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Percolation parameter and percolation-threshold estimates for three-dimensional random ellipses
with widely scattered distributions of eccentricity and size
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In fractured materials of very low matrix permeability, fracture connectivity is the first-order determinant of
the occurrence of flow. For systems having a narrow distribution of object @hest-range percolationa
first-order percolation criterion is given by the total excluded volume which is almost constant at threshold. In
the case of fractured media, recent observations have demonstrated that the fracture-length distribution is
extremely large. Because of this widely scattered fracture-length distribution, the classical expression of the
total excluded volume is no longer scale invariant at the percolation threshold and has no finite limit for
infinitely large systems. Thus, the classical estimation method of the percolation threshold established in
short-range percolation becomes useless for the connectivity determination of fractured media. In this study,
we derive an expression for the total excluded volume that remains scale invariant at the percolation threshold
and that can thus be used as the proper control parameter, called the parameter of percolation in percolation
theory. We show that the scale-invariant expression of the total excluded volume is the geometrical union
normalized by the system volume rather than the summation of the mutual excluded volumes normalized by
the system volume. The summation of the mutual excluded volgtassical expressigmemains linked to the
number of intersections between fractures, whereas the normalized geometrical union of the mutual excluded
volume (our expressioncan be essentially identified with the percolation parameter. Moreover, fluctuations of
this percolation parameter at threshold with length and eccentricity distributions remain limited within a range
of less than one order of magnitude, giving in turn a rough percolation criterion. We finally show that the scale
dependence of the percolation parameter causes the connectivity of fractured media to increase with scale,
meaning especially that the hydraulic properties of fractured media can dramatically change with scale.

PACS numbe(s): 64.60.Ak, 91.60.Ba

[. INTRODUCTION three dimensions on on-lattice stick networks and on off-
lattice networks of orthogonal plang¢8]. In this paper, we
In fractured rocks of very low matrix permeability, such propose an enhanced analysis of the connectivity properties
as crystalline rocks, fluid flow is often restricted to a few of multiscale fracture networks. Fractures are modeled by
fractures, as shown by hydraulic field experimelits The  more realistic elliptic shapdd] and the connectivity is ana-
occurrence of flow and transport in such fractured media idyzed for off-lattice networks of ellipses with widely scat-
thus conditioned by the fracture-network connectivity at thetered distributions of eccentricity and lendffig. 1).
system scale. The connectivity of fracture networks, which In the scope of percolation theory, there is a single control
may be defined through the probability of connection of aparameter—the percolation parameter—that statistically
system, has been determined for a variety of two- and threeneasures the state of connect{d®]. In short-range perco-
dimensional elements. The early models using sticks in twdation, i.e., when all elements are much smaller than the sys-
dimensiong2,3] were followed by plates and polygons in tem size, the control parameter is the density of objects.
three dimensionp4,5], in order to account for more complex When systems are made up of elements of different shapes,
shapes of elements. According to more recent observatioribe total excluded volume gives a better percolation criterion
of fractured rocks, fractures are characterized not only by a
variety of shapes but also by a broad range of lengths. Thei(@)
length distribution is currently modeled by a power law |\
such as

n(h=al 3 1)

wheren(l)dl is the number of fractures having a length in
the range[l,1+dl], « is the coefficient of proportionality,
and a is an exponent varying generally between 1 and 3
[6,7]. The consequences of this wide and nonlimited range of
fracture lengths on connectivity have been studied in two
dimensions on off-lattice stick networKs] as well as in FIG. 1. Infinite clusters at threshold far=3.25 and(a) e=1

(563 disks for the network on the left andb) e=0.1 (4900 el-

lipseg for the network on the right. The gray scale shading is pro-
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than the density of objects and can thus be used as a better 0
parameter of percolatiofi.1]. 107 "Q;-T;!;:"""""' =0
However, because the natural fracture-length distribution - %J.‘u.,.... a=4
appears to be a power lait), fractures of the size of the E 1 \v\k
system appear with a non-negligible probability and intro- % \v\\
duce long-range correlations. As a consequence, some Sys- 1074 \\v \\\
tems may be connected at all scales by a single crossing = \v S =3
fracture. The probability of including in the system such a | v
fracture increases with scale provided that the length distri- Z" v
bution is broad enough, implying that the density of objects 10 v
at threshold, averaged over a large number of simulations, Ny
decreases with the system size. The density is thus no longer . =5
suitable for alone defining the connection state of the system. i, , M e
In this study, we show that there still exists a scale-invariant 10° 10' 10°
parameter for such long-range percolation problems, which L/L
is no longer the average of the mutual excluded volumes but 0
their geometrical union. FIG. 2. (V/V at threshold normalized by the excluded volume
at the minimal sizeL, for a= (squarey 4 (circles, 3 (upward
Il. CLASSICAL EXPRESSION OF THE EXCLUDED triangles, and 2.5(downward triangles
VOLUME FOR A WIDELY SCATTERED LENGTH
DISTRIBUTION OF OBJECTS This last expressiofB) is of the form of Eq.(2) and gener-
Because of its key role in this study, we give the detailea""!izes the expression of the mutual excluded volume of two

