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Quantum kinetic equation in the closed-time-path formalism
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A systematic derivation of the quantum kinetic equation is presented in the framework of a closed-time-path
formalism. Introducing a probe, the expectation value of the number operator is calculated as a functional of
the probing source. Then, solving for the source by inverting the relation, the removal of the source leads to the
guantum Kkinetic equation as the equation of motion for the number, which gives a generalization of the
Boltzmann equation including memory. The inversion formula is used in the course of the derivation. The
calculation is presented up to third order in interaction, and the effect of initial correlations is also considered.

PACS numbes): 05.30—d, 05.60.Gg, 11.10.Wx

[. INTRODUCTION In addition to the calculation in Refl1], where only the
next-to-leading order correctigisecond order in interactipn
In this paper, we investigate the quantum kinetic equatiorwas considered, we proceed to a calculation up to third order
(QKE) using the inversion method briefly reported in Ref.in interaction, and the inclusion of an initial correlation ef-
[1]. There has been a lot of work on the derivation of thefect is also discussed. For the higher-order correction, some
QKE or the generalized Boltzmann equation, and the mosieW terms appear including the contribution of three-body
popular approach is the generalized Kadanoff-Ba@#B)  collision. The effect of the initial correlation is considered by
formalism [2—4]. In these approaches, starting from thethe usual method; extending the time-path to include imagi-
Dyson equation for a two-point Green function, the equatiorhary time[11-13,4, and new initial correlation terms are
for the one-particle density is derived with the aid of thefound in addition to the terms derived in other works.

Kadanoff-Baym ansatf2] or its generalized versiof8,4]. ~ The paper is organized as follows. After a brief descrip-
Although this ansatz successfully leads to the QKE, thdion of the inversion method in Sec. 1B, we apply it to the
range of validity is not known with certainty. case of number operator in Sec. lll. As discussed in Réf.

An alternative approach using the Green function is thehe method is not naively applicable to the number operator,
counterterm method based on the closed-time-g@ffiP) ~ but this problem is solved by introducing a more efficient
formalism [5_7]’ or on the thermofield dynam|¢§] These probing source for hand”ng the number. Our choice of the
approaches have the advantage that they do not require QﬁObe is dictated by the structure of the diSSipative counter-
ansatz for the expressions of the Green functions. Instead,t&'m[5], which is summarized in Appendix A. In Appendix
counterterm is first introduced into the CTP or thermofieldB, another choice of the probe source is discussed. The
Lagrangian, and an unperturbed propagator is calculatedtigher-order correction is discussed in Sec. Il D, and energy
Then to determine the counterterm, some condition, such g&onservation with the obtained QKE is proved in Sec. IllE.
the cancellation of the on-shell part of the Self-end@ﬁ,gl Then, in Sec. 1V, the initial correlation effect on the QKE is
or the cancellation of the pinch singularify], is adopted, calculated, and the stationarity of the initial equilibrium case
which leads to the generalized Boltzmann equation. Thest$ confirmed. Section V is devoted to discussions.
conditions, however, are of course not uniquely determined,
and ambiguity appears in this step. _Il. DERIVATION OF EOM IN CTP FORMALISM—

In this paper, we use a more direct approach reported in INVERSION METHOD
Ref.[1] which overcomes these shortcomings. It is based on
the inversion metho{9,10] which is a systematic procedure  Let us briefly describe the inversion methi@10]. It is a
to derive the equation of motiofEOM) in the CTP formal- systematic procedure to derive the EOM of the expectation
ism; Coupling the probing source to the order parameteryalue of an arbitrary operator, s&( &), which is a function
which is chosen to be the number in this paper, the expectaf the dynamical variabléy of the system. Introducing a
tion value of the order parameter is first calculated under th@robing external sourcd, we first derive the expectation
existence of this external source. After this functional rela-value Q(t)=(Q(&(t))) as a functional of the source
tion is inverted perturbatively for the source, the EOM of theJ: Q(t) = f[t;J]. Then, solving this inversely to expredsas
expectation value is obtained when the source is removed. la functional ofQ, J(t)=g[t;Q], we remove the sourcé
this method, the expectation value of the number is directlyThe resultant equatiog[t;Q]=0 determines the time de-
calculated, and the QKE is derived as its EOM which has thg@endence of), i.e., it gives the EOM.
form of a non-Markovian Boltzmann equation. Hence no an-
satz is made in the course of deriving the EOM, and, in )
contrast to the counterterm method, there is no ambiguity in A. CTP formalism
determining the EOM since we just remove the source after In the first step of calculating the expectation value, we
the inversion. utilize the CTP formalisni14,15. In the CTP formalism, the
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time dependent source is usually introduced in the followingQ(t) = f[t;g[ Q]]
way. First, with the Hamiltoniai of &, the CTP generating

functional W is defined as = folt:go[ Q11
gl 2] +m(fds€%nsqmﬂsQ1+nﬁ@dQH
—TrTe (/MIdH-310Q) 5T (i) TdtH-5()Q)
0 +>\2Ud8f8”[t,s;Q]gz[s;Q]
. +lf ds dsfiP[t,s,s";Q]gals:Qlg[s'; Q]
“f [d¢1d§02]<€01||P|902|> ’ ° ' '
Xe(i/h)f:::dt(Lwl)—L(<p2)+J1Q(<p1)—J2Q(‘p2))’ 2) +j de(11>[t,s;Q]gl[s;Q]+fz[t;gO[Q]])+O()\3),
. o = . (6)
wherep is the initial distribution, andlr and T are the time o
ordering and antiordering operators, respectively. The lasvhere we have used the abbreviations
equality is due to the path-integral representation, whgre S 13
ande, are introduced as integral variables along the forward ¢ (K)[t,51,Ss,...,S5c:Q]= n[t:J] ‘ .
and backward time branches, respectively. It can be seen” 53(31)53(52)'"5J(Sk)\J:go[Q]
from Eqg. (1) that the expectation value of the products(f 7)

can be obtained by a functional differentiation \&f with

respect to the sourcd or J,. The physically sensible situ- Comparing the left- and right-hand sides of E6) in each
ation is realized by setting,;=J,=J, since this gives the order of\, we obtain the expressions fgp, in terms off,,,
unitary time evolution; thereby] plays the role of physical Which we call the “inversion formulasT10]:

external source. Thus the expectation valuefgoat timet t-01=f-1t: 8
under a physical external sourdean be calculated as 9ol t:QI=1o [LQJ, ®

_ OW[I1, 3] %NQF—JdW94KVQFm2%L (©)

Q(t)_ 5\]1(t) J1=J2=J:<Q(t)>J' (3)
0:1t:01- - [ a1 [e;)

This gives us the expectation val@@ as a functional of

physical probing sourcé. See, e.g., Ref§14,15 for more L Drer o o1 )
detailed properties of generating functional. X Ej dsdsfg[t',s,s";Q]g1[s;Qlga[s"; Q]
B. Inversion formulas +J’ dsf{[t’,s;Q194[s; Q]+ f,lt";9o[ Q11

In the second step of the inversion method, we solve re-
lation (3) inversely to expresd as a functional ofQ. Then
setting the external sourck=0, the obtained relation gives
the EOM ofQ. Formally, the general expression of the EOM
can be written with the Legendre transformationvéf 10]. .
But practically, if the aim is to derive the EOM, the process j di/fiY Tt,t;QIfM[t',s;Q]=46(t—s). (11
of Legendre transformation is unnecessary, and this inver-
sion can be carried out in the following perturbative fashion.  Summarizing, we first calculate the expectation value as a

