
s

PHYSICAL REVIEW E NOVEMBER 2000VOLUME 62, NUMBER 5
Percolation parameter and percolation-threshold estimates for three-dimensional random ellipse
with widely scattered distributions of eccentricity and size

J.-R. de Dreuzy, P. Davy, and O. Bour*
Géosciences Rennes (FRE CNRS 2110), Campus de Beaulieu, 35042 Rennes Ce´dex, France

~Received 24 September 1999; revised manuscript received 15 May 2000!

In fractured materials of very low matrix permeability, fracture connectivity is the first-order determinant of
the occurrence of flow. For systems having a narrow distribution of object sizes~short-range percolation!, a
first-order percolation criterion is given by the total excluded volume which is almost constant at threshold. In
the case of fractured media, recent observations have demonstrated that the fracture-length distribution is
extremely large. Because of this widely scattered fracture-length distribution, the classical expression of the
total excluded volume is no longer scale invariant at the percolation threshold and has no finite limit for
infinitely large systems. Thus, the classical estimation method of the percolation threshold established in
short-range percolation becomes useless for the connectivity determination of fractured media. In this study,
we derive an expression for the total excluded volume that remains scale invariant at the percolation threshold
and that can thus be used as the proper control parameter, called the parameter of percolation in percolation
theory. We show that the scale-invariant expression of the total excluded volume is the geometrical union
normalized by the system volume rather than the summation of the mutual excluded volumes normalized by
the system volume. The summation of the mutual excluded volume~classical expression! remains linked to the
number of intersections between fractures, whereas the normalized geometrical union of the mutual excluded
volume~our expression! can be essentially identified with the percolation parameter. Moreover, fluctuations of
this percolation parameter at threshold with length and eccentricity distributions remain limited within a range
of less than one order of magnitude, giving in turn a rough percolation criterion. We finally show that the scale
dependence of the percolation parameter causes the connectivity of fractured media to increase with scale,
meaning especially that the hydraulic properties of fractured media can dramatically change with scale.

PACS number~s!: 64.60.Ak, 91.60.Ba
h
w

th
ic
f a
re
tw
in
x
io
y
he
w

in
,

e
w

ff-

rties
by

-
t-

trol
ally

ys-
cts.
pes,
ion

ro-
I. INTRODUCTION

In fractured rocks of very low matrix permeability, suc
as crystalline rocks, fluid flow is often restricted to a fe
fractures, as shown by hydraulic field experiments@1#. The
occurrence of flow and transport in such fractured media
thus conditioned by the fracture-network connectivity at
system scale. The connectivity of fracture networks, wh
may be defined through the probability of connection o
system, has been determined for a variety of two- and th
dimensional elements. The early models using sticks in
dimensions@2,3# were followed by plates and polygons
three dimensions@4,5#, in order to account for more comple
shapes of elements. According to more recent observat
of fractured rocks, fractures are characterized not only b
variety of shapes but also by a broad range of lengths. T
length distribution is currently modeled by a power la
such as

n~ l !5a l 2a, ~1!

wheren( l )dl is the number of fractures having a length
the range@ l ,l 1dl#, a is the coefficient of proportionality
and a is an exponent varying generally between 1 and
@6,7#. The consequences of this wide and nonlimited rang
fracture lengths on connectivity have been studied in t
dimensions on off-lattice stick networks@8# as well as in
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three dimensions on on-lattice stick networks and on o
lattice networks of orthogonal planes@9#. In this paper, we
propose an enhanced analysis of the connectivity prope
of multiscale fracture networks. Fractures are modeled
more realistic elliptic shapes@1# and the connectivity is ana
lyzed for off-lattice networks of ellipses with widely sca
tered distributions of eccentricity and length~Fig. 1!.

In the scope of percolation theory, there is a single con
parameter—the percolation parameter—that statistic
measures the state of connection@10#. In short-range perco-
lation, i.e., when all elements are much smaller than the s
tem size, the control parameter is the density of obje
When systems are made up of elements of different sha
the total excluded volume gives a better percolation criter

FIG. 1. Infinite clusters at threshold fora53.25 and~a! e51
~563 disks! for the network on the left and~b! e50.1 ~4900 el-
lipses! for the network on the right. The gray scale shading is p
portional to the size of the element.
5948 ©2000 The American Physical Society
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than the density of objects and can thus be used as a b
parameter of percolation@11#.

