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Collapse in a forced three-dimensional nonlinear Schrdinger equation
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We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear
Schralinger equation without dissipation. Numerical studies continue the results to the case of finite
dissipation.
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Wave collapse or singularity formation in a finite time in beam through the cavity mirroks<0. Finally, E is propor-
the solution of nonlinear partial differential equations de-tional to the amplitude of the external beam driving the cav-
scribing systems of dispersive waves is a striking and g_ener@{ly_
phenomenon of nonlinear physigs|. The nonlinear Schro Collapse dynamics may be considerably different in the
dinger equatior(NLS) is a universal model of weakly non- s and FNLS. In two dimensions the NLS is critical and
linear wave evolution, and is known to lead to collapse whengcalized solutions are at best marginally staf8g in the
the dimensionality of the problem is at leasfzd. Growth of  presence of perturbations they either decay or collapse in a
amplitudes of collapsing waves is accompanied by a drafinjte time. However, in the two-dimensional FNLS numeri-
matic contraction of the wave packet. In many cases theg results support the possible existence of stable localized
underlying physical system is dissipative so that it is naturake|ytions[7]. In three dimensions the NLS is supercritical
to account for a source of energy. A generalized forced NLS g there are no stable localized solutipBk Collapse dy-
(FNLS) that includes forcing and damping terms can be writ-namics in the three-dimensional FNLS have not been inves-

ten in the form tigated previously. Here we prove analytically in three di-
mensions that collapse takes place in the FNLS with zero

K1 ) X dissipationb=hb, under some integral restrictions on the ini-

I—-=by=V y—|yl*y+E. (1) tial conditions. Numerical studies confirm that collapse can

also occur for both signs df; .
For realb the steady-state plane-wave solutiggn of Eq.

Here b=b,+ib; is a complex constang is real, andV? (1) is real and governed by the equation
operates in 1, 2, or 3 dimensions. Whes E=0 we regain
the canonical NLS. Equatiofl) has been used in one and
two dimensions to describe the dynamics of wave packets
and solitons in plasmas, fluids, Josephson junctions, and op- ) ) _
tical problemg3]. For b=3(E/2)?® there is only one solution of E¢2). This

The present work has been motivated by recent studies §olution is linearly stable with respect to space-homogene_ous
three-dimensional space-time focusing and structure formaRerturbations. Nevertheles; for inhomogeneous perturbations
tion in nonlinear optical cavities pumped by an external traind% €' " there always exists a nonzero wave vedtofor
of pulseg4,5]. In that context collapse is an effective mecha-Which Eq. (2) is unstable. Fob>3(E/2)** there are three
nism for generating ultrashort pulses from initially smoothsolutions of Eq.(2). Two of them are linearly stable with
wave packetsy represents the slowly varying amplitude of féspect to space-homogeneous perturbations and the third
the electric field, the medium is assumed to exhibit anomaPne is unstable. Among the two stable solutions one is un-
lous dispersion, and the three dimensional Laplacian opestable with respect to perturbations with nonzkrdout the
ates onr = (xy,X,,X3), wherex; ,x, are two transverse spa- second solution  yp=2\b/3 cosgp—2m)/3, é
tial coordinates and,; describes the longitudinal extent of =arctan/4b%27E2—1 with asymptotic yso— —1/b for b
the pulse in a frame traveling with the group velocity. The — is stable for all values ok.
real part ofb is proportional to the phase shift suffered by the ~ We consider the FNLS in a finite box of size (—L/2
field in one cavity round trip. The imaginary part bfis ~ <xj<L/2, j=1,2,3) with the boundary conditions on the
positive if the optical cavity includes an energy source thatsurface of the box corresponding to the steady-state solution
amplifies the circulating pulse. In the case of a passive cavity2):
with losses due to absorption and/or transmission of the

Y3—byy—E=0. (2)

=0, j=123. @3

surface

& =i, =
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is an integral of motion but the number of particlés
= [||?d®x is no longer an integral of the motion sinbg f 12| y|3d3 = ﬂf r|y3d%x
=iE[(— ¢*)d3x contrary to the usual NLS wheé,=0. 2

