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Long-range interaction and nonlinear localized modes in photonic crystal waveguides
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We develop the theory of nonlinear localized modes~intrinsic localized modes or discrete breathers! in
two-dimensional~2D! photonic crystal waveguides. We consider different geometries of the waveguides cre-
ated by an array of nonlinear dielectric rods embedded into an otherwise perfect linear 2D photonic crystal, and
demonstrate that the effective interaction in such waveguides is nonlocal, being described by a nonlinear lattice
model with long-range coupling and nonlocal nonlinearity. We reveal the existence of different types of
nonlinear guided mode that are also localized in the waveguide direction, and describe their unique properties,
including bistability.

PACS number~s!: 42.70.Qs, 42.79.Gn, 42.65.Wi, 42.65.Tg
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I. INTRODUCTION

In physics, the idea of localization is generally associa
with disorder that breaks translational invariance. Howev
research in recent years has demonstrated that localiz
can occur in the absence of any disorder and solely du
nonlinearity, in the form ofintrinsic localized modes, also
called discrete breathers@1#. A rigorous proof of the exis-
tence of time-periodic, spatially localized solutions descr
ing such nonlinear modes has been presented for a b
class of Hamiltonian coupled-oscillator nonlinear lattices@2#,
but approximate analytical solutions can also be found
many other cases, demonstrating the generality of the c
cept of nonlinear localized modes.

Nonlinear localized modes can be easily identified in n
merical molecular-dynamics simulations in many differe
physical models~see, e.g., Ref.@1# for a review!, but only
very recently have the first experimental observations of s
tially localized nonlinear modes been reported in mixe
valence transition metal complexes@3#, quasi-one-
dimensional antiferromagnetic chains@4#, and arrays of
Josephson junctions@5#. Importantly, very similar types o
spatially localized nonlinear modes have been experim
tally observed in macroscopic mechanical@6# and guided-
wave optical@7# systems.

Recent experimental observations of nonlinear locali
modes, as well as numerous theoretical results, indicate
both effects, i.e., nonlinearity-induced localization and s
tially localized modes, can be expected in physical syste
of very different nature. From the viewpoint of possib
practical applications, self-localized states in optics seem
be the most promising ones; they can lead to different ty
of nonlinear all-optical switching devices where light m
nipulates and controls light itself, by varying the input inte
sity. As a result, the study of nonlinear localized modes
photonic structures is expected to lead to a variety of reali
applications of intrinsic localized modes.

One of the promising fields where the concept of nonl
ear localized modes may find practical applications is in

*On leave from the Bogolyubov Institute for Theoretical Physi
14-b Metrologichna Str., Kiev 03143, Ukraine.
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physics ofphotonic crystals@or photonic band gap~PBG!
materials#—periodic dielectric structures that produce ma
of the same phenomena for photons as does the crysta
atomic potential for electrons@8#. Three-dimensional~3D!
photonic crystals for visible light have been successfully fa
ricated only within the past year or two, and presently ma
research groups are working on creating tunable band-
switches and transistors operating entirely with light. T
most recent idea is to employ nonlinear properties of ba
gap materials, thus creating nonlinear photonic crystals
have 2D or 3D periodic nonlinear susceptibility@9,10#.

Nonlinear photonic crystals or photonic crystals with e
bedded nonlinear impurities create an ideal environment
the generation and observation of nonlinear localized pho
nic modes. In particular, the existence of such modes for
frequencies in the photonic band gaps has been predi
@11# for 2D and 3D photonic crystals with Kerr nonlinearity
Nonlinear localized modes can also be excited at nonlin
interfaces with quadratic nonlinearity@12#, or along dielec-
tric waveguide structures possessing a nonlinear Kerr-t
response@13#. In this paper, we analyze nonlinear localize
modes in 2D photonic crystal waveguides. We consider
waveguides created by an array of dielectric rods embed
into an otherwise perfect 2D photonic crystal. It is assum
that the dielectric constant of the waveguide rods depend
the field intensity~due to the Kerr effect!, so that waveguides
of different geometries can support a variety of nonline
guided modes. We demonstrate here that localization
occur in the propagation direction creating a 2D spatia
localized mode~see Fig. 9 below!. As follows from our re-
sults, the effective interaction in such nonlinear waveguid
is nonlocal, and the nonlinear localized modes are descr
by a nontrivial generalization of nonlinear lattice mode
with long-range coupling and nonlocal nonlinearity.

