster. Note that the labefs” are not stored on the

computer; they represent the position on afkyn;") where

the negative pointer or the cluster size is stofsee Fig. 6.

A. Fixed lattice animals

{C{,C5,...Ch}.

After applying the EHK algorithm the next step is to com- {cf.cs....chy,
pose the NN code sequences representing each cluster, so
that they can be systematically analyzed. Thus, an index in- {C],C%,....C]},

dicating the labelsn is coupled to eactN(m{). The set

containingN(my") is sorted; nevertheless the index’ still

preserves the correct link between the pseudo labgland

the proper labein? . wherea, B, and y represent different clusters a@}, is the
Once the sel(m¢) is sorted, the classification of clusters NN code of thenth cell.

with desired properties, such as clusters with a specific size, A Sécond scan on the lattice is necessary to extract the set

or the counting of cluster diversity can be done without dif-Of NN code sequences. As the array containing the informa-

ficulty. As our objective here is to determine the diversity oftion of the labels(Fig. 4) is scanned, an occupied site with

LA’s on a lattice, it is not necessary to keep the clusters ofabell is assigned to the cluster by the relationa=K(l).

size 1 and the clusters with a size that appears just oncé€t n(a) be the site number of cluster, attributed as they

since they will contribute a unit increase in the diversity @re scanned. The NN code sequences of a lattice animal are

measure(see Fig. 7. Consequently, aew propercluster ~ arranged by assigning the coli) to the positionn(«) of

label r* is defined and is related to the labets' by the ~Cpn. The NN code sequences are placed in descending order
following set: according to cluster size. Hence, it is a straightforward task
to compare the NN code sequences.
{K(m?),K(m3),....K(mg),....K(m{),...}. (2)
. . . B. Free lattice animals
To assign the relationship betwe&{m;) and the new _ I __I _ _
proper laber*, we follow the sorted set dfi(m¢). For the In the case of free LA identification one must take into
positive integergproper label that do not have size 1 or that &ccount the symmetry operations. The NN code sequence
appear more than once, $6{m®)=r¢, while for the nega- equwa[ent to each symmetry requires scanning the image
tive integersk (m®) =K (— N(mg)). Hence, the clusters are according to the rotation and reflection operations. Further-
t) t . i

relabeled according to a specific criterion. It is necessary ghore. the NN codes must be transformed into an equivalent

follow the positiveN(my’) first, since they represent a proper Code with respect to these operations.
label, so that the pseudo labels are correctly linked to the
new proper labet . If the previous sort is performed in such

a fashion that the rearrangement of its elements is in de-

L] ~[els][3]s]s]

scending numerical order, verifying the positive integers in 2 |—[2f4fcf1]8]
N(m{") before the negatives becomes an easy task. This will
also cause the clusters to be classified in descending order [3]—=~[2]6[o]s]

according to their size, which is ideal for comparison of the

0123456 7000 00 2 3 7 4
N N N N Y Y Y Y A [s]—=[4]3]s]
315814911132120 % g ;Elio 115 1$6
freerrr et
N(m) =[6,5,5,4, 4,3, 3, 3,1, 1,0,..,~3,~3,~5,-8,~13,~14 L6 ]—[2]2]s]
FIG. 7. After sortingN(m¢) in descending numerical order, the [7]—=12[4]9]