To find a sufficient collapse condition in the FNLS con-
sider the temporal evolution of the quantityA < EAUZ([ | ] 4d3x
=[r2|y]?d®x, r?=x’ (repeated inde) means summation 2
over all space coordinatgs=1, .. .,3). A2/N is the average 12
width of the distribution ofyy or simply(r<) in the quantum 1
mechanical interpretationlf)f the FFl)\lyL<S >Using Eﬁg), inte- f |'/’|d3X$( f r—2d3x A= (2m\3L) A,
grating by parts, and taking into account boundary conditions (8b)
(3) we get for the first time derivative

) || 5 . a sufficient collapse condition for the largest possible values
[V|*= == +blp*+E(y+¢*) |d* (4  of L. We use a number of inequalities that follow from the
Cauchy-Schwarz inequality in a finite box:

1/2

. (8

1/2 L5/2
9 9 2 3 243 12— AlP2
At=f 2ixj(¢gdf*—<//*gdf (g o) |dPx, f r? g d3x= fr d°x| A=A (8¢
j ]
) We need additionally to estimab¢which can be done by
In a similar way after a second differentiation byve get integration by parts and applying the Cauchy-Schwarz in-
equality[9]
Ay=2aH—(2a—8 f V | 2d3x— 6—af 4d3x 2 d|y? 2 12
tt ( ) | lr//| ( ) |l;b| N___j Xj |l/I| d3X$_A1/2(f |V|l//||2d3x
3 an 3
—Zabf |¢|2d3x—E(12+2a)f (y+ % )d3x 2 12
sgAl’z(f |V /] 2d3x 9
_ 2 2 *\ _ *\ _ 3
Efr [yt ™) = byt y*) — 2E]d Using Egs. (8a—(8c) and introducing the notatiorX

- 2043y v/ — (11443
+ 63 Y2+ 4E), ®) TIVy|2d3x, Y= []y|*d*x we get

, o ) Ay<2aH—-(2a—8)X—(6—a)Y—2abN+4(6+«a)
where the sum of all terms proportional tois identically
zero[see Eq.(4)]. Thus« is an arbitrary real number. We
will be interested in the rangesda<6 where both the sec-
ond and third terms on the right-hand side of Eg).are not
positive, and they can be effectively used for estimating a +6L3 (5 +4). (10
bound onA,; from above.

Following the analysis of the usual NLS we refer to this But
expression as the virial theorem. Note that in the casg of

LS
X (27y/3L)Y2AV24 \[BLAYAY V24 || 527124 R

2 2 2
=0 we return to the virial theorem for the NL[8,6]. Below —pY+qYH2=— p( yl2_ i) + a_a (11)
we suppose thd# 0 which allows us by proper rescaling of 2p) 4p 4p
b, ¢, r, andt to setE=1 without loss of generality. In order _
to establish a sufficient condition for collapse we bound Eqfor arbitrary realY, g andp>0. Thus we have
(6) from above and find an integral estimate for initial con- 2
ditions of the FNLS for whiclA becomes negative in afinite A <24H— (20 —8)X— 2abN+mA+ [4(6+ @)

time. BecauseéA is a positive-definite function this means
singularity formation in the solution of the FNLS together L5
with catastrophic squeezing of the distribution| ¢f. X(27/3L) Y2+ |b| LY A2+ — + 6L3yo( 43+ 4).
Bounding Eq.(6) from above we get 2
(12)
243 443
Att$2aH—(2a—8)f Vyl*d X_(G_a)f |¢*d Forb=0 we seta=4 and bound the right-hand side of this
inequality from above using the inequality<3L2N/4