definition and expression of the total excluded volume as ifilsz(.fs)' Wh d I ibl i of ell h
has been classically derived first in short-range and second in y €n averaged over all possibie pair of €llipses nav-

: . distributions of both eccentricities and major axe$
long-range percolation. In short-range percolation when alf"9 . '
elements are identical, Balberef al. [11] define the ex- expression(3) leads to(Ve)=m*(e)(I*)(I). For a network

cluded volume of an object,) as “the volume around an made up ofN elements, the total excluded volume is simply

object into which the center of another similar object is notthe mutual excluded volume multiplied By [11]

allowed to enter if overlapping of the two objects is to be

avoided.” The total excluded volume is this volume multi- (Ve =m2N(e)(12)(I). (4
plied by the number of elements at threshbdlg. For sys-

tems made up of nq_nidentical elgments, the total excluded In order to test our algorithms, we have computst,)
volume (V) is modified by replacing the mutual excluded for systems of volume&/ made up of disks all having the

volumeV, by its average over all possible pairs of elements

S . same radius much smaller than the system size, i.e., when the
<\./e>' The variations of( Ve, at the percolgthn .threshold xponenta in Eq. (1) tends toward infinity. We find a nor-
with respect to the element shape remain limited so tha

h . . ; alized total excluded voluméV)/V of 2.2 which is in
<Vex>_0.'7_2'8 in three dimensiorld2,13. In long-range close agreement witf5] but different from[13,15. The dis-
percolation, the total excluded volume has been classicall

. . ) Xrepancy of 20% with Charlaix’s result is likely to result
derlved_accordlng to the same two-stage metha@: the from the different way of generating the Poisson distribution
calculation of the mutual excluded volumé, for two el-

; . . ) . of the disk centers.

I|p§es of d!fferent size andi) the average over all possible When applied to systems having widely scattered distri-

pairs of ellipses to get the total excluded volufh,,). butions of element size such that their power-law length ex-
(i) The mutual excluded volum¥, for any two convex

- ; . . - ponenta in expressionl) is lower than 4, Eq(4) normal-
overlapping objects can be derived theoretically as it deized by the system volume was found to vary over several
pends only on the mean radii of curvatiRe andR,, on the

; d d h | f the obi orders of magnitude at the percolation threshfi. 2).
\s/ur:g;var?i%.l andA;, and on the volumes of the objects g onclusion confirms the results previously obtained for
1 2 [14]:

networks consisting of perpendicular plari®% Because of
ARot AR its scale dependence, the normalized total excluded volume
a2 TR (2)  cannot be used as a single order parameter for defining the

Am state of connection of the system as it is in short-range per-
) _colation theory. However, it is still exactly proportional to
The expression for the mqtual excluded volume of two diskspe density of intersectionis(Fig. 3. The number of inter-
of radii R has been analytically calculated ands= 72!-"_3 sections per ellipse is given by the probability of intersection
[4]. In the more complex case of ellipses of eccentricies petween two ellipseéV,)/V times the number of ellipses,
ande;, and of major-axis lengths; andl,, we computed the \yhich leads tol =(V,,)/V. As a consequence, at threshold,
excluded volume numerically following the procedure of the number of intersections per object is no longer scale in-
[13] and found variant as in short-range percolatiph6]; more precisely, it

) ) decreases by orders of magnitude. This especially implies
,eililateolsls (3  that the density of interconnected objects at the percolation

2 ' threshold decreases with scale.

Ve:V1+V2+

e= T
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101_ percolationp, proving meanwhile that the state of connection
e =25 e=1 of the system can still be characterized by a single order
. parameter. We thus propose the following expression for the
—=—a=3.5 e=1 parameter of percolatiop:
— A O —
a=o e=1 (1%
?,

p=m2N(e) (6)

_
§
= ey
= 10 ‘ﬂﬂ‘fi.-{ifizi' ST whereL is the system size.
_~ We note that the two expressiof¥® and (5) normalized
2 by the system volume/, i.e., (Vg/V and (V*)/V, lead
E/“’ approximately to the same estimate, as long as the length
E.. distribution remains bounded and narr@ve., for power-law
length distributions such that>4). On the other hand, when
1 the radius distribution is widely scattered—i.e., whea4
10 ‘0 " 02 in the case of the power-law distribution—the two formulas
10 10 1 lead to very different estimates. This means especially that
L/Lo the right theoretical expression can be found only by study-
ing systems with widely scattered length distributions.

