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Long-range interaction and nonlinear localized modes in photonic crystal waveguides
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We develop the theory of nonlinear localized modgesrinsic localized modes or discrete breathdrs
two-dimensional2D) photonic crystal waveguides. We consider different geometries of the waveguides cre-
ated by an array of nonlinear dielectric rods embedded into an otherwise perfect linear 2D photonic crystal, and
demonstrate that the effective interaction in such waveguides is nonlocal, being described by a nonlinear lattice
model with long-range coupling and nonlocal nonlinearity. We reveal the existence of different types of
nonlinear guided mode that are also localized in the waveguide direction, and describe their unique properties,
including bistability.

PACS numbgs): 42.70.Qs, 42.79.Gn, 42.65.Wi, 42.65.Tg

[. INTRODUCTION physics ofphotonic crystaldor photonic band gagPBG)
material§—periodic dielectric structures that produce many
In physics, the idea of localization is generally associatedf the same phenomena for photons as does the crystalline
with disorder that breaks translational invariance. Howeveratomic potential for electrong8]. Three-dimensiona(3D)
research in recent years has demonstrated that localizatighotonic crystals for visible light have been successfully fab-
can occur in the absence of any disorder and solely due tdcated only within the past year or two, and presently many
nonlinearity, in the form ofintrinsic localized modesalso ~ résearch groups are working on creating tunable band-gap
called discrete breather§1]. A rigorous proof of the exis- Switches and transistors operating entirely with light. The
tence of time-periodic, spatially localized solutions describ-most recent idea is to employ nonlinear properties of band-
ing such nonlinear modes has been presented for a bro&#pP materials, thus creating nonlinear photonic crystals that
class of Hamiltonian coupled-oscillator nonlinear lattiggls ~ have 2D or 3D periodic nonlinear susceptibili§,10].
but approximate analytical solutions can also be found in Nonlinear photonic crystals or photonic crystals with em-

many other cases, demonstrating the generaiity of the Corb.edded nonlinear impurities create an ideal environment for
cept of nonlinear localized modes. the generation and observation of nonlinear localized photo-

Nonlinear localized modes can be easily identified in nuic modes. In particular, the existence of such modes for the
merical molecular-dynamics simulations in many differentfrequencies in the photonic band gaps has been predicted
physical modelssee, e.g., Ref(1] for a review, but only [11] for 2D and 3D photonic crystals with Kerr nonlinearity.
very recently have the first experimental observations of spaNonlinear localized modes can also be excited at nonlinear
tially localized nonlinear modes been reported in mixed-interfaces with quadratic nonlinearify 2], or along dielec-
valence transition metal Comp|exe$3]' quasi_one_ tric Wavegwde structures possessing a nonlinear Kerr—type
dimensional antiferromagnetic chairig], and arrays of responsd13]. In this paper, we analyze nonlinear localized
Josephson junction@]_ |mp0rtant|y, very similar types of modes in 2D phOtoniC CryStal WaVegUideS. We consider the
spatially localized nonlinear modes have been experimenwaveguides created by an array of dielectric rods embedded
ta”y Observed in macroscopic mechani@ﬁ] and guided_ Into an Ot-herW|S-e perfeCt 2D phOtonIC Crystal. Itis a.SSUmed
wave optical[7] systems. that the dielectric constant of the waveguide rods depends on

Recent experimental observations of nonlinear localizedhe field intensitydue to the Kerr effegt so that waveguides
modes, as well as numerous theoretical results, indicate th&f different geometries can support a variety of nonlinear
both effects, i.e., nonlinearity-induced localization and spaguided modes. We demonstrate here that localization can
tially localized modes, can be expected in physical system@ccur in the propagation direction creating a 2D spatially
of very different nature. From the viewpoint of possible localized modesee Fig. 9 below As follows from our re-
practical applications, self-localized states in optics seem t8ults, the effective interaction in such nonlinear waveguides
be the most promising ones; they can lead to different type§ nonlocal, and the nonlinear localized modes are described
of nonlinear all-optical switching devices where light ma- by a nontrivial generalization of nonlinear lattice models
nipulates and controls light itself, by varying the input inten-With long-range coupling and nonlocal nonlinearity.
sity. As a result, the study of nonlinear localized modes in
photonic structures is expected to lead to a variety of realistic
applications of intrinsic localized modes.