Usually Q as a functional of], we obtain some perturba- functional of a physical external source in the framework of
tion series the CTP formalism, and then, by solving the functional in-

versely for the source with the aid of inversion formulas, the
Q(t)=f[t;J]=2 AF 131, (4) EOM of the expectation value_ is obtained by _removing the
n external source. In the following, we apply this method to
the case wher® is the number, and directly derive the EOM
where\ is a small parameter, arf@t'\]] expresses thdtis a of the number which turns out to have the form of the QKE.
function of t and a functional ofl. Then if we write the Note that the inversion method is nonperturbative in the
inverted relation as following sense. As discussed in RgL0], even though the
original seried Eq. (4)] is truncated and calculated with the
finite number of diagrams, the inverted seri&sg). (5)] can
J)=g[t;Q]=>, \"g.[t;Q], (5)  include infinite diagrams through the process of inversion.
m Of course which subdiagrams are included@nbecomes
different if we introduce the source in other way than Hg,
we obtain the simple identity and hence the inverted series depend on the choice of the

(10

wheref( " is defined by
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source. A good source will handl@ efficiently, so that the The unperturbed propagator is essentially the inverse of the
inverted relation describes the dynamics of the expectatiomatrix in Eq.(15), and, with this propagator, if we evaluate
value in a satisfactory fashion. At least to make the inversiorthe expectation value,(t) in the absence of interaction, we
method work, we need a nontrivial lowest-order functionalobtain the initial valug(f,(t));=n,(t,). This is due to the

expressiorfo[ t;J] which can be inversely solved fdr This  fact thatH,— 3, J.fi, commutes withii; n is conserved at

becomes the key point for deriving the QKE. the level of free theory even wheh#0. Since no depen-

dence onJ appears infA(t));, we fail to make the lowest-

IIl. DERIVATION OF QKE: GENERALIZED order inversion corresponding to E@), and hence the in-
BOLTZMANN EQUATION version formulas cannot be used in this case. A probe of the

_ _ ) ) ) form of Eqg. (15 does not disturb the system so efficiently
In this section, we first clarify the problem of applying the that the number operator cannot be handled.

inversion method to the number operator. Then, in order to  Then why does the counterterm method in R5f.work?
overcome the difficulty, a type of probing source is intro- According to Ref[5], the time-local counterterm can be con-
duced, with which the inversion method works. The kineticstructed so as to keep the following structure of the full
equation is then derived as an EOM of number in the nextpropagator in the CTP formalisiiwe suppress the index of
to-leading order of the perturbation. A higher-order correcyave number for a while
tion to the QKE is also presented.

Ty d'(s)  FHo)dt) )

A. Introduction of probing source G(t,s)= _Trf)< WOF(S  THOIE)

Let us see what is the problem in the case of the number

operator. We consider a nonrelativistic boson field of a ho- h(t,s) k(t,s)
mogeneous system described by the Hamiltoribr H, =0(t—s) h(t,s) k(t,s)
+Hiy, with
nt ( )(k*(s,t) k*(s,t)) .
R o +0(s—t)| ., * , 1
Ho=24 e, (12) h*(sit) h*(st)
where the subscript means the connected part, and
I3|-=£E“r I 13 =—(gt)y
int™ 4 ¢k+q¢kr_q¢k¢k’v ( ) h(t75)=_<¢(t)¢(s)>m (17)
k.k’,q

=— ot J
where 1//,1 and ¢, are creation and annihilation operators of k(t.9) (B (SPD)e (18)

momentumk, respectively andk is a coupling constant, ag far as structuré16) is kept, the perturbative calculation

which is assumed to be small and identified with the expany e expectation value of any Hermitian operator yields the
sion parameter in Eq4). Extension to other type of interac- o5| yajue. Then, as shown in Appendix A, the counterterm
tion is straightforward. At an initial time,, the system is Y2 Mij i, with the matrix

described by the density matrix, and we assume in this

section that no initial co[.relation exigts among different AAot) —ia(t) —ilhy(t)—a(t))
wave-number componentg; can be written as a product =1 _ . (19
from II,p,, wherep, is a density matrix for each wave i(hy()+a(t) —fdo(t)—ia(t)

number which gives the expectation value of the number at
initial time as ny(t))=Trpx . Inclusion of the initial IS allowed to be subtracted from the free part of the Lagrang-

ian. HereAw, a, and y are all real functions which are de-

In order to derive the EOM of the expectation value of thetermined by appropriate conditions*; The bare propagator cal-
culated from Lo(#1) —Lo(12) — 47 M;j¢; leads to a

N _ - T - . . .
numberf(t) = (1) ¥(t), a naive choice of the source is to nontrivial time dependence of the number in the absence of

replace the Hamiltoniahl by H— 3, (t) #4(t) #1(t). Then  interaction. The existence of the parameters as a nondiagonal
in a path-integral representation of the CTP generating funcelement in Eq(19) is a crucial point.
tional given in Eq(2), this source can be built into the free Comparing Eqs(lg) and (15), the parameter we utilized
part of the Lagrangian as as a physical external source in E@5) corresponds td\w
in Eqg. (19). Equation(19), however, suggests that another
physical source correspondingadcor y can be introduced as
Lé(‘/’l)_ Lg( ¢2):§k: UikDij ik (14) a probe. Note that what the inversion method requires is the
expression of the expectation value as a functional of some
“physically sensible” source, and it is not restricted to a
source of the form of Eq(15). Here, “physically sensible”
. means that the expectation value of Hermitian operator under
110y — e+ () 0 the existence of this source is guaranteed to be real.
0 —ihd+e— (1)) Our choice in this paper is the source corresponding to
(15 in Eq. (19). The source corresponding tp can be treated

correlation is studied in Sec. IV.

with the matrix

ZDK(tv&t)E
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similarly, and is discussed in Appendix B. Then the free part
of the Lagrangian including the source has now the matrix

if10,— e+id(1) —iJ(1)

—iJ(t) —ihd+e+id(t)] 20

D(t, (9'[) =
Note that although we have introduced the source as

Eq. (20), what we will calculate in the following is just the
expectation value of the number. For simplicity, we calculate (@)
the expectation value of the number by path integration using
WY . But the results are the same for other choices;
W5 o, 5 g, or their linear combinations. Note also that
W7 Yy Or 5 i, should be understood as the product of field
variables whose time arguments differ infinitesimally as
T (t+0) i (t) or o5 (t—0)i(t), respectively, which re-
sults from the coherent-state path-integral representation. b)

B. Unperturbed propagator and number FIG. 1. Diagrams for the expectation valogJ]. (a) The lead-
ing orderO(\9). (b) The next-to-leading orde®(A\?). The vertex

Starting with Eq.(20), the unperturbed propagat@y is of the open circle expresses y; att.

calculated from the relation

s>t. Substituting these into Eq&5) or (26), both equations
become identical, and we find thaf) must satisfy the con-

= —iﬁb‘(t_s)' (22) dition

D(t,d,)Go(t,5) = Go(t,s)D(S, — ) (21

p — (0)
whered implies left differentiation. Sinc® has been chosen IO =Aan(D). (3D

as to keep structur€l6) unchangedG, has the same struc-
ture in whichh and k are replaced by, and k,, respec-
tively. Then Eq.(22) leads to the equations

This gives the EOM fom(®, and we can solve this to ex-
pressn(®) as a functional ofl, with the result

(ifd,— €)hg(t,$)=0, (23 At J]=nO)(t,)+ J tdSJ;_SX (32)
t
(ifd— €)ko(t,5) =0, (24) '
Thus Egs.(29), (30), and (32) determine the unperturbed
for t>s, and propagatorG, with structure(16), whereh and g are re-
(id,— e+iI(DIKE (s,1) =1I (DA (s,1), (25) placed byh, andgg, respectively.