coupled indexm{® indicates the correct link between the pseudo

labels and the proper label. From the bottom up, the third row FIG. 9. The NN code sequence for each cluster according to the
indicates the new proper label after ignoring the clusters of size Tluster size. Note that clusters with size 1 and cluster sizes that
and the clusters whose size appears just once. appear just once are not present.
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TABLE Il. Changes of coordinate due to symmetry operators. 0O 00O0O0O0O0 07
The angles represent counterclockwise rotations. The row at 0° rep- 124842138
resents the original coordinate. For each angle, the first row repre- 248121384
sents the rotational operator and the second row a reflection opera- Z g ; g 615 g i g
tor. 5a 5 a5 abda
6 ¢c 933 9¢c6
0° north east south west A = |7edbT7bde
north west south east ls= 181248421
90° east south west north 936 ccb639
a 5a5ababd
east north west south bT7TedeT7hd
180° south west north east ¢c 9369 c63
south east north west db7edeThdb
270° west north east south ; ? ; ; ; ? ; ;
west south east north ~ » N _
0000 0000 0000 0000 0000 0000 0000 0000
0001 0010 0100 1000 0100 0010 0001 1000
. . . . . 0010 0100 1000 0001 0010 0001 1000 0100
The scanning sequence establishes the orientation in 0011 0110 1100 1001 0110 0011 1001 1100
which the lattice is observed. At first, a 0° orientation is 0100 1000 0001 0010 0001 1000 0100 0010
associated with scanning the lattice from left to right and top 0101 1010 o101 1010 0101 1010 0101 1010
to bottom, while the NN vector coordinatésorth, east, gﬂ‘l) ﬂgg i‘l’gi ?gﬁ g‘l’ﬁ ig‘l)i ﬂg‘l) ?ﬂg
south, gnd westare qetermlned for Qach cell of a cluster. = | 1000 0001 0010 0100 1000 0100 0010 00OL
Assuming that a LA is presented with a 90° counterclock- 1001 0011 0110 1100 1100 0110 0011 1001
wise rotation, to find an equivalent code in 0° one must scan 1010 0101 1010 0101 1010 0101 1010 0101
this rotated LA from bottom to top and left to right, and the 1011 0111 1110 1101 1110 0111 1011 1101
vector coordinate must be changed according to Table II. If 1100 1001 0011 0110 1001 1100 0110 00L1
e fix on a specific pixel and rotate the lattice, it is quite 1101 1011 0111 1110 1101 1110 0111 1011
we I P - PIXE] ' q 1110 1101 1011 0111 1011 1101 1110 0111
intuitive that a rotation will represent an exchange of coor- 1111 1111 1111 1111 1111 1111 1111 1111

dinates on the NN vectors. In the same way, reflection op-
erations represent an exchange between the elements northFIG. 10. Transformation matrix for the NN codes due to sym-
and south or between east and west. metry operations. The second matrix shows the equivalent binary
Consequently, for identification of free LA’s we rescan form. The transformation can be seen as a change in the coordinates
the label lattice(Fig. 4) in the directions equivalent to the of vectorV=(n,e,s,w) following the scheme in Table II.
symmetry operations and transform the NN codes accordinP ) _ _
to the transformation matrids (see Fig. 10 In matrix A n this casea_a_n_d,B represent c_Iusters of the same size, since
the rows! represent the labels in comparison to the 0° orienfrom the definition of a LA it is not necessary to compare
tation, while the columns represent the symmetry opera- clusters of different sizes.
tions. Hence, the second column represents a counterclock-
wise rotation of 90°, followed by 180° and 270° rotations IV. DIVERSITY AND ENTROPY
and the equivalent reflection operations. In practice when
comparing two LA’s,X and ), if ) is assumed to be a 90°
clockwise rotation ofY, one must apply an inverse operation
(counterclockwise rotationon the NN codes of), so that
they will correctly match.
Finally, the set containing the LA codes will also contain
the equivalent codes in the order sequence according to e
ery symmetry operation:

The macroscopic properties of a system are mostly deter-
mined by its microstructure. In percolation the microstruc-
ture, i.e., the clusters formed by this process, have been thor-
oughly studied and analyzdd]. In addition, macroscopic
properties associated with cluster size, such as diversity and

ntropy, have recently been investigaf&dl By applying the

A identification algorithm described in the last section, we
were able to enrich the analysis of cluster diversity and clus-
{C%(s),C4(3),....C%(s)}, ter entropy in the percolation model. _

In the percolation model a site or a bond is chosen at
random and occupied with a probability For the site-
percolation model, two occupied sites having one side in
common are called nearest-neighbor sites, and the group of
sites connected by nearest neighbors is defined as a cluster.
A patrticular and important phenomenon in this model occurs
when a cluster extends from one edge of the lattice to the
opposite edge. This cluster is called the spanning cluster,