One of the promising fields where the concept of nonlin- We consider a 2D photonic crystal created by a square
ear localized modes may find practical applications is in thdattice of parallel, infinitely long dielectric columrsr rod9

in air. The rods are assumed to be parallel toxhexis, so
that the system is characterized by the dielectric constant
*On leave from the Bogolyubov Institute for Theoretical Physics, €(X) = €(X1,X,). The evolution of theE-polarized lighfwith
14-b Metrologichna Str., Kiev 03143, Ukraine. the electric field having the structuke=(0,0E)], propagat-
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region of the spectrum. For example, if we choose the lattice

P constant to bea=0.58 wm, the wavelength corresponding
to the mid-gap frequency will be 1.5om.

e o The light cannot propagate through the photonic crystal if

e o its frequency falls inside the band gap. But one can excite

X, guided modes inside the forbidden frequency gap by intro-

ducing some interfaces, waveguides, or defects. Here, we
consider waveguides created by a row of identical defects
with a Kerr-type nonlinear response. These defect-induced
waveguides possess translational symmetry, and the corre-
sponding guided modes can be characterized by the recipro-
0 ma cal space wave vectdrdirected along the waveguide. Such

r X M r 1 a guided mode has a periodical profile along the waveguide,
. ._and it decays exponentially in the transverse direction.

FIG. 1. The band-gap structure of the photonic crystal consist- Linear photonic crystal waveguides created by removing

ing of a square lattice of dielectric rods withh=0.18& and ¢, - . . .
- o a row of dielectric rods have been recently investigated nu-
=11.56(the band gaps are shaded grakhe top right inset shows erically [15.16 and experimentally{17]. In particular,

a cross-sectional view of the 2D photonic crystal. The bottom right . . L . .
inset shows the corresponding Brillouin zone, with the irreduciblethlghly efﬂc'ent transmission of light, even in the case of a
bent waveguide, has been demonstrated.

zone shaded gray. .
In the present paper, in contrast to Rdfs5—17 where
ing in the (x;,x,) plane, is governed by the scalar wave on!y linear wgveguides were considered, we study the prop-
equation erties of nonlinear waveguides created by inserting an addi-
tional row of rods fabricated from a Kerr-type nonlinear ma-
) 1, terial characterized by the third-order nonlinear susceptibility
VEE(x,t) — ?ﬁt[E(X)E]:(L (D) with the linear dielectric constanty. For definiteness, we
assume tha¢;= €;=11.56. As we show below, by changing
wheresza§1+ aﬁz. For monochromatic light, we consider the radiusry of these defect rods and their location within
the stationary solutions the cry_stal, we can create waveguides with quite different
properties.

E(x,t)=e '“'E(x|w),
and the equation of motiofl) reduces to the simple eigen- lll. EFFECTIVE DISCRETE EQUATIONS

value problem Writing the dielectric constan¢(x) as a sum of periodic

and defect-induced terms, i.e.,
€(X) = €pc(X) + 6e(X|E),

This eigenvalue problem can be solved, e.g., by the plange can present Eq2) as follows:
wave method14], in the case of a perfect photonic crystal,

2

e(x)

V2+(2
C

E(X|w)=0. 2)

. . . T _ o 2 2
;or which the dielectric constand(x)=e,¢(x) is a periodic vee |2 €pc(X) [E(X|w) = _(f) Se(X|E)E(x|w).
unction c c
5
€pc(XF§j) = €pc(X), 3 . o .
) ) ) ] Equation(5) can also be written in the integral form
wherei andj are arbitrary integers and ,
. . w
Si=lat]a 4 E(Xlw)=<g f d’y G(x,y|w) Se(Y[E)E(y|@),  (6)

is a linear combination of the primitive lattice vectasand
a, of the 2D photonic crystal.