However, because the natural fracture-length distribut
appears to be a power law~1!, fractures of the size of the
system appear with a non-negligible probability and int
duce long-range correlations. As a consequence, some
tems may be connected at all scales by a single cros
fracture. The probability of including in the system such
fracture increases with scale provided that the length dis
bution is broad enough, implying that the density of obje
at threshold, averaged over a large number of simulatio
decreases with the system size. The density is thus no lo
suitable for alone defining the connection state of the syst
In this study, we show that there still exists a scale-invari
parameter for such long-range percolation problems, wh
is no longer the average of the mutual excluded volumes
their geometrical union.

II. CLASSICAL EXPRESSION OF THE EXCLUDED
VOLUME FOR A WIDELY SCATTERED LENGTH

DISTRIBUTION OF OBJECTS

Because of its key role in this study, we give the detai
definition and expression of the total excluded volume a
has been classically derived first in short-range and secon
long-range percolation. In short-range percolation when
elements are identical, Balberget al. @11# define the ex-
cluded volume of an object (Ve) as ‘‘the volume around an
object into which the center of another similar object is n
allowed to enter if overlapping of the two objects is to
avoided.’’ The total excluded volume is this volume mul
plied by the number of elements at thresholdNc . For sys-
tems made up of nonidentical elements, the total exclu
volume ^Vex& is modified by replacing the mutual exclude
volumeVe by its average over all possible pairs of eleme
^Ve&. The variations of̂ Vex& at the percolation threshol
with respect to the element shape remain limited so
^Vex&50.7– 2.8 in three dimensions@12,13#. In long-range
percolation, the total excluded volume has been classic
derived according to the same two-stage method:~i! the
calculation of the mutual excluded volumeVe for two el-
lipses of different size and~ii ! the average over all possibl
pairs of ellipses to get the total excluded volume^Vex&.

~i! The mutual excluded volumeVe for any two convex
overlapping objects can be derived theoretically as it
pends only on the mean radii of curvatureR1 andR2 , on the
surface areasA1 andA2 , and on the volumes of the objec
V1 andV2 @14#:

Ve5V11V21
A1R21A2R1

4p
. ~2!

The expression for the mutual excluded volume of two di
of radii R has been analytically calculated and isVe5p2R3

@4#. In the more complex case of ellipses of eccentricitiese1
ande2 and of major-axis lengths,l 1 andl 2 , we computed the
excluded volume numerically following the procedure
@13# and found

Ve5p2
e1l 1

2l 21e2l 1l 2
2

2
. ~3!
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This last expression~3! is of the form of Eq.~2! and gener-
alizes the expression of the mutual excluded volume of t
disks.

~ii ! When averaged over all possible pair of ellipses h
ing distributions of both eccentricitiese and major axesl,
expression~3! leads to^Ve&5p2^e&^ l 2&^ l &. For a network
made up ofN elements, the total excluded volume is simp
the mutual excluded volume multiplied byN @11#:

^Vex&5p2N^e&^ l 2&^ l &. ~4!

In order to test our algorithms, we have computed^Vex&
for systems of volumeV made up of disks all having the
same radius much smaller than the system size, i.e., when
exponenta in Eq. ~1! tends toward infinity. We find a nor
malized total excluded volumêVex&/V of 2.2 which is in
close agreement with@5# but different from@13,15#. The dis-
crepancy of 20% with Charlaix’s result is likely to resu
from the different way of generating the Poisson distributi
of the disk centers.

When applied to systems having widely scattered dis
butions of element size such that their power-law length
ponenta in expression~1! is lower than 4, Eq.~4! normal-
ized by the system volume was found to vary over seve
orders of magnitude at the percolation threshold~Fig. 2!.
This conclusion confirms the results previously obtained
networks consisting of perpendicular planes@9#. Because of
its scale dependence, the normalized total excluded volu
cannot be used as a single order parameter for defining
state of connection of the system as it is in short-range p
colation theory. However, it is still exactly proportional t
the density of intersectionsI ~Fig. 3!. The number of inter-
sections per ellipse is given by the probability of intersect
between two ellipseŝVe&/V times the number of ellipsesN,
which leads toI 5^Vex&/V. As a consequence, at threshol
the number of intersections per object is no longer scale
variant as in short-range percolation@16#; more precisely, it
decreases by orders of magnitude. This especially imp
that the density of interconnected objects at the percola
threshold decreases with scale.

