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Oscillations of a highly discrete breather with a critical regime

E. Coquet, M. Remoissenet, and P. Tchofo Dinda
Laboratoire de Physique de l’Universite´ de Bourgogne, UMR CNRS No. 5027, Avenue A. Savary,

Boı̂te Postale 47 870, 21078 Dijon Ce´dex, France
~Received 24 January 2000; revised manuscript received 30 June 2000!

We analyze carefully the essential features of the dynamics of a stationary discrete breather in the ultimate
degree of energy localization in a nonlinear Klein-Gordon lattice with an on-site double-well potential. We
demonstrate the existence of three different regimes of oscillatory motion in the breather dynamics, which are
closely related to the motion of the central particle in an effective potential having two nondegenerate wells. In
given parameter regions, we observe anuntrapped regime, in which the central particle executes large-
amplitude oscillations from one to the other side of the potential barrier. In other parameter regions, we find the
trapped regime, in which the central particle oscillates in one of the two wells of the effective potential.
Between these two regimes we find acritical regimein which the central particle undergoes severaltemporary
trappingswithin an untrapped regime. Importantly, our study reveals that in the presence of purely anharmonic
coupling forces, the breathercompactifies, i.e., the energy becomes abruptly localized within the breather.

PACS number~s!: 41.20.Jb, 05.50.1q
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I. INTRODUCTION

In recent years there has been considerable effort mad
understanding nonlinear energy-localization phenomena@1#
in homogeneous discrete lattices. The possibility of existe
of localized long-lived molecular vibrational states w
pointed out by Ovchinnikov@2# many decades ago. Then, th
existence of nonlinear localized modes in a lattice with o
site potential and linear interparticle coupling was explo
by Kosevich and Kovalev@3#. Dolgov @4# proposed a mode
for self-localization of vibrations in a one-dimensional latti
with nonlinear interparticle coupling without on-site pote
tial. Sievers and Takeno@5# reported that large amplitud
vibrations in perfectly periodic one-dimensional~1D! lattices
can localize because of the nonlinearity and discretenes
fects. Then they clearly suggested thatintrinsic localized
modes or discrete breathersshould be quite general and ro
bust solutions in the sense that they can exist in many mo
@5#. This result was subsequently confirmed by Page@6#. In
contrast to the case of purely harmonic lattices, where s
tially localized modes can occur only when defects or dis
der are present so that the translational invariance of
underlying lattice is broken, discrete breathers may be
ated anywhere in a perfect homogeneous nonlinear lat
Since the pioneering studies mentioned above@1–6#, discrete
breathers have been the subject of an intense research~for
recent reviews see@7# and@8#!, because of their relevance i
various fields such as condensed matter physics, optics,
biology. The existence of discrete breathers as exact t
periodic spatially localized solutions in a large class of no
linear lattices was demonstrated analytically by McKay a
Aubry @9#. But so far, no analytical derivation of breath
solutions in a highly discreteF-four lattice has been carrie
out because of a host of mathematical problems that aris
the specific situation of abrupt localization of energy.

On the other hand, recent studies@10,11# demonstrate tha
a breathing mode cancompactify in a nonlinear Klein-
Gordon lattice, with asofton-site substrate potential~single-
well potential!, in the presence of purely anharmonic co
PRE 621063-651X/2000/62~4!/5767~10!/$15.00
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pling forces between adjacent particles. The concept
compactification or strict localization of solitary waveswas
introduced for the first time by Rosenau and Hyman@12#,
who investigated a special type of Korteweg–de Vries eq
tion and discovered that solitary waves can compactify in
presence of a nonlinear dispersion. Such solitary wav
which are characterized by a compact support, i.e., the
sence of infinite wings, have been calledcompactons. Then a
fundamental question arises as to whether abreather com-
pactoncan exist in nonlinear Klein-Gordon lattices havin
an on-site double-well substrate potential. The answer to
question is given in the present paper.

In this paper, we carry out a theoretical analysis show
the existence of a stationary breather in the ultimate deg
of energy localization in a nonlinear Klein-Gordon discre
lattice, with a F-four on-site substrate potential and ve
weak coupling forces between adjacent particles. T
breather consists of a central particle that executes stro
anharmonic dynamics while all the other particles exec
very small-amplitude oscillations about their equilibrium p
sitions. Such a situation, which presents similarities with
localized rotating modes@13#, may occur in many discrete
real systems where some thermally activated atoms or i
though coupled to their neighbors, may jump from one site
another one. In the present paper, we provide a general
ture describing the oscillatory dynamics of the highly d
crete breather, and we show that the on-site double-well
tential leads to a much richer spectrum of behavior than th
is for the single-well substrate potentials considered in p
vious studies@10,14#. Most of the richness comes from th
existence of several regimes of breather motion, which
closely related to the motion of the central particle of t
breather in a double-well effective potential. Many physic
processes involving this dynamics may include proton tra
port in hydrogen-bonded chains@15#, planar rotations of base
pairs in DNA macromolecules@16#, and polymer chains
twisting @17#.