For definiteness, we consider the 2D photonic crystal earStandard way,
lier analyzed(in the linear limiy in Refs.[15,16], i.e., we
assume that the rods are identical and cylindrical, with radius
ro=0.1& and dielectric constant;=11.56. The rods form
a perfect square lattice with the distanaebetween two with, according to Eq(3), periodic coefficients. The proper-
neighboring rods, i.ea;=ax; anda,=ax,. The frequency ties of the Green function and the numerical methods for its
band structure for this type of 2D photonic crystal, and forcalculation have already been described in the literature
the selected polarization of the electric field, is shown in Fig{14,18. Here, we notice that the Green function of a perfect
1. As follows from the structure of the frequency spectrum,2D photonic crystal isymmetrigi.e.,
there exists a larg€38%) band gap that extends from the
lower cutoff frequencyw=0.302< 27r¢c/a to the upper band- G(x.ylw)=G(y,x|w)
gap frequencyw=0.443<27c/a. Since the characteristics and periodic, i.e.
of a PBG material remain unchanged under rescaling, we can '
assume that this gap is created in either the infrared or visible G(xtsj,yt+sjl0)=G(x,ylw),

whereG(x,y| w) is the Green function, which is defined, in a
as a solution of the equation
2

Epc(x) G(x,ylw)=—8(x—y),

V2+(2
c
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wheres;; is defined by Eq(4).

Let us consider a row of nonlinear defect rods embedded
into the crystal along a selected direction. To describe sucha ().
row, we should define the rods positions ala)gwith some
specific values of andj. For example, let us first assume 04
that the defect rods are located at the poigts-x,+ms; . 02
In this case, the correction to the dielectric constant is .

G(x,, x,+y | ®)

0
se(X)=[eat [E(X @)1 2 00x—xp), D 02
where
1 for |x|<rg4
00=1 ¢ for [x|>rq.

FIG. 2. The Green functioiG(xg,Xy+Y| @) for xo=2a,/2 and

The parameteg, in Eq. (7) is the dielectric constant of the »=0.33x2xc/a.
defect rods in the linear limit, while the second term takes
into account a contribution due to the Kerr nonlineatifye  \here the characteristic decay ratéw) can be as small as
electric field is scaled with the coefficient of nonlinear sus-g gg depending on the values®f Xy, s, andr4, and can
ceptibility x(¥). The radius of the rods, is assumed to be g eyen smaller for other types of photonic crystals.
suff|C|entI.y §mal| so that the electric flelﬂgx| ) is almost This result allows us to draw an analogy with a class of
((:(()?)nsta(ljntln5|de _the defectthrods. We SU?StItUﬁ:eEEnlnt(()j qui . the nonlinear Schuinger (NLS) equations that describe

and, averaging over the Cross section ot the rods, derlVg, \inaar excitations in quasi-one-dimensional molecular
an approximateliscrete nonlinear equatiofor the electric i< \vith long-rangée.g., dipole-dipolg interaction be-

field, tween the particles and local on-site nonlinearifi€g]. For
such systems, it was shown that the effect of nonlocal inter-
En=2 Jn-m(®)(€g+|Em|?Enm, (8)  particle interaction introduces some new features into the
m properties of existence and stability of nonlinear localized
where modes. Moreover, for our model the coupling coefficients

Jn(w) can be either nonstaggered and monotonically decay-
ing, i.e.,Jy(w)=1|J,(w)|, or staggered and oscillating from
site to site, i.e..J,(w)=(—1)"J,(w)|. We can therefore
expect that effective nonlocality in both linear and nonlinear
This type of discrete nonlinear equation for photonic crystalserms of Eq(8) will cause a number of additional features in

was earlier introduced by McGuiii3], for the special case the properties of nonlinear localized modes excited in pho-
of nonlinear impurities embedded in linear rods. Howeveronic crystal waveguides.

