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Oscillations of a highly discrete breather with a critical regime

E. Coquet, M. Remoissenet, and P. Tchofo Dinda
Laboratoire de Physique de I'Universitle Bourgogne, UMR CNRS No. 5027, Avenue A. Savary,
Boite Postale 47 870, 21078 Dijon @ex, France
(Received 24 January 2000; revised manuscript received 30 Jung 2000

We analyze carefully the essential features of the dynamics of a stationary discrete breather in the ultimate
degree of energy localization in a nonlinear Klein-Gordon lattice with an on-site double-well potential. We
demonstrate the existence of three different regimes of oscillatory motion in the breather dynamics, which are
closely related to the motion of the central particle in an effective potential having two nondegenerate wells. In
given parameter regions, we observe w@rtrapped regimein which the central particle executes large-
amplitude oscillations from one to the other side of the potential barrier. In other parameter regions, we find the
trapped regimein which the central particle oscillates in one of the two wells of the effective potential.
Between these two regimes we findritical regimein which the central particle undergoes sevésahporary
trappingswithin an untrapped regime. Importantly, our study reveals that in the presence of purely anharmonic
coupling forces, the breatheompactifiesi.e., the energy becomes abruptly localized within the breather.

PACS numbses): 41.20.Jb, 05.56:q

I. INTRODUCTION pling forces between adjacent particles. The concept of
compactification or strict localization of solitary wavess
In recent years there has been considerable effort made introduced for the first time by Rosenau and Hynjaa],
understanding nonlinear energy-localization phenonmjéha who investigated a special type of Korteweg—de Vries equa-
in homogeneous discrete lattices. The possibility of existencéon and discovered that solitary waves can compactify in the
of localized long-lived molecular vibrational states waspresence of a nonlinear dispersion. Such solitary waves,
pointed out by Ovchinniko{2] many decades ago. Then, the which are characterized by a compact support, i.e., the ab-
existence of nonlinear localized modes in a lattice with onsence of infinite wings, have been callsampactonsThen a
site potential and linear interparticle coupling was exploredfundamental question arises as to whethdir@ather com-
by Kosevich and Kovale{3]. Dolgov[4] proposed a model pactoncan exist in nonlinear Klein-Gordon lattices having
for self-localization of vibrations in a one-dimensional lattice an on-site double-well substrate potential. The answer to this
with nonlinear interparticle coupling without on-site poten- question is given in the present paper.
tial. Sievers and Taken{b] reported that large amplitude In this paper, we carry out a theoretical analysis showing
vibrations in perfectly periodic one-dimensiortaD) lattices  the existence of a stationary breather in the ultimate degree
can localize because of the nonlinearity and discreteness eff energy localization in a nonlinear Klein-Gordon discrete
fects. Then they clearly suggested thatrinsic localized lattice, with a ®-four on-site substrate potential and very
modes or discrete breatheshould be quite general and ro- weak coupling forces between adjacent particles. This
bust solutions in the sense that they can exist in many modelsreather consists of a central particle that executes strongly
[5]. This result was subsequently confirmed by Pgjeln  anharmonic dynamics while all the other particles execute
contrast to the case of purely harmonic lattices, where sparery small-amplitude oscillations about their equilibrium po-
tially localized modes can occur only when defects or disorsitions. Such a situation, which presents similarities with the
der are present so that the translational invariance of thiocalized rotating modegl3], may occur in many discrete
underlying lattice is broken, discrete breathers may be crereal systems where some thermally activated atoms or ions,
ated anywhere in a perfect homogeneous nonlinear latticéhough coupled to their neighbors, may jump from one site to
Since the pioneering studies mentioned aljdvef|, discrete  another one. In the present paper, we provide a general pic-
breathers have been the subject of an intense res¢fmrch ture describing the oscillatory dynamics of the highly dis-
recent reviews sele] and[8]), because of their relevance in crete breather, and we show that the on-site double-well po-
various fields such as condensed matter physics, optics, anential leads to a much richer spectrum of behavior than there
biology. The existence of discrete breathers as exact time for the single-well substrate potentials considered in pre-
periodic spatially localized solutions in a large class of non-vious studied10,14]. Most of the richness comes from the
linear lattices was demonstrated analytically by McKay andexistence of several regimes of breather motion, which are
Aubry [9]. But so far, no analytical derivation of breather closely related to the motion of the central particle of the
solutions in a highly discreté-four lattice has been carried breather in a double-well effective potential. Many physical
out because of a host of mathematical problems that arise iprocesses involving this dynamics may include proton trans-
the specific situation of abrupt localization of energy. port in hydrogen-bonded chaip&5], planar rotations of base
On the other hand, recent studjd®,11 demonstrate that pairs in DNA macromolecule$16], and polymer chains
a breathing mode carompactifyin a nonlinear Klein- twisting [17].
Gordon lattice, with &ofton-site substrate potentiedingle- The paper is organized as follows. In Sec. Il we present
well potentia), in the presence of purely anharmonic cou-the model. In Sec. Ill, we analyze the breather motion in the
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untrapped regime, and in Sec. IV we consider the trapped
regime. Section V is devoted to the analysis of the critical
regime, and in Sec. VI we summarize and give concluding
remarks.