The paper is organized as follows. In Sec. II we pres
the model. In Sec. III, we analyze the breather motion in
5767 ©2000 The American Physical Society
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5768 PRE 62E. COQUET, M. REMOISSENET, AND P. TCHOFO DINDA
untrapped regime, and in Sec. IV we consider the trap
regime. Section V is devoted to the analysis of the criti
regime, and in Sec. VI we summarize and give conclud
remarks.

II. MODEL

A. Equations of motion

The system under consideration is a nonlinear Ke
Gordon infinite lattice, in which each particle interacts w
its nearest neighbors via coupling forces that are eit
purely harmonic or anharmonic.Each particle oscillates in a
direction perpendicular to the chain axis, in a F-four on-site
potential that represents the combined influence of the
rounding lattice atoms and external effects. The latt
Hamiltonian is

H5(
n

F1

2 S dxn

dt D 2

1
cl

2
~xn112xn!2

1
cnl

4
~xn112xn!41

V0

4
~12xn

2!2G . ~1!

Here,xn is the on-site degree of freedom,cl , cnl , andV0
are constants that control the strength of linear and nonlin
couplings, and the on-site potential barrier height, resp
tively. The corresponding one-dimensional equations of m
tion can be written in the following form:

d2xn

dt2
5V0@xn~12xn

2!1Cl~xn211xn1122xn!

1Cnl@~xn212xn!31~xn112xn!3##, ~2!

whereCl[cl /V0 and Cnl[cnl /V0 are the normalized cou
pling constants.

In the present paper, we examine theultimate degree of
energy localizationin this nonlinear Klein-Gordon lattice, in
the form of a breather. To this end, we considerthe limit of
weak coupling between adjacent lattice sitesi.e., a dynami-
cal situation in which only a central particle~CP!, say n
5s, executes a large-amplitude motion from one to the ot
side of the potential barrier. All the other particles exec
relatively small-amplitude oscillations near the bottom of t
substrate wells lying in the same side of the potential barr
Figure 1 shows a schematic representation of the config
tion of the system at the beginning of this dynamical situ
tion. The CP is shifted to an unstable position in one side
the substrate potential, labeled ‘‘B’’ in Fig. 1. As a result of
the coupling forces, the particles neighboring the CP unde
small shifts, in the same direction as the CP, up to unsta
equilibrium positions located near the bottom of the poten
wells labeled ‘‘A’’ in Fig. 1. An important point to be em-
phasized here is that the large initial displacement given
the CP, in the direction perpendicular to the chain axis, g
erates thereby a symmetry plane~perpendicular to the chain
axis!, at this lattice site~i.e., s!. Consequently, in the limit of
no perturbations, the amplitude of displacement of partic
s1 i and s2 i are strictly identical. Thus, at siten5s, one
can replace Eq.~2! by
d
l
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d2xs

dt2
5V0$xs~12xs

2!12@Cl~xs612xs!1Cnl~xs612xs!
3#%.

~3!

On the other hand, the positions of all the particles, exc
the CP, can be rewritten as:xs6 i5211Dxs6 i , where the
deviation with respect to the equilibrium position
uDxs6 i u!1. Then, forCl!1 and Cnl!1, the equations of
motion at sitess, s61, ands62 reduce, in first-order ap
proximation, to

d2xs

dt2
'V0$xs~12xs

2!22@Cl~11xs!1Cnl~11xs!
3#%

52
dVe~xs!

dxs
, ~4!

d2Dxs61

dt2
12V0Dxs61'V0@Cl~11xs!1Cnl~11xs!

3#,

~5!

d2Dxs62

dt2
12V0Dxs62'0. ~6!

As Eq. ~6! shows, in the weak coupling limit, the motion o
the s62 particles corresponds essentially to an harmo
oscillation with frequencyv05(2V0)1/2 and period T0
52p/v0 .

In Eq. ~4!, Ve represents the effective potential for the C
whose expression is given by

Ve~x!5V0F1

4
~12x2!21Cl~11x!21

Cnl

2
~11x!4G , ~7!

FIG. 1. Schematic representation of the initial configuration
the system in presence of a weak interparticle coupling. The cu
represent the on-site substrate potential. The circles represen
particles. The labels ‘‘A’’ and ‘‘ B’’ identify the two wells of the
potential. The central particle, which lies at the site index ‘‘s,’’
begins its motion in the wellB, whereas all the other particles are
the wellsA. The particle positionx is given in arbitrary units.
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PRE 62 5769OSCILLATIONS OF A HIGHLY DISCRETE BREATHER . . .
with x[xs . Thus, Eqs.~4!–~6! define the motion of the par
ticles that are involved in the breather dynamics in the u
mate degree of energy localization in the system. The ef
tive potentialVe is schematically represented by the so
curve in Fig. 2, where the positions of the extrema ofVe :
xem1 , xem2 , and xem3 , can be easily calculated by solvin
dVe(x)/dx50 ~the results are given in Table I!. One of the
effects of the coupling forces is to lower the barrier height
the potentialVbh5Ve(xem2)2Ve(xem3) that the CP must
overcome to move from the wellB to the wellA. In fact, the
ability of the CP to execute alarge-amplitude motionde-
pends critically on its initial positionx0 . There exists a criti-
cal distancex0