the analytical approach developed by McGurn for that model
did not take into account the field distribution via the explicit
dependence of the coupling coefficiedig w) and, as a re- _ IV. EXAMPLES OF NONLINEAR MODES
sult, Eq.(8) was not solved exactly. Moreover, the analysis
of Ref.[13] was based on the nearest-neighbor approxima- As can be seen from the structure of the Green function,
tion where the coupling coefficients are approximated,as presented in Fig. 2, the case of monotonically varying coef-
=Jo0n0t J16n =1 With constanty and J;. ficientsJ,(w) can be obtained for the waveguide oriented in
In sharp contrast, in the present paper we provide a syghe s, direction withxg=2a,/2. In this case, the frequency of
tematic analysis of different types of nonlinear localizeda linear guided mode that can be excited in such a waveguide
modes in the framework of a complete model of a 2D pho-+takes the minimum value &=0 (see Fig. 3 and the cor-
tonic crystal. In particular, we reveal that the approximationresponding nonlinear mode is expected to be nonstaggered.
of the nearest-neighbor interaction is very crude in many of We have solved Eq8) numerically and found that non-
the cases we analyzed. Since the effective coupling coeffiinearity can lead to the existence of a new type of guided
cients are defined by the Green function, this can be seemode localized in both directions, i.e., in the direction per-
directly from Fig. 2, which shows a typical spatial profile of pendicular to the waveguide, due to the guiding properties of
the Green function that, in general, characterizes a longa channel waveguide created by defect rods, and in the di-
range interaction, very typical for photonic crystal rection of the waveguide, due to the nonlinearity-induced
waveguides. As a consequence of that, the coupling coeffself-trapping effect. Such nonlinear modes exist with fre-
cients|J,(w)| calculated from Eq(9) decrease slowly with quencies below the frequency of the linear guided mode of
the site numben. For some directions, the coupling coeffi- the waveguide, i.e., below the frequeney in Fig. 3, and
cients can be approximated by an exponential function aare indeed nonstaggered, with the bell-shaped profile along
follows: the waveguide direction shown in the left inset of Fig. 4.
The 2D nonlinear modes localized in both dimensions can
Jo(w) forn=0 be characterized by the mode intensity which we define, by
J, (w) e @ for |n|=1, analogy with the NLS equation, as

2
Jn(w)=(%) f d?y G(Xg, Xy +Y ). 9
Td

[In(@)|~
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FIG. 3. Dispersion relation for the photonic crystal waveguide FIG. 5. Dispersion relation for the photonic crystal waveguide
shown in the inset {y=€4=11.56, r;=0.18, ry=0.10a). The shown in the inset {y=€4=11.56, r;=0.18&, ry=0.10a). The
gray areas are the projected band structure of the perfect 2D pharay areas are the projected band structure of the perfect 2D pho-
tonic crystal. The frequencies at the indicated points are  tonic crystal. The frequencies at the indicated points ane
=0.378<27mc/a and wg=0.412x 27rc/a. =0.346x27c/a and wg=0.440< 27rc/a.

) noted that in addition to the symmetric modes shown in the
Q=§n: |Enl”. (10) left inset in Fig. 6 there exist alsantisymmetric localized
modes[13]. However, our calculations show that the inten-
This intensity is closely related to the energy of the electricsity of the antisymmetric modes always exceeds that for
field in the 2D photonic crystal accumulated in the nonlinearsymmetric ones. Thus, antisymmetric modes are expected to
mode. In Fig. 4 we plot the dependence®@bn frequency, be unstable and should transform into lower-energy symmet-
for the waveguide geometry shown in Fig. 3. ric modes.

As can be seen from the example of the Green function The results presented above were obtained for linear pho-
shown in Fig. 2, the case of staggered coupling coefficientsonic crystals with nonlinear waveguides created by a row of
Jn(w) can be obtained for a waveguide oriented in ¢ defect rods. However, we have carried out the same analysis
direction with xo=2a,/2. In this case, the frequency depen- for the general case of a nonlinear photonic crystal that is
dence of the linear guided mode of the waveguide takes thereated by rods of different size but made of the same non-
minimum atk=m/a (see Fig. 3 Accordingly, a nonlinear linear material. Importantly, we have found very small dif-
guided mode localized along the direction of the waveguidderences from all the results presented above provided non-
is expected to exist with frequency below the lowest fre-linearity is relatively weak. In particular, for the photonic
guencyw, of the linear guided mode, with a staggered pro-crystal waveguide shown in Fig. 5, the results for linear and
file. The longitudinal profile of such a 2D nonlinear localized nonlinear photonic crystals are very close. Indeed, for the
mode is shown in the left inset in Fig. 6, together with the
dependence of the mode intens@@yon the frequencysolid 30 T I T I T T T
curve, which in this case is again monotonic. It should be
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0 8.31 0.32 0.33 0.34 0.35
0 5 0 s Frequency (wa/27c)
0 I . I . 1 .
0.32 0.34 0.36 0.38 FIG. 6. IntensityQ(w) of the nonlinear mode excited in the
Frequency (wa/2mc) photonic crystal waveguide shown in Fig. 5. The solid curve corre-

