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We determined th@perationaltemperatures of nonequilibrium-molecular-dynamisf&MD) systems by
the recently developed thermomeér Baranyai, Phys. Rev. BE1, R3306(2000] and compared these values
to the dynamictemperature$H. H. Rough, Phys. Rev. Let#8, 772 (1997] of the same systems. NEMD
models use &ynthetic thermostata numerical feedback procedure to remove the dissipative heat instanta-
neously. A consequence of this feedback is a splitting of the dynamic temperature. The kinetic part is different
from the configurational part because the energy is removed through the momentum subspace of the system. In
addition to this, these temperature values also vary with respect to the direction of the external perturbation. In
the case of planar Couette flow and color flow, the isotropic operational temperatures of dense liquids are
always closer to the configurational than to the kinetic temperatures. We show that the observed split and the
pronounced directional dependence of the dynamic temperature is an artifact caused by the instantaneous
feedback of NEMD models. Since relaxation of a preset difference between the kinetic and the configurational
temperature is an order of magnitude faster than the relaxation of the heat flux vector, for models with realistic
thermostas such a split must be very small. We argue that in real systems, even far from equilibrium, the
operational temperature and both terms of the dynamic temperature must be practically identical and isotropic.

PACS numbds): 05.70.Ln

I. INTRODUCTION a functional of microscopic states. Its derivation utilizes the

thermodynamic relationshif.= (dU/dS)y y, by expressing

The thermodynamics of nonequilibrium states has alway -
been a matter of debate. In the case of steady-state hydrodﬁq(e entropy as the logarithm of the volume of the phase space
1
ik (1)

namic systems atomistic computer simulation may be the
way to answer at least some of the open questions. These 1 <V-VH>
+0
N

type of studies, initiated and developed by Hoover, Evans, KT W
and co-worker$1,2], in addition to mimicking the behavior

of real liquids, established connections between realistiGihereH is the classical Hamiltonian of the system and the
models and the theory of nonlinear systek However, to  gradient operator is taken over the full phase space. The

formulate a theory of thermodynamic character proves to bengular brackets denote a microcanonical average. Express-

difficult even for these models. While dynamiC properties Ofing Eq(l) ina Computationa”y more exp|icit for|ﬁ’neg|ect_
the system are well-understood, thermodynamic variablefg the o(1/N) term], we obtain[8]

such as temperature and entropy are still matters of contro-
versy with questions even about their existence or usefulness dN dN NN
for systems far from equilibriurf4]. <—+VECD> —— < 2> >
The purpose of the present paper is to contribute some i_ m
numerical data as “experimental evidence” to the under- kT_< N piZ > _< N |2> < N > ’
+

i=1j>i

standing of nonequilibrium-steady-stattlESS systems. 2 —+ |V, |2 2 —
The paper is focused on various concepts of temperature dis- i=1m i=1Mm
cussed in connection with nonequilibrium-molecular-
dynamics(NEMD) simulations. The opportunity is provided ) ) )
by two recent developments. Thiynamicconcept of the wherek is Boltzrr_lann's constant is _the qnlform mass of
temperature of Rugf5] is based on the classical statistical €ach of theN particles d is the dimensionality of the system,
mechanics of equilibrium systems and is readily obtained?(r1.r2,---.ry) is the potential energyp; and F; are the
from computer simulations. The other is tlperational ~Momentum of and the Newtonian force on particleand
thermometer of the present autti6l. So far only the kinetic ~ Xij= V- Fij . Averages both in the numerator and the de-
(or equipartition temperature was considered #e tem-  nominator contain kinetic and configurational contributions.
perature, although it became obvious a decade ago that tfée ratio of only the first terms gives the well-known kinetic
concept of temperature in NEMD models appears to be morand the ratio of only the second terms gives toafigura-
complicated than thdf7]. tional temperature. In closed equilibrium systems these two
The concept of thelynamictemperature is based on the temperatures are equal.
classical statistical mechanics of equilibrium systems, so itis It is important to note that both the kinetic and the con-
straightforward to calculate that in atomistic computer simu-figurational temperatures have the correct dimensionality,
lations. The dynamic temperature is a phase variable and nbut the dimensionality of the first and the second terms in the
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complete expression is not the saf®d. If one eliminates hesive forces of the solid are strong enough, small particles
this inconsistency by using dimensionless quantities, th@f the thermometer crystal stay together as an almost equi-
choice of a set of reduction parameters will influence thdibrium entity. The forces of the surroundings translate and
relative weights of kinetic and configurational contributions. rotate the thermometer as a whole and exchange heat with its
This is not a problem at equilibrium: we can define the tworandom degrees of freedom. While the energy of the NEMD
terms separately as the kinetic and the configurational ten8ystem is controlled by a numerical feedback mechanism to
peratures of the system. maintain a steady state, the temperature of the thermometer
However, using this temperature concept in our special® frée to choose its own value. After some initial period, the
numerical experiments, we have to address the question beat transferred from the d|SS|pet|ve fluid to the thermometer
the correct reduction scheme, i.e., the unique partition of’md back is equal_ and the_ resulting ra_ndom Kinetic energy of
kinetic and configuration temperatures. In a recent pape hermometer particles defines tbperationaltemperature of