ec ~from the origin! from which the CP~when
released with zero initial velocity! can execute a large
amplitude motion from one to the other side of the poten
barrier. Note that in the absence of coupling forces, the
fective potential of the CP coincides with the on-site su
strate potential represented by the dotted curve in Fig. 2,
there, the critical distance isx0

c5&.x0
ec . Thus, an out-

standing effect of the coupling forces is the reduction of
critical distance fromx0

c to x0
ec ~see also Table I!. Throughout

the present paper, we choose the initial position of the CP
be precisely in the parameter regionx0<x0

c , where the pres-
ence of coupling forces is required for the CP to execute
untrapped motion. In this region, the breather motion can b
broadly divided into three main regimes of oscillatory m
tion depending on the initial position of the CP.

~i! If x0.x0
ec , the CP will execute anuntrapped motion

with large-amplitude oscillations.
~ii ! Whenx0,x0

ec , we find atrapped regimein which the
potential energy of the CP is not sufficient for this particle
overcome the potential barrier.

~iii ! When x0'x0
ec , we find a critical regime in which

different situations can occur depending on the precise v

FIG. 2. Schematic representation of the effective potentials
the central particleVe ~solid curve!, and for the breatherVeff

~dashed curve!. The dotted curve represent the substrate poten
The parametersxem1 , xem2 , andxem3 , indicate the extrema of the
effective potential of the central particle.x1

ec and x0
ec indicate the

positions for whichVe(x)5Ve(xem2).
-
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of x0 , such as the occurrence of several temporary trapp
within an untrapped regime.

We examine successively these three different regime

III. UNTRAPPED REGIME

In this regime, the CP has a sufficient energy to overco
the potential barrier. Thus, Eq.~4! can be integrated via a
quadrature to give

x~wet,ke
2!5x0

~pa1b!1~b2pa!cn~wet,ke
2!

~a1b!1~b2a!cn~wet,ke
2!

, ~8!

where the parameterswe , ke
2, p, a, andb, are given in Table

II for zero, linear and nonlinear coupling forces, respective
The function cn in Eq.~8! is a Jacobi elliptic function@18#
with moduluske

2,1. Solution~8! corresponds to oscillation
of periodTe and frequencyV:

Te5
4

we

K~ke
2! with K~ke

2!5E
0

~p/2! du

A12ke
2 sinu

2
and

V5
2p

Te
. ~9!

For very weak coupling:Cl!1 andCnl!1 ~including the
case whenCl5Cnl50!, the general solution~8! can be ap-
proximated@18# by

x~ t !'x0cn~wet,ke!'x0(
n50

`

P2n11 cos~2n11!Vt,

~10!

where

P2n115
p

keK~ke
2!

cosh21S p~n1 1
2 !

K~12ke
2!

K~ke
2!

D . ~11!

Solution ~10! shows that the central-particle motion
which is closely related to the breather motion, is made up of
the fundamental frequencyV and several odd harmonics
This behavior is formally equivalent to large-amplitude o
cillations of a particle in a double-well potential@19,20#. The
substitution of the expressions forwe andke ~see Table II! in
Eq. ~9! gives the periodTe in terms of the initial conditionx0

r

l.

TABLE I. Parameters of the effective potential of the CPVe(x),
for zero, linear and nonlinear coupling cases. The positions of
extrema ofVe(x) are: xem1 , xem2 , and xem3 . Vbh is the barrier
height.x0

ec is the critical initial position of the CP.

Parameters
No

coupling
Linear

coupling
Nonlinear
Coupling

xem1 21 21 21
xem2 0 2Cl 2Cnl

xem3 1 122Cl 128Cnl

Vbh V0

4

V0

4
~1212Cl !

V0

4
~1230Cnl!

x0
ec & &@12Cl(11&)# &@12Cnl(413&)#
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and the coupling parameters. The dotted-dashed curve in
3 represents the normalized periodTe /T0 for oscillations of
the CP as a function of its initial positionx0 , in the absence
of coupling.Te /T0 becomes infinite when the initial positio
of the CP coincides with the critical value:x05x0

c5& ~as
indicated in Fig. 3 by a vertical dotted line!. Thus, in the
absence of coupling, the CP would be unable to cross
potential barrier for initial positions such thatx0<x0

c . In the
presence of coupling,Te is represented by the solid curves
Fig. 3, which show that the CP is now able to cross
potential barrier for initial positions belowx0

c , in the region
x0

ec<x0<x0
c . Here, the coupling plays a crucial role in th

sense that it is required for the CP to execute large-amplit
oscillations from one to the other side of the potential barr
On the other hand, the achievement of the ultimate degre

TABLE II. Characteristic parameterswe , ke
2, p, a2, andb2, for

the CP motion in the untrapped regime, for zero (Cl ,Cnl)5(0,0),
linear (Cl ,0) and nonlinear (0,Cnl) coupling.

