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We introduce a new family of nonseparable, pulselike and beamlike solutions of the wave equation in the
paraxial approximation with pseudonondiffracting behavior. They are the pulsed versions of the Bessel-Gauss
beams by Gorket al, and encompass as particular cases the diffraction-free Bégsalses, isodiffracting
pulses, and, in the many-cycle limit, Bessel and Gaussian beams. Unlike Besagks, these solutions carry
finite energy but retain nondiffracting behavior over a finite propagation distance, and could be physically
produced with mode-locked toroidal resonators.

PACS numbgs): 42.25—p, 42.65.Re, 42.65.Sf

I. INTRODUCTION dispersion-free, i.e., they maintain their transversal and lon-
gitudinal localization upon propagation over arbitrary dis-
Recent developments in laser technology have resulted itances. Unfortunately, the Bess€lwaves carry infinite en-
the generation of extremely short and intense laser pulsesygy, like monochromatic Bessel beams, and therefore are
containing only a few field oscillations, even only one, atnot physically realizable.
optical frequencie§1]. Much attention is therefore being In this paper, we introduce a class of pulsed beams, ob-
paid to the problem of their propagation in vaculi?3], tained as superpositions of Bessel-Gau&G) beams
dispersive lineaf4] and nonlinear medi@l,5], optical sys- [18,19. BG beams were introduced by Getial.[19] as the
tems[6,7], and in particular to their diffraction properties, paraxially propagated field of a Bessel function apertured by
which have been shown to differ substantially from those ofa Gaussian distribution. They are therefore finite-energy,
guasimonochromatic, many-cycle pulses. For ultrashorphysically realizable versions of the Bessel beam, simulating
pulses, due to the ultrawide frequency spectra involved, difthe nondiffracting behavior of the latter over a certain propa-
fraction appears like a dispersive phenomef®9], in the  gation distancg19]. Apart from their appealing analytical
sense that the dependence of diffraction on frequency cannptoperties and propagation features, BG beams have found
be neglected. Among the numerous studies on diffraction oépplication in resonator theorj20], and very recently in
few-cycle pulses, a number of pap€Bs10—15 report model nonlinear optics[21,22] for improving the efficiency of
solutions of the propagation equations, both in the paraxiasecond-order harmonic generation. Suitably superposing BG
and nonparaxial regimes, from which many distinctive fea-beams of different frequencies, we construct pulsed-beam

tures of their propagation have been inferred. solutions of the paraxial wave equation, which will be
Isodiffracting (ID) pulses[6,16], for instance, also called termed BG pulsed beams.
pulsed Gaussian bearfi3,11], are superpositions of Gauss- In particular, the BG pulsed beams with the so-called

ian beams with different frequencies and a common RayPoisson-like[3] or “power spectrum”[12], which is often
leigh range. They appear to be the simplest nontrivial modelised to model few-cycle pulses, lead to a four-parameter
for pulsed-beam propagation, since they already contaifamily of nonseparable pulsed-beam solutions of the paraxial
some spatiotemporal coupling phenomena arising from diswave equation in terms of Legendre polynomials. This type
persive diffraction, such as time differentiation on propaga-of BG pulsed beam encompasses the ID pulses and the
tion, temporal and spectral changes along the transversBlesselX waves as particular cases and, in the many-cycle
plane, and time-dependent diffractip®11]. ID pulses carry limit, BG beams, and hence Gaussian and Bessel beams.
finite energy and appear to be an adequate model for the We show that few-cycle BG pulsed beams can present
radiation from mode-locked lasers with stable two-mirrorpseudo-non-diffracting behavior for suitable choices of their
resonators. parameters. This means that they imitate the nondiffracting
BesselX waves[13—15, on the other hand, are superpo- behavior of X-Bessel waves over a finite propagation dis-
sitions of Durnin’s Bessel beam%7] with different frequen-  tance, or diffraction-free range, which is shown to be larger
cies. They represent a class of pulsed beams with optimurinan the diffraction length expected from its transversal size.
propagation properties, since they are diffraction- andAt the same time, BG pulsed beams retain the property of ID
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pulses of carrying a finite amount of energy, i.e., of being izgl (= . i wr? _
physically realizable. We show, indeed, that BG pulsed E(r,Z,t)=F;j dwf(w)eXp(— ZCq)EXFilwt’)
beams can model the output radiation from stable mode- 0 4

locked toroidal resonators.
of Gaussian beams with different frequenciebut with the

Il. PROPAGATION EQUATIONS AND BASIC SOLUTIONS same Rayleigh rangeg, results in the ID pulsé6,16], or