Ayton et al. [9] studied the validity of Fourier's law in sys- the dissipative systerf6].

tems with spatially varying strain rates. They constrained th?elgt?:rzzh?gebse?v\\/geﬂ ?#:S;g);rsettigng? :ij‘t'ﬁ;egyxgrrﬁé Itse::e
two components, the kinetic and the configurational tempera- . . )
P g b Ierature in thermostated NEMD models? What is the rela-

ture, separately. Their results seemed to resolve a particul . . S
lonship between these two temperatures in more realistic

contradiction[10] if instead of the kinetic temperature the o . BT
whole dynamic(they termed it as “normaly temperature _nonequmbnum model calculations where the dissipative heat
was used9] is conducted toward the boundaries by the system itself? The
Gradients of both temperature terms can generate a hegynamu; temperature is an equilibrium concept, but can it be
eneralized to nonequilibrium systems? In the following we

current. If the configurational and the kinetic temperature o find o th " Obviouslv. b ;

differ, it might be important to know their contribution to the ryl o fin _ansv;/ers 0 these qL.JC?S lons. Lbvious y,fybne[me:l-

flow of energy. While there is no configurational contribu- cal experments we can provide no rigorous proots but only
numerical data. Nevertheless, the presented evidence shows

tion in infinite dilution, at finite density the configurational h t pict f the t ture for steadv-stat
part becomes substantial. Adopting the usual reduction unit% more coheérent picture of the temperature for steady-state

of liquid state computer simulations, this part represents 95_ydrodynam|c systems far from eqwhpnum than we haq SO
99% of the total dynamic temperature for simplennard- far. In Sec. Il, we compare the dynaml_c and the operational
Jones-typk dense liquids[11]. We are not aware of any temperat_ure for NEMD models following the approach of
purely theoretical argument for a correct reduction scheme. Rurllptr_ewouz SItUd%[G]' In S.?.E‘.”" we ;:()jresent results forl
is not easy to provide a convincing numerical demonstratio ealistic models of nonequilibrium-steady-state systems. In

either, because of the fast equilibration of the two compo-d ec. IV.’ vtve d|scutss th_e tf:augte)s clftt::e prontoungﬁjET\ﬁ)gt of tge
nents of the dynamic temperatuigee Sec. IV for more de- ynamic temperature in feedback-thermostate mod-

tails). In the following, we provide our reduction scheme andels' Finally, in Sec. V, we conclude this study.
present the kinetic and the configurational temperatures sepa-
rately. 1. DYNAMIC TEMPERATURE AND OPERATIONAL
Evans and co-workers have shown that arbitrary phase- TEMPERATURE IN NEMD MODELS
space vector fields can be used to generate phase functions , i
whose ensemble average gives the dynamic temper@lire e use the same system as in our previous pa@kr
They also discussed numerical properties of the configurad€tails not presented in the following can be found there. We
tional temperature in molecular-dynamics simulatifd2]. choose the SLLODOso called because of its connection to

Recently, we showed that the dynamic temperature can bgoll's tensor algorithm of Hoovefil]) and the color conduc-
estimated in open regions too, because it follows from thdiVity algorithms as NEMD model§2]. The former method

condition of the time-independent temperat[t8]. (apart from the synthetic thermostas an exact realization
Since derivations of the dynamic temperat(eg] rely ~ ©f planar Couette flow. It is valid well beyond the linear

on the formalism of equilibrium statistical mechanics, it is '€9ime, as long as the linear velocity profile is stable. Its

reasonable to have reservations about the applicability of thi§duations of motion are as follows:

quantity to systems far from equilibrium. Clearly, to use this

quantity for nonequilibrium problems is an extension based

. I
on analogy. One of the aims of this study is to supgort Qi:ﬁ”LexWi ’
oppose the use of the dynamical temperature away from 3)
equilibrium. The analogy must not be rejected out of hand ;
because the relationship introduced in R&B] connects the Pi=Fi—ewpyi—ap;,

two parts of the dynamic temperature without making any

reference to the equilibrium state of the system. If only New-whereeg, is a unit vector. The constant shear rate is defined

ton’s laws govern the motion of particles and there is noasy=du,/dy and« is the thermostating multiplier given by

correlation between velocities and configuration-dependerthe NoseHoover integral feedback formu[d]. Equation(3)

quantities for finite regions of the system, the kinetic anddescribes the motion of the fluid particles. In the case of the

configurational temperatures are eq{iBB]. The results of particles of the thermometer, there is no thermostat, i.e., the

Ayton et al.[9] are also encouraging in this respect. last term of the momentum equation of E§) is missing. A
The operational thermometer is a numerical measuring further difference is that the streaming teritee second

device, a piece of a solid crystal which has the shape and sizerms on the right-hand side of E(B)] act on the particles

of an ordinary particle in the dissipative flui@]. If the co-  via the motion of the crystal’s center of md$s.
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TABLE |. Results for shear flow. Ty, is the kinetic temperature of directiag T, is the configura-
tional temperature of directios; To(ms=0.2) is the operational temperature with thermometer particle mass
of 0.2 Asterisks refer to the thermometer size of 321 particles.