05
704

II. MODEL 20.3

A. Equations of motion Tj:'o.z

The system under consideration is a nonlinear Kein-:§0_1
Gordon infinite lattice, in which each particle interacts with = o

its nearest neighbors via coupling forces that are either ¢,
purely harmonic or anharmoniEach particle oscillates in a
direction perpendicular to the chain axim a ®-four on-site
potential that represents the combined influence of the sur-
rounding lattice atoms and external effects. The lattice
Hamiltonian is

1(dx,\2 ¢ s+2 -15 X
H=2 [E(dt) +E(Xn+1_xn)2 _ _ . —
n FIG. 1. Schematic representation of the initial configuration of
the system in presence of a weak interparticle coupling. The curves
Ch VO 222 o . .
+ — (Xppr1— X))+ — (1—x,2)?]. ) represent the on-site substrate potential. The circles represent the
4 4 particles. The labels A” and “B” identify the two wells of the
potential. The central particle, which lies at the site index"*
Here,x, is the on-site degree of freedon),, c,,, andV, begins its motion in the weB, whereas all the other particles are in
are constants that control the strength of linear and nonlinedhe WellsA. The particle positiorx is given in arbitrary units.
couplings, and the on-site potential barrier height, respec-
tively. The corresponding one-dimensional equations of mo-d®Xs

tion can be written in the following form: ae2 =VofXs(1=x5) +2[ Ci(Xs1=Xs) + Cri(Xs 1= X9 *I}-
3
2
n
rTa = Vo[ Xn(1=X3) + Cj(Xq— 1+ X1~ 2Xn) On the other hand, the positions of all the particles, except
the CP, can be rewritten ag;.;=—1+AX.+;, wWhere the
+ Crll (Xn— 1= Xn) 3+ (X 1— %) 311, (2)  deviation with respect to the equilibrium position is

|AXs+i|<1. Then, forC;<1 andC, <1, the equations of

whereC,=c, /V, andC,,=c,, /V, are the normalized cou- motion at sitess, s+ 1, ands=*2 reduce, in first-order ap-
pling constants. proximation, 1o

In the present paper, we examine thlémate degree of 2
energy localizationn this nonlinear Klein-Gordon lattice, in d*s
the form of a breather. To this end, we consittez limit of dt?
weak coupling between adjacent lattice sites, a dynami- dV.(x0)
cal situation in which only a central particleCP), say n —__"e”s
=s, executes a large-amplitude motion from one to the other dXs
side of the potential barrier. All the other particles execute
relatively small-amplitude oscillations near the bottom of the  d2Axq., 3
substrate wells lying in the same side of the potential barrier. gz T 2V0AXs=1~ Vo[ Ci(1+Xs) + Cpi(14X5)°],
Figure 1 shows a schematic representation of the configura- (5)
tion of the system at the beginning of this dynamical situa-
tion. The CP is shifted to an unstable position in one side of d2Axq. 5
the substrate potential, labeled®™ in Fig. 1. As a result of T
the coupling forces, the particles neighboring the CP undergo
small shifts, in the same direction as the CP, up to unstable . L .
equilibrium positions located near the bottom of the potentiaf"S Ed- (6) shows, in the weak coupling limit, the motion of
wells labeled ‘A” in Fig. 1. An important point to be em- the_st_z part_lcles corresponds esser;/t2|ally to an harmonic
phasized here is that the large initial displacement given t@Scillation with frequency wo=(2Vo)™ and period Ty
the CP, in the direction perpendicular to the chain axis, gen—:277/“’0- ) )
erates thereby a symmetry plafgerpendicular to the chain In Eq. (4), Ve_rep_rese_nts the effective potential for the CP,
axig), at this lattice sitdi.e., s). Consequently, in the limit of WhOSe expression is given by
no perturbations, the amplitude of displacement of particles
s+i ands—i are strictly identical. Thus, at site=s, one
can replace Eq.2) by

~V{Xs(1=x2) = 2[ C|(1+Xs) + Cp(1+x¢)°]}

, 4

+2V0Axst2~0. (6)

Ve(X)=V, %(1—x2)2+C|(1+x)2+ %(Hx)“ , (7
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TABLE I. Parameters of the effective potential of the €§¥x),
for zero, linear and nonlinear coupling cases. The positions of the
extrema ofVg(X) are: Xemt, Xemp, &ndXeng. Vpp IS the barrier

@ 03

"__% height.xg® is the critical initial position of the CP.

o

5 0% No Linear Nonlinear
= Parameters coupling coupling Coupling
>° 0.2

2 Xom -1 -1 -1

E 015 Xenp 0 2C, 2C,,

Lll_J Xem3 1 1_20| 1_8Cn|

g o1 Vph Vo Vo Vo

w 7z 7 (1712 7 (1730Cq)
E 0.05 xS vZ  V2[1-C/(1+v2)] V2[1-C,(4+3v2)]
L

Lo

of Xq, such as the occurrence of several temporary trappings
within an untrapped regime.
We examine successively these three different regimes.