(Cl ,Cnl) we(Cl ,Cnl)

~0,0! V0(x0
221)

(Cl ,0)
we~0,0!F11

Cl

~x0
221!2 ~x0

212x021!G
(0,Cnl)

we~0,0!S 11
Cnl

~x0
221!2 [x0

412~x0
31x0

21x0!23] D
(Cl ,Cnl) ke(Cl ,Cnl)

2

~0,0! x0
2

2~x0
221!

(Cl ,0)
ke~0,0!

2 F12
2Cl

x0~x0
221!2 ~x0

32x012!G
(0,Cnl)

ke~0,0!
2 F12

4Cnl

x0~x0
221!2 ~2x0

31x0
222x011!G

(Cl ,Cnl) p(Cl ,Cnl)

~0,0! 21
(Cl ,0)

2S11
4Cl

x0~x0
221!D

(0,Cnl)
2S11

4Cnl~11x0
2!

x0~x0
221!

D
(Cl ,Cnl) a (Cl ,Cnl)

2

~0,0! 2(x0
221)

(Cl ,0) 2(x0
221)14Cl

(0,Cnl) 2(x0
221)18Cnl(21x0)

(Cl ,Cnl) b (Cl ,Cnl)
2

~0,0! 2(x0
221)

(Cl ,0)
2~x0

221!14ClS11
4x0

x0
221D

(0,Cnl)
2~x0

221!18CnlS21
x0~x0

213!

x0
221 D
ig.

e

e

e
r.
of

energy localization in the breather imposes a strict limitatio
in the strength of linear or nonlinear coupling, to ensur
small-amplitude oscillations for all the particles other tha
the CP. As a consequence, the size of the parameter reg
x0

ec<x0<x0
c must be sufficiently small. Hereafter, we use

Cl56.50031024 and Cnl51.90931024, for which x0
ec

51.411 99.
Although the CP plays the prominent role in the motion o

a highly localized breather mode, the role of the other pa
ticles of the system cannot be ignored in a discrete syste
because they are involved in the energy-exchange or co
pactification processes, which we discuss below. An analy
cal description of the motion of these particles (s61) may
be obtained by rewriting Eq.~5! as follows:

d2Dxs61

dt2
'2v0

2Dxs611V0G~ t !, ~12!

where the functionG in the right-hand side of Eq.~12! is
given by

G~ t !5Gl~ t !1Gnl~ t !

5Cl@11x~ t !#1Cnl@11x~ t !#3

5ClF11x0(
n50

q

P2n11 cos~2n11!VtG
1CnlF11x0(

n50

q

P2n11 cos~2n11!VtG3

, ~13!

FIG. 3. Plot showing the normalized period of oscillations
Te /T0 in the effective potentialVe , as a function of the initial
position of the central particlex0 , for Cl56.531024 and Cnl50
~solid curves!, T0 being the period of small-amplitude oscillations
in the bottom of one the two degenerate wells of the substra
potential. The dotted-dashed curves represent the period of osci
tions in the on-site substrate potential~Cl50 andCnl50!.
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q is an integer whose value depends on the order of appr
mation that is desired. The functionsGl(t) andGnl(t) can be
rewritten into the general form

GQ~ t !5(
i 50

J

giQ cos~ iVt !, ~14!

where the indexQ stands forl or nl. The coefficientsgiQ are
given in Table III for the highest-amplitude harmonicsi
50,1,2,3,4). Keeping only these harmonics, with the init
conditions:Dxs61(0)'0, andD ẋs61(0)'0, we obtain the
following approximatesolution for Eq.~12!:

Dxs61~ t !' (
n50

J

Xn sinF S 11
n

mD v0t

2 GsinS Dvnt

2 D , ~15!

where we have set

m5
v0

V
, Dvn5S 12

n

mDv0 , Xn5
m2

m22n2 gnQ .

~16!

Equation~15! shows that the motion of the particles (s
61) depends strongly on the coupling parameters (Cl ,Cnl)
throughXn , which depends ongnQ . Furthermore, the am
plitudesXn in Eq. ~15! become infinite whenm5v0 /V is a
nonzero integer. This resonant process is only qualitativ
correct because of the approximate nature of Eq.~15!. A
resonant phenomenon can thus occur in the system
higher-order harmonic of the breather coincides with the
quency of small-amplitude oscillations~in the bottom of one
of the two wells of the substrate potential!, v0 . All of the
above qualitative considerations are remarkably w
confirmed by the numerical simulations that we have p
formed using the equations of motion of the system, Eq.~2!.
The numerical method used to obtained the initial confi
ration of the breather, as schematically represented in Fig
is the so-called ‘‘relaxation process’’@21#. We accomplish
this relaxation by, first, putting the CP to a given positionx0
~in the potential well labeled ‘‘B’’ in Fig. 1!, and all the other
particles in the bottom of the wells ‘‘A.’’ Then, we let all the
particles~except the CP! to move according to Eq.~2!. Peri-

TABLE III. Characteristic parametersgiQ for linear Q5 l and
nonlinearQ5nl coupling, for the motion of particless61 in the
untrapped regime, described by Eqs.~14!, ~15!, and~16!.