Shear rate 0.1 0.2 0.3 0.4 0.5
Trx 1.0133) 1.0325) 1.0465) 1.0244) 0.92710)
Tky 0.99712) 1.0083) 1.0323) 1.0983) 1.21910
Tkz 0.9823) 0.9544) 0.9184) 0.8733) 0.8488)
Tex 1.0115) 1.0543) 1.1034) 1.1454) 1.1895)
Tey 1.0054) 1.0553) 1.1424) 1.2965) 1.5668)
Te, 0.9834) 0.9705) 0.9644) 0.971(5) 1.0176)
To(mg=0.2) 1.022) 1.104) 1.164) 1.335) 1.455)
To(mg=1.0) 1.012) 1.064) 1.144) 1.235) 1.4Q77)
To(mg=0.2)* 1.01(2) 1.11(4) 1.235) 1.276) 1.507)
To(mg=1.0)* 1.01(2) 1.064) 1.194) 1.256) 1.427)

The color flow algorithm is similar to the model of a 1-1 definition, the operational temperature is isotropic. In the
molten salt under the impact of a constant electric field. Themiddle of the crystal, the kinetic temperature is higher by

equations of motion arg?] 0.1-0.4% than its value for the entire crystal. The same
behavior can be observed in the case of the configurational
a _Pi temperature of the crystal, which, in most cases, is higher by

m L

0.5-1.0% than its kinetic counterpart. Both the kinetic and
, (4)  the configurational temperatures of the dissipative fluid are
Pi=Fi+eGF—a(pi—ecd), anisotropic and can be calculated by an order of magnitude
more accurately than the operational temperature. This is
field and the color current arE and J=1N=N c%;, re- reasor_lable _bgcause the temperature of the thermometer is set
spectively. only via collisions, while, at every instant, the complete dy-

Both models represent anisotropic systems. Even their kif@mics of the whole fluid determines its kinetic or configu-
netic temperatures show strong directional dependencéational temperatures. The relaxatlon.tlme of the operatlopal
T, = 1/[(N_C/3)k]2iN:1(pi2x/mi) is different from the the:'rmometer in the studied systems is several hundredl time
analogously definedy, or Ty,. (The number of constraints units, depending on the mass of the thermometer particles,
in the system i<C.) Typically the smallest of them i§,,  the strength of the external fl_eld_, etc. The operatloqal tem-
which is the direction perpendicular to the shear plane. In th@€ratures are even less certain in the case of the high shear
case of color conductivity, the anisotropy is less pronouncedate simulations0.4 and 0.% These systems are more or
The largest valueT,, belongs to the direction of the flow. I€ss in the “string” phase, which can maintain particular
(Note that in the latter case, tikenomentum, reduced by its dynamics for long periods of the simulation depending on
systematic part, is used for temperature determination. the history of their preparation.

The configurational temperature can also be defined for The anisotropy of the kinetic temperature becomes more
different directions. This quantity along thedirection can  pronounced with increasing shear rafehe sum of the com-

wherec;=(—1)' is the color charge of particle The color

be written in a computationally explicit form, ponents is constrained for 3.0The z component of the ki-
NN netic temperature shows a monotonic decrease with the shear
rate. For small shear rates, thecomponent is smaller than
1 <2§1 = Xu> the x component. However, for very high shear rates, when

T N , (50  the dynamics becomes “stringlike,” thecomponent is the

Cx < 2 2 > largest one. The configurational temperature follows this

general trend but the calculated values are always larger than

the corresponding kinetic ones. The differences are substan-
where Xj;=dF;; /[d(x;—x;)]. The particular task of the tial, well beyond the uncertainties of the calculations. Inter-
following calculation is to estimate thE. components for a estingly, the configurationglcomponent, with the exception
fixed kinetic temperaturelx = (Tyx+ Tky+ Tk,)/3.0, and to  of the smallest shear rate, is larger than the corresponding
measure the isotropic operational temperatiigg, simulta-  component.
neously. We tested two masses for thermometer parti¢e® and

We studied the same systems as in our previous féper 1.0) and two sizes for thermomete(®35 and 321 particlgs
in order to provide an opportunity for the reader to look atinternal properties of the thermometer crystal exerted only a
other properties of the models. Every numerical details of theaegligible influence on the properties of the fluid. Thus, fluid
calculations was the sam@teractions, units, run lengths, temperatures with different thermometers are not shown
etc). Here, only the temperature values determined by theeparately. Despite the uncertainties, as we pointed out in our
three different methods are shown. previous papef6], the operational temperatures are signifi-