) ) o ] _ pulsed Gaussian beal8,11],
We begin our analysis by considering a linearly polarized

light beam with field E(x, ,z,t), X, =(X,y), propagating iz . r2
along the positive direction according to the wave equation E(r.z,)= FF t= fq ' ®)
A 1 9%E o where
e W -
F(t)=—f do f(w)expliot) (6)
whereA denotes the Laplacian operator. It is convenient to mJo

introduce the local coordinatés=t—z/c, z’ =z, to extract

from E its rapid variation along due to the wave transport at Is the analyuc signal of the real_ pulse shaiige) = RG[F(t).]'
the velocity c. Then the remaining dependence of The spot size of the ID pulses increases on propagation ac-

H H _ 2
E(x, ,z',t') on the new propagation coordinatedescribes €0rding to the hyperbolic lak8] a(z) =ao1+ 2%z, from
only changes due to diffraction, i.e., to the finite transversaP Waist or minimum width Z=0) of the order of
extent of the wave. For a paraxial wave, one can assume that v
these changes are slow enough so thatE/dz’| 30~ V2CALZ, )
<(/c)|[oE/at’|, or equivalently,Az>cAt, whereAz and  yith At the typical variation time of (t), up toa(z)=z6,

At are typical length and variation time &f(x, ,z',t'). TO i the far field ¢>z,), where the divergence angle is ap-
fixideas, we can think oAz as the diffraction length andit  yoximately given by

as a suitable fraction of the peridg, in the case of a pulse

with a few oscillations, e.gT/27=1/w,, corresponding to 0o~ \2CAt/z,. (8
a phase increase of 1 rad. Taking the following relations into
account: The spreading properties of the ID pulses thus closely re-
semble those of each Gaussian beam in the superposition,
9 g 1 o due to their common Rayleigh rangg.
9297 cat’ On the other hand, superpositions of Bessel beams of the
form
J J 1 (= . (ON .
T E(r,z,t)= ;J;) do f(w)Jg Er sind |exp(iwt”), (9)
and performing the above approximation, the wave equatiowith t”"=t—z cosé/c, of different frequencies and a common
(1) transforms into cone angled, lead to the nondiffracting, nondispersing
X-Bessel wave§13—15, which are infinite-energy solutions
2 9%E of the nonparaxial wave equatidi). X-Bessel waves can
c WZALEy (2 alternatively be seen as superpositions of plane plH¢Es

with propagation directions evenly distributed over the sur-

whereA . is the two-dimensional Laplace operator per en_face of a cone of apex angle The meridian sections of the
L P P PETPEN"y Bessel waves resemble a letteX™ of minimum width

dicular to the propagation direction. This equation is pres-. . .

ently receiving%uzhgattentic{ri,&&q since it gllows one l?o (i.e., the waist of the X")

extend the simple paraxial treatment of diffraction to arbi- 2cAt

trary ultrashort waveforms. a,~ 5 (10
A fundamental solution of Eq?2) is, of course, the mono-

chromatic Gaussian beam propagating without deformation at the superluminal veloc-

] ) ity c/cosé.

iz i r )

E(r,z,t)=—ex;{——)exp(lwt’), (3
q q Ill. BESSEL-GAUSS PULSED BEAMS

where w is the angular frequency of light?=x2+y?, q A. Frequency-domain analysis

=z+izy, and z;>0 is the Rayleigh range or diffraction To combine the nondiffracting properties ofBessel
length. (Note that we omit the prime sign inin integrated waves with the finite energy of the ID pulses, we replace
expressions, since numericall/ =z.) Pulsed-beam solu- both the Gaussian and the Bessel basis with the monochro-
tions of Eq.(2) can now be constructed by suitably super-matic BG family of solutions of the paraxial wave equation
posing Gaussian beams. For example, the superposition (2), namely[19],
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of the meridian section of such a resonator, whose funda-
mental mode is a cw BG beam with certain Rayleigh range
Zy and apex anglé. It should be stressed that these two
parameters are independent of the wavelength of the BG
mode, since they are fixed only by the resonator geometry.
Thus, by coherently superposing cw BG fundamental modes
U at different frequencies, e.g., by mode-locking them inside

- the toroidal resonator, a BG pulsed beam of the type of Eqg.
(13) will be generated.

S optical
- axis

B. Time-domain analysis

The BG pulsed beam can also be constructed as a suitable
superposition of pulsed spherical waves radiated by complex
point sources. This alternative derivation of EG3) pro-
vides a new view of the BG pulsed beams and their relation-
ship with ID pulses an&-Bessel waves. Consider first the
pulsed spherical wave from a point source at the origin of
coordinatesE(p,t) = (1/2mp)F(t—p/c), wherep=(x>+y?