Linear
coupling (gil ) Nonlinear coupling (ginl)

g0l5Cl g0nl5CnlS11
3x0

2

2
~P1

21P3
2!D

g1l5Clx0P1 g1nl53Cnlx0P1F11
x0

2

4
~P1

21P1P312P3
2!G

g2l50 g2nl5Cnl

3x0
2

2
~P1

212P1P3!

g3l5Clx0P3 g3nl5CnlF~x0P1!
3

4
13x0P3X11

x0
2

4
~P3

212P1
2!CG

g4l50 g4nl53Cnlx0
2P1P3
xi-

l

ly

a
-

l-
r-

-
1,

odically, the velocities of all those particles are set to ze
after a specified number of time steps. In doing so, we p
odically extract energy from the system until all the partic
cease to move. Once this process is completed, the effe
potentialVeff of the breather can be obtained from the fo
lowing expression~taking into account all particles of th
chain!:

Veff[(
n

V0FCl

2
~xn112xn!21

Cnl

4
~xn112xn!4

1
1

4
~12xn

2!2G , ~17!

which is schematically represented by the dashed curv
Figs. 2, in a very qualitative way. Indeed, this potential d
fers clearly from the effective potentialVe of the CP~solid
curve in Fig. 2! only when the strength of the coupling force
is sufficiently important. In the weak coupling limit unde
consideration throughout the present paper,Veff is essentially
identical to Ve . Hereafter, unless otherwise specified, w
takeV051.

A. Linear coupling

Figures 4, that we have obtained forx051.414, show that
as soon as the CP is released from a positionx0.x0

ec

51.411 99, it executes a large-amplitude oscillatory mot
from one to the other side of the potential barrier@see Fig.
4~a1!#. In Figs. 4~a1!, 4~b1!, 4~c1!, and 4~d1!, we have rep-
resented the motion of the CP~s! and its neighbors:s61, s
62, s63, and in Figs. 4~a2!, 4~b2!, 4~c2!, and 4~d2!, the
Fourier spectra of each motion, respectively. These spe
reveal that the breather motion is made up of a fundame
frequencyV and a few higher-order harmonicsnV. But,
only odd harmonics contribute to the breather motion a
those harmonics are present in the motion of all the partic
that make up the breather, i.e., the CP and its nearest ne
bors s61. Furthermore, we see that particless62 and s
63 oscillate at the phonon frequencyv0 with amplitudes
that increase in time~at least in the first stage of the dynam
ics!. This behavior indicates that a small amount of the e
ergy that was initially localized on the three particles,s and
s61, is progressively transferred to other lattice sit
through a phonon-radiation process. Indeed, owing to
linear coupling, a phonon band: vk5v0@1
12Cl sin2 k/2#1/2, 0<k<p, exists in the frequency spec
trum of the system, whether the breather is present or no
the lattice. In the very weak coupling limit that we conside
the upper phonon band edge lies very close tov0 . Thus, the
breather motion acts as a source of excitation of the pho
spectrum, leading to small oscillations at frequencyv0 for
particles that lie away from the breather, as Figs. 4~c2! and
4~d2! show. The conversion of the CP energy into phono
mode energy occurs in a relatively smooth and continu
manner~low-conversion regime!.

As mentioned above, the breather motion involves a f
damental frequencyV that always lies in the gap below th
lower-phonon band edge:V,v0 . Consequently, asV de-
pends on the initial positionx0 of the CP ~see Fig. 3!, a
higher-order harmonic ofV may ~for some specific values o
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x0! make direct resonance with phonon modes, thus prod
ing a strong transfer of energy away from the breat
~strong-conversion regime!. Such a situation is represente
in Figs. 5, where forx051.4122 we have represented th
motions of the CP and particless61 and their respective
Fourier spectra. Note that the size of the phonon band i
small that only a single harmonic can be present inside
phonon bandv0<nV<vp5@v0

214Cl #
1/2. The resonance

phenomenon observed in Fig. 5~a2! results from the presenc
of the harmonicn55 in the phonon band, which causes
large enhancement of the amplitude of oscillations for
particles~except the CP!, in particular for particles that are
far away from the CP. For example, in the strong-convers
regime, the amplitude of oscillations for the particless62
ands63 is by more than one order of magnitude larger th
in the low-conversion regime@compare Fig. 4~c1! with Fig.
5~c1!, or Fig. 4~d1! with Fig. 5~d1!#. However, it is worth
noting in Fig. 5~a1! that this strong conversion regime do
not cause a substantial drop in the amplitude of the CP