The shear-flow results are presented in Table I. Due to itgantly larger than the corresponding kinetic temperatures of
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TABLE Il. Results for color flow. For the definition of sym-

bols, see Table I. T
Color field 0.0 0.5 1.0
Ty 1.00G2) 1.0232) 1.1805)
Tky 1.0002) 0.9892) 0.9236) heat _
Tex 1.0002) 0.9943) 0.9408)
Tey 1.0002) 0.9884) 0.9126) o~
To(ms=0.2) 1.0G2) 0.992) 0.9473) <
To(ms=1.0) 1.0a2) 0.993) 0.923) g
To(me=0.2)* 1.002) 0.992) 0.933) =
To(mg=1.0)* 1.002) 0.992) 0.943) 3 <
the fluid. They component of the configurational tempera-
ture of the dissipative fluid seems to be the closest one to the
corresponding operational temperature.
We present temperature values of color conductivity cal-
culations in Table Il. In contrast to shear flow, the configu- "
rational temperature is smaller than the corresponding kinetic =
one. Both the kinetic and the configurational temperatures v

are higher in the direction of the flogparallel to thex axis)
than in perpendicular directions. The operational temperature
is very close to the configurational temperature, it is only the FIG. 1. A two-dimensional projection of the scheme represent-
x component of the kinetic energy that is substantially dif-ing the simulation cell of heat-flow calculatiofSee text for de-
ferent from the other temperatures. tails.)

It would be interesting to establish a unique connection

between the dynamic and the operational temperature. Obvjai, 4 region where properties, including the ones determin-

gutsly, Itis tr:ﬁ thile d)ﬂ?‘m||c::,tof tze d|SS|patt|r:/e fluid which i the operational temperature, are different. Fixing the
etermines the value of the Iatler. However, there are SeVergh, . q position of the thermometer and a given region of

uncertainties that are difficult, or even impossible, to clarify,[he inhomogeneous liquid by some numerical constraint will

in such a calculation. The operational temperature is not a. :
perfectly universal quantity because the energy of the crysta istort the results. Thus, for inhomogeneous NESS models,

(kinetic and configuration-dependeris a function of the we compared only the kinetic and configurational tempera-
thermal conductivity of the thermometer-fluid boundary. Tolures.

maintain homogeneity, the thermometer must behave like WO types of model systems were used. Both can be con-
one of the fluid particles, so properties of the boundary reSidered as_reahst!c models, in the sense.that no synthetic
gion of the thermometefincluding thermal conductivity thermostat is applied. As a result, these fluids are inhomoge-
might be slightly different for different particle interactions. neous. The first model applies the heat conductivity algo-
Nevertheless, we doubt that discrepancies originating fronfithm of the present authdil4]. This method is a modern
this, at least for simple models used in these calculations, cargrsion of early “naive” attempt$15] before the synthetic

be large enough to be detectable. From the point of view oflgorithm of Evans was derivdd6]. Since we simplified the
numerical accuracy, ensuring the ergodic sampling of colli-0riginal algorithm of Ref[14], it is useful to give a short
sions is more important. To obtain reliable estimates for opdescription of the method.

erational temperature values, much longer calculations In Fig. 1, we show a two-dimensional schematic projec-
would be necessary. Still, this could not establish a uniquéion of our simulation box. The system has translational pe-
connection between the two concepts of the temperaturdiodicity in every direction. The hot and cold regions which
Contributions to the dissipative energy flux from the kineticare represented by white squares are under the impact of
and the configurational temperatures must be partitioned ursynthetic thermostats. In the dark areas, only Newton’s equa-

ambiguously. As we alluded to this problem in the Introduc-tions govern the motion of particles. The fluid system is con-
tion, this is not a trivial task. tinuous: particles can wander in and out of each part of the

elongated simulation box. We do not interfere with this mo-
Ill. DYNAMIC TEMPERATURE IN NESS MODEL tion because the positiqns of particles de'germine whether
SYSTEMS WITHOUT A SYNTHETIC THERMOSTAT they belong to a reservoir or to the Newtonighermostat-
free) region. To avoid discontinuity at reservoir boundaries,
It is obvious that measuring the operational temperatureve apply a continuous spatial switch-on function to mark the
of inhomogeneousionequilibrium systems is problematic, thermostat particles. In the present simulation, the form of
even in a steady state. It takes some time for the crystal anithis function is f(y')=y’'*—2y’2+1, where y'=2(yll,
the liquid to come to thermal balanc€éhe relaxation time  —0.5) ory’'=2[(y—L,/2)/l,—0.5] andL, andl, are, re-
of the thermometer is about 291 time steps.During this  spectively, the box length and the length of the reservoir
time, however, the thermometer crystal might diffuse awayregion in they direction. The equations of motion are
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qi =D /m, poe Y [
. (6) 003 11y 30. *”’Liﬁ!.’ ""’!'0'040.’ ‘,.“
pi=Fi—fg(yi)agpi, O 7 )
where the subscripB=1,2 distinguishes between hot and _ || B B
cold parts of the system. The two functions have identical:ﬁ
shapes but the first is different from zero only in the hot F cots
reservoir, while the second is different from zero only in the
cold reservoir. Thex component of the kinetic temperature
of the reservoir is defined as follows: 0.005
N 0 T T -
0 4 8 12 16
;I_ fﬁ(y|)p|2x section number * # ® ”
="~ (7)