FIG. 3. Relation between the number of intersections and the

total excluded volume/[(V,)/V] at threshold normalized by its IV. RELATION BETWEEN THE CONCEPT
value at the minimal length in the case of disks foa=c (up- OF EXCLUDED VOLUME AND THE EXPRESSION
ward triangleg 3.5 (circles, and 2.5(squarep OF THE PARAMETER OF PERCOLATION

We have seen in the previous section that the classical
total excluded volume is no longer connected to the param-
eter of percolation. In this section, we show that the param-
eter of percolatiorp as given by Eq(6) still has meaning in

Previous numerical results obtained on networks made uferms of mutual excluded volume. We argue that the volume
of orthogonal planes seem to indicate that a scale-invariar®v*) used in the derivation of the parameter of percolation
expression is given by the third moment of the length distri-for a set ofN ellipses is the union of the mutual excluded
bution {I3) rather than by the multiplication of the first mo- volumes of theN ellipses, whereas the total excluded volume
ment by the second momefit)(I%) [4,9]. We denote this (V) is the average of the mutual excluded volumes over all
expression byV*) and derive it by replacing )(1?) by (I3)  possible pairs taken in the set formed by thellipses.
in Eq. (4): We calculate the contribution of thN ellipses to the

excluded-volume union by ordering them in decreasing size.
(V*)y=m?N(e)(I3). (5>  The contribution of the largest ellipse to the excluded-
volume union, along with all other disks, is given precisely

We have checked that, whatever the length distributionpy the excluded volume of the two largest elements of sizes
(V*)IV remains scale invariant for systems made up of disk$ and |-dl, because all other mutual excluded volumes are
[Fig. 4@] or of ellipses having either constant eccentricity orembedded in the excluded volume of these two largest ele-
a uniform distribution of eccentricitjfig. 4b)]. Because of ments. From the expression for the mutual excluded volume
its scale invariancey*/V can be used as the parameter of (3) and whendl<l, the contribution of the two largest ele-

Ill. EXPRESSION OF THE PARAMETER
OF PERCOLATION FOR A WIDELY SCATTERED
LENGTH DISTRIBUTION OF OBJECTS

(a) (b)
6-
6-
51 5] VNV Vg Vg Ty v
e oRmveiE Y. FIG. 4. Scale invariance of
4 _'_a:‘; 4 /\ viov V*/V for different length distribu-
A g i . . )
< s & 2(}2‘00 Adp —m— g=0e=0.1 tions in the case ofa)_ disks and
¥ - ¥  o—® e gde0l (b) ellipses having fixed eccen-
3 3{ oo oo a3 60025 tr|C|t|e§ (splld.symbol;% or a uni-
a v 2 e=0.05 form distribution of eccentricities
MIE ) (open symbols
21 Xj!tlihlﬁqulqv~v/v\y 2 —o— a=§ zumfg;‘m
00000 90000 80°% —o0— ¢=3.5 e uniform
-—§-8--8-8-8-8-8 T a=2.5 e uniform
1 ) ) 1 0 Al '
10° 10" 10° 10 10 10°

UL, LIL
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(a) (b)
10- 10
—o—a=25 — =1
—a— =3 A —e— 05 FIG. 5. (a) Percolation thresholg,. against
—v—a35 4 \A —a—e0.1 the eccentricitye for a= 2.5 (open circleg 3 (up-
—o—a=5 /o % LGN —v—e=0.01 ward open triangles 3.5 (downward open
5 _'*‘F‘”o /AA”A% 3 s \'j\A\ triangles, 5 (open squargs and <« (solid
8 /0 /A IV/VA\ §: 1 X \°\9\2\\ squares (b) Percolation thresholg, against
Qf 4 /Av g0 o _,_&\_1 4 . the power-law length exponerd for different
"5/ '/‘A /végf" "'i; ---------- N T g T values of the eccentricitg. Dashed lines indicate
L —— the limits found by Balberg[12] for three-
..................................................... dimensional networks.
10* 102 10° % 3 4 5
e a