FIG. 4. Plots showing the temporal evolution of the positions~in
arb. units! of particles that make up the breather motion, obtain
by solving exactly the discrete equations of motion~2!, for x0

51.414, Cl56.531024 and Cnl50. ~a1!: xs(t). ~b1!: Dxs61(t)
511xs61(t). ~c1!: Dxs62(t)511xs62(t). ~d1!: Dxs63(t)51
1xs63(t). t designates the time~in arb. units!. ~a2!, ~b2!, ~c2!, and
~d2! show the Fourier transforms of the motion represented in~a1!,
~b1!, ~c1!, and~d1!, respectively. Each peak in~a2! and~b2! corre-
sponds to an harmonicnV of the breather motion. In~a2!, the
labels ‘‘1,’’ ‘‘3,’’ ‘‘5,’’ and ‘‘7’’ indicate the harmonics that are
present in the CP motion.
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so
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n
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cillations, owing to the weakness of the coupling forces b
tween adjacent particles.

B. Nonlinear coupling

For x051.414,Cl50, andCnl51.90931024, Figs. 6~a1!
and 6~a2! show that, the CP motion exhibits the same gene
features as for the linear coupling cases considered ab
@Figs. 4~a1! and 4~a2!, and Figs. 5~a1! and 5~a2!# in the sense
that only odd harmonics of the breather motion are presen
the CP motion. Figs. 6~b1! and 6~b2! reveal the presence o
all harmonics~odd and even! in the motion of the neares
neighbors of the CP, whereas only odd harmonics are pre
in the linear coupling case@see Figs. 4~b1! and 4~b2!, and
Figs. 5~b1! and 5~b2!#. Moreover, we see in Figs. 6~a1!,
6~b1!, and 6~c1! that the amplitude of oscillations of particle
lying away from the CP decreases abruptly fromxs.1 ~for
the CP! to Dxs62;10210, and no appreciable motion is de
tected for particless63. This abrupt localization of energy
within the breather demonstrates the ability of a breather
‘‘compactify’’ in a nonlinear Klein-Gordon lattice with an
on-site double-well potential. However, we are unable to
prove analytically that we have a ‘‘compactonic’’ behavi
in a strict mathematical sense.Nevertheless, such breathe
will be referred to as compactons in a physical sense~i.e., a
discrete breather with abrupt localization!. In this context,
the energy localization on only three particles (s,s61) cor-
responds to the ultimate degree of energy localization i

d
FIG. 5. Plots obtained in the same conditions as for Figs. 4,

with x051.4122.
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discrete breather. Furthermore, Fig. 6~b2! shows that the
chosen initial particle positionx051.414 corresponds to
situation where the fourth harmonic of the breather mot
resonates with phonon modes. As a result, the amplitude
oscillations of particless62 @see Fig. 6~c1!# are found to be,
by more than one order of magnitude, larger than the co
sponding amplitudes in any off-resonant case in the reg
x0'1.414. Thus, the compactification of the breather is p
served even in the presence of the resonance phenomen
long as the coupling forces are sufficiently weak.

As a general remark for the whole untrapped regime, i
worth noting that the deviation between the analytical
pression of the CP motion in Eq.~8!, x(t), and the numerica
solutions Xs(t), measured by L5(n@Xs(n dt)
2x(n dt)#2/x0 ~wheredt is the time step! does not exceed
2%. Equation~8! therefore provides a highly accurate repr
sentation of the CP motion in the untrapped regime.

IV. TRAPPED REGIME

In this regime, the CP starts out at a positionx0,x0
ec ,

with a potential energy that is below the critical level f
crossing the barrier of the effective potential:Ve(x0)
,Ve(xem2) ~see Fig. 2!. The CP is therefore trapped in th
shallower well while all the other particles oscillate in th
deepest well. This situation, which has been largely
glected in all previous discretized field theories of a breat
motion, makes one of the greatest qualitative differen
with respect to the breather motion in a lattice with a sing
well on-site potential~in which only a single regime exists!
@10#. In the weak coupling limit, Eq.~4! can be integrated via
a quadrature, in a similar way as for the untrapped regim

FIG. 6. Plots showing the evolution of the positions~in arb.
units! of particles that make up the breather motion, forx0

51.414,Cl50, andCnl51.90931024. ~a1!: xs(t). ~b1!: Dxs61(t)
~c1!: Dxs62(t). t designates the time~in arb. units!. ~a2!, ~b2!, and
~c2! show the Fourier transforms of the motion represented in~a1!,
~b1!, and~c1!, respectively.
n
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Sec. III. The solution, in terms of the Jacobi elliptic functio
dn @18# with modulusk̂e

2,1, may be written as

x~ t !'x0dn~ŵet,k̂e
2!, ~18!

where ŵe(Cl ,Cnl)'ŵe(0,0)5x0(V0/2)1/2. The parameters
k̂e

2(Cl ,Cnl) are displayed in Table IV. Solution~18! corre-

sponds to oscillations of periodT̂e and frequencyV̂:

T̂e5
2

ŵe

K~ k̂e
2! with K~ k̂e

2!

