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Collapse in a forced three-dimensional nonlinear Schro¨dinger equation
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We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear
Schrödinger equation without dissipation. Numerical studies continue the results to the case of finite
dissipation.

PACS number~s!: 42.65.Tg, 42.65.Sf
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Wave collapse or singularity formation in a finite time
the solution of nonlinear partial differential equations d
scribing systems of dispersive waves is a striking and gen
phenomenon of nonlinear physics@1#. The nonlinear Schro¨-
dinger equation~NLS! is a universal model of weakly non
linear wave evolution, and is known to lead to collapse wh
the dimensionality of the problem is at least 2@2#. Growth of
amplitudes of collapsing waves is accompanied by a d
matic contraction of the wave packet. In many cases
underlying physical system is dissipative so that it is natu
to account for a source of energy. A generalized forced N
~FNLS! that includes forcing and damping terms can be w
ten in the form

i
]c

]t
5bc2¹2c2ucu2c1E. ~1!

Here b5br1 ibi is a complex constant,E is real, and¹2

operates in 1, 2, or 3 dimensions. Whenb5E50 we regain
the canonical NLS. Equation~1! has been used in one an
two dimensions to describe the dynamics of wave pack
and solitons in plasmas, fluids, Josephson junctions, and
tical problems@3#.

The present work has been motivated by recent studie
three-dimensional space-time focusing and structure for
tion in nonlinear optical cavities pumped by an external tr
of pulses@4,5#. In that context collapse is an effective mech
nism for generating ultrashort pulses from initially smoo
wave packets.c represents the slowly varying amplitude
the electric field, the medium is assumed to exhibit anom
lous dispersion, and the three dimensional Laplacian o
ates onr5(x1 ,x2 ,x3), wherex1 ,x2 are two transverse spa
tial coordinates andx3 describes the longitudinal extent o
the pulse in a frame traveling with the group velocity. T
real part ofb is proportional to the phase shift suffered by t
field in one cavity round trip. The imaginary part ofb is
positive if the optical cavity includes an energy source t
amplifies the circulating pulse. In the case of a passive ca
with losses due to absorption and/or transmission of
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beam through the cavity mirrorsbi,0. Finally, E is propor-
tional to the amplitude of the external beam driving the ca
ity.

Collapse dynamics may be considerably different in
NLS and FNLS. In two dimensions the NLS is critical an
localized solutions are at best marginally stable@6#; in the
presence of perturbations they either decay or collapse
finite time. However, in the two-dimensional FNLS nume
cal results support the possible existence of stable local
solutions@7#. In three dimensions the NLS is supercritic
and there are no stable localized solutions@6#. Collapse dy-
namics in the three-dimensional FNLS have not been inv
tigated previously. Here we prove analytically in three d
mensions that collapse takes place in the FNLS with z
dissipationb[br under some integral restrictions on the in
tial conditions. Numerical studies confirm that collapse c
also occur for both signs ofbi .

For realb the steady-state plane-wave solutionc0 of Eq.
~1! is real and governed by the equation

c0
32bc02E50. ~2!

For b<3(E/2)2/3 there is only one solution of Eq.~2!. This
solution is linearly stable with respect to space-homogene
perturbations. Nevertheless for inhomogeneous perturbat
dc}eık•r there always exists a nonzero wave vectork for
which Eq. ~2! is unstable. Forb.3(E/2)2/3 there are three
solutions of Eq.~2!. Two of them are linearly stable with
respect to space-homogeneous perturbations and the
one is unstable. Among the two stable solutions one is
stable with respect to perturbations with nonzerok, but the
second solution c052Ab/3 cos(f22p)/3, f
5arctanA4b3/27E221 with asymptoticc0→21/b for b
→` is stable for all values ofk.

We consider the FNLS in a finite box of sizeL: (2L/2
<xj<L/2, j 51,2,3) with the boundary conditions on th
surface of the box corresponding to the steady-state solu
~2!:

c U
sur f ace

5c0 ,
]c

]xj
U

sur f ace

50, j 51,2,3. ~3!