POSITION x [arb. units]

FIG. 2. Schematic representation of the effective potentials for IIl. UNTRAPPED REGIME
the central particleV, (solid curvg, and for the breathel o ) . o
(dashed curje The dotted curve represent the substrate potential. [N this regime, the CP has a sufficient energy to overcome
The parameterseyyg, Xemz, aNdXeng, indicate the extrema of the the potential barrier. Thus, E¢4) can be integrated via a
effective potential of the central particlg® and xS¢ indicate the ~ quadrature to give
positions for whichV¢(X) =Ve(Xenp) -

X(Wet, k2) =x (pa+B)+(B—pa)cn(wet,k3)

with x=xXs. Thus, Eqs(4)—(6) define the motion of the par- ® (a+B)+(B—a)cn(wet ks
ticles that are involved in the breather dynamics in the ulti- 2 Lo
mate degree of energy localization in the system. The effec/here the parameters,, ke, p, «, and, are given in Table

tive potentialV, is schematically represented by the solid Il for zero, linear and nonlinear coupling forces, respectively.

curve in Fig. 2, where the positions of the extremavgf ' he function cn in Eq(8) is a Jacobi elliptic functiori18]
Xem1» Xerps @ndXeng, can be easily calculated by solving with moduluske< 1. Solution(8) corresponds to oscillations
dV,(x)/dx=0 (the results are given in Tablg. IOne of the Of period T, and frequency:

effects of the coupling forces is to lower the barrier height of

the potentialVyp=Ve(Xemp) — Ve(Xeng) that the CP must T K(k?) with K(kz):f(m) du and
overcome to move from the well to the wellA. In fact, the ¢ W, e € 0 m

ability of the CP to execute &rge-amplitude motiorde- €
pends critically on its initial position,. There exists a criti-
cal distancexg® (from the origin from which the CR(when
released with zero initial velocifycan execute a large-
amplitude motion from one to the other side of the potential
barrier. Note that in the absence of coupling forces, the ef
fective potential of the CP coincides with the on-site sub-
strate potential represented by the dotted curve in Fig. 2, an
there, the critical distance is5=v2>xg°. Thus, an out- >

standing effect of the coupling forces is the reduction of the x(t)~xocn(wet,ke)~x02 Pone1c092n+1)QOt,
critical distance fronxg to xg© (see also Table)l Throughout n=0

®

_ 2 9
=T, 9

For very weak couplingC;<1 andC,,;<1 (including the
case wherC,=C,,=0), the general solutiof8) can be ap-
%roximated[ls] by

the present paper, we choose the initial position of the CP to (10
be precisely in the parameter regirg=xg, where the pres- \yhere
ence of coupling forces is required for the CP to execute an
untrapped motionin this region, the breather motion can be T . . K(1—k§)
broadly divided into three main regimes of oscillatory mo- P2n+1:m003h m(n+ z)w . (1Y
tion depending on the initial position of the CP. ene ¢

(i) If xo>xg°, the CP will execute amntrapped motion Solution (10) shows that the central-particle motion,
with large-amplitude oscillations. which is closely related to the breather motj@mmade up of

(i) Whenxo<xg®, we find atrapped regimén which the  the fundamental frequenc§2 and several odd harmonics.
potential energy of the CP is not sufficient for this particle toThis behavior is formally equivalent to large-amplitude os-
overcome the potential barrier. cillations of a particle in a double-well potent{dl9,20. The

(i) When xy~xg°, we find a critical regime in which substitution of the expressions fat, andk, (see Table Nin
different situations can occur depending on the precise valuEg. (9) gives the period, in terms of the initial conditiorx,
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TABLE Il. Characteristic parametevs, , k2, p, «?, and?, for