5E
0

p/2 du

A12 k̂e
2 sin2 u

and V̂5
2p

T̂e

. ~19!

In the weak coupling limit, Eq.~18! can be rewritten as~see
Ref. @18#!:

x~ t !'x0F p

2K~ k̂2!
1 (

n51

`

Q2n cos~2nV̂t !G , V̂52p/T̂e ,

~20!

where

Q2n5
p

K~ k̂2!
cosh21S pn

F~12 k̂2!

K~ k̂2!
D . ~21!

On the other hand, we have found from numerical sim
lations that in the trapped regime the breather exhibits
same general features in both linear and nonlinear coup
cases, except that in the nonlinear case the breather ener
abruptly localized on the CP and its nearest and next-nea
neighbors. We present below only this latter case.

Figures 7, which show the numerical solution of Eqs.~2!
for x051.410, represent a typical breather motion. Figu
7~a1! shows that the CP moves off the initial positionx0 ~in
the shallower well! and attempts to proceed to the deep
well of the effective potential, but cannot do so because
kinetic energy is not sufficient to overcome the potential b
rier. As a result, the CP remains trapped in this shallow w
during the ensuing motion, with an amplitude of oscillatio

TABLE IV. Characteristic parametersk̂e
2 for the CP motion in

the trapped regime, for zero~0,0!, linear (Cl ,0) and nonlinear
(0,Cnl) coupling.

(Cl ,Cnl) k̂e(Cl ,Cnl)
2

~0,0!
2~x0

221!

x0
2

(Cl ,0) k̂e~0,0!
2 F11

2Cl~x0
2211x022~22x0

2!1/2!

~x0
221!2 G

(0,Cnl)
k̂e~0,0!

2 F11
2Cnl~x0

31x014~x0
221!1~x0

223!~22x0
2!1/2!

~x0
221!2 G
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that is nearly half of the amplitude for a typical untrapp
regime. Moreover, the mean positions of the particles
shifted in the direction of the shallow well, thus leading
the presence of a dc component in the Fourier transform
the motion of those particles@see Figs. 7~a2! and 7~b2!#.
Even and odd harmonics are present in the motion cont
to the untrapped regime with linear coupling forces, whe
only odd harmonics are present in the breather motion@Figs.
4~a2! and 4~b2!, or Figs. 5~a2! and 5~b2!#. Furthermore, Figs.
7~a2! and 7~b2! demonstrate that the chosen initial conditio
for the CP corresponds to a situation where a resonance
curs, owing to the presence of the second harmonic in
phonon band. The amplitude of oscillation for particless
62 remains within.1029, and no appreciable motion wa
detected for the other particles. This behavior therefore
veals the ability of aF-four breather tocompactifyin the
trapped regime.

As a general remark, for all the trapped regimes, we n
that the deviation between the CP motion in Eq.~18!, and the
numerical solutions, measured byL ~defined above!, does
not exceed 5%; which corresponds to a fairly good agr
ment.

V. CRITICAL REGIME

When the CP is released from positionx0'x0
ec , its en-

ergy is just sufficient to overcome the potential barrier.
this case, the breather motion depends critically on the
ergy transfer process from the CP to the neighboring lat
sites. The dynamics can be arbitrarily divided into two ma
categories of breather oscillations, which are discussed
low for the linear coupling case only, because the dynam
behavior in the nonlinear coupling case is similar.

FIG. 7. Plots showing the particle dynamics in the trapped
gime of the CP, forx051.410,Cl50 andCnl51.90931024.
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A. Trapped regime in the deepest well of the effective potential

In the presence of linear coupling forces, forx0
51.411 992, Fig. 8~a1! shows a particular situation in whic
the CP is initially untrapped and then becomes trapped in
deepest well. The CP potential energy is initially sufficient
permit it to overcome the potential barrier. The CP moves
to the deepest well of the effective potential, reaches
turning point, then begins to travel back to the shallow we
and finally has an energy that is no longer sufficient
crossing the potential barrier. It is therefore trapped in
deepest well of the potential during the ensuing oscillat
motion. We attribute this trapping to the fact that, a sm
fraction of CP energy is converted into energy for its neig
bors, through a phonon emission process, as we already m
tioned above. Although this energy conversion process
very weak in case of small coupling forces, it is sufficient
play a crucial role in the critical regime.