FIG. 2. Difference between the kineti€(k), and the configu-

kmE fB(yi) rational, T(c), temperatures as determined for different sections of
=1 the equilibrium fluid. The vertical bars mark the thermostated re-

gions. The system is periodi@Number of particles is 864, number

The time derivative ofTz=(Tys+Tys+T,6)/3.0 is CON- Gangity is 0.8, kinetic temperature is 1.0, both in reduced dnits.

strained to zero during the simulation. This differential feed-

back and the total momentum of reservoir regions are COrgf the system with a time step of 0.002. The equations of

rected by a continuous feedback during the course Of,qiion were integrated by a fifth-order Gear integrator for a
simulationg17]. In steady state, the energy input and outputy,iq density 0.8. The average temperature was 1.0.

are identical and can be given as The numerical results of Evans and co-workers showed a

N2 non-negligible system-size dependence of the configurational
N o i temperature for closed systerf,12]. This might be even
= —f5(yi). 8
oL a/'gizl m s ® more important for small open regions of the systglfi].

The configurational temperature might be systematically dif-
The heat conductivity can be calculated using the constituferent from the corresponding local average of the kinetic
tive relation of Jy=—AdT/dy, where dT/dy=(T,, temperature. In the case of heat flow, to study this behavior,
—Teo/Ly and Jy:Qin/ZLXLZ, Due to the requirement of we performed simulations for different system sizes. Align-
translational periodicity, the reservoirs are connected by twdng eight identical cubes along the axis, we had 864(8
Newtonian regimes(See Fig. 1. This is the reason for the X108), 2048(8<256), and 4000(&500) particles. The
factor of 2 in the denominator of the heat flux. In the limit of simulated fluid was divided up into 32 sections along yhe
the infinitely thin reservoir I,—0), the dynamics of our direction.(See Fig. 1. Each sectiorfor slice of fluid repre-
system is determined entirely by Newton’s equation of mo-sented a local environment within which the averages were
tion. In this limit, zero-field heat conductivity calculated by collected. We also performed equilibrium simulations for
the formulas above gives values identical with those of theeach system size, which served as references to show the
synthetic method of Evar{d1]. difference between local kinetic and local configurational

Adopting the same approach we devised a model fotemperatures at equilibrium.

shear flow. The reservoir regions were given an additional In Fig. 2, we show this difference in an equilibrium sys-
role, an external field acted and accelerated the particles. THiém consisting of 864 particles. The temperature of the sys-
form of the spatial switch-on function was identical with that tem was fixed to 1.0 by using the feedback thermostat of Eq.
of the heat-flow algorithm above. A similar method was used6). In sections 1-4 and 17-20, where the thermostat acted
in one of our earlier work§18]. The momentum equation of by adding or removing random kinetic energy, the difference
motion is between the kinetic and the configurational temperature is

slightly smaller than in the rest of the fluid. The average

pi=Fi—fgyi)(eFgtagp), (90  difference in the thermostat-free regions is 0.031. This value

in the systems of 2048 or 4000 particles is considerably

whereF;=—F,. A difference between the heat-flow and smaller, 0.014 and 0.009, respectively. Thus, as one might

the shear-flow algorithms is that, for the sake of simplicity,expect, the two types of temperatures become identical in the
the temperature control is carried out by an integral feedbacthermodynamic limit.

in the latter case. _ _ To see the impact of a nonequilibrium flow, we fixed the
To model particle interactions, we used a simple soft-corewo thermostatsin sections 1-4 and 17-2@ different but
potential defined as follows: constant temperatures. For the system of 864 particles, the

temperatures were 0.85 and 1.15; for the system of 2048
particles, they were 0.80 and 1.20; while for the system of
. r>216 4000 particles, these values were 0.75 and 1.25. This way we
introduced identical temperature gradients to each of the
In the calculations, we applied the usual reduced units othree systems with identical temperatite0) in the middle
computer simulationgl9]. The length of the simulations was of the Newtonian region. However, the sizes of the sections
several thousand reduced time units, depending on the siziistinguished by temperature averaging were different. In

A[r 247 %]4+1, r<2'®
d(r)= 0
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difference between the two temperature definitions. How-
ever, it is obvious from the diagram that the impact of this

influence goes to zero if larger and larger slices of the fluid
are used for calculating averages. In the thermodynamic
limit, nonequilibrium properties do not seem to influence the

split of the dynamic temperature.