FIG. 2. ^Vex&/V at threshold normalized by the excluded volum
at the minimal sizeL0 for a5` ~squares!, 4 ~circles!, 3 ~upward
triangles!, and 2.5~downward triangles!.
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III. EXPRESSION OF THE PARAMETER
OF PERCOLATION FOR A WIDELY SCATTERED

LENGTH DISTRIBUTION OF OBJECTS

Previous numerical results obtained on networks made
of orthogonal planes seem to indicate that a scale-invar
expression is given by the third moment of the length dis
bution ^ l 3& rather than by the multiplication of the first mo
ment by the second moment^ l &^ l 2& @4,9#. We denote this
expression bŷV* & and derive it by replacinĝl &^ l 2& by ^ l 3&
in Eq. ~4!:

^V* &5p2N^e&^ l 3&. ~5!

We have checked that, whatever the length distributi
^V* &/V remains scale invariant for systems made up of di
@Fig. 4~a!# or of ellipses having either constant eccentricity
a uniform distribution of eccentricity@Fig. 4~b!#. Because of
its scale invariance,V* /V can be used as the parameter

FIG. 3. Relation between the number of intersections and
total excluded volumeI /@^Vex&/V# at threshold normalized by its
value at the minimal lengthL0 in the case of disks fora5` ~up-
ward triangles!, 3.5 ~circles!, and 2.5~squares!.
p
nt
-

,
s
r

f

percolationp, proving meanwhile that the state of connecti
of the system can still be characterized by a single or
parameter. We thus propose the following expression for
parameter of percolationp:

p5p2N^e&
^ l 3&
L3 , ~6!

whereL is the system size.
We note that the two expressions~4! and ~5! normalized

by the system volumeV, i.e., ^Vex&/V and ^V* &/V, lead
approximately to the same estimate, as long as the len
distribution remains bounded and narrow~i.e., for power-law
length distributions such thata.4!. On the other hand, when
the radius distribution is widely scattered—i.e., whena,4
in the case of the power-law distribution—the two formul
lead to very different estimates. This means especially
the right theoretical expression can be found only by stu
ing systems with widely scattered length distributions.

IV. RELATION BETWEEN THE CONCEPT
OF EXCLUDED VOLUME AND THE EXPRESSION

OF THE PARAMETER OF PERCOLATION

We have seen in the previous section that the class
total excluded volume is no longer connected to the para
eter of percolation. In this section, we show that the para
eter of percolationp as given by Eq.~6! still has meaning in
terms of mutual excluded volume. We argue that the volu
^V* & used in the derivation of the parameter of percolat
for a set ofN ellipses is the union of the mutual exclude
volumes of theN ellipses, whereas the total excluded volum
^Vex& is the average of the mutual excluded volumes over
possible pairs taken in the set formed by theN ellipses.

We calculate the contribution of theN ellipses to the
excluded-volume union by ordering them in decreasing s
The contribution of the largest ellipse to the exclude
volume union, along with all other disks, is given precise
by the excluded volume of the two largest elements of si
l and l -dl, because all other mutual excluded volumes
embedded in the excluded volume of these two largest
ments. From the expression for the mutual excluded volu
~3! and whendl! l , the contribution of the two largest ele

e

f

-

FIG. 4. Scale invariance o
V* /V for different length distribu-
tions in the case of~a! disks and
~b! ellipses having fixed eccen
tricities ~solid symbols! or a uni-
form distribution of eccentricities
~open symbols!.
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FIG. 5. ~a! Percolation thresholdpc against
the eccentricitye for a52.5 ~open circles!, 3 ~up-
ward open triangles!, 3.5 ~downward open
triangles!, 5 ~open squares!, and ` ~solid
squares!. ~b! Percolation thresholdpc against
the power-law length exponenta for different
values of the eccentricitye. Dashed lines indicate
the limits found by Balberg@12# for three-
dimensional networks.
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ments is given byp2^e& l 3. We then remove the largest ele
ment from the system in order to avoid redundancy and
culate the contribution of the remaining ellipses to t
excluded-volume union. This process iterated over all e
ments of decreasing size corresponds to integration ove
length distribution of ellipses, so that the excluded-volu
union is equal top2* l 3n( l )dl, which is preciselŷ V* &. We
thus demonstrate that the parameter of percolation is the
metrical union of the mutual excluded volumes.