The FNLS can be written in the Hamiltonian formic t
5dH/dc* , where the Hamiltonian

l

n-
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H5E F u¹cu22
ucu4

2
1bucu21E~c1c* !Gd3x ~4!

is an integral of motion but the number of particlesN
5* ucu2d3x is no longer an integral of the motion sinceNt
5 iE*(c2c* )d3x contrary to the usual NLS whereNt50.

To find a sufficient collapse condition in the FNLS co
sider the temporal evolution of the quantityA
5*r 2ucu2d3x, r 25xj

2 ~repeated indexj means summation
over all space coordinatesj 51, . . .,3). A/N is the average
width of the distribution ofc or simply ^r 2& in the quantum
mechanical interpretation of the FNLS. Using Eq.~1!, inte-
grating by parts, and taking into account boundary conditi
~3! we get for the first time derivative

At5E F2ix j S c
]

]xj
c* 2c*

]

]xj
c D1 ir 2E~c2c* !Gd3x.

~5!

In a similar way after a second differentiation byt we get

Att52aH2~2a28!E u¹cu2d3x2~62a!E ucu4d3x

22abE ucu2d3x2E~1212a!E ~c1c* !d3x

2EE r 2@ ucu2~c1c* !2b~c1c* !22E#d3x

16L3c0~c0
314E!, ~6!

where the sum of all terms proportional toa is identically
zero @see Eq.~4!#. Thusa is an arbitrary real number. W
will be interested in the range 4<a<6 where both the sec
ond and third terms on the right-hand side of Eq.~6! are not
positive, and they can be effectively used for estimatin
bound onAtt from above.

Following the analysis of the usual NLS we refer to th
expression as the virial theorem. Note that in the case oE
50 we return to the virial theorem for the NLS@8,6#. Below
we suppose thatEÞ0 which allows us by proper rescaling o
b, c, r , andt to setE51 without loss of generality. In orde
to establish a sufficient condition for collapse we bound E
~6! from above and find an integral estimate for initial co
ditions of the FNLS for whichA becomes negative in a finit
time. BecauseA is a positive-definite function this mean
singularity formation in the solution of the FNLS togeth
with catastrophic squeezing of the distribution ofucu.

Bounding Eq.~6! from above we get

Att<2aH2~2a28!E u¹cu2d3x2~62a!E ucu4d3x

22abE ucu2d3x14~61a!E ucud3x1E r 2@2ucu3

12ubuucu12#d3x16L3c0~c0
314!. ~7!

In contrast to the NLS we can prove a sufficient collap
condition for the FNLS only in a finite box. It is possible t
bound positive-definite terms on the right-hand side of E
~7! by different approaches. Our primary aim below is to g
s

a

.

e

.
t

a sufficient collapse condition for the largest possible val
of L. We use a number of inequalities that follow from th
Cauchy-Schwarz inequality in a finite box:

E r 2ucu3d3x<
A3L

2 E r ucu3d3x

<
A3L

2
A1/2S E ucu4d3xD 1/2

, ~8a!

E ucud3x<S E 1

r 2
d3xD 1/2

A1/2<~2pA3L !1/2A1/2,

~8b!

E r 2ucud3x<S E r 2d3xD 1/2

A1/2<
L5/2

2
A1/2. ~8c!

We need additionally to estimateN which can be done by
integration by parts and applying the Cauchy-Schwarz
equality @9#

N52
2

3E xj

]ucu2

]xj
d3x<

2

3
A1/2S E u¹ucuu2d3xD 1/2

<
2

3
A1/2S E u¹cu2d3xD 1/2

. ~9!

Using Eqs. ~8a!–~8c! and introducing the notationX
5* u¹cu2d3x, Y5* ucu4d3x we get

Att<2aH2~2a28!X2~62a!Y22abN14~61a!

3~2pA3L !1/2A1/21A3LA1/2Y1/21ubuL5/2A1/21
L5

2

16L3c0~c0
314!. ~10!