—2abf |¢|2d3x+4(6+a)J |¢;|d3x+fr2[2|¢|3

2
3 Ay<8H+| — Eb+£ A+[40(27T\/§L]1/2
+2|bl [yl +2]d*x+ 6L oY+ 4). () 3Lz 8
In contrast to the NLS we can prove a sufficient collapse 5/21 A 1/2 L° 3 3
condition for the FNLS only in a finite box. It is possible to +[b|LE AT 7+6L Yoot 4). (13

bound positive-definite terms on the right-hand side of Eq.
(7) by different approaches. Our primary aim below is to get Forb<0 we can estimat8l in Eq. (12) via Eq.(9) to get



PRE 62

2
Ay<2aH—(2a—8)X— 2ab§A1/2X1/2

3L?
1/2 5/ 1/2
+—4(6_a)A+[4(6+a)(27n/3L) +|b|L%?]A
5

L
+ = +6L3yg(yi+4).

. 14

In turn from Eq.(11) (where we useN instead ofY) we

obtain

3L2
4(6—a)

2 a?b?
9a—da) "

Ay<2aH+ A+[4(6+a)

L5
X(273L) Y%+ |b|LIZIAYZ 4 —- + 8L (3 + 4).

(15

To get the best estimate it is necessary to find the mini-_

mum of this expression as a function @fon the interval 4

tion for arbitrary values of parametelsL ,A is too cumber-

some to be written here explicitly. Instead we set below
=5 keeping in mind, however, that this is not the strictest

possible estimate.
Both differential inequalitie$13) and(15) (for «=5) can
be rewritten as

_AU(A)

tt = A _gz(t), (16)
where
Wy 2w,A%?
U(A)=—WoA— —A2— —— (17
2 3
L5
8H+7+6L3¢0(¢3+4), b=0
WO: L5
10H+7+6L3¢0(¢8+4), b<0,
32 3L?
——b+—, b=0
3L2 8 18
W:
] sm? 3L?
4+ b<oO
9 4

40(2m\3L)Y2+|b|L5%2  b=0

W:
2| 4427 3L) Y2+ |p[L52  b<O

and g?(t) is some unknown non-negative function of time.

Equation (16) has a simple mechanical analf@jywith the
motion of a “particle” with coordinateA under the influence
of the potential force- dU(A)/JA in addition to the force

COLLAPSE IN A FORCED THREE-DIMENSIONA . . .
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FIG. 1. Typical behavior of potentidl (A) from Eq. (17) for
five qualitatively different caseswy>0w;>0 (curve J; w,
<OW; <0W5>4wew, (curve 2; Wo<0w;<0w3<4wow; (curve
3); wo<Ow;>0 (curve 9; wy>0w,<0 (curve 5.

were to reach the origin without the influence of the force
g?(t) then it would reach the origin even faster under the

: ) o . additional influence of this nonpositive force. Therefore, we
< @=<6. But an analytical expression for the minimum posi-

consider below the particle dynamics without the influence
of the nonconservative force g2(t).

It follows from Eq. (18) thatw,>0 for all values of pa-
rametersb,L thus we can classify the potential(A) de-
pending on the signs ofig, wy, andw§—4w0wl (see Fig.

1). In particular, forw,<0, w; <0, w3>4wgw; (curve 2 or
wy<0, w;>0 (curve 4 the potential has a barrier at

- ( \/W§—4WOW1—W2) 2

m 2W1 (19)

with particle energy,,= U (A, at the top. In the other cases
(curves 1,3,bthere is no barrier. Thus we can separate suf-
ficient collapse conditions into four different cases:

(@ for wg=0, w;=0, £0)>0, A{;-o<0 the particle
reaches the origin in a finite time irrespective of the initial
value ofAl_;

(b) for either wy=0, w;<0, £0)>0 or wy<0, w;y
<0, w§<4w0w1 the particle reaches the origin in a finite
time for all possible initial values oA|,_q andA|;—o;

(c) for eitherwy<<0, w;<0, W5>4wow; or We<0, W,
>0 together with conditiong\|;_ <A, £(0)<&, the par-
ticle cannot overcome the barrier from left to right thus it
always falls to the origin in a finite time;