The geometrical derivation of the excluded-volume un
is closely related to the theoretical concept of percolat
according to which the percolation threshold is reached w
the available volume in terms of excluded volume vanish
Moreover, the excluded-volume union^V* & can be domi-
nated by the largest elements, reflecting the fact that the
work can be connected by the largest elements. By avera
the mutual excluded volumes over all possible pairs of e
ments, the total excluded volume^Vex& removes this possi
bility and thus underestimates the connection probability
the system.

V. ESTIMATES OF THE PERCOLATION THRESHOLD pc

AND GEOLOGICAL IMPLICATIONS

In this section, we use the expression for the percola
parameterp ~6! to determine the percolation thresholdpc as
a function of the eccentricitye and of the power-law length
exponenta @Figs. 5~a! and 5~b!#. In the case of short-rang
percolation—i.e., for power-law length exponentsa larger
than 4—the values ofpc remain within the range 0.7–2.
found by Balberg@12# @Fig. 5~a!#. More generally, whateve
the length and eccentricity distributions, the values ofpc
remain restricted to a range of width smaller than one or
of magnitude, giving in turn a first-order criterion of perc
lation for systems made up of widely scattered length- a
aspect-ratio distributions.

The variations ofpc according toe and a display two
common characteristics:~i! an increase for decreasinga at
fixed eccentricitye @Fig. 5~b!# and ~ii ! a maximum when
varying the eccentricitye at fixed power-law length exponen
a @Fig. 5~a!#. As this topic is still under investigation, w
report here the most likely origins of these variations.~i!
The increase of the percolation thresholdpc when the power-
law length exponenta decreases@Fig. 5~b!# may be due to
truncation effects. Indeed, ellipses truncated by the side
the system~see Fig. 1! have an internal characteristic leng
l-
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smaller than the original one, and an aspect ratio larger t
the generated eccentricitye. Since the probability of occur-
rence of large truncated fractures increases whena de-
creases, we expect deviation due to the truncation effec
increase whena decreases. ~ii ! For networks made up o
elements all having the same length much smaller than
system size (a5`), the presence of the maximum may b
an effect of the varying aspect ratio. The value ofpc(e,a
5`) is thought to increase when the local anisotropy d
creases from that of sticks to that of spheres@11#. Applying
this reasoning to ellipses in three dimensions, the maxim
value of the percolation parameter at threshold is attai
when the local anisotropy is at a minimum. The local anis
ropy is a measure of the dispersion of the typical lengths
the ellipse in the three dimensions: 1,e, 0. Since the mini-
mum variance of this triplet is reached whene50.5, the total
excluded volume is expected to reach a maximum value
ellipses of eccentricity around 0.5.

The parameter of percolationp as defined by expressio
~6! can be derived analytically in the case of a power-l
length distribution such as Eq.~1!. As long asa,4, the
parameter of percolation depends on the system size asL42a

for a given network~i.e., for fixed values ofa and fracture
density!. This case is relevant to natural fractures who
power-length exponentsa are in the range 2.5–4@17#. The
percolation parameter is thus expected to increase with
tem size, implying that systems are on average unconne
at small scales and connected at large scales. The cross
scale above which fracture networks are always well c
nected is defined byp(L)5pc . This has a strong impact o
the hydraulic properties of geological media. If, at lo
scales, the crystalline rock permeability is very low becau
it is controlled by the matrix~nonfractured rock!, at scales
larger than the previously identified crossover scale, ther
an interconnected network of fractures, whose permeab
can be larger by several orders of magnitude, as observe
Clauser@18#. Similar conclusions have been drawn in clay
media@19#. The widely scattered fracture-length distributio
entails an increase of connectivity that in turn may chan
completely the hydraulic properties of the fractured medi

In conclusion, we have shown that the state of connec
of a system made up of elements having a widely scatte
and nonlimited length distribution is still determined by
single scale-invariant control parameter that we call, as
short-range percolation, the parameter of percolation. T
parameter of percolation has a meaning in terms of exclu
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volume as it is precisely the geometrical union of the mut
excluded volumes. On the other hand, the total exclu
volume—average of the mutual excluded volumes over
pairs of elements—previously proposed as a paramete
percolation decreases by orders of magnitude at thres
but still relates to the number of intersections. Fluctuatio
of the percolation threshold with eccentricity and length d
tributions remain limited to a range smaller than one orde
magnitude, giving thus a rough percolation criterion. Fina
our expression for the parameter of percolation underli
the increase of the connectivity of natural fractured med
n

l
d
ll
of
ld
s
-
f
,
s
,

which is consistent with the observed increase of permea
ity in fractured media.
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