As already seen from Eq$32) or (31), we succeeded in
making the expectation value of the number depend on
the leading order, i.eQ(\%). This makes the inversion for-
mula applicable. The right-hand side of E§2) corresponds
to the desired lowest-order function&® in Eq. (4), and

ho(s,s)—k§(s,5)=—1, Kko(s,s)—hi(s,8)=1, (27) Eq. (31) is the inverted relation, the right-hand side of which
corresponds tg(?) of Eq. (5). So our next task is to calculate
ho(s,8)—h}(s,8)=0, Kq(s,s)—k5(s,5)=0. (28 the perturbative correction to, and then to derive the cor-
rection to the EOMEq. (31)] with the aid of the inversion
From Eqgs(28), hy(s,s) andky(s,s) are real functions. Then formulas.
two conditions in Eq(27) are identical, and simply express
the fact that the expectation value of the equal-time commu- C. Perturbative correction and the QKE
tator[ ¢, '] is unity. Note that from definitiori18), ko(t,t)
gives the expectation value of the number opergtoulti-
plied by —1) in the absence of the interaction. Which we
denote an(®)(t).
From Egs.(23) and(24), we obtain, fort>s,

(ihoy—e—id(1))h§(s,t)=—iJ(t)K (s,1) (26)

for s>t. The boundary conditions &ts are given as

With the propagator- G, expressed by the arrow going
from ¢* to ¢ and the vertex-\/i# (the signs+ and —,
respectively, correspond to the forward and backward time
paths, the unperturbed numbei”) is represented diagram-
matically as Fig. (a), and the nonzero perturbative correc-
ko(t,5)=e (/M=K (5 )= —n(O)(g)e~(Met=s)  (2g)  tion to n[t;J] first comes from a diagram shown in

Fig. 1(b), which is of O(\?).
ho(t,s)=e~ 1/Met=9h (5 5)= — (n©(s) + 1)~ (I/Met=s), The contributions ofO(\) from a tadpole type self-
(30) energy insertion to Fig. (&) vanish, because those from the
vertices on forward and backward time branches cancel each
Then exchangingandsin Eqgs.(29) and(30) and taking the  other. In general, the contributions from the diagrams with
complex conjugationhg (s,t) andkf(s,t) are obtained for tadpoles do not vanish for higher orders, but can be renor-
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malized into the one-particle energyby the constant shift  scale is much shorter than that of the variation of the num-
ber, the QKE can be approximated by a Markovian equation,
R_ (0O)R which is obtained by the adiabatic expansion. Setting the
=ec+A2, ng'", 33 T .
€k €k % d 33 initial time t,= —, we expandN(?)(s) around the time as
N@(s)=N@)(t)+ (s—t)N®)(t)+---, regarding the time

and by preparing the corresponding countertdithe Super- itfarentiations to be small. Then the integral becomes

scriptR in the right-hand side of Ed33) expresses that(®)
is written in terms of the renormalized] In the following, .
this renormalization will be understood without the super- f dscosw(t—s)N@(s)=m78(w)N?(t)
script R, and diagrams with tadpoles will not be considered. —o

As the result, the expectation value of the number as a

[
functional ofJ is given up to the next-to-leading order as + FN(Z)(I)JF"' , (39
0) A2 t t’
Nt I]=n 6]+ & > tdt' t ds’ where p expresses the principal value. The second term of
q.k’ | |

the right-hand side is proportional fg and gives a pertur-
XCO-{wk,q,kr(t’—S’)}Nﬁ (sh, (39 bative correction to the coefficient of the flrszt1 term on the
o right-hand side of Eq(37), which become®©(\*) and can
where be neglectedcf., however, Refs[16,1§ for its meaning.
Regarding all higher time derivatives to be small, we take

1 into account up to the first term of E(8), and obtain the
Wk gk =7 (€t € -k €~ € —q), (35 familiar Boltzmann equation
(2 —(n(0 (0) (0) 4y (0)
Nk,q,k’(t)_(nk O+ (D+1)ng (t)nk,,q(t) Mtnk(t)=777\22 5(Ek+Ekik,_eq_eqik,)N(k‘Zng, . (39
a.k’

—n (0N (OO (1) + 1) (D) +1).

(36)  As is well known, with this Markovian Boltzmann equation,
the conservation of the total energy is not realized, and only
Recall thatN® is a functional ofJ since, alln®”s in Eq.  the kinetic energy is conserved, and in the sense that the
(36) are functionals of] given in Eq.(32). Equation(34) interaction do not contribute to nondissipative characteristics
corresponds td,+ A f,+\2f, of Eq. (4), wheref, vanishes Of the system, the Boltzmann equatideq. (39)] is referred
as mentioned above. to as the kinetic equation of ideal ggE9].
Applying the inversion formula10), the correction to
EOM (31) is obtained. In this case, on the right-hand side of

et D. Higher-order corrections
Eq. (10), f$* and (! vanish andf{" "(t,s) is 2d,8(t—s).

. . The higher-order correction to the QKE is quite system-
2 _

Thus we obtain ()% term by opera’glng—hﬁtﬁ(t S) atically derived by the inversion method. Let us see the next-
to the second term of the rlgrlt-hand side (6#), and by order correction to QKHE37), i.e., theO(\3) term, in the
replgcingr!(o)[t;J] contained inN‘® by n(t); In course of  framework presented in Sec. Ill BOf course the higher or-
the inversion, as seen from E(), all the functionals ol gers in the framework of Appendix B can be calculated in
are evaluated al,=#n, and since the functional expres- the same way.We first calculate the next order of E¢@4),

sion of n(¥[J] is given by Eq.(32), nP[J]'s in the func-  and then the corresponding correction to the EOM is derived
tional are replaced by(t). Thus we obtain the inversion of by inversion formulas.