the CP motion in the untrapped regime, for ze@ (C,)=(0,0), ! :
linear (C,,0) and nonlinear (@,,) coupling. trapped untrapped :
‘ i
6 regime regime 1
(Cl anI) We(C| .Co) g g !‘
(0,0 Vo(x3—1)
(CI|0) 14 C| ( 2+2 1)}
W, X Xo—
(0,0 (Xg* 1)2 0 0 .
(O,Cm) Cnl 4 3 O S
We0,0 1+ ﬁ[XO+Z(XO+XO+XO)_3]
(xg—1)
(Ci.Cn) kg(cI Co) f
(0,0 e
206-1)
(C|,0) 2C, Xéc x©
kéo'o)[l_ Xo(Xé_l)z(Xg_XO+z) ’ : ;
(0Cpy) ac,, 1411 1412 1413 1414 1415 1416
’ n 3,2 - .
f— + —
kﬁ(o,o{ 1 OC—1)7 (2x3+x2—2xo+ 1) Initial position x
Cc.C ) . . _—
(Ci.Cn) P e FIG. 3. Plot showing the normalized period of oscillations
0,0 -1 Te/Tq in the effective potentiaV,, as a function of the initial
(C,,0) 4C, position of the central particlg,, for C,=6.5x10 * andC, =0
-1+ 1 ) (solid curves, T, being the period of small-amplitude oscillations
Xl ) in the bottom of one the two degenerate wells of the substrate
(0.Cn) 4C,(1+X3) potential. The dotted-dashed curves represent the period of oscilla-
- —xo(ng 1) tions in the on-site substrate potenti@, =0 andC,,=0).
(C,,Ch) a(zcl Con) energy localization in the breather imposes a strict limitation
5 in the strength of linear or nonlinear coupling, to ensure
0.0 22(x071) small-amplitude oscillations for all the particles other than
(C,0) 22(xo—1)+4C| the CP. As a consequence, the size of the parameter region
(0.Cn) 2(Xo=1)+8Cni(2+xo) xS=x,=x§ must be sufficiently small. Hereafter, we use
(C/,Cr) /3(20| co) C,=6.500<10"* and C,=1.909<10 4, for which x&°
: =1.41199.
(0.0 2(x5—1) Although the CP pl i i i
g gh the plays the prominent role in the motion of
(C1,0) 4x, a highly localized breather mode, the role of the other par-
20G-1)+4C| 1+ -1 ticles of the system cannot be ignored in a discrete system,
(0.C.) C+3) beca}gse 'they are invoIved' in the e_nergy—exchange or com-
2(¢—1)+8C, | 2+ %) pactification processes, which we discuss below. An analyti-
-1 cal description of the motion of these particles~(1) may
be obtained by rewriting Eq5) as follows:
. . . 2
and the coupling parameters. The dotted-dashed curve in Fig. %~ — w2A X+ VG(1) (12)
3 represents the normalized peridgd/ T, for oscillations of dt? 07 s=1 7 T0 '

the CP as a function of its initial position,, in the absence

of coupling.T./T, becomes infinite when the initial position where the functiorG in the right-hand side of Eq12) is
of the CP coincides with the critical valugy=x3=v2 (@s  given by

indicated in Fig. 3 by a vertical dotted lineThus, in the

absence of coupling, the CP would be unable to cross the  G(t)=G,(t)+ G (t)

potential barrier for initial positions such the§<xg. In the

presence of couplind,, is represented by the solid curves in
Fig. 3, which show that the CP is now able to cross the
potential barrier for initial positions belowf, in the region
Xg'<xo=<Xxg. Here, the coupling plays a crucial role in the
sense that it is required for the CP to execute large-amplitude
oscillations from one to the other side of the potential barrier.
On the other hand, the achievement of the ultimate degree of

=C[1+x(1)]+Cp[1+x(1)]°

q
1+X%0> P2n+1cos(2n+1)9t}
n=0

3
, (13

q

+Ch 1+x02 Pons1c092n+1)0Ot
n=0
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TABLE llIl. Characteristic parameterg;q for linear Q=1 and  odically, the velocities of all those particles are set to zero
nonlinearQ=nl coupling, for the motion of particles=1 in the  after a specified number of time steps. In doing so, we peri-

untrapped regime, described by E¢B4), (15), and(16). odically extract energy from the system until all the particles
- cease to move. Once this process is completed, the effective
Linear _ ) potential V4 of the breather can be obtained from the fol-
coupling @;/) Nonlinear coupling §in) lowing expressiontaking into account all particles of the
32 . chain:
90=C; Gon=Cnl| 1+ — (P3+P3)
2 _ C| 2 Cnl 4
% Veir=2 Vo 5 (Xnt1=%n)*+ = (Xn+1=%n)
911 =CiXoPs Oun=3CoXoPy| 1+ 7 (PH+P1Py-+2P%) "
-0 X 2 +E(1—x2)2 (17)
82= ganCan(PﬁZPlPs) 4 n/ |
P)? 5 L . .
031=C %P3 ngQ{% +3X0p3(1+%(p§+2p§)ﬂ which is schematically represented by the dashed curve in
) Figs. 2, in a very qualitative way. Indeed, this potential dif-
94=0 94n1=3CnXgP1P3

fers clearly from the effective potenti®l, of the CP(solid
curve in Fig. 2 only when the strength of the coupling forces

qis an integer whose value depends on the order of approx|§ sufficiently important. In the weak coupling limit under

mation that is desired. The functio@s(t) andG,(t) can be _cons[deratlon throughout the present pawgms esse_n.tlally
. X identical toV,.. Hereafter, unless otherwise specified, we
rewritten into the general form

takeVy=1.