II. MODEL

We consider a 2D photonic crystal created by a squ
lattice of parallel, infinitely long dielectric columns~or rods!
in air. The rods are assumed to be parallel to thex3 axis, so
that the system is characterized by the dielectric cons
e(x)5e(x1 ,x2). The evolution of theE-polarized light@with
the electric field having the structureE5(0,0,E)#, propagat-

,
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ing in the (x1 ,x2) plane, is governed by the scalar wa
equation

¹2E~x,t !2
1

c2
] t

2@e~x!E#50, ~1!

where¹2[]x1

2 1]x2

2 . For monochromatic light, we conside

the stationary solutions

E~x,t !5e2 ivtE~xuv!,

and the equation of motion~1! reduces to the simple eigen
value problem

F¹21S v

c D 2

e~x!GE~xuv!50. ~2!

This eigenvalue problem can be solved, e.g., by the pl
wave method@14#, in the case of a perfect photonic crysta
for which the dielectric constante(x)[epc(x) is a periodic
function

epc~x1si j !5epc~x!, ~3!

wherei and j are arbitrary integers and

si j 5 ia11 j a2 ~4!

is a linear combination of the primitive lattice vectorsa1 and
a2 of the 2D photonic crystal.

For definiteness, we consider the 2D photonic crystal e
lier analyzed~in the linear limit! in Refs. @15,16#, i.e., we
assume that the rods are identical and cylindrical, with rad
r 050.18a and dielectric constante0511.56. The rods form
a perfect square lattice with the distancea between two
neighboring rods, i.e.a15ax1 and a25ax2. The frequency
band structure for this type of 2D photonic crystal, and
the selected polarization of the electric field, is shown in F
1. As follows from the structure of the frequency spectru
there exists a large~38%! band gap that extends from th
lower cutoff frequencyv50.30232pc/a to the upper band-
gap frequencyv50.44332pc/a. Since the characteristic
of a PBG material remain unchanged under rescaling, we
assume that this gap is created in either the infrared or vis

FIG. 1. The band-gap structure of the photonic crystal cons
ing of a square lattice of dielectric rods withr 050.18a and e0

511.56~the band gaps are shaded gray!. The top right inset shows
a cross-sectional view of the 2D photonic crystal. The bottom ri
inset shows the corresponding Brillouin zone, with the irreduci
zone shaded gray.
e
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region of the spectrum. For example, if we choose the lat
constant to bea50.58 mm, the wavelength correspondin
to the mid-gap frequency will be 1.55mm.

The light cannot propagate through the photonic crysta
its frequency falls inside the band gap. But one can ex
guided modes inside the forbidden frequency gap by in
ducing some interfaces, waveguides, or defects. Here,
consider waveguides created by a row of identical defe
with a Kerr-type nonlinear response. These defect-indu
waveguides possess translational symmetry, and the co
sponding guided modes can be characterized by the rec
cal space wave vectork directed along the waveguide. Suc
a guided mode has a periodical profile along the wavegu
and it decays exponentially in the transverse direction.

Linear photonic crystal waveguides created by remov
a row of dielectric rods have been recently investigated
merically @15,16# and experimentally@17#. In particular,
highly efficient transmission of light, even in the case of
bent waveguide, has been demonstrated.

In the present paper, in contrast to Refs.@15–17# where
only linear waveguides were considered, we study the pr
erties of nonlinear waveguides created by inserting an a
tional row of rods fabricated from a Kerr-type nonlinear m
terial characterized by the third-order nonlinear susceptibi
with the linear dielectric constanted . For definiteness, we
assume thated5e0511.56. As we show below, by changin
the radiusr d of these defect rods and their location with
the crystal, we can create waveguides with quite differ
properties.

III. EFFECTIVE DISCRETE EQUATIONS

Writing the dielectric constante(x) as a sum of periodic
and defect-induced terms, i.e.,

e~x!5epc~x!1de~xuE!,

we can present Eq.~2! as follows:

F¹21S v

c D 2

epc~x!GE~xuv!52S v

c D 2

de~xuE!E~xuv!.