(d) for eitherwo<0, w;<<0, W5>4wow; or We<<0, W,
>0 together with conditiong(0)>&,,,, A|=o<0 the par-
ticle is able to overcome the barrier thus it always falls to the
origin in a finite time irrespective of the initial value of
Ali-o-

Note that we prove analytically only sufficient collapse
conditions. It means that even if none of conditions a,b,c,d
are satisfied we cannot exclude collapse formation for some
particular values of the initial conditions of Eq4). To find
a strict boundary of collapse formation we have assumed
radial symmetry and integrated E@.) on the domain &r

—g?(t). Due to the influence of the nonpotential force ) = )
—g2(t) the total energy of the particle is time dependent: <L/2 with the boundary conditiotk |, ., - and Gaussian-

. - . _p22
E(t)=A?/2+U(A). Collapse certainly occurs if the “par- like initial coznglmon Pli—o= ot p{e P +[pAr?-1
ticle” reaches the origilA=0. It is clear that if the particle — B?(L%/4)]e #"-""4}, wherep and 3 are arbitrary complex
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FIG. 2. Collapse threshold found numericallgotted curves
with symbolg and analytically(solid curve$ as a function oL (a)
and g (b), for b=2,10.

FIG. 3. Influence of dissipation on the collapse threshold for
b,=2 (circles and b,=10 (squarep with L=5. Solid curvesg
=1, dashed curveg=2, and dotted curve=0.5.

i L2/ . . L .
and real parameters, respectively. We Suppose.e.théﬂ- points. Thus in that case our collapse criterion is especially
<1, thus the difference between boundary conditions used ifg|pfy.

numerics and Eq(3) is exponentially small. We seb Experimental observation of three-dimensional solitons in

>3/2%° and choosey, corresponding to the stable branch of gptical cavities will realistically require finite dissipation and
Eq. (2). For the initial amplitude we use=|p|e'*9“0. Fig- 0 The effect of dissipation on collapse is shown in Fig.
ures ;{a) and 2b) give the dependence of co_llapse thresholds where|pynresi(bi)| is given for several values &f. and .
amplitudepyyresn 0N B andL obtained numerically and ana- The collapse threshold increases as the dissipation is raised.
lytically from the sufficient collapse criteria. Note that de-  From a physical point of view it is clear that collapse can
pending on the param_eters the analytical value of the threshysg occur in the limit. — o because for rapidly decaying
old corresponds to different casém, (b), (c), or (d). The ijtia| conditions ¢|;,_...— 0 the tails of|¢| have no influ-
shape of the collapse threshold curves found analytically andnce on collapse. But we can analytically prove sufficient
numerically is similar, although they differ in amplitude by a ¢o|japse conditions only for finite. Nevertheless the suffi-
numer!cal fa_ctor of order 5. The collapse threshold fo!mdcient collapse criterion can predict collapse for so lakge
numerically is of course always lower than the analyticalihat g differences between collapse in a finite box and in an
result, since the analysis predicts only a sufficient conditionyfinite domain will be determined by exponentially small
for collapse. tails of the| | distribution. The collapse, of course, occurs in

/3 " o . : ) : .
_ Forb=3/2" our sufficient collapse criterion can also pre- thjs case and numerical simulations support that conclusion.
dict collapse but numerical simulations assuming radial sym-

metry are not useful because any background solution of Eq.
(2) is modulationally unstable. Thus any general perturbation The work of P.M.L. was supported by the Department of

that breaks the radial symmetry will grow at least exponenEnergy under Contract No. W-7405-ENG-36, RFBRrant
tially in time. In the NLS the nonlinear stage of the modula-No. 97-01-00098 the program of government support for
tional instability results in a set of collapsing filaments andleading scientific school&Grant No. 96-15-96093 Landau
we expect a similar scenario here. Thus we would need téoundation (KFA, Forschungszentrum, lich, Germany,
make full 3D simulations of collapse formation which are and INTAS(Grant No. 96-0954 M.S. was supported by the
computationally very expensive, especially near singularitypanish Natural Science Research Council.
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