It should be noted that Eq&)—(9) fixed only the kinetic
temperature, which might show these results to be less con-
vincing. Unfortunately, constraining the configurational tem-
perature numerically is very complicated. However, differ-
ences of the kinetic and configurational temperature in the
thermostated regions are very similar to values found else-

where in the system. At the end of the following section, it
FIG. 3. Temperature distribution of the heat-flow model. Dark will become clear that this is not accidental: it is the result of

circle, configurational temperature; open circle, kinetic temperaturethe fast relaxation of the dynamic temperature split. This
The vertical bars mark the thermostated regions. The system igenders the configurational temperature constraint unneces-
periodic. (Number of particles is 4000, average number density issary.
0.8 in reduced units. Although temperature gradients and accompanying den-

sity and internal energy variations were enormous, properties
Fig. 3 we present the temperature distribution of the largeséf the heat-flow model vary practically linearly with distance
system(4000 particles The temperature gradient outside of gjong the direction of the heat flow. Someone might argue
the reservoir regiongbetween 5 and 16 or 21 and)3B  that the extrapolated equivalence of the kinetic and the con-
practically uniform.(To study other properties of this heat- figurational temperature is the result of this linearity, as if
flow model system, the reader is referred to Ré&#].) In our model liquids were in the linear regime. In the case of
Fig. 4, we present the differences between the kinetic and thgye shearing liquid model, however, this is obviously not the
configurational temperature values for the three system sizegase. System properties manifest the far-from-equilibrium
Exploiting the symmetry of the systems, we averaged th@haracter of the model. To demonstrate this, we present sev-
physically equivalent section$-32, 6-31, et¢.and show eral properties of this model. To the best of our knowledge,
only the left-hand side of the previous diagram. We found ans is the first application of this algorithm. Our system had
behavior similar to what we had in the equilibrium case: thege4 or 2048 particles with the same average density, 0.8. The
difference between the kinetic and the configurational temthermostats constrained the reservoir temperatures to 1.0
peratures seemed to diminish with increasing section sizeynd, at the same time, a fictitious force accelerated the fluid
This is the case around section 11, too, where not only thgarticles in this region(Contrary to the heat-flow case, it is
temperature gradient but also the kinetic temperature and thgpossible to create identical models with different sizes.
number density were identical in the three systefsth the  The viscous heat generated by the same shear rate has to
temperature and the number density of this model changgavel a longer distance before reaching the reservoirs in the
practically linearly with distance along the direction of the |arger system. Therefore, the temperature profile of the larger
heat flow[14]) Since the functions of Fig. 4 are not con- gsystem with identical shear rate shows higher temperatures
stants, properties of nonequilibrium systems influence thenan that of its small-system counterppive divided up

every shearing system into 64 sections to have good resolu-
0.05

tions. Sections 1-6 and 33—38 represented the reservoirs.
et s T * We studied the impact of system sizes at two shear
004 o= P rates: 0.139 and 0.066. In Fig. 5, the streaming velocity of
0.035 |- e o °® different fluid sections is shown, together with the kinetic

s "B T o © * temperature in the direction for the system of 2048 par-
20025 | | @ ticles. To obtain local temperatures, particle velocities should
T 002 e @ ®-|- be reduced with the average local streaming velocities. This
0.015 ® ¢ ® WfJJ has been done for all three directions, although it was only
01| @ @ @ ,,,,,,,,7.ﬂ_711_1f the x direction that had large and systematic streaming ve-

s | | @ @ e o0 ®° B locities, as shown in Fig. §The kinetic temperature values
8 , . ‘ , presented in Fig. 5 were calculated without reduction by

streaming. We present the shear rate and the shear stress in
Fig. 6 for the same system. The shear rates were calculated
FIG. 4. Difference between the kineti(k), and the configu- USiNg S|rT_1pIy the.dlfferences pf streaming velocities between
rational, T(c), temperatures. Small circle, system of 864 particles;n€ighboring sections. The uniformity of the shear stress dem-
medium-sized circle, system of 2048 particles; large circle, systen@nstrates the accuracy of the method.
of 4000 particles. Utilizing the periodicity of the system, equivalent In Fig. 7, we compare the temperatures of systems of
sections were averaged. Sections where the thermostat is on are 48 particles with two different shear rates: 0.139 and
shown. (Average number density is 0.8, temperature gradient i€).066. We show the configurational and kinetic values sepa-
0.014 62, medium temperature is 1.0. All are given in reducedately. In the case of the high shear rate, the viscous heating
units) creates much larger temperatures in the middle of the New-

section number
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FIG. 5. Average velocityopen squargsand thex component of FIG. 7. Profile of the reduced kinetic and configurational tem-
the kinetic temperatureT(x), calculated(dark squaresin the  peratures for the system of 2048 particles. Dark squares, configura-
shearing system of 2048 particles. The streaming contribution hasonal temperature foiF;==*0.2; open circles, reduced kinetic
not been removed frori(x). Vertical bars mark the thermostated temperatures folF ;==0.2; dark triangles, configurational tem-
regions.(Average number density is 0.B;=*0.1. Both are given  perature forF;=+0.1; open diamonds, reduced kinetic tempera-
in reduced units. tures forF ;= =0.1. Vertical bars mark the thermostated regions.