~5!

Equation~5! can also be written in the integral form

E~xuv!5S v

c D 2E d2yG~x,yuv!de~yuE!E~yuv!, ~6!

whereG(x,yuv) is the Green function, which is defined, in
standard way, as a solution of the equation

F¹21S v

c D 2

epc~x!GG~x,yuv!52d~x2y!,

with, according to Eq.~3!, periodic coefficients. The proper
ties of the Green function and the numerical methods for
calculation have already been described in the literat
@14,18#. Here, we notice that the Green function of a perfe
2D photonic crystal issymmetric, i.e.,

G~x,yuv!5G~y,xuv!

andperiodic, i.e.,

G~x1si j ,y1si j uv!5G~x,yuv!,

t-

t
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wheresi j is defined by Eq.~4!.
Let us consider a row of nonlinear defect rods embed

into the crystal along a selected direction. To describe su
row, we should define the rods positions alongsi j with some
specific values ofi and j. For example, let us first assum
that the defect rods are located at the pointsxm5x01msi j .
In this case, the correction to the dielectric constant is

de~x!5@ed1uE~xuv!u2#(
m

u~x2xm!, ~7!

where

u~x!5H 1 for uxu<r d

0 for uxu.r d .

The parametered in Eq. ~7! is the dielectric constant of th
defect rods in the linear limit, while the second term tak
into account a contribution due to the Kerr nonlinearity~the
electric field is scaled with the coefficient of nonlinear su
ceptibility x (3)). The radius of the rodsr d is assumed to be
sufficiently small so that the electric fieldE(xuv) is almost
constant inside the defect rods. We substitute Eq.~7! into Eq.
~6! and, averaging over the cross section of the rods, de
an approximatediscrete nonlinear equationfor the electric
field,

En5(
m

Jn2m~v!~ed1uEmu2!Em , ~8!

where

Jn~v!5S v

c D 2E
r d

d2yG~x0 ,xn1yuv!. ~9!

This type of discrete nonlinear equation for photonic cryst
was earlier introduced by McGurn@13#, for the special case
of nonlinear impurities embedded in linear rods. Howev
the analytical approach developed by McGurn for that mo
did not take into account the field distribution via the expli
dependence of the coupling coefficientsJn(v) and, as a re-
sult, Eq.~8! was not solved exactly. Moreover, the analy
of Ref. @13# was based on the nearest-neighbor approxim
tion where the coupling coefficients are approximated asJn
5J0dn,01J1dn,61 with constantJ0 andJ1.

In sharp contrast, in the present paper we provide a
tematic analysis of different types of nonlinear localiz
modes in the framework of a complete model of a 2D ph
tonic crystal. In particular, we reveal that the approximat
of the nearest-neighbor interaction is very crude in many
the cases we analyzed. Since the effective coupling co
cients are defined by the Green function, this can be s
directly from Fig. 2, which shows a typical spatial profile
the Green function that, in general, characterizes a lo
range interaction, very typical for photonic cryst
waveguides. As a consequence of that, the coupling co
cientsuJn(v)u calculated from Eq.~9! decrease slowly with
the site numbern. For some directions, the coupling coef
cients can be approximated by an exponential function
follows:

uJn~v!u'H J0~v! for n50

J* ~v! e2a(v)unu for unu>1,
d
a
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where the characteristic decay ratea(v) can be as small as
0.85, depending on the values ofv, x0 , si j , andr d , and can
be even smaller for other types of photonic crystals.

This result allows us to draw an analogy with a class
the nonlinear Schro¨dinger ~NLS! equations that describ
nonlinear excitations in quasi-one-dimensional molecu
chains with long-range~e.g., dipole-dipole! interaction be-
tween the particles and local on-site nonlinearities@19#. For
such systems, it was shown that the effect of nonlocal in
particle interaction introduces some new features into
properties of existence and stability of nonlinear localiz
modes. Moreover, for our model the coupling coefficien
Jn(v) can be either nonstaggered and monotonically dec
ing, i.e., Jn(v)5uJn(v)u, or staggered and oscillating from
site to site, i.e.,Jn(v)5(21)nuJn(v)u. We can therefore
expect that effective nonlocality in both linear and nonline
terms of Eq.~8! will cause a number of additional features
the properties of nonlinear localized modes excited in p
tonic crystal waveguides.