In the above set of integers, represents the different since it percolates or spans the system. At this point the
symmetry operations. The identification of free LA’s follows system is said to pass through a geometrical phase transition
by comparing a sequence of NN codes where the order parameter is the probability that an occupied
{Cf(1),C5(1),...C(1)}, wheres=1 is equivalent to the site belongs to the spanning cluster. In this paper, we limit
0° orientation, with all the other sequencesour investigation to the site-percolation model on a two-
{Ck(s),CH(s),...,CP(s)}, which represent all symmetries. dimensional Euclidean lattice. Further study on bond perco-

{CB(s),Ch(s),....CE(s)},

{CI(s),CX(s),....CX(9)},
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lation and different lattice structures will be presented in fu- 10* . . . .
ture work.

Diversity is an important characteristic of nature and has
been used to describe the complexity of different systems
[4,5,7. Here, the term “complexity” has been associated
with the diversity in the length scales that the clusters can
assume in the model. Moreover, diversity can refer to differ-
ent properties of the system, such as the size or configuratiol
assumed by the clusters. Thus, “cluster diversity” is defined
as the differentiation of clusters with respect to their size or »1o? |
LA’s. The mathematical definitions of the cluster size and
fixed and free LA diversity are given by

D«(p)=3 OIN(sP)] @ ol _
Dfx<p>=§ O[N(fx,p)], (4)
10° : - - -
0.0 0.2 0.4 0.6 0.8 1.0
D (p)=2>, O[N(fr,p)], (5) Probability

fr
FIG. 11. Cluster size diversity versus the probability of occupa-

wherep is the probability of occupying a site, al(x) is  tion p- The curves represet=60 (A), 100 (+), 300 (V), 600

the Heaviside function defined a@®(x)=1 if x>0 and (*). 1000(0), 2000(x), 3000(¢), 4000(C1), and 800X(<J).

®(x)=0 otherwise. AlsoN(s,p) represents the number of . ] o

clusters of sizes and N(fx,p) andN(fr,p) the number of —Occupationp. Furt_hermor.e, thl_s measurement is |r.1t'r|n5|cally

clusters with fixed and free LA configuration, respectively. 'elated to the notion of diversity, since the probability that an
Entropy is a fundamental concept in physics. It is related®ccupied site belongs to a certain cluster depends on the

to the information content and order/disorder of a system. If@Ppearance of distinct clusters.

the present paper, we consider “cluster entropy,” which is

defined using the probability that an occupied site belongs to V. NUMERICAL SIMULATIONS

a cluster of sizes or is part of a specific free or fixed LA.

This definition can be associated with the information en- We performed Monte Carlo simulations on square lattices

tropy and the configurational or local porosity entropy de-With sizesL =60, 100, 300, 600, 1000, and 2000, and aver-

fined in[23]. However, these entropies are based on the inages taken on 6000, 5000, 2000, 500, 300, and 200 experi-

formation content of a slidingnxm square region, thus Mments, respectively. The lattices were randomly occupied

being basically a local or short-range measurement. CorWith probabilitiesp ranging from 0.05 to 0.95 with steps of

versely, our definition of entropy depends on the structure 0f.01 betweerp=0.25 and 0.30 ang=0.40 and 0.65, and

the clusters, which are not limited to a local region and aresteps of 0.05 in the other regions. In the case of free LA's the

capable of spanning the whole lattice. The mathematicasimulations were performed until=1000. However, for the

definitions of cluster entropy are given by cluster size case we extended the simulations upLto

=3000, 4000, and 8000, with averages over 100, 50, and 20

_ experiments, respectively. The variableg, D¢,, and D¢,
Hs(p)= _z Ws(p)Inws(p), (6 \ere measured as functions of battand p.
A. Simulation result
Hix(P) == 3 Wii(p)InWes(p), () mieion restts