But

2pY1qY1/252pS Y1/22
q

2pD 2

1
q2

4p
<

q2

4p
~11!

for arbitrary realY, q andp.0. Thus we have

Att<2aH2~2a28!X22abN1
3L2

4~62a!
A1@4~61a!

3~2pA3L !1/21ubuL5/2#A1/21
L5

2
16L3c0~c0

314!.

~12!

For b>0 we seta54 and bound the right-hand side of th
inequality from above using the inequalityA<3L2N/4

Att<8H1S 2
32

3L2
b1

3L2

8 D A1@40~2pA3L#1/2

1ubuL5/2#A1/21
L5

2
16L3c0~c0

314!. ~13!

For b,0 we can estimateN in Eq. ~12! via Eq.~9! to get
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Att<2aH2~2a28!X22ab
2

3
A1/2X1/2

1
3L2

4~62a!
A1@4~61a!~2pA3L !1/21ubuL5/2#A1/2

1
L5

2
16L3c0~c0

314!. ~14!

In turn from Eq. ~11! ~where we useN instead ofY) we
obtain

Att<2aH1S 2a2b2

9~a24!
1

3L2

4~62a! DA1@4~61a!

3~2pA3L !1/21ubuL5/2#A1/21
L5

2
16L3c0~c0

314!.

~15!

To get the best estimate it is necessary to find the m
mum of this expression as a function ofa on the interval 4
<a<6. But an analytical expression for the minimum po
tion for arbitrary values of parametersb,L,A is too cumber-
some to be written here explicitly. Instead we set belowa
55 keeping in mind, however, that this is not the strict
possible estimate.

Both differential inequalities~13! and~15! ~for a55) can
be rewritten as

Att52
]U~A!

]A
2g2~ t !, ~16!

where

U~A!52w0A2
w1

2
A22

2w2A3/2

3
, ~17!

w05H 8H1
L5

2
16L3c0~c0

314!, b>0

10H1
L5

2
16L3c0~c0

314!, b,0,

w155 2
32

3L2
b1

3L2

8
, b>0

50b2

9
1

3L2

4
, b,0

~18!

w25H 40~2pA3L !1/21ubuL5/2, b>0

44~2pA3L !1/21ubuL5/2, b,0

and g2(t) is some unknown non-negative function of tim
Equation (16) has a simple mechanical analogy@9# with the
motion of a ‘‘particle’’ with coordinateA under the influence
of the potential force2]U(A)/]A in addition to the force
2g2(t). Due to the influence of the nonpotential force
2g2(t) the total energyE of the particle is time dependen
E(t)5At

2/21U(A). Collapse certainly occurs if the ‘‘par
ticle’’ reaches the originA50. It is clear that if the particle
i-

-

t

were to reach the origin without the influence of the forc
2g2(t) then it would reach the origin even faster under t
additional influence of this nonpositive force. Therefore,
consider below the particle dynamics without the influen
of the nonconservative force2g2(t).

It follows from Eq. ~18! that w2.0 for all values of pa-
rametersb,L thus we can classify the potentialU(A) de-
pending on the signs ofw0 , w1, andw2

224w0w1 ~see Fig.
1!. In particular, forw0,0, w1,0, w2

2.4w0w1 ~curve 2! or
w0,0, w1.0 ~curve 4! the potential has a barrier at

Am5SAw2
224w0w12w2

2w1
D 2

~19!

with particle energyEm5U(Am) at the top. In the other case
~curves 1,3,5! there is no barrier. Thus we can separate s
ficient collapse conditions into four different cases:

~a! for w0>0, w1>0, E(0).0, Atu t50,0 the particle
reaches the origin in a finite time irrespective of the init
value ofAu t50;

~b! for either w0>0, w1,0, E(0).0 or w0,0, w1

,0, w2
2,4w0w1 the particle reaches the origin in a finit

time for all possible initial values ofAu t50 andAtu t50;
~c! for either w0,0, w1,0, w2

2.4w0w1 or w0,0, w1

.0 together with conditionsAu t50,Am , E(0),Em the par-
ticle cannot overcome the barrier from left to right thus
always falls to the origin in a finite time;

~d! for either w0,0, w1,0, w2
2.4w0w1 or w0,0, w1

.0 together with conditionsE(0).Em , Atu t50,0 the par-
ticle is able to overcome the barrier thus it always falls to
origin in a finite time irrespective of the initial value o
Au t50.