IV. EXAMPLES OF NONLINEAR MODES

As can be seen from the structure of the Green functi
presented in Fig. 2, the case of monotonically varying co
ficientsJn(v) can be obtained for the waveguide oriented
thes01 direction withx05a1/2. In this case, the frequency o
a linear guided mode that can be excited in such a waveg
takes the minimum value atk50 ~see Fig. 3!, and the cor-
responding nonlinear mode is expected to be nonstagge

We have solved Eq.~8! numerically and found that non
linearity can lead to the existence of a new type of guid
mode localized in both directions, i.e., in the direction p
pendicular to the waveguide, due to the guiding properties
a channel waveguide created by defect rods, and in the
rection of the waveguide, due to the nonlinearity-induc
self-trapping effect. Such nonlinear modes exist with f
quencies below the frequency of the linear guided mode
the waveguide, i.e., below the frequencyvA in Fig. 3, and
are indeed nonstaggered, with the bell-shaped profile al
the waveguide direction shown in the left inset of Fig. 4.

The 2D nonlinear modes localized in both dimensions c
be characterized by the mode intensity which we define,
analogy with the NLS equation, as

FIG. 2. The Green functionG(x0 ,x01yuv) for x05a1/2 and
v50.3332pc/a.
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Q5(
n

uEnu2. ~10!

This intensity is closely related to the energy of the elec
field in the 2D photonic crystal accumulated in the nonline
mode. In Fig. 4 we plot the dependence ofQ on frequency,
for the waveguide geometry shown in Fig. 3.

As can be seen from the example of the Green func
shown in Fig. 2, the case of staggered coupling coefficie
Jn(v) can be obtained for a waveguide oriented in thes10
direction with x05a1/2. In this case, the frequency depe
dence of the linear guided mode of the waveguide takes
minimum atk5p/a ~see Fig. 5!. Accordingly, a nonlinear
guided mode localized along the direction of the wavegu
is expected to exist with frequency below the lowest f
quencyvA of the linear guided mode, with a staggered p
file. The longitudinal profile of such a 2D nonlinear localize
mode is shown in the left inset in Fig. 6, together with t
dependence of the mode intensityQ on the frequency~solid
curve!, which in this case is again monotonic. It should

FIG. 3. Dispersion relation for the photonic crystal wavegu
shown in the inset (e05ed511.56, r 050.18a, r d50.10a). The
gray areas are the projected band structure of the perfect 2D
tonic crystal. The frequencies at the indicated points arevA

50.37832pc/a andvB50.41232pc/a.

FIG. 4. IntensityQ(v) of the nonlinear mode excited in th
photonic crystal waveguide shown in Fig. 3. The right inset giv
the dependenceJn(v) calculated atv50.3732pc/a. The left in-
set presents the profile of the corresponding nonlinear local
mode.
c
r

n
ts

he

e
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noted that in addition to the symmetric modes shown in
left inset in Fig. 6 there exist alsoantisymmetric localized
modes@13#. However, our calculations show that the inte
sity of the antisymmetric modes always exceeds that
symmetric ones. Thus, antisymmetric modes are expecte
be unstable and should transform into lower-energy symm
ric modes.

The results presented above were obtained for linear p
tonic crystals with nonlinear waveguides created by a row
defect rods. However, we have carried out the same ana
for the general case of a nonlinear photonic crystal tha
created by rods of different size but made of the same n
linear material. Importantly, we have found very small d
ferences from all the results presented above provided n
linearity is relatively weak. In particular, for the photon
crystal waveguide shown in Fig. 5, the results for linear a
nonlinear photonic crystals are very close. Indeed, for

o-

s

d

FIG. 5. Dispersion relation for the photonic crystal wavegui
shown in the inset (e05ed511.56, r 050.18a, r d50.10a). The
gray areas are the projected band structure of the perfect 2D
tonic crystal. The frequencies at the indicated points arevA

50.34632pc/a andvB50.44032pc/a.