Figure 11 shows the behavior of cluster size diversity as a
function of the probability of occupation for different values
_ of L. A tuning effect of the cluster size diversity by the
Hi(p)= ; Wir(p)In W (p), ® parameters andp can be observed. Figures 12 and 13 show
the fixed and free LA diversity, as a function of the probabil-
wherep is the probability of occupation of the lattice, and ity of occupation. These two plots are similar to each other
wg(p) represents the probability that an arbitrary occupiedand follow a bell shaped curve centered at the probability of
site belongs to a cluster containisgites. Similarlyw;,(p) maximum LA diversity. In addition, Fig. 14 shows the be-
andws,(p) represent the probabilities that an arbitrary occu-havior of the cluster size entropy. One can see that as the
pied site belongs to a fixed and a free LA configuration,probability of occupation increases the entropy increases up
respectively. Cluster entropy is related to the possible lengtho the percolation threshold, where the dominance of the
scale or shape configuration that the clusters can assume $panning cluster causes a sharp decrease in the entropy of the
the system. Thus, its physical significance can be analyzesystem. Figures 15 and 16 shdéiy, andH;, as functions of
by observing its behavior with respect to the probability ofp. Even though these entropies have a slightly different
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FIG. 12. A log-linear plot oDy, as a function op. The curves

represent_ =60 (A), 100 (+), 300'V), 600 (x), 1000 (O), and FIG. 14. H versus the probability of occupatiqgn The curves
2000 (%) ' ' ’ ' ’ represent the same lattice sizes as in Fig. 11.

) ) versity these curves are smoother. Analyzing the skewness of
shape in comparison to the curves, they also present a these curves, we find th@t((p) presents a leptokurtic dis-
sharp drop at the point where a single cluster dominates thgjpytion, in contrast withD(p) and D¢, (p), which have
lattice. mesokurtic distributions. This distinction is caused by the

In respect to both cluster diversity and cluster entropy theasnormous increase in configurational possibilities of LA’s
behavior of fixed and free LA’s is similar. In these simula- with increasing cluster size. The characteristics of the diver-
tions this is to be expected, since the difference between thegity curves are reflected in the entropy functions, since by
definitions is just in the symmetry aspect of the cluster condefinition cluster diversity and cluster entropy are intrinsi-
figurations. Conversely, the behavior of these measurementally related, as mentioned in the last section.
when comparing the cluster size with LA diversity is quali-
tatively different. The cluster size diversity curves present a B. Computational complexity
peak at the maximum of the functionS, while in the LA di- Using a Pentium 133 Computer running thruX Operat_

ing system, we measured the average computer central pro-

5
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a 3
-
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10' 1
2t §
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0.0 0.2 0.4 0.6 0.8 1.0 e
. 0
Probability 0.0 0.2 0.4 0.6 0.8 1.0
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FIG. 13. Similar to Fig. 12, this figure shovidx, versusp. The

curves represent=60<(A), 100 (+), 300 (V), 600 (X), and FIG. 15. H¢, versusp. The simulations were done using the
1000(O). same lattice sizes as in Fig. 12.
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FIG. 17. Plot of the computer CPU time as a function of number
of lattice sites. The inset shows the CPU time versus the probability
of occupation forL=1000. The curves represent the EHK algo-

. . . . . rithm (O) and the fixed((d) and free(A) LA identification algo-
cessing unit(CPU) time for several experiments. The time fithm Eor)dif'ferent exp:r(im)ents (A) g

and space complexity of this algorithm depend on its imple-
mentation. The implementation of the EHK algorithm fol- The algorithm requires a larger amount of memory space in
lows Ref.[9], where it is thoroughly analyzed. For creation comparison to the EHK algorithm, since the sets of NN code
and comparison of the tables containing the NN code serepresenting the LA's need to be stored. The computational
quence of the LA’s, we dynamically allocate a vector of complexity for the identification of free LA's in both time

pointers withv elements, where is equal to the number of and space is higher than for fixed LA’s due to the symmetry
clusters, excluding the clusters of size 1 and the clusters witBperations. However, considering the proposed task the al-
size that appears just once. Each of these pointers indicategarithm is quite efficient and yields useful measurements,