J
Go(t)= i:EO ig cogit), (14 A. Linear coupling

Figures 4, that we have obtained fqy=1.414, show that
where the indexQ stands forl or nl. The coefficientg)ip are  as soon as the CP is released from a positignxg°
given in Table IIl for the highest-amplitude harmonids ( =1.41199, it executes a large-amplitude oscillatory motion
=0,1,2,3,4). Keeping only these harmonics, with the initialfrom one to the other side of the potential barfisee Fig.
conditions:Axs.1(0)~0, andAXs.,(0)~0, we obtain the 4(al)]. In Figs. 4al), 4(b1), 4(c1), and 4d1), we have rep-
following approximatesolution for Eq.(12): resented the motion of the QB) and its neighborss+1, s

+2,s*3, and in Figs. &2, 4(b2), 4(c2), and 4d2), the
[Awpt Fourier spectra of each motion, respectively. These spectra
Sl ( 2 ) (15 reveal that the breather motion is made up of a fundamental
frequency() and a few higher-order harmonicg). But,
where we have set only odd harmonics contribute to the breather motion and
those harmonics are present in the motion of all the particles
g m that make up the breather, i.e., the CP and its nearest neigh-
m=-a" A‘”n:(l_ﬁ) wo, Xn= o 70nQ- bors s+ 1. Furthermore, we see that particles2 ands
(16) +3 oscillate at the phonon frequeney, with amplitudes
that increase in timéat least in the first stage of the dynam-
Equation(15) shows that the motion of the particles ( ics). This behavior indicates that a small amount of the en-
+1) depends strongly on the coupling paramet&gs,C,,) ergy that was initially localized on the three particlegind
throughX,,, which depends ogy,q. Furthermore, the am- s*1, is progressively transferred to other lattice sites
plitudesX,, in Eg. (15) become infinite whem=w,/Q isa through a phonon-radiation process. Indeed, owing to the
nonzero integer. This resonant process is only qualitativelyinear  coupling, a  phonon  band: w=wg[1
correct because of the approximate nature of @). A +2C, sifk/i2]¥2, 0<k=, exists in the frequency spec-
resonant phenomenon can thus occur in the system if &um of the system, whether the breather is present or not in
higher-order harmonic of the breather coincides with the frethe lattice. In the very weak coupling limit that we consider,
quency of small-amplitude oscillatioris the bottom of one the upper phonon band edge lies very closeo Thus, the
of the two wells of the substrate potenjiabg. All of the  breather motion acts as a source of excitation of the phonon
above qualitative considerations are remarkably wellspectrum, leading to small oscillations at frequersgy for
confirmed by the numerical simulations that we have perparticles that lie away from the breather, as Figg2#and
formed using the equations of motion of the system,f. 4(d2) show. The conversion of the CP energy into phonon-
The numerical method used to obtained the initial configumode energy occurs in a relatively smooth and continuous
ration of the breather, as schematically represented in Fig. ITnanner(low-conversion regime
is the so-called “relaxation procesd21]. We accomplish As mentioned above, the breather motion involves a fun-
this relaxation by, first, putting the CP to a given positign  damental frequenc§) that always lies in the gap below the
(in the potential well labeled B” in Fig. 1), and all the other lower-phonon band edgé€)<w,. Consequently, a$§) de-
particles in the bottom of the wellsA.” Then, we let all the  pends on the initial positiorx, of the CP(see Fig. 3 a
particles(except the CPto move according to Ed2). Peri-  higher-order harmonic d? may (for some specific values of

a)ot

2

n
1+ —
m

J
AXseq(t)~ E X Sil’{
n=0

2
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C=6.5x 107 x,=1.414 FOURIER TRANSFORM C=6.5x 107 x,=1.4122 FOURIER TRANSFORM
2l(al) (a2) 2l(al) (@2)
1 1
<o ) <o )
0 0
0 05 3 0 05 3
5 7
- 0 l: - -1
x10™ x10™ x 107
(b1) 10 (b2)
10 s s 6 0
< <
5 € 3 4
x<* 5 < 5 <
< 2 o 5
©
0 2 2 J
c 0 < 0 A A
€ £
8  x107° x 107 ®  x10"
E 87(c2) (c1) § , (c2)
© 6 1 =
£ N E
24 8 0 2 2
2 <
A s N
x10° x 10~ x107° x107°
41(d2) GED) 2((d2)
3 2 15
2 | 1
1 0.5
LA . (I
100 . 200 1 2 3 . 0 100 200 1 2 3
TIME [arb. units] FREQUENCY o [arb. units] TIME [arb. units] FREQUENCY  [arb. units]
FIG. 4. Plots showing the temporal evolution of the posititins FIG. 5. Plots obtained in the same conditions as for Figs. 4, but