FIG. 6. IntensityQ(v) of the nonlinear mode excited in th
photonic crystal waveguide shown in Fig. 5. The solid curve cor
sponds to the case of nonlinear rods in a linear photonic crys
whereas the dashed curve is the same dependence for the cas
nonlinear photonic crystal. The right inset shows the behavior of
coupling coefficientsJn(v) for n>1 (J050.045) at v50.33
32pc/a. The left inset shows the profile of the corresponding no
linear mode.
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mode intensityQ the results corresponding to a nonline
photonic crystal are shown in Fig. 6 by a dashed curve,
for Q,20 this curve almost coincides with the solid cur
corresponding to the case of a nonlinear waveguide em
ded into a 2D linear photonic crystal.

Let us now consider a waveguide created by a row
defects that are located at the pointsx05(a11a2)/2 along a
straight line in either thes10 or s01 direction. The results for
this case are presented in Figs. 7–9. The coupling co
cientsuJnu are described by a slowly decaying function of t
site numbern, so that the effective interaction decays
scales much larger than those in the two cases consid
above. As for NLS models with long-range dispersive int
actions @19,20#, for this type of nonlinear photonic crysta
waveguide we find a nonmonotonic behavior of the mo
intensity Q(v) and, as a result, multivalued dependence
the invariantQ(v) for v,0.34732pc/a. Similar to the
results earlier obtained for the nonlocal NLS models@19#, we

FIG. 7. Dispersion relation for the photonic crystal wavegu
shown in the inset (e05ed511.56, r 050.18a, r d50.10a). The
gray areas are the projected band structure of the perfect cry
The frequencies at the points indicated arevA50.35232pc/a,
vB50.37132pc/a, and vC50.37632pc/a ~at k50.217
32p/a).

FIG. 8. IntensityQ(v) of the nonlinear mode excited in th
photonic crystal waveguide shown in Fig. 7. The right inset sho
the behavior of the coupling coefficientsJn(v) for n>1 (J0

50.068) atv50.34532pc/a. The left inset shows the profile o
the corresponding nonlinear mode.
d

d-

f

fi-

ed
-

e
f

can expect here that nonlinear localized modes corresp
ing, in our notations, to positive slope of the derivati
dQ/dv are unstable and will eventually decay or transfo
into modes of higher or lower frequency@21#. Such a phe-
nomenon is known asbistability, and in this problem it oc-
curs as a direct manifestation of the nonlocality of the eff
tive ~linear and nonlinear! interaction between the defect ro
sites. However, a rigorous analysis of the mode stability
beyond the scope of this paper and will be addressed in
ture publications.

V. CONCLUSIONS

Exploration of nonlinear properties of PBG materials is
active direction of research, and it may open up a broad c
of applications of photonic crystals for all-optical signal pr
cessing and switching, allowing an effective way to cre
tunable band-gap structures operating entirely with lig
Nonlinear photonic crystals, and nonlinear waveguides e
bedded into photonic structures with periodically modula
dielectric constant, create an ideal environment for the g
eration and observation of nonlinear localized modes.

In the present paper, we have developed a consis
theory of the nonlinear localized modes that can be exc
in photonic crystal waveguides of different geometry. F
several geometries of 2D waveguide, we have demonstr
that such modes are described by a nonlinear lattice m
that includes long-range interaction and effectively nonlo
nonlinear response. It is expected that the general feature
nonlinear guided modes described here will be preserve
other types of photonic crystal waveguides. Our appro
and results can also be useful to develop the theory of n
linear two-frequency parametric localized modes in the
cently fabricated 2D photonic crystals with second-ord
nonlinear susceptibility@22#. Additionally, similar types of
nonlinear localized modes are expected in photonic cry
fibers @23# consisting of a periodic air-hole lattice that run
along the length of the fiber, provided the fiber core is ma
of a highly nonlinear material~see, e.g., Ref.@24#!.
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FIG. 9. Electric field of the nonlinear localized mode in a wav
guide that corresponds to the longitudinal cross section show
the left inset of Fig. 8. The rod positions are indicated by circle
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