sponds to the case of nonlinear rods in a linear photonic crystal,
FIG. 4. IntensityQ(w) of the nonlinear mode excited in the whereas the dashed curve is the same dependence for the case of a
photonic crystal waveguide shown in Fig. 3. The right inset givesnonlinear photonic crystal. The right inset shows the behavior of the
the dependencé,(w) calculated atw=0.37X2mc/a. The left in-  coupling coefficientsJ,(w) for n=1 (J,=0.045) at ©=0.33
set presents the profile of the corresponding nonlinear localizeck 27rc/a. The left inset shows the profile of the corresponding non-
mode. linear mode.
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Wave vector (ka/2m) can expect here that nonlinear localized modes correspond-
ing, in our notations, to positive slope of the derivative
FIG. 7. Dispersion relation for the photonic crystal waveguidedQ/dw are unstable and will eventually decay or transform
shown in the inset y=e€3=11.56, r,=0.18&, r4=0.10). The  into modes of higher or lower frequen¢g21]. Such a phe-
gray areas are the projected band structure of the perfect crystalomenon is known abistability, and in this problem it oc-
The frequencies at the points indicated asg=0.352<27c/a,  cuyrs as a direct manifestation of the nonlocality of the effec-
wg=0.371X2mc/a, and wc=0.376x2wc/a (at k=0.217  tjye (linear and nonlinearinteraction between the defect rod
X2mla). sites. However, a rigorous analysis of the mode stability is
beyond the scope of this paper and will be addressed in fu-
mode intensityQ the results corresponding to a nonlinear ture publications.
photonic crystal are shown in Fig. 6 by a dashed curve, and

for Q<20 t_his curve almost coincid_es with the st_)lid curve V. CONCLUSIONS
corresponding to the case of a nonlinear waveguide embed-
ded into a 2D linear photonic crystal. Exploration of nonlinear properties of PBG materials is an

Let us now consider a waveguide created by a row ofactive direction of research, and it may open up a broad class
defects that are located at the poirgs=(a,+a,)/2 along a  of applications of photonic crystals for all-optical signal pro-
straight line in either the, or sy, direction. The results for cessing and switching, allowing an effective way to create
this case are presented in Figs. 7—9. The coupling coefftunable band-gap structures operating entirely with light.
cients|J,,| are described by a slowly decaying function of the Nonlinear photonic crystals, and nonlinear waveguides em-
site numbern, so that the effective interaction decays onbedded into photonic structures with periodically modulated
scales much larger than those in the two cases considergtelectric constant, create an ideal environment for the gen-
above. As for NLS models with long-range dispersive inter-eration and observation of nonlinear localized modes.
actions[19,20, for this type of nonlinear photonic crystal  In the present paper, we have developed a consistent
waveguide we find a nonmonotonic behavior of the modgheory of the nonlinear localized modes that can be excited
intensity Q(w) and, as a result, multivalued dependence ofin photonic crystal waveguides of different geometry. For
the invariantQ(w) for w<0.347<2mc/a. Similar to the several geometries of 2D waveguide, we have demonstrated
results earlier obtained for the nonlocal NLS modé&], we  that such modes are described by a nonlinear lattice model
that includes long-range interaction and effectively nonlocal
nonlinear response. It is expected that the general features of
4 nonlinear guided modes described here will be preserved in
other types of photonic crystal waveguides. Our approach
and results can also be useful to develop the theory of non-
. linear two-frequency parametric localized modes in the re-
cently fabricated 2D photonic crystals with second-order
nonlinear susceptibility22]. Additionally, similar types of
nonlinear localized modes are expected in photonic crystal
fibers[23] consisting of a periodic air-hole lattice that runs
- along the length of the fiber, provided the fiber core is made

10

Q |

n

—st of a highly nonlinear materigsee, e.g., Ref.24]).
L | L | L 1 L |
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