arb. unit$ of particles that make up the breather motion, obtainedwith x,=1.4122.
by solving exactly the discrete equations of moti@), for x,
=1.414,C,=6.5x10"* and C,,=0. (al): x(t). (b1): AXs.q(t)
=1+Xsxq(t). (€D AXgep(t)=1+Xs:5(t). (dD): Axs.(t)=1
+Xs+3(t). t designates the timen arb. unit3. (a2), (b2), (c2), and
(d2) show the Fourier transforms of the motion represente@ii ) )
(b1), (c1), and(d1), respectively. Each peak i@2 and(b2) corre- B. Nonlinear coupling
sponds to an harmoninQ) of the breather motion. Irfa2), the Forx,=1.414,C,=0, andC,,=1.909¥ 1074, Figs. Gal)
labels “1,” “3,” “5,” and “7” indicate the harmonics that are  and a2 show that, the CP motion exhibits the same general
present in the CP motion. features as for the linear coupling cases considered above
[Figs. 4al) and 4a2), and Figs. fal) and 5a2)] in the sense
Xo) make direct resonance with phonon modes, thus produghat only odd harmonics of the breather motion are present in
ing a strong transfer of energy away from the breathethe CP motion. Figs. ®1) and Gb2) reveal the presence of
(strong-conversion regimeSuch a situation is represented all harmonics(odd and evenin the motion of the nearest
in Figs. 5, where forxo=1.4122 we have represented the neighbors of the CP, whereas only odd harmonics are present
motions of the CP and particles=1 and their respective in the linear coupling casgsee Figs. 1) and 4b2), and
Fourier spectra. Note that the size of the phonon band is sbigs. 5§b1) and 5b2)]. Moreover, we see in Figs.(#l),
small that only a single harmonic can be present inside thi§(b1), and Gcl) that the amplitude of oscillations of particles
phonon bandwo<nQ<w,=[w5+4C,]¥2 The resonance lying away from the CP decreases abruptly fragr1 (for
phenomenon observed in FigaB) results from the presence the CP to Axs.,~10" % and no appreciable motion is de-
of the harmonicn=5 in the phonon band, which causes atected for particles= 3. This abrupt localization of energy
large enhancement of the amplitude of oscillations for allwithin the breather demonstrates the ability of a breather to
particles(except the CPR in particular for particles that are “compactify” in a nonlinear Klein-Gordon lattice with an
far away from the CP. For example, in the strong-conversioron-site double-well potentialHowever, we are unable to
regime, the amplitude of oscillations for the partickes2 prove analytically that we have a “compactonic” behavior
ands= 3 is by more than one order of magnitude larger thann a strict mathematical sensievertheless, such breathers
in the low-conversion regimpcompare Fig. &1) with Fig.  will be referred to as compactons in a physical sefise, a
5(c1), or Fig. 4d1) with Fig. 5(d1)]. However, it is worth  discrete breather with abrupt localizatipnin this context,
noting in Fig. %al) that this strong conversion regime does the energy localization on only three particless 1) cor-
not cause a substantial drop in the amplitude of the CP ogesponds to the ultimate degree of energy localization in a

cillations, owing to the weakness of the coupling forces be-
tween adjacent particles.
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C=0 C_ =1.909x 107 FOURIER TRANSFORM TABLE IV. Characteristic parametefé for the CP motion in
2 the trapped regime, for zer,0), linear (C,,0) and nonlinear
(al) (az) ,
1 (0,C,)) coupling.
xzn
0 0.5 (Ci.Cn) K2, co
-1 s 203—1
£ o 00 (6—1)
2 X
<C
o 3 . 2C,(x5— 1+ x9—2(2—x3)*?)
Z, (0 ké‘“’{” 0G-17
3
£
S @ { L 2Cn|(Xg+Xo+4(X(2)_1)+(X%_3)(2_Xg)1/2)}
0C 0,0 7 1\2
_:1_% L (0.Cni) (X5—1)
x107"° £ x10"
2 8/(c?
Y j Sec. lll. The sqution,Ain terms of the Jacobi elliptic function
X ) J dn [18] with modulusk?< 1, may be written as
0 - oy
X(t) ~Xodn(Wet,K%), 18
TIME1[%9bA units)] 200 FREQUENCY 2 [arb.%nits] (1)=Xodn(Wel,ke) (18

where Wo(C;,Cp ) =We(0,0)=xo(Vo/2)Y2 The parameters
FIG. 6. Plots showing the evolution of the positiofis arb. Qi(cl ,C,,1) are displayed in Table IV. Solutiofl8) corre-

unity of particles that make up the breather motion, for I 2 A
—1.414,C,=0, andC, = 1.909< 10*. (al): x(1). (b1): Axe. (1) sponds to oscillations of periof, and frequency):

(cD): Axg+5(t). t designates the tim@n arb. units. (a2, (b2), and )
(c2) show the Fourier transforms of the motion represente@in A ~s . s
(b2), and(cl), respectively. Te:W_K(ke) with K(kg)
e

discrete breather. Furthermore, Figh® shows that the 2
chosen initial particle positioxy=1.414 corresponds to a f
situation where the fourth harmonic of the breather motion \ /1 k2 siru
resonates with phonon modes. As a result, the amplitudes of
oscillations of particles+ 2 [see Fig. €c1)] are found to be,
by more than one order of magnitude, larger than the corr
sponding amplitudes in any off-resonant case in the reglon
Xo~1.414. Thus, the compactification of the breather is pre-
served even in the presence of the resonance phenomenon, agt)~ + E Q,,cog2nt) |,
long as the coupling forces are sufficiently weak. (k2) n=1

As a general remark for the whole untrapped regime, it is (20)
worth noting that the deviation between the analytical ex-
pression of the CP motion in E(B), x(t), and the numerical where
solutions  X4(t), measured by A=Z[X,(ndt)

2
and Q— —. (19

In the weak coupling limit, Eq(18) can be rewritten atsee

ef. [18]):

QZZW/'T'e,

—x(n dt)]%/x, (wheredt is the time stepdoes not exceed - F(1-K?)
2%. Equation(8) therefore provides a highly accurate repre- Qun=—-cosh | sn—— (21
sentation of the CP motion in the untrapped regime. K(k?) K(k?)