The system is periodic.

tonian region where no synthetic thermostat is acting. The . .

viscous heat travels towards the thermostats where the feeBYMber. The splits are constant within the accuracy of the
back keeps the temperature at 1.0. It is interesting to notgaiculations. In this respect, it is more surprising that the
that contrary to the heat-flow case, the configurational temdifferences are independent of the strength of the external
perature is larger than the kinetic one. field. These temperature differences were determined for

While for the heat-flow model components of both the POth shear rates. .

kinetic and configurational temperatures were practically !N the case of the larger system, the temperature differ-
identical, this is not the case for the shear-flow model. TheeNces are 0.006 for theandz components and 0.013 for the
kinetic temperatures are very close to one another again bt €omPonent. Although data for the larger system are less
configurational temperature in thedirection is larger than accurate, the behavior found in the smaller system is the
the roughly equivalent configurational temperatures inxhe Same- The impact of the nonequilibrium field is marginal.

and z directions. (This was also the case in high-shear-rate! "€ SPlit is overwhelmingly a section-size effect. Larger sec-
NEMD models of the preceding section. tions produced smaller temperature differences. We per-

We studied this behavior. The question is the same agair{prmed additional calculations to check this behavior but the

can nonequilibrium conditions maintain finite-temperaturetfend was found to be the same.
In light of these results, it is reasonable to expect that

differences between components of configurational and Ki- . X . A
netic temperatures? We performed simulations for both Sy5d|fferences between the g:onﬁgurauonal and the kinetic tem-
tem sizes(864 or 2048 particleswith shear rates of 0.139 Peratures, as well as differences between components of
and 0.066, respectively. The configurational temperature wa§1€s€, would disappear in the thermodynamic limit. This is
found to be larger than the corresponding kinetic one. In th&10t the case in NEMD models. Although configurational
case of the system of 864 particl@s, — T, =0.025 for thex temp_eratures haye a slight nl_Jm_b_er dependence in thes_e cal-
and z components and 0.043 for thecomponent. In the culations, too, this does not diminish the temperature anisot-

Newtonian region, these values do not vary with sectioPY and differences between the configurational and the ki-
netic temperatures.

In the preceding section, we could not relate the six dif-
ferent dynamic temperature components to the operational
temperature. It was obvious that their relationship is not a
trivial matter. In the case of realistic models, however, the
practical equivalence of the kinetic and the configurational
temperature components is very tempting. We could not
measure the operational temperature, but it would be absurd

shear rate

-0.15

}

section number

-01

-02

-0.3

~(shear stress)

to expect a value for this quantity different from the equiva-
lent six dynamic temperature terms. In these systems, the
local pattern of collisions is close to that of an equilibrium
liquid.

IV. RELAXATION OF THE DYNAMIC TEMPERATURE

FIG. 6. The shear rat@lark squaresand the shear stress,P,, In the NEMD models of Sec. I, we experienced a signifi-
(open squargsfor the system of the preceding figure. Vertical bars cant difference between kinetic and configurational tempera-
mark the thermostated regions. tures. For very large systems, these differences are expected
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FIG. 8. Relaxation of the kinetic temperature to equilibrium.  FIG. 9. Normalized autocorrelation of the heat flux vector.
The curves from the top to the bottom show the relaxation after théNumber of particles is 500, reduced density is 0.8, reduced tem-
starting kinetic temperature was set instantaneously to 0.0, 0.4%erature is 0.9.

0.72, 1.125, 1.35, and 1.8Number of particles is 500, reduced
density is 0.8, reduced temperature is )0.9. ergy and within a few time steps the statistical equilibrium
between the kinetic and the configurational part of the tem-
to disappear in the more realistic simulations shown in theperature is established. In contrast, relaxation of the heat-
preceding section. A pronounced decrease of anisotropy dfow vector is slower because it is a collective phenomenon.
the temperature is expected. Despite the anisotropy of naive Although the numerical evidence presented above is far
models, the temperature seemed to behave like the temperfiom being exhausting, we believe, the relative speed of
ture of an equilibrium system. The overwhelming drive to-these relaxation processes must be similar in other models or
wards randomness seems to ensure the zeroth law of thermkgal systems, too. Thus, in realistic far-from-equilibrium hy-
dynamics, even in these anisotropic nonequilibrium fluidsdrodynamic models with natural conduction of the dissipa-
Why is it not so in NEMD models with synthetic thermo- tive heat, a large split of the kinetic and the configurational
stats? The reason for this is quite simple, as we will see iiemperature seems very unlikely. In realistic models and, as
the following numerical demonstration. a matter of fact, in real systems, the speed of heat conduction

The regression hypothesis of Onsager claims that in thés finite and slow compared to the local equilibration of the
linear regime, when the system relaxes to its stable equilibkinetic and the configurational temperature. It is the instan-
rium state, one is unable to tell whether it was out of equi-taneous, infinitely fast heat removal of NEMD models that is
librium due to spontaneous internal fluctuations or it wasable to split up and stabilize the kinetic and the configura-
moved out of it by external perturbations. Utilizing this prin- tional parts of the dynamic temperature. In this respect the
ciple, we compared the relaxation of the dynamic temperaresponse timéthe fictive maspof the NoseHoover scheme
ture with the relaxation of the heat-flow vector. plays no role. There is a certain amount of average dissipa-