Eq. (34) as The corrections oD(\%) to n[t;J] come from the dia-
\2 grams shown in Fig. 2. They are evaluated as
IO =hangt) - 5 X NE C e (s
a.k’ n[t;d]= ﬁ) > dt’j ds| ds'
t @ kK ,a.q" “t t t
8 ft.dscoqwk‘q'k'(t, ~S)Nig(S), (37 X{3 sin{wy i (' =8) + g g (0 (S—8")}
NS N2 '
. ) . . XN (SN, (S
whereN() is defined by Eq(36), in which all then®)’s are ) ak (SNigr (87
replaced byn. If we set the external sourck=0, Eq. (37) — 3 Si@y g (1" =)+ @gr g (S—S")}
gives the EOM for the number which is nothing but the <N (S)N(Z) (s')
QKE. This type of QKE is known as a non-Markovian ex- ek ,
tension of the Boltzmann equatigsee, e.g., Ref§16—-18) +2sinfoy 4 (t'=S)+ oy o (s—8")}
and, as we will see in Sec. Il E, the total enegum of the MY (R, (s
kinetic and interaction energies conserved by this QKE. .k’ k.’ .k’
It is expected that dissipative effect appears from the sum- -2 Sin{wl,(,q,k'(t’ —s)+ wé,’q’k,(s_s,)}

mation over wave numbers, and hence the collisional infor- ~ (1) = (2) ,
mation at times decays with some time scale. If this time XMy (SIM 7 (s} (40
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(b)

FIG. 2. Diagrams folO(\°%) contributions ton[J].

wherew andN(® are defined in Eqs35) and (36), respec-
tively, and

wk’q’k,E g(e‘k“' Eq_kr_ Eq_ Ek—k’):wk,q,k+q—k’ ,

(41
NG =n@+ () +1)-n&n ., (42
IT/IH =n@+1)n? ,—n@(n? ,+1), (43)
|\7|<k2(>1, k/_(n(0)+1)(n Y o+ 1n? k,ng)
—n@n'? na " o (n? k,+1)(nfﬁ)+1)
_Nﬁzcz' k+q/—k' - (44)

Note thatN andM are functionals ofl, sincen(®'’s in these
expressions are given as E§2). Equation(40) corresponds
to f5[t;J] of Eq. (4).

The correction 0fO(\%) to the EOM ofn is obtained by
the third order inversion formula

gg[t;Q]=—Jdt'fglfl[t,t';Q] %J’dsdsds”
xfPt',s,s",s";Q1g1[s;Q19als';Q1ga[s"; Q]

J dsdsfiP[t’,s,s";Q101[s;Q1gals';Q]
+3 f dsdsf?[t',s,s;Qlau[s;Q1a[s;Q]
+J dsfi’[t’,s;Q]g,ls: Q]

+f ds Bt 501045 Q1+ Faft ;9o Q11
(45

JUN KOIDE
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with the notation in Sec. Il B. As in the case ©{\?), only

the last term in the parentheses on the right-hand side of
Eq. (45 makes a nonzero contribution, singis linear inJ
andf,;=g;=0. Thus the inversion of Eq40) is obtained as

I =han(t)— E
q k' I

t S
E ds| ds

k’ a9 Yt £

X{% Sin{(x)k q, k’(t_ S) + wk'q/’k,(s— S,)}

1 2 ’
XNGL (SN, i (s")

dscos{wk ak (t= )}Nf()q k()

— 3 Sifflwg gk (t=S) +wg g (sS—S")}
1 2 ’

XN (SN (s

+2sinfo, 4o (t=9)

+ oy (578"}

1 2
XM (SIMZ), i (s")

-2 Sin{wé’q’k,(t— s)+ w(;,’q’k,(s— s’)}

XM (SIME) (s, (46)

whereN and M are now functions oh which are respec-
tively obtained fromN and M by replacingn(®[J]'s with
n's as in Eq.(37). Then the QKE withO(A®) corrections
is obtained by settingJ=0 in Eq. (46). We will see in
Sec. IlIE that the total energy is conserved by QK),
similarly as in Eq.(37).

There appear new collision terms in E46) whose forms
are quite different from the usual Boltzmann-type collision
factor. The first two terms in the braces of E46) are con-
tributions from the diagram in Fig.(d), and are due to the
binary collision. The last two terms are from the diagram in
Fig. 2(b) which expresses the three-body collision effect.
These will be seen from the diagrammatic structure of Fig. 2,
or from the fact that, in the dilute limit, the first two terms
becomeO(n?), while the last two terms becon@(n?). Let
us see these more closely.

In the first two terms, the factoN® is the ordinary
Boltzmann-type collision factor and®) has a “gain-loss”
form found by Morozov and Rake [4] in the study of the
initial correlation effect; we will see a similar term in Sec.
IV, where we discuss the initial correlatipgee Eq(89)]. In
Ref.[4], a generalized binary-matrix approximation is con-
sidered, and, after the Born approximation, the gain-loss fac-
tor appears in one of the initial correlation terms. THened
in Eq. (89)], the correlations at the initial stage is multiplied
by the gain-loss factor, while in E¢46) the binary collision
at the earlier time is multiplied by it. This suggests that the
gain-loss factor appears from the collision of a correlated
pair of particles. In Eq(46) the correlation take place in the
preliminary collision at times’, which provides the factor
N@)(s"), whereas in Ref4] (or in Sec. IV} it comes from
the initial correlation.
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(2
wk,q,k’

)\3
557 2 ( +775’(wk'q'kr)(9t]N$|l,(t)
k!’qu!

% 2
X [ (Wi g7 k1) T 2—‘9t} N(k,é’,k’(t)
@y g7 k'

[
+ [ 78w q) + 2—‘9'[] NG (1)

FIG. 3. Diagram of the three-body collision term. The subdia- @k,q.k’
gram surrounded by the dotted line expresses the three-body colli-
sion. X4 — + s S )Nty (4
[ Oq m (wk,q k ) t] k,q',k (t) (47)

The last two terms in the braces of Hg6) look slightly  Similar expressions are obtained for other terms. The terms
more complicated. The fact that these terms are contributiongith the time derivative give higher-order corrections as in
from the three-body collision can be seen by rewritingthe case of Eq(38), and the terms without the time deriva-
Fig. 2(b) as Fig. 3. The part of the diagram encircled by thetive represent the correction to the long time behavior of the
dotted line represents the three-body scattering. The factdpKE. Thus the QKE is reduced to the Markovian equation as
M @) is the usual binary collision factor, but the factdi®)
has the form of the one-body process, and does not appear in
the binary collision approximation. This will be the time to
see such a contribution in the QKE.

The factorM) can be interpreted as coming from the <! m 1 1 NN,
collision between a correlated particle, which has collided akkark!
with some other particle before, and another particle which
has been moving freely: For example, considering the dia- ~1 Im( 1 1 )N(l),N(":) (1)
gram of Fig. 4a), where the vertices are arranged in tempo- Ok @ kk'Ta%.ak
ral order from right to left, we can rewrite it as Fig(bd by
replacing each vertex with a local interaction via the dotted +im
line. (The replacement is not uniqudf we focus on the
arrows going from right to left in Fig. @), the particle
propagating with a single line is a free one in the sense that —Im( % } )M(l),(t)M(z,) ,(t)]
it has not collided before, and a double line represents the O gk 4 Kk anak o
correlated particle. Then the one-body fachf?) appears
from the point denoted by a double circle, where a single line

changes into a double one, and we can see that the freghere we have used the abbreviationw 1~ 1/(w—i0)
particle collides there with a correlated particle. =plw+imd(w). This Markovian expression coincides with
The adiabatic expansion of E¢46) becomes somewhat the one derived in Ref20], where the tadpole contributions,
complicated, but can be carried out similarly as in B8).  which are renormalized as E@3) in our theory, are explic-
In the third term of Eq(46), the first term in the braces, for itly calculated. It is shown there that, in the Markovian case,
example, becomes the second and fourth terms in the braces of @8) can be
transformed into the first and third terms, respectively, and
thus the right-hand side of Eq48) can be expressed as
N{, . multiplied by the modified amplitude. But due to this
transformation, the three-body aspects of the collision term
are lost in Ref[20].
It is not difficult to see that this Markovian equation con-
@) serves only the kinetic energy, and that the Bose-Einstein
distribution for an ideal gas is a stationary solution of
Eq. (48). Thus, like the Markovian Boltzmann equati(8),
the interaction does not contribute to the equilibrium prop-
erty, although the higher-order corrections of the collision
are included in Eq(48). In this sense, EqQ48) is a proper
extension of the Boltzmann equation as the kinetic equation
of ideal gas as in Sec. Il C.
The three-bodyT-matrix approximation to the QKE was
studied in several worki21], and, according to Ref21], a
b) three-body collision factor like3(n+1)3— (n+1)3n%is ex-
pected to appear together with the three-particle energy con-
FIG. 4. The appearance of the one-body fadit®. servation factor after the Markovian approximation. From