IV. TRAPPED REGIME On the other hand, we have found from numerical simu-

lations that in the trapped regime the breather exhibits the

In this regime, the CP starts out at a positin<xg©, same general features in both linear and nonlinear coupling
with a potential energy that is below the critical level for cases, except that in the nonlinear case the breather energy is
crossing the barrier of the effective potentialq(Xo) abruptly localized on the CP and its nearest and next-nearest
<V(Xenp) (see Fig. 2 The CP is therefore trapped in the neighbors. We present below only this latter case.
shallower well while all the other particles oscillate in the  Figures 7, which show the numerical solution of E(®.
deepest well. This situation, which has been largely nefor x,=1.410, represent a typical breather motion. Figure
glected in all previous discretized field theories of a breathe(al) shows that the CP moves off the initial positigg (in
motion, makes one of the greatest qualitative differenceshe shallower we)l and attempts to proceed to the deepest
with respect to the breather motion in a lattice with a single-well of the effective potential, but cannot do so because its
well on-site potentialin which only a single regime exists kinetic energy is not sufficient to overcome the potential bar-
[10]. In the weak coupling limit, Eq4) can be integrated via rier. As a result, the CP remains trapped in this shallow well
a quadrature, in a similar way as for the untrapped regime imluring the ensuing motion, with an amplitude of oscillations
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C=0 C,=1909x107* FOURIER TRANSFORM Xp=1.411992 X,=1.411996

@t) [@ 2[(a1) 2(@2)

1.5

0.5 :
B
-1 -1

b2) © x107

s
v
o

[=3

o = N W A

-9

x107°
41(c2)

x10

Normalized amplitude A((;J)/AM

x107°

o A_

100 ) 200 1 2 3
TIME [arb. units] FREQUENCY w [arb. units] 1

0 100 200 0 100 200
TIME [arb. units] TIME [arb. units]
FIG. 7. Plots showing the particle dynamics in the trapped re-

I = — — —4
gime of the CP, fox,=1.410,C,=0 andC,,=1.909<10"". FIG. 8. Plots showing the particle dynamics in the critical re-

gime forC,;=6.5x10"* andC,,=0. x,=1.411 992:(al), (b1), and
that is nearly half of the amplitude for a typical untrapped(cD. Xo=1.411996:(a2, (b2), and(c2).
regime. Moreover, the mean positions of the particles are o ) ]
shifted in the direction of the shallow well, thus leading to - Trapped regime in the deepest well of the effective potential
the presence of a dc component in the Fourier transform of In the presence of linear coupling forces, fog
the motion of those particlegsee Figs. @2 and 7b2)]. =1.411992, Fig. &) shows a particular situation in which
Even and odd harmonics are present in the motion contrarthe CP is initially untrapped and then becomes trapped in the
to the untrapped regime with linear coupling forces, wheredeepest well. The CP potential energy is initially sufficient to
only odd harmonics are present in the breather mdiogs. permit it to overcome the potential barrier. The CP moves up
4(a2) and 4b2), or Figs. %a2) and 5b2)]. Furthermore, Figs. © the deepest well of the effective potential, reaches the
7(a? and 1b2) demonstrate that the chosen initial condition tUrning point, then begins to travel back to the shallow well,
for the CP corresponds to a situation where a resonance o@nd finally has an energy that is no longer sufficient for

curs, owing to the presence of the second harmonic in th&rossing the potential barrjer. It ?s therefore t'rapped.in the
phonon band. The amplitude of oscillation for partickes deepest well of the potential during the ensuing oscillatory

+2 remains within=10"°, and no appreciable motion was motion. We attribute this trapping to the fact that, a small

detected for the other particles. This behavior therefore ref_ractlon of CP energy is converted into energy for its neigh-

. o bors, through a phonon emission process, as we already men-
veals the a_tnhty of ad-four breather tocompactifyin the tioned above. Although this energy conversion process is
trapped regime.

) very weak in case of small coupling forces, it is sufficient to
As a general remark, for all the trapped regimes, we not(aay a crucial role in the critical regime.

that the deviation between the CP motion in Ek), and the
numerical solutions, measured by (defined abovg does
not exceed 5%; which corresponds to a fairly good agree-
ment. When the initial position ixg=1.411 99§ slightly larger
thanxg in Fig. 8@l)] the energy is just sufficient for the CP
to execute several untrapped oscillations in the beginning of
V. CRITICAL REGIME its motion. In this case, Fig.(82 shows that the CP ex-
ecutes several untrapped oscillations at one go, before under-
When the CP is released from positi@g~xg°, its en-  going a transition to the trapped regime. A careful examina-
ergy is just sufficient to overcome the potential barrier. Intion of Fig. 8(b2) reveals that the trapping of the CP occurs
this case, the breather motion depends critically on the erprecisely when the amplitude of oscillations of the nearest
ergy transfer process from the CP to the neighboring latticeeighbors,s+ 1, attains its maximungat t~100). In other
sites. The dynamics can be arbitrarily divided into two mainwords, this trapping occurs exactly when a part of energy
categories of breather oscillations, which are discussed beéhat was initially stored in the CP is transferred to the nearest
low for the linear coupling case only, because the dynamicaheighborss* 1 (amplitude=2x10"3). Then, after a while,
behavior in the nonlinear coupling case is similar. the energy lost by the CP (at least in pajttransferred back