vector of integers, and these have the sizes of the LA’s, agspecially when the morphology of the system studied is of
shown in Fig. 9. The elements of these vectors are filled withconcern.
the NN codes, as described in Sec. Ill, and they can easily be
accessed by array reference. As a result, the memory space VI. CRITICAL PROBABILITY
required is proportional to the number and size of LA’s to be
distinguished. Once this data structure is created the algo- In the model studied both cluster diversity and cluster
rithm compares the element of th position of a NN code entropy present a define maximum. In order to estimate the
sequence with another LA’s sequence of the same size. If Brobabilities at which these maxima occur at the thermody-
lexicographic sort is applied to the NN code sequences ofiamic limit, L—<, finite size effects have to be taken into
LA’s with the same size, a more efficient comparison algo-consideration. In Refl7], it was found thatp(Dsma has
rithm is achieved, since fewer steps will be needed to comstatistically the same value as the percolation threspeld
pare all the sequences. Alternatively, hashing techniques cadfrom percolation theory we have that-|p—p.| =", where
be used and may improve both the space and time complex= 3 for two-dimensional site percolation. Now, lgfL) be
ity of the algorithm. the transition probability or in this case the probability where
Figure 17 shows the CPU time as a function of the numthe maxima of the functions occur, for a system of linear size
ber of sites for the square lattice pt=0.40. The computa- L. One can estimatp, from the scaling relatiomp(L) — p.
tional time complexity for this algorithm is not linear as in ~L Y. Thus, fits ofp(L) againstL %" produce straight
the case of the EHK algorithm. The inset in this figure showdines where the intercept at the axis give us reasonable
the behavior of the CPU time as a function of the probabilityestimates of the valup. (see Figs. 18 and 19
of occupation forL=1000. Clearly, there is a maximum In the case of the cluster size diversity and cluster size
computational time complexity, gi=0.40, which means a entropy, the present simulations yieldp.(Dgmay
critical slowing down associated with the probability of =p(Hsma)=0.58+0.02, which is a value closer to the per-
maximum LA diversity. This maximum was found to be at colation threshold§.=0.592 746) than the value previously
p~0.45 for L—o (see the next sectionThe difference reported in7]. The probabilities associated wib, . and
from p=0.40, obtained in Fig. 17, is due to the finite size of D¢, 2, @t the thermodynamic limit are 0.45.02 and 0.46
the lattice used in this simulation. The slowing down of the*0.02, respectively. For cluster entrom(H ¢y mad=0.49
algorithm happens because as the LA diversity increases the0.02 andp(H¢, may =0.50=0.02. It is important to note
number of comparisons for different LA’s also increases.that these probabilities are below the percolation threshold.

FIG. 16.H¢, as a function o, using similar. as forDy, in Fig.
13.
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distribution of clusters, such as fragmentation, aggregation,
and percolation models. It captures the notion of having low
values in both the ordered and disordered states, while pre-
senting a maximum value in between. Moreover, it is related
to the information content of the system, as derived by in-
formation theory. The system studied attains a maximum in-
formation content at a specific point between a low probabil-
ity of occupation, where small scattered clusters are present
(disordey, and a highp where a single cluster dominates the
system(ordep. For the cluster size entropy we found that
this maximum occurs at the same point as the percolation
transition. For a complexity measurement such a fact is very
important, since for this model it describes the point of phase
transition as the most complex state. Other researchers have
also pointed to this fact; however, they arrived at this con-
clusion through a different type of measurement. The mea-
surement proposed was based on a phase space approach,
derived from a scale dependent entropy or information con-
tent. As a result, a coarse-graining procedure measuring the
entropy of various scales was obtair(@at further details see
Ref. [24]).

VIl. DISCUSSION

Single measurements such as the radius of gyration or
spatial moments are not sufficient to completely characterize
different cluster shapes. Therefore, we introduce a method to
code and differentiate the fixed and free LA’s. It relies on

However, the finite size scaling correction was done in rela£0ding €ach unit cell of a cluster using NN codes in a proper

tion to the percolation scaling, i.d.,” Y. The use of the fit

order sequence. Consequently, the memory requirement of

L~ does not significantly change the estimates of thesdhis algorithm depends on the number of clusters present in

probabilities atL —oo.