ments is given byr?(e)l®. We then remove the largest ele- smaller than the original one, and an aspect ratio larger than
ment from the system in order to avoid redundancy and calthe generated eccentricity Since the probability of occur-
culate the contribution of the remaining ellipses to therence of large truncated fractures increases whede-
excluded-volume union. This process iterated over all elecreases, we expect deviation due to the truncation effect to
ments of decreasing size corresponds to integration over thecrease whera decreases. (i) For networks made up of
Ier!gth_distribuuonz ofgelllpses, so that the excluded-volumeglements all having the same length much smaller than the
union is equal tar®[1°n(l)dl, which is preciselfV*). We  system size =), the presence of the maximum may be
thus demonstrate that the parameter of percolation is the gegy, effect of the varying aspect ratio. The valuemfe,a
metrical union of the mutual excluded volumes. . =) is thought to increase when the local anisotropy de-
The geometrical derivation of the excluded-volume uniong eases from that of sticks to that of sphefg]. Applying
is closely related to the theoretical concept of percolationys reasoning to ellipses in three dimensions, the maximum
according to which the percolation threshold is reached wheqgye of the percolation parameter at threshold is attained
the available volume in terms of excluded volume vanishesynen the local anisotropy is at a minimum. The local anisot-
Moreover, the excluded-volume unidiv*) can be domi- oy is a measure of the dispersion of the typical lengths of
nated by the largest elements, reflecting the fact that the nefpe ellipse in the three dimensions: €.,0. Since the mini-
work can be connected by the largest elements. By averaging,m variance of this triplet is reached when 0.5, the total

the mutual excluded volumes over all possible p_airs of _eleéxcluded volume is expected to reach a maximum value for
ments, the total excluded volun{¥,,) removes this possi- ellipses of eccentricity around 0.5.

bility and thus underestimates the connection probability of ¢ parameter of percolatignas defined by expression
the system. (6) can be derived analytically in the case of a power-law
length distribution such as Edl). As long asa<4, the
V. ESTIMATES OF THE PERCOLATION THRESHOLD p, parameter of percola_ltion dep_ends on the system sité &
AND GEOLOGICAL IMPLICATIONS for a given _network(l_.e., for fixed values of and fracture
density. This case is relevant to natural fractures whose
In this section, we use the expression for the percolatiompower-length exponents are in the range 2.5-f17]. The
parametep (6) to determine the percolation threshgldas  percolation parameter is thus expected to increase with sys-
a function of the eccentricitg and of the power-law length tem size, implying that systems are on average unconnected
exponenta [Figs. 5a) and §b)]. In the case of short-range at small scales and connected at large scales. The crossover
percolation—i.e., for power-law length exponemtdarger scale above which fracture networks are always well con-
than 4—the values op. remain within the range 0.7-2.8 nected is defined bp(L)=p.. This has a strong impact on
found by Balberd12] [Fig. 5@)]. More generally, whatever the hydraulic properties of geological media. If, at low
the length and eccentricity distributions, the valuespgf scales, the crystalline rock permeability is very low because
remain restricted to a range of width smaller than one ordeit is controlled by the matriXnonfractured rock at scales
of magnitude, giving in turn a first-order criterion of perco- larger than the previously identified crossover scale, there is
lation for systems made up of widely scattered length- andn interconnected network of fractures, whose permeability
aspect-ratio distributions. can be larger by several orders of magnitude, as observed by
The variations ofp, according toe and a display two  Clausel{18]. Similar conclusions have been drawn in clayey
common characteristics:(i) an increase for decreasiegat  media[19]. The widely scattered fracture-length distribution
fixed eccentricitye [Fig. 5(b)] and (ii)) a maximum when entails an increase of connectivity that in turn may change
varying the eccentricitg at fixed power-law length exponent completely the hydraulic properties of the fractured media.
a [Fig. 5(@]. As this topic is still under investigation, we In conclusion, we have shown that the state of connection
report here the most likely origins of these variation§)  of a system made up of elements having a widely scattered
The increase of the percolation threshpldvhen the power- and nonlimited length distribution is still determined by a
law length exponena decrease$Fig. 5b)] may be due to single scale-invariant control parameter that we call, as in
truncation effects. Indeed, ellipses truncated by the sides afhort-range percolation, the parameter of percolation. This
the systen{see Fig. 1 have an internal characteristic length parameter of percolation has a meaning in terms of excluded
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volume as it is precisely the geometrical union of the mutualwhich is consistent with the observed increase of permeabil-
excluded volumes. On the other hand, the total excludedty in fractured media.

volume—average of the mutual excluded volumes over all

pairs of elements—previously proposed as a parameter of

percolation decreases by orders of magnitude at threshold ACKNOWLEDGMENTS
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