A2 ) 2\3
—— > Swgqr) o (D= =7 2
ﬁ q,k, q h k,,qu,

Dy ak Pk, k!

a’.q.k’

11 )M(l)

(2)
’r— ’— q,k’Mk, ’,k’(t)
@y gk’ Pk,q7 k!

a’,q.k’
(48)
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our observations, however, such a collision term will not
appear in the QKE if the elementary interaction is of a two-
body nature. The collision at each time produces at most &
factor N@(M @), NV or M), or a factor like o+1)n
—n?(n+1) (which does not appear in the approximation
presented heje After the adiabatic expansion, the collision

term can be expressed by time-local product of these factors
but a factor liken®(n+1)3—(n+1)3n® does not appear
from such a product.

The appearance of such a three-body collision term in
Ref.[21] is due to the formal double-time expression of the (a) (©
three-bodyT matrix; of the six time arguments i matrix
T(t1,t5,t5:t7 ,t5,t3), the incoming three and outgoing three
are equated and representedl@st’), respectively. This is
formally realized by writing the three-body interaction as the
product of two-body interaction and unitgxpressing non-
interaction: Vis3=v 13+ vagl1tvsl,. If the three propa-
gators going intolout of) the T matrix really end af(start
from) the same vertex and hence contain the numbers at thi
same instant, a three-body collision factor liké(n+1)3
—(n+1)3n® can be produced. But this is not the case if the
elementary interaction is binary. In each term of the pertur-
bative expansion, only two of the three propagators going(b) @
into (out of) the T matrix end at(Star.t from the ,Same vertex FIG. 5. Diagrams for the interaction energy. The vertex of the
v and carry numbers at the_: same |_nstant, while the other ONghen circle expressesdd)y® o g, .
does so with numbers at different times. Thus the three-body
collision term considered in Ref21] does not appear from A2 ;
an elementary interaction of binary nature. E2)(t)=— Rk% tldssm{“’k,q,k’(t_S)}Nﬁ,k’(s)'

K G (51)
E. Conservation of the total energy

When we setJ=0 the expectation value of the total APparently, the time derivative of Eq51) cancels with
Hamiltonian is time independent. The conservation of theEd: (49), and hence the total energy is conserve®ip?).
total energy by the QKE derived above can easily be seen Similarly, the correction oD(\°) to the time derivative
from a direct calculation of the time derivatives of the kinetic Of the kinetic energyEq. (49)] is calculated from the third
energy and the interaction energy. Below, we show that thes€rm of Eq.(46) as
cancel each other order by order.

First in O(\?), the time derivative of the kinetic energy 5)3 2 tds Sds’
Ewn=(Ho) is calculated by multiplying QKE37) (setting h) wkaq Ju
J=0) by €., and summing ovek, with the result hogak
2 [ — Sln{wkyq'k,(t—s)-l-wk’q/yk,(s— S,)}
HEn(t) A) S [ash e 2
. = — 1 ’
tEkin 7 Sl 4 XN;,&,(S)N(k';,’k,(S )
XCos{wk,q,k'(t_s)}N:fé’kr(S)- (49) +ﬁwk’qyk, Sln{wkyqyk,(t—S)-i-wk‘q,yk,(S—S )}
. o . . X Mg?ﬂ,(s)M(k?;,,k,(s’)J , (52)
Then, in the same order of the approximation, the interaction

energyE;=(H,,) is calculated from the diagrams shown in
Figs. 5a) and §b). At first, with the propagator appearing in
Sec. Il B, it is calculated as a functional &fthen, by evalu-

ating it atJ=#n, we obtain the interaction energy written
in terms of n. As the result, the first-order contribution 3

and the correction to the interaction energy is calculated
from the diagrams shown in Figs(d and 5d), which lead
to the result

t
[Fig. 5(@)] gives a constant E3(t)=— )\7 > dsfsds’
h k.k'.qq YU f
1) A 2 X{% COE{wkyq'k/(t—S)-l-wkyqryk,(S—S')}
El=5| 2 ng| . (50 D aN@ (o
q XNq,k’(s)Nk,q’,k'(S )

. . . . +Coqw{<,qyk'(t_s)+wé’q/’k/(s_ S,)}
and the time-dependent contribution comes from Fidp),5 1) 2 )
which is evaluated as XM (SIM G (s} (53
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We can easily see that the time derivative of EsB) pre- R S ‘
cisely cancels with Eq(52). This is seen by separating the (¢1||ﬁ||¢2|>°‘j [dyps]e VMo driAZids s +iS(s)),
time derivative of Eq.(53) into two parts: a differentiation (56)
with respect td in the integrand, and one with respect ia
the upper bound of the integral; the former cancels wit

Eq. (52), while the latter vanishes by the symmetry on ex-
changingk andq’. This order-by-order cancellation of the isfies the boundary conditiongs(5#) =y and y(0)

time derivative of the total energy is an interesting and wel-~ ¥2i+ @ndS(is) is obtained froms by replacing the opera-

come feature in the case of using the soUigg. (20)], and  tor ¢ and ¢" in Eq. (55) by 4 and y*, respectively. As
does not hold in the case of another source in Appendix BUsual, 3 evolves in imaginary time fromr=0 to 7= j#

As pointed out before, the Markovian QKE'39) or (48), with the evolution operatofS, and hence the time path is
approximated versions of Eq&7) or (46), respectively, do extended to include this imaginary time. Hereafter, we use
not conserve the total energy but conserve only the kinetiGreek letters to express the imaginary time.
energy. This is in agreement with the former observationsThen, as in Refd.12], [4], the Green function is extended to
[16,17,19 that the total energy conservation is essentially3x 3 matrix form,
connected with the memory effect.

k\Nherewg is introduced as an integration variable which sat-

Ty d'(s)  JTs)gt)  dl(o)d(b)

_ . _ _ G=-Trp[ #(OP'(s) Toy'(s) P (o)d(t)
Let us consider the initial correlation effects which were

IV. INITIAL CORRELATIONS

neglected in Sec. Ill. The inclusion of initial correlations was UDP(s) WD) TnPl(o))
investigated in Refd.22,11], and formulated as a perturba- -
tion theory with a 3x3 matrix form propagator in k(t,o)