B. Temporary trapping
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to the CP while this particle is moving in the direction of the come untrapped. This behavior result makes the greatest
potential barrier; which permits the CP to cross again thequalitative difference from previous woikO] and related
potential barrier. So, the CP executes several untrapped ostudies on breather dynamigk4,22.

cillations, until a secontemporary trappingoccurs. We ob- On the other hand, we have shown that although the cou-
serve in Fig. 82 that the CP undergoes severaiporary ~ Pling forces between adjacent particles are very weak, in all
trappingsin this untrapped regime. Thus, the existence of ahe regimes mentioned above, a very small fraction of the
critical regime for a Klein-Gordon breather makes the greatPreather energy is lost through a phonon-radiation process.
est qualitative difference with previous studies on theln general, this energy-rad|a_;1t|on process occurs in a continu-
breather dynamics in nonlinear Klein-Gordon systems. OuPus and smooth manner, in the form of phonons that are
results in Figs. 8 therefore demonstrate that Klein-Gordorgmitted around the fundamental frequenay with a nearly
breathers are collective entities that possess a much rich®ro group velocity. Consequently, those phonons do not

temporal structure of modes than that of a simple particle. Propagate far away from the breather, thus preserving a high
degree of energy localization within the breather. However,

we have found some particular conditions for which the
energy-transfer process is much stronger than in the case
We have investigated theoretically the dynamics of amentioned above. The mechanism of this strong emission of
highly discrete breather in the ultimate degree of energy lophonons involves a parametric coupling between phonon
calization in a nonlinear Klein-Gordon lattice, with weak in- modes and the harmonics of a fundamental frequéb@s-
terparticle coupling, submitted to &-four substrate poten- sociated with the breather motion. A strong phonon emission
tial. In this system, the central particleCP) executes occurs whenever the initial position of the CP is such that a
relatively large-amplitude nonlinear oscillations, while all higher-order harmonic of the breather motiorf), falls in
the other particles of the lattice execute small-amplitude osthe phonon band. In the situation of high degree of energy
cillations around their equilibrium positions. For thiksfour  localization, almost all the energy of the breather is located
breather, we have demonstrated the existence of several ren the CP at least in the beginning of the motion. Then, the
gimes of oscillatory motion. phonon emission process induces a small transfer of energy
(i) We have observed an untrapped regime in which thérom the CP to particles lying away from the breathAr.
CP executes large-amplitude oscillations from one to themajor result of the present paper is the demonstration that in
other side of the potential barrier. case of purely anharmonic coupling forces between adjacent
(ii) In other parameter regions, we find thr@pped re-  particles, the amplitude of oscillations of the particles neigh-
gime in which the CP is trapped in one of the two wells of boring the CP decreases to zero beyond the next-nearest
its effective potential throughout its motion. Since the cou-neighbors. This behavior in a nonlinear Klein-Gordon lattice
pling forces breaks the symmetry of the two wells of thewith an on-site double-well potential reveals the ability of a
effective potential of the CP, two types of trapped regimesreather to compactify
can occur depending on whether this CP is trapped in the In this context, the concept of compactification of solitary
deepest or shallower well of the potential. The trapped rewaves[10,12,14,22,2Bsuggests the possibility of existence
gime in the deepest well corresponds to the case where alif collective entities with a strict localization of energy in
the particles that make up the breather oscillate on the sanphysical nonlinear systems such as hydrogen-bonded chains,
side of the potential barrier, whereas the trapped regime iDNA macromolecules, or polymer chains, as mentioned in
the well with the smallest depth corresponds to the caséhe Introduction. This concept should be especially interest-
where the CP oscillates in the shallow well while all theing for systems such as fiber transmission links in commu-
other particles oscillate in the deepest well. nications systems, in which solitary waves with compact
(iii ) Between thaintrappedandtrappedregimes, we have support would have as a main advantage compared to clas-
identified acritical regime which occurs when the CP starts sical solitons, the absence of long-range interaction between
out its motion in the shallower well with an energy that is adjacent waves. From a fundamental point of view, an un-
just sufficient to cross the potential barrier. Then the CRderstanding of the behavior of structures with a high degree
undergoes sever&mporary trappingsvithin anuntrapped  of energy localization in simple nonlinear systems consti-
regime This temporary trapping occurs because energy isutes a useful step toward the generic physical mechanisms
transferred from the CP to the nearest neighbors. Howevethat govern the generation and stability of localized nonlin-
the nearest neighbors can synchronously transfer energyar waves. In more complicated systems, these processes
back to the CP precisely when this particle is attempting tanay involve strongly anharmonic local dynamics of one
cross the potential barrier, which then causes the CP to betom or ion.

VI. CONCLUSION
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