Cluster entropy appears to be a better candidate for a po
sible complexity measurement for processes that present;‘é)ﬂm

0.600 T T T T T

(@)

3 O
c 0575 1
T O
o
0550 1 1 1 1 1
0.000 0.001 0.002 0.003 0.004 0.005 0.008
0.55 T T T T
{b)
_. 050 F O 4
F
€
IE
g 0.45 1
0.40 ' ' ' '
0.000 0.010 0.020 0.030 0.040 0.050

T max)
I
3
/

z
o 045

0.40 . 1 L 1 L 1 L 1

0.000 0.010 0.020 . 0.030 0.040 0.050
L

FIG. 19. Same as Fig. 18, but for cluster entro@y.p:(Hs ma»
(b) P(Hiy maw, @and(©) p(H¢; may) @s functions ol ~ 7,

the system, which imposes a restriction on the algorithm for
yery large lattice sizes. However, as computer memory be-
es more available this does not constitute a serious limi-
on.

Another possible way to define LA’s is through the exter-
nal perimeter of the clusters. In the percolation problem,
LA’s appear in connection with an exact solution for the
cluster number, which is given by

ns=2 gsP%(1—p)}, 9)

wheregg; denotes the number of cluster configurations with
size s and perimetett [1]. Fixed LA’s are defined by,
which encompasses the entire possible cluster configuration,
irrespective of their perimeters. The definition of free LA’s
also does not take into account the cluster perimeter. Conse-
quently, an alternative way to differentiate clusters iy,

such that the external perimeter becomes a parameter to dis-
tinguish the clusters. In the present simulations, the diversity
of gst, Dy, would give a different value if compared to

fixed and free LA diversity. However, we do not address this
measurement. Even though the EHK algorithm calculates the
internal perimeter, further modification in the algorithm
would be necessary to address eheernalperimeter. In ad-
dition, it is interesting to note that, due to the different defi-
nition of diversity, the following relation will hold:Dy,
=Dy=Dgy =Ds.

Despite its complexity, the proposed algorithm enhances
the analysis of cluster morphologies and can be used in sta-
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represented by a vectdt=(n,e,s,w), which is transformed
into codeC=F(n,e,s,w) by the function
V=(4213) L2+ L
C=a« 5 +8, (10
Vv where
n(n—1)
a=nL+s— — (12)
; - e(e—1
FIG. 20. Neighborhood vectdr (n,e,s,\_/v). Each elemer_lt of_ B=eL+W— ( ) , (12)
the vector represents the numbers of neighbors in the directions 2

north, east, south, and west.
and the image is assumed to have a sizeCafL. These

tistical physics as a fine-grained way of characterizing clusequations take into consideration the fact that the greatest
ters. Thus, it can be applied whenever the analysis of clusterglue thain, e, s or w can assume i€ — 1, and the boundary

is appropriate, such as in the percolation, fragmentation, anconditions

branched polymer problems. Extension of the algorithm to

higher dimensions or different lattice types, such as triangu- n+s<z, (13

lar or hexagonal lattices, is possible. Furthermore, another

possible variation of the algorithm is to identify part of a etw<L. (14
cluster by matching part of the NN code sequence of th
clusters. As a result, degrees of similarity between cluste
can be assigned.

€rhe possible number of codes can be enormous; thus by
rﬁsing a logarithmic quantization the codes are merged or
. . ' reduced to a smaller set. The probability distribution of the
The HK algorlthm_ has "’?ISO been applled in the f_|elds Ofreduced set of codes is then used as a characteristic feature of
technology and applied science as pointed ouSin Like- o opiact we successfully applied this algorithm for the

wi;e, by extgnding .the concept .Of coding a cluster cellangyritten character recognition problem; for further de-
(pixel) according to its nearest neighbors the present alg fails of this procedure see Re25]. This shows that the

rithm can be used in the fields of image processing and Patyeas of the proposed code scheme have a broad range of
tern recognition. In this case, the pixels are coded accordingpplications.

to the numbers of neighbors in the four directiédnsighbor-
hood codé In other words, if a pixel is in the inner part of
the image, the number of neighbors in one of the directions

is the number of pixels separating the aforementioned pixel This work was supported by CAPES8razilian Govern-
from the border of the imagésee Fig. 2D Each pixel is ment Agency.
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