Refs. [13,17, or as an initial condition for the Martin- _ G(t.s) K(t, o) (57)
Schwinger hierarchy in Ref23]. In this section, we show ~ 3 ' ’

that our theory can include initial correlations following the h(z,s)h(7,s) 0(r,0)

treatment of Refd.13,12,4. Introducing the imaginary-time
path in addition to the forward and backward time paths, we - ARSS (1S . . . .
calculate the propagator on this complex time path, and pelwherel'b(T) el"M3yel S and T, is the imaginary-time
form a perturbative calculation in terms of the interaction ordering. The realtime componelﬁ(t s) is given in
and the initial correlation. The resultant expressions are comEq (16), and the imaginary-time one is

pared with those in Ref4], and the stationarity in the case

of initial equilibrium is confirmed. §(r,0)=0(r—0)y(1,0)+0(c—1)k(7,0), (58)
A. Description of initial state and mixed propagator with
The initial state is assumed to be homogeneous, and is L
described by the density matrix n(7,0)=—(H )P (o)), (59)
B(t)=(Tre A5~ leAS 54 ~pn
p(b)=(Tre™™) >4 k(r,0)=— (1 (o) (7). (60)

where S is a function of i and ' (see Ref[24] for the , _ _
details of constructing). The factorg is just for notational ~2nd the mixed-time parts are defined by
convention and need not be related to equilibrium tempera-

ture. (In the case of initial equilibriumS is replaced by, h(7,8)=— (W )¢ (s))c, (61)
and 3 expresses the inverse temperawmecomposmgs
into quadratic tern, and higher-order termS,,,,, we as- k(t,o)=—(¢ (o) h(t))e. (62

sume the form

) ) Then the unperturbed propagai8 under the sourcd

S=5+S.,,= Z Sklﬁklﬁk + > )\z//k q¢kr+q¢k¢ku (55  can be obtained as the inverse of
k,k’,q

whereX expresses the strength of the initial correlation. In o= eI —HM 0
the following we assuma to be small, and consider pertur- D= —i3(t) —ihdtetid(t) 0
bative corrections im. Of course more general types of 0 0 ihd +is
correlations can be treated in a similar manner as f&.as
is allowed to be regarded as a perturbation. 5

With the initial density[Eq. (54)], the matrix element Asin Sec. Il B, assuming th&, has the similar structure as

(1|1l o)) Of (2) can be represented by the usual coherentEq. (57), in which h, g, etc. are replaced bf,,g9,, etc.,
state path integral as respectively, we solve the inverse relation

(63
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) o(t—s)
=—ifh 0 . (65)

00 o(1t—o0)
Apparently for the real-time compone@(t,s), the equa-
tions forhg andk, are the same as Eq23)—(28), and hence
the solution is the same.

For the imaginary time elemeiiy, Eq. (65) leads to the
equations

(hd,+s)no(7,0)=0 (for 7>0), (66)
(0, +s)ko(7,0)=0, (for o>7), (67)
with the boundary condition at= .

no(0,0) — ko(o,0) = —1. (68)

This can be easily solved, with the results
7o(7,0)=—(nO(t) +1)e” M= (69)
ko(7,0) = —n(®)(t) e, (70

Finally for the mixed-time sector, E@65) gives

(hd.+s)hy(7,5)=0, (72)
(ihd,— e)ko(t,0)=0, (72)

FIG. 6. The tadpole self-energy inserted diagranOgR ).

Summarizing, the real-time part is given by Ed30),
(29), and(32) with the initial value of Eq.81), and that of
the imaginary-time component by Eq69) and(70), and the
mixed parts

ho(7,8)=—e "7(nOt) + 1M1, (82)

'Ro(t,a_) - _ e*(i/fi)e(tfq)n(O)(tl)e(;/fi)a'. (83)
As discussed in Ref6], with the appropriate counter-term,
it is possible to make(® in 7, or ko depend on imaginary
time, but this is not necessary in our problem.

B. Initial correlations in the QKE

With the above derived unperturbed propagator, let us
calculate the expectation value of the number operator up to
first order in the initial correlation and second order in the
interaction. This time, the diagrams are constructed with the

propagatorG, calculated above and with vertices which
come fromH;,, if it is on the real-time axis, and frofS.,
if it is on the imaginary time axis.

In contrast to the case in Sec. lll, the tadpole self-energy
inserted diagram does not vanish if the vertex is in imaginary

and the boundary conditions are given from the conditiongime. Thus, inO(X), the initial correlation effect appears

a(t) = 5(Bh) and ¢(t)) = 5(0), which yield

ho(7,t) = Ko( 7, B1) = 10(7,0), (73
Ko(ty,0) =19 Bli,0) = ko(0,0), (74)
ho(0s)=h3(st)), No(Bh,s)=kE(st), (79
Ko(t,00=ko(t,t), Ko(t,Bh)=ho(t,t). (76)
Then, solving Eqs(71) and(72) as
ho(7,5)=—e ™My (0,s), (77
ko(t,0)=—e Mtk (t,, o), (79
the boundary condition&73)—(76) are satisfied by
ho(0,5)=—elMes ) (nOt)+ 1), (79)
Ko(t,0)=—nO(t)elsMe, (80)
with the initial unperturbed number
n©(t) = (81)

efs—1"

from Fig. 6, which simply gives a constant
An= =Bt (Pt + DX nPd(t). (84
q

This expresses a shift of the initial value due to the initial
correlation, but such a constant term is not convenient for the
inversion method since(®’[ J=%n] does not simply gives.

To avoid this inconvenience, similarly as in E@3), we

renormalize the quadratic part 8fby

eE=sk+X§ nR(t), (85)

and introduce a corresponding counterterm to cancel the tad-
pole. As in Sec. lll, the superscri® will be suppressed in
the following.

The correction ofO(AX) to n,(t) comes from the dia-
gram of the same form as Fig(l), but this time one vertex

is on the real-time axis, which expressﬂzﬁt, and the other

one is on the imaginary-time axis, representfﬁgrr. As a
result, after integration over imaginary time,

Cos{wk’q’k,(t—h)}— 1 ’N(k?é’kf(tl)
Qk’q’kf

AN
=5

q,k’

(86)
wk’q’k/



PRE 62

is obtained, whereQy q=1(sx+sSk -k—Sq— Sk )/

QUANTUM KINETIC EQUATION IN THE CLOSED-. ..

5963

—2codwy o1 (5—8" )+ g o0 (8' = 1)}

The contributions ofO(A?X) come from the diagrams in

Fig. 2, with one of the vertices on the imaginary-time axis.

Then they are calculated as

A2\ t (s
F 2 ds| ds’
k" a,q" Yt f

X [ : COq Wy gk (S—S") + Wy gk (S" 1)}

N(2)
XN(l) (S') Nk,q’,k’ v(tl)
q‘kl Qk,q’,k’

- % COS{wk’q’k/(S— S,) + wq,’q’k(s' _t|)}

~ (2
M e ()

! 1
QQ' a4k’

XMk (s") (87)

Whereﬂl,(‘q,’k,E(l)(§k+§qr_kr_Sqr_gk_kr)/ﬁ.