Note that we prove analytically only sufficient collaps
conditions. It means that even if none of conditions a,b,
are satisfied we cannot exclude collapse formation for so
particular values of the initial conditions of Eqs.~1!. To find
a strict boundary of collapse formation we have assum
radial symmetry and integrated Eq.~1! on the domain 0<r
,L/2 with the boundary conditionc r ur→L/250 and Gaussian-
like initial condition cu t505c01p $e2b2r 2

1@b2r 221
2b2(L2/4)#e2b2L2/4%, wherep andb are arbitrary complex

FIG. 1. Typical behavior of potentialU(A) from Eq. ~17! for
five qualitatively different cases:w0.0,w1.0 ~curve 1!; w0

,0,w1,0,w2
2.4w0w1 ~curve 2!; w0,0,w1,0,w2

2,4w0w1 ~curve
3!; w0,0,w1.0 ~curve 4!; w0.0,w1,0 ~curve 5!.
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5796 PRE 62P. M. LUSHNOKOV AND M. SAFFMAN
and real parameters, respectively. We suppose thate2b2L2/4

!1, thus the difference between boundary conditions use
numerics and Eq.~3! is exponentially small. We setb
.3/22/3 and choosec0 corresponding to the stable branch
Eq. ~2!. For the initial amplitude we usep5upueıarg(c0). Fig-
ures 2~a! and 2~b! give the dependence of collapse thresh
amplitudepthresh on b andL obtained numerically and ana
lytically from the sufficient collapse criteria. Note that d
pending on the parameters the analytical value of the thr
old corresponds to different cases~a!, ~b!, ~c!, or ~d!. The
shape of the collapse threshold curves found analytically
numerically is similar, although they differ in amplitude by
numerical factor of order 5. The collapse threshold fou
numerically is of course always lower than the analyti
result, since the analysis predicts only a sufficient condit
for collapse.

For b<3/22/3 our sufficient collapse criterion can also pr
dict collapse but numerical simulations assuming radial sy
metry are not useful because any background solution of
~2! is modulationally unstable. Thus any general perturbat
that breaks the radial symmetry will grow at least expon
tially in time. In the NLS the nonlinear stage of the modu
tional instability results in a set of collapsing filaments a
we expect a similar scenario here. Thus we would need
make full 3D simulations of collapse formation which a
computationally very expensive, especially near singula

FIG. 2. Collapse threshold found numerically~dotted curves
with symbols! and analytically~solid curves! as a function ofL ~a!
andb ~b!, for b52,10.
s
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points. Thus in that case our collapse criterion is especi
helpful.

Experimental observation of three-dimensional solitons
optical cavities will realistically require finite dissipation an
biÞ0. The effect of dissipation on collapse is shown in F
3 whereupthresh(bi)u is given for several values ofbr andb.
The collapse threshold increases as the dissipation is ra

From a physical point of view it is clear that collapse c
also occur in the limitL→` because for rapidly decayin
initial conditionscu ur u→`→0 the tails ofucu have no influ-
ence on collapse. But we can analytically prove sufficie
collapse conditions only for finiteL. Nevertheless the suffi
cient collapse criterion can predict collapse for so largeL
that all differences between collapse in a finite box and in
infinite domain will be determined by exponentially sma
tails of theucu distribution. The collapse, of course, occurs
this case and numerical simulations support that conclus

The work of P.M.L. was supported by the Department
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No. 97-01-00093!, the program of government support fo
leading scientific schools~Grant No. 96-15-96093!, Landau
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FIG. 3. Influence of dissipation on the collapse threshold
br52 ~circles! and br510 ~squares! with L55. Solid curvesb
51, dashed curvesb52, and dotted curvesb50.5.
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