B. Temporary trapping

When the initial position isx051.411 996@slightly larger
thanx0 in Fig. 8~a1!# the energy is just sufficient for the C
to execute several untrapped oscillations in the beginning
its motion. In this case, Fig. 8~a2! shows that the CP ex
ecutes several untrapped oscillations at one go, before un
going a transition to the trapped regime. A careful exami
tion of Fig. 8 ~b2! reveals that the trapping of the CP occu
precisely when the amplitude of oscillations of the near
neighbors,s61, attains its maximum~at t'100!. In other
words, this trapping occurs exactly when a part of ene
that was initially stored in the CP is transferred to the nea
neighborss61 ~amplitude.231023!. Then, after a while,
the energy lost by the CP is~at least in part! transferred back

-

FIG. 8. Plots showing the particle dynamics in the critical r
gime forCl56.531024 andCnl50. x051.411 992:~a1!, ~b1!, and
~c1!. x051.411 996:~a2!, ~b2!, and~c2!.
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to the CP while this particle is moving in the direction of th
potential barrier; which permits the CP to cross again
potential barrier. So, the CP executes several untrapped
cillations, until a secondtemporary trappingoccurs. We ob-
serve in Fig. 8~a2! that the CP undergoes severaltemporary
trappingsin this untrapped regime. Thus, the existence o
critical regime for a Klein-Gordon breather makes the gre
est qualitative difference with previous studies on t
breather dynamics in nonlinear Klein-Gordon systems. O
results in Figs. 8 therefore demonstrate that Klein-Gord
breathers are collective entities that possess a much ri
temporal structure of modes than that of a simple particl

VI. CONCLUSION

We have investigated theoretically the dynamics o
highly discrete breather in the ultimate degree of energy
calization in a nonlinear Klein-Gordon lattice, with weak i
terparticle coupling, submitted to aF-four substrate poten
tial. In this system, the central particle~CP! executes
relatively large-amplitude nonlinear oscillations, while a
the other particles of the lattice execute small-amplitude
cillations around their equilibrium positions. For thisF-four
breather, we have demonstrated the existence of severa
gimes of oscillatory motion.

~i! We have observed an untrapped regime in which
CP executes large-amplitude oscillations from one to
other side of the potential barrier.

~ii ! In other parameter regions, we find thetrapped re-
gime, in which the CP is trapped in one of the two wells
its effective potential throughout its motion. Since the co
pling forces breaks the symmetry of the two wells of t
effective potential of the CP, two types of trapped regim
can occur depending on whether this CP is trapped in
deepest or shallower well of the potential. The trapped
gime in the deepest well corresponds to the case wher
the particles that make up the breather oscillate on the s
side of the potential barrier, whereas the trapped regim
the well with the smallest depth corresponds to the c
where the CP oscillates in the shallow well while all t
other particles oscillate in the deepest well.

~iii ! Between theuntrappedandtrappedregimes, we have
identified acritical regime, which occurs when the CP star
out its motion in the shallower well with an energy that
just sufficient to cross the potential barrier. Then the
undergoes severaltemporary trappingswithin an untrapped
regime. This temporary trapping occurs because energy
transferred from the CP to the nearest neighbors. Howe
the nearest neighbors can synchronously transfer en
back to the CP precisely when this particle is attempting
cross the potential barrier, which then causes the CP to
e
s-
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come untrapped. This behavior result makes the grea
qualitative difference from previous work@10# and related
studies on breather dynamics@14,22#.

On the other hand, we have shown that although the c
pling forces between adjacent particles are very weak, in
the regimes mentioned above, a very small fraction of
breather energy is lost through a phonon-radiation proc
In general, this energy-radiation process occurs in a cont
ous and smooth manner, in the form of phonons that
emitted around the fundamental frequencyv0 with a nearly
zero group velocity. Consequently, those phonons do
propagate far away from the breather, thus preserving a h
degree of energy localization within the breather. Howev
we have found some particular conditions for which t
energy-transfer process is much stronger than in the c
mentioned above. The mechanism of this strong emissio
phonons involves a parametric coupling between pho
modes and the harmonics of a fundamental frequencyV as-
sociated with the breather motion. A strong phonon emiss
occurs whenever the initial position of the CP is such tha
higher-order harmonic of the breather motion,nV, falls in
the phonon band. In the situation of high degree of ene
localization, almost all the energy of the breather is loca
on the CP at least in the beginning of the motion. Then,
phonon emission process induces a small transfer of en
from the CP to particles lying away from the breather.A
major result of the present paper is the demonstration tha
case of purely anharmonic coupling forces between adjac
particles, the amplitude of oscillations of the particles neig
boring the CP decreases to zero beyond the next-nea
neighbors. This behavior in a nonlinear Klein-Gordon lattic
with an on-site double-well potential reveals the ability of
breather to compactify.

In this context, the concept of compactification of solita
waves@10,12,14,22,23# suggests the possibility of existenc
of collective entities with a strict localization of energy
physical nonlinear systems such as hydrogen-bonded ch
DNA macromolecules, or polymer chains, as mentioned
the Introduction. This concept should be especially intere
ing for systems such as fiber transmission links in comm
nications systems, in which solitary waves with compa
support would have as a main advantage compared to c
sical solitons, the absence of long-range interaction betw
adjacent waves. From a fundamental point of view, an
derstanding of the behavior of structures with a high deg
of energy localization in simple nonlinear systems con
tutes a useful step toward the generic physical mechani
that govern the generation and stability of localized nonl
ear waves. In more complicated systems, these proce
may involve strongly anharmonic local dynamics of o
atom or ion.
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