Since the number as a functional of soudds expressed
by a double series expansion iasEn,n,)\”X”'fnn, , the in-
version formulas should also be extended to double expan-
sion: =3, m A"\ g - Although we do not set down
their somewhat lengthy expressions here, the derivation of
the inversion formulas can be carried out in the same way as
in Sec. IIB. In our problem, sincé;, vanishes and g is
linear inJ [f,gandfyyaref, andf, in Eq.(4), respectively,
the formulas for (h,m’)+#(0,0) up to fn,m’)=(2,1), are

(R (o) ’N;ﬁ;,k,(tl) simply reduced to the form
k,k Qq’,q,k’ .
’ ’ . — _ re(l)” ’. ’.
+2 Cos{wk,q,k’(s_sr)—’_wk,q’,k’(S,_tl)} gmm’[tyQ] Jdt fOO [t.t 1Q]fmm’[t agOO]- (88
M2 ) o
Xm(li,(sf) ka’ k' Thus as the result of the inversion, the QKE up to
& Qg i O(M?X) is obtained as
N (2)
)\2 t AN Nk kr(tl)
fd nk(t):_z dSCOiwk’ ’k/(t_S)}N(Z) ,(S)_—E Sin{ka ’k/(t_t|)}q'—
t ﬁ q,k’ tl a k’q’k h q,k’ a Qk,q,k’
X t N s (1)
+ dsi £ codw (t=8)+ wy g (S—1)) N s)’q‘—
?k%q, . [ forqu( car (S~ WINgi(9) g = =

1 (1) Ngz’),q,k’(t')
- §COS{wk‘qyk,(t— S) + wq/'q,kr(s_h)}NkYk,(S) Q—

q’,q,k’
ME(Z)r kr(tl)
+2 cog 0y o (1= ) + o) 1 o (S—EIIMEL, (5) —=
k,q’,k’
, , rY ,k' |
—2 0wy g (1=9) + 0l 41 (S— ML () o (89)
q’,q,k’

The first term on the right-hand side is the usual binary colthough these are not genuine three-body collision term, they
lision term and the last two terms are a manifestation ofcan be interpreted as a collision among the initially corre-
initial correlation effects. Comparing these initial correlationlated two particles and another particle. To the author's
terms with the collision terms in E¢46), we can see that the knowledge, such terms have not been found before, and ap-
collision factors as’ in Eq. (46) are replaced by initial cor- P&l for the first time in this paper. These terms are of
relation factors which have the forms of binary collisions at@(n”), and in the nondilute case, we must include these
the initial timet, . The second term, which is the term linear corrections in the second order of the |nE|aI correlation.

in the interaction, commonly appears in a calculation includ- In the case of initial equilibrium, we sat=\ ands=e,

ing an initial correlatior{25,4]. In the third term represented and then, forO(\?) in Eq. (89), the first two terms cancel

by braces, the first two terms are “gain-loss” terms, which€ach other iN?)(s) in the first term is replaced by the initial
were first found by Morozov and Rée[4]. As mentioned in ~ value N‘®)(t,) which is consistent with the vanishing of the
Sec. I D, the gain-|oss factdﬂ(l) appears from the colli- time derivative. Hence the Stationarity of the equilibrium
sion of two particles which are initially correlated. The last State is confirmed up t@(\?). ForO(\®) in the case of the
two terms has the same “one-body” factor as E4f). Al- initial equilibrium, we need an extra correction@fAX?) to
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QKE (89), and, after somewhat tedious calculations, we cartion, we should first introduce the source such that the ex-
show that this initial correlation term, together with the pectation valueQ[J] is guaranteed to be real. This will re-
O(A?X) term in Eq.(89) cancels th@(\%) collision termin  strict the form of the source to a few candidafés.our case,

Eq. (46) in the same way a®(\?). Note that in these cal- € «, andyin Eq. (A5), if the counterterm is assumed not to
culations, the corrections @(X?) and O(X3) which con- ~ contain time derivative$Then, hopefully, the source depen-
tribute to constant shiftdn, are renormalized tg by Eq. dence in the lowest order of the perturbation is required to be
(85) similarly to the tadpole contribution, and this renormal- able to use the inversion formulagx and y are retained in

ized s is equated withe in the initial equilibrium case. our case.If arbitrariness is still there, a convenient form will
be chosen which makes the calculation simple, guarantees
V. SUMMARY AND DISCUSSION the conservation law, etc.

The contents of Eq20) [or Eq.(B1)] becomes somewhat
We have investigated the QKE in the framework of CTPclear from the “physical” representatiofi5] of the CTP
formalism. By the inversion method, with a type of probe effective action fory, which is a Legendre transformation of
introduced in Eq(20), the QKE was simply derived as the the generating functional, with  itself as the order param-
EOM of the expectation value of the number operator. Iteter, The physical representation is introduced through the
should be emphasized that what we have calculated, e.9., {fynsformation of the variabldc=1(J,+J,), andJ,=J,
Egs.(34) and(40), is just the expectation value of the num- —J,. Then physically sensible situatiah=J, is realized

ber. We have made no ansatz concerning the form of th _ : :
propagator, and hence there is no uncertainty in the defimSy J2=0, and therebyc plays the role of a physical exter

. S nal sourced. From the CTP generating function®, in
tion of the number appearing in the QKE. hich th 3 les t the effecti i

The QKE obtained by our method coincides with that W '¢ € sources coupies 0¢, the effective action
derived by the GKB formalisri3], at least up to the approxi- r[% el is calculated through the Legendre transforma-
mation considered here. In the GKB formalism, the QKE istion of W[Jc,Ja] [15,10, where ¢;,=6W/5Jc andl e
derived from the Dyson equation for the two-point Green=9W/8Jx . Roughly speaking,yy=y1— 42, $c=32(¢1
function, and a closed equation for the occupation number ig” ¥2) and the inverse propagat@ is the tree part of the
obtained with the use of the GKB ansatz in the form of thesecond derivative of .
propagator. Roughly, the collision integral appears from the With these prescriptions, a source of the form of E2f)
self-energy, with both ends contracted by a propagator in thisouples togx ¢, and this means that the system is dis-
formalism. The fact that our formalism gives the same resulturbed from the external by shifting?I'/ 8y 6y, which is
as the GKB formalization can be seen from the form ofthe one-particle-irreducible amputated part of the correlation
propagator derived in Sec. Il B. The GKB ansatz with thefunction ({l:/fT,lA//}% This may be the reason why we can

free-particle approximation for retarded and advanced Gres andle a number with this source. Another source discussed
functions is recovered from the propagator in Sec. IlI B if we. . * %
evaluate it aty=#%n to replacen®[J] by n, as is indeed " Appendix B couples tojyyc—iicihs , and corresponds

done in the course of inversion. Up to the approximation int© the shift of the imaginary part of the retarded self-energy

this paper, collision terms are calculated from diagrams irp"T'/ 8y 8yc. As is discussed in Appendix B, though this
which both ends of the self-energy inserted propagator aréource also handles the number, it gives a less useful expres-
connected tay* ; after the inversion, this provides the same Sion for the QKE in the sense that the order-by-order conser-
collision term as the GKB formalism. vation of the total energy shown in Sec. Il E is not realized
Note, however, that the GKB ansatz is just an ansatz oin this case.
the form of propagator, and strictly speaking, the number The way to introduce the source presented here will be
that appears therein is not a well defined object. On the othegxtended to cases other than that of the number operator, i.e.,
hand, in our method, the number appearing in the QKE igeneric composite operato@y ¢) of any dynamical variable
really the expectation value of the bare number operator. . The above discussion suggests that we can couple the
For the sake of definite expressions, we have restrictedource to Q(¢,), which means a probe through
ourselves to simple perturbation up to third order, and hence)(s/5¢,)T[ ¢, ,¢c]. Since the derivative df with respect
the obtained QKE's are special cases of those, e.g., in Refg ¢, 's expresses the one-particle-irreducible amputated part
[16-18. For more realistic situations where effects like dy- of symmetrized correlation function, the source coupled to
namical screening or strong collision should be considered, &(¢,) is always physically sensible, and the expectation
partial summation of the polarizatidi26,27) or ladder dia-  yalue of Q($) depends on this source nontrivially in the
grams[11,16,18,27 will be required. These are beyond our apsence of interaction. Thus the first and second of the above
scope, but will be treated similarly as in the GKB formalism. mentioned criteria for the source are inherent in this choice
Inclusion of the self-energy effects will be realized by the of the source. In some cases, calculation will be simplified

counterterm methofb,7,8, where a part of the self-energy compared with the usual procedure with the source coupled
is renormalized into the free part of the Lagrangian, andp Q(¢,)—Q(g,).

enables a description of the quasiparticle number. It is not
difficult to combine the inversion method with the counter-
term method, though the approximations made there become
somewhat ambiguous.