We performed an equilibrium MD simulation and calcu- tive energy determined by the parameters of the model to be
lated the autocorrelation function of the heat-flow vector. Wegremoved in each time step. The memory of the feedback
had 500 particles at the reduced density of 0.8 and temperg&annot influence the value of this long-time average. Our test
ture of 0.9. We used the same interaction model as in Sec¢alculations confirmed this: the fictive mass of the thermostat
lll. At the same state point, following the equilibrium trajec- had no impact on the splitting.
tory of the same system, we created starting states after every The dissipative energy is removed through the random
50 time stepg0.1 reduced time unitdy artificially spliting ~ momenta of the particles. There is no time for the configu-
up the dynamic temperature. We rescaled particle velocitiegations to follow this instantaneous process. Thhs, con-
instantaneously and in a nonequilibrium run calculated thdigurational temperaturéwith the possible exception of ar-
relaxation of the system to equilibrium. Several thousandificial regimes will be larger in NEMD models than the
nonequilibrium trajectories were sufficient to see the averageorresponding kinetic one
relaxation of the temperature split. In Fig. 8, we compare the
results of the calculations. Theaxis of the figure shows the
reduced and scaled kinetic energy, which is definedEs (
—Eko)/1.5. The curves from the top to the bottom show the We performed various numerical experiments to study the
relaxation after the starting kinetic temperature was set ineoncept of temperature in steady-state systems far from equi-
stantaneously to 0.0, 0.45, 0.72, 1.125, 1.35, and 1.8. Allibrium. We simulated hydrodynamic models using both the
though these differences are extreme, the relaxation is vetyomogeneous NEMD technolod$LLOD and color flow
fast. with a synthetic thermostat and the so-called “naive” ap-

The normalized autocorrelation function of the heat fluxproach for heat flow and shear flgw4]. Besides the usual
vector is shown in Fig. 9. Relaxation of the dynamic tem-and trivial kinetic (or equipartition temperature, the
perature is an order of magnitude faster than relaxation of theonfiguration-dependent part of the dynamic temperature of
heat-flow vector in the same systefemperature relaxation Rugh[5] and the operational temperature of the present au-
is a local, one-particle phenomenoifia particle has a large thor [6] were determined. The results showed a significant
kinetic energy, it climbs up on the map of the potential en-difference between the kinetic and configurational tempera-

V. CONCLUSIONS
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tures of NEMD models. The latter was significantly larger inropy in the temperature. However, in the thermodynamic

the case of shear flow and smaller in the case of the “strindimit, especially at realistic gradients and inhomogeinities, it

phase” of color flow. Both temperature contributions for seems unlikely that we can detect deviations from the isotro-
both models were highly anisotropic. The corresponding oppic temperature value.

erational temperatures were much closer to the configura- Our results support the use of the concept of dynamic
tional temperature values. The operational temperature is efemperature for systems far from equilibrium. At least, the

tablished through the incessant collisions of fluid particlescalculations did not point to any systematic problem with

with the thermometer. Features of these collisions are fund€SPect to this approach. We think the temperature in general
tions of the complete dynamics of the dissipative fluid. In'S Still 2 useful concept for steady-state hydrodynamic sys-

e s : far from equilibrium.
dense fluids, it is the configurational part of the tempera’[uréems . . .
which is important, although the exact relationship between The ne_ed_ for NEMD calculations in the 1970s was moti-
the operational and the dynamic temperature cannot be dé’?md by I|m|ted_ compuf[er resources. To have a well-defined
termined system, good signal/noise ratio, large external fields, and ho-

The behavior of our realistic modefalso far from equi- mogeneous models with synthetic thermostats were neces-

librium) was substantially different from that of NEMD sys- sary. It must be pointed out tha; up-to-date computer power
tems. Our model fluids, mimicking heat flow and shear flow,does not help to overcome the inherent probler_ns OT NEMD
contained only a limited region where feedback thermostatgeChn'ques' No matter hO.W small the .eXtema! field is, these
or external forces were acting. Due to their inhomogeneityrmdel.S are correct only in the zero-field limit. Of course,
we had to study their properties locally. We experienced di_there IS no question abOl.Jt the useft_JIness of NEMD models.
rectional split and also differences between configuration Bes.ults such as the conjugate pairing ri26] or the fI_uc-
and kinetic temperatures. However, these differences seem lﬁat'on theoren[Zl]l are proof of the.|mp9rtance of th'.s ap-
to diminish with increasing systems. We found the impact inroach. H_owever, it must be kept in mmd_that outS|_de the
the nonequilibrium dynamics marginal compared with theIInear regime, these models have dynamics very d_|ff_e_rent
size dependence of fluid element averages. from that of real systems. They are not the ideal limiting

NEMD systems use a feedback procedure which remove%ases of reality, like the ideal gas, but artificial models. They
the dissipative heat instantaneously. This energy control i ust be used with extreme care when details of real systems

carried out through the momentum subspace of the dynan?—r experimental phenomena are to be understood. This is

ics. Although equilibration of the configurational and kinetic especially true when_ thermodynamics of nonequilibrium
part of the temperature is very fast, its speed is finite. Thus?teady'St"Jlte systems is concerned.
in NEMD models thg k|ne't|c temperature is, in general, dif- ACKNOWLEDGMENTS

ferent from the configurational one.
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