As we have seen in Sec. lll A, there are some choices in  The author would like to thank Professor R. Fukuda for
the introduction of the probing source. As a general prescripeliscussions.
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APPENDIX A: STRUCTURE OF THE Eg. (22), and a dissipative propagator can be derived with a
DISSIPATIVE COUNTERTERM time-dependent number. Note that from this dissipative
counterterm, unlike in the case of relativistic boson field in
E&ef. [5], Eq. (22) can be solved rigorously, and we do not
eed approximations for the unperturbed dissipative propa-
%ator.

In the original paper of Lawri¢5], the system discussed
is a relativistic scalar boson field. Although the essential par
of the treatment is the same for a nonrelativistic boson field
in order to make this paper self-contained here we present
derivation of the dissipative counterterfizq. (19)]. The
starting point is a Green function with the structure of Eq.

(16); keeping this structure, we construct an operafor As mentioned in Sec. Il A, there is another choice of
which satisfies relation22). probe which couples t@ ¢, — 14, . This is the source uti-

First we consider the case where the system is tempora%ing y in Eq. (19), and is introduced using the following
homogeneous. Then the propagator become a function of thgyerse propagator:

time difference; with the four real functions v, w, andz,

APPENDIX B: ANOTHER TYPE OF PROBE

we write it as ihd—e iJ(t)
D(t,o)=| . _ . (B1)
h()=u(t)+iv(t), k(t)=w(t)+iz(t), (A1) —iJ(t) —ihote
which leads to a Fourier transformation with the form We demonstrate that the unperturbed number also shows a
nontrivial dependence on this source, and that the inversion
. * ot method leads to another kinetic equation, which reduces to
Gij(w)= f_ocdt e G;(1) the ordinary Boltzmann equation in the adiabatic limit.

The bare propagator in this scheme is calculated by the

A+C+i(B+D) 2C inverse of Eq(B1) as in Sec. lll B. The solution of Eq22),
= . in which D is replaced by EqB1) is obtained similarly as in
2A A+C-i(B+D) Sec. 11l B. With n®©(t) =ko(t,t) satisfying the EOM
((b—d)+i(a—c) —2d 5
—2b (b—d)—i(a—c)/ J(t):—EatIn(1+2n(°)(t)), (B2)

(A2)
the unperturbed propagator is given by
Here the real functiond, B, C, andD anda, b, ¢, andd are

defined as the real and imaginary parts of the Fourier- ko(t,s):_n(O)(s)e*<1/ﬁ>ftsdt'<f*”>
Laplace transformations af, v, w, andz, respectively,

o)s) 1+2n<°>(t))1’2
* A =—nNS)| —=—or—=
A(w)+ia(w)5f dte "“tu(t), (A3) 1+2n0(s)

0 x g~ (iIMe(t=s) (B3)

etc.,A, B, C, andD are even functions ab, anda, b, ¢, and
d are odd inw. ho(t,s)= —(n<°>(s)+1)e*<i/ﬁ>ftsdt’<f*”>
Then the Fourier transform db is obtained from the
inverse relation(22), and we expand it in terms @f. Taking
up to the linear terms of», we require that the linear part

coincides with the bar®,. Thus the structure db is deter- -
mined as x e (et=s), (B4)

(0) 1/2
98+ 1) 1+2nO(t) )

1+2n©(s)

o+ tia i(hy—a) with the ma(gr)ix structure of Eq.16). Equation(B2) can be
= . ., Ad
Cifiyta) Ao+ Q)+ia (Ad4)  solved forn'® as
— h, t —

where(), y, and « are real constants. nO[tI]={(;+nO(t))e” @193 (BY)

In a temporary inhomogeneous case, like an ansatz of the
inverse propagator, we allow the coefficients in E) to
be time dependent, and wrife as

The correction to Eq.B5) appears from the same diagram
as Fig. 1b), but with the above derived propagator. Then the

result is
D(t,d,) ,
iha,— QD) —ia(t)) i (hy(t)— a(t)) ntI]=n(H)+| | 2
TSty a)  —ikar QMO +iat))’ o W
(A5) Xftdt' 1+2nf(0)(t) t,ds’[ﬁk'q'k,(t’)]
where ), v, and « are now real functions of. Thus the ue2n) Jy Prak(s)

dissipative counterterm matrix is defined as ELP), with D am(2) )
Aw=Q— /% This ansatz is confirmed to be consistent with X cogwy gk (' =) IN G (S7), (B6)
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where
Prar(®O=1+2n)(1+2n )
x(1+2n)(1+2n0 (1. (B

Applying the inversion formulas, the correction to EB2)
is obtained, and the sourdeis expressed by as

h
Jk(t) = Eat |n(1+ an(t))
E t [ Pk,q,k’(t)]u2
ﬁ(l+2nk(t)) qk’ It Pqu'kr(S)
X Co @i q 1 (1= )N 1 (9), (B8)
whereP is defined from Eq(B7) by replacingn®’s with

n’s. Then removing the source in E@8), and rearranging
it for d;n,, the EOM is obtained as

'[ P (1 1/2
ﬁatnk_ E [ koa.k )]

q K It Pk,q,k'(s)
X €O Wi q (1= S) N 1 (S). (B9)

Comparing Eq(B9) with the QKE obtained in Sec. Il C,
we see that they differ by the factgP(t)/P(s)}*2 The
adiabatic expansion of EgB9), however, leads to the ordi-

nary Boltzmann equation. As in Ed38), the integration
oversin Eqg. (B9) is approximated by

t N(2)(S)
fﬁwdscos{w(t—s)}%

) p N

:W(S(w)ﬁm(—t)'i‘?ﬁtm-%

(B10)

The factor 1PY2(t) in the first term on the right-hand side
cancels withP4(t) in Eq. (B9), and the terms including the
time derivative can be neglected similarly as in Sec. Il C.
Thus a Boltzmann equation identical to E§9) is obtained
on a long-time scale.

As pointed out in Sec. IIB, it is not surprising that
the resultant expressions of the QKE presented here and
the one in Sec. llIC are different. It seems that the probe
of the form of Eq.(20) is more suited for deriving a kinetic
equation, since, in addition to the calculational simplicity,
it guarantees the conservation of total energy at least up
to the third order of the interaction, as shown in Sec. Il E.
Unlike in Sec. IlIE, the time derivatives of the kinetic
and interaction energies do not completely cancel each other
if we use QKE (B9). Of course the nonzero contribution
to the time derivative of the total energy is of higher order in
\; this is not a serious shortcoming, but it will be useful if
the time derivative of the total energy precisely cancels order
by order.
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