+2%). Under suitable complex time and axial shiftsyt
(r’+ 2292)} +it9, Z—Q=2z+izq, the spherical wave remains a solution
of the nonparaxial wave equati¢h), and transforms into the

FIG. 1. Sketch of a stable toroidal resonator to generate the B
pulsed beam.

i

iZg
E(r,z,t)= Fex 704

iZo pulsed beams from stationary complex point sources studied
XJ(,(— —ar)exmwt”), (1)) by Heyman, Felsen, and others in Rdfs0] and[28]. The
qc paraxial approximation of the pulsed spherical wave
where now e 0 1 F(t, x2+y2) )
X YZI = a5 - 1
t"=t—2z(1— 0%/2)/c=t"+2z6%2c (12 + 27z 2cz

is the paraxial approximation of the reduced titfiein the

expression of th&-Bessel wave$Eq. (9)], andJ,() is the  satisfying the paraxial wave equati¢®), transforms, under

zero-order Bessel function of the first kifiéd3]. Of course, the same complex shifts, into the ID pulse,

there are other possibilities to bring together nondiffracting

behavior and finite energy. The Bessel function can be aper- )

tured, for example, with a super-Gaussian wind@4|, or a E(x, ,2,t)= i IZ—OF(t’ i

hard-edged apertui@5], but contrary to the Gaussian win- = 2 0

dow, these choices do not lead to an analytic expression for

the propagated field. .
New pulsed-beam solutions of the paraxial wave equatioft has been recently showi29] that an additional complex

(2) can now be constructed by superposing BG beams ofhift in the transversal coordinates amounts to a beam rota-

—izpfsing lead to an ID pulse whose propagation direction

X2 +y?
2cq

. (15

izg 1 (= . o L, forms an angled (small enough with respect to the axis
E(r,z,t)zF;J do f(e)exp — 5 (r°+2°6%) and an azimuthal angleé with respect to thex axis. The
0 q "
superposition
iZO w )
X Jo| — < or |exp(iwt”), (13
! Erzt) = — 20 [ El v+
rzt)=-—— i
where, as in the case of ID pulses aXdBessel waves, the ( ) 27 d Jo ¢ 7o
parameters, and 6 will be chosen to be independent of ) ) ) ) )
frequency. The remainder of this paper is devoted to the _ (X—izof cosd)“+ (x—izgbsin )
study of this kind of superposition. As we shall see later on, 2cq
for specific choices of the spectrufiw) or the pulse form (16)

F(t), closed-form analytic expressions for EG3) in terms
of the Legendre polynomials can be obtained.

The construction of BG pulsed beams as a superpositionf identical ID pulses with directions evenly distributed over
of BG beams with constant Rayleigh range and apex angléhe surface of a cone of angbecan be proved to be identical
suggests a possible method to experimentally produce therto the expression of BG pulsed beafifs. (13)]. To verify
According to Sheppard and Wilsd@8], the BG beams can this statement, we first introduce polar coordinatgs,
be identified as the fundamental modes of a suitably de=r cose, y=r sing, and let o= — 6°z,/2c, to write Eq.
signed toroidal resonatt8,26,27. Figure 1 shows a sketch (16) as
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E o 1 izg
(r2V=2z7q
2m r2+z26%—2irzo6 cog ¢p—
xJ d¢>|:[t’— of cot b= )]
0 2cq

17

Then, using Eq(6) for F(t) and the following integral rep-
resentation of the Bessel functipa3],

2m

1
Jo(s)zz . do exp(is coso), (18

Eqg. (13) is easily recovered. We then conclude that a BG
pulsed beam is a homogeneous superposition of ID pulses,

all with the same Rayleigh rangg, and waist positiorz
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Second, the superposition of BG beapisgy. (13)] with
the Poisson-like spectrum, or alternatively, the superposition
of ID pulses[Eq. (17)] with the analytic signal Eq.20), can
be evaluated in closed form. Using the integrals 6.621.1 or
3.661.4 of Ref[30], we obtain

=0, whose propagation directions are distributed over a cone

of apex anglef. An analogous scheme is used #Bessel

waves, which are obtained by superposing plane pulses with

propagation directions over a cone.

IV. BESSEL-GAUSS PULSED BEAMS
WITH POISSON-LIKE SPECTRUM

iz, it a
E(r,Z,t):_ iZo 271172
(tc+it0)2—(aar> }
t.+ito
XPg1q : iz 2712 (
- 2 0
(tc+lto) —<C—qel’) }
(25
where
t :t”—i(r2+2202) (26)
¢ 2cq

is a space-dependent complex time, @) is the Leg-
endre polynomial of orden [23]. Equation(25) is a novel,
four-parameter family of solutions of the paraxial wave

We are mainly interested in the propagation features ofquation having beam and pulse form. In fact, inspection of
BG pulsed beams with few optical oscillations. To this aim,Eq. (25 shows that (a) the denominator{(t.+ity)?

the so-called Poisson-like or “power spectrum”

g

" T(a)

f(w) 0 texp —wty), ©>0, (19

—[(izg/cq) #r]?} is different from zero for any permissible
value of the parameteng>0, z,>0, 6=0; (b) along the
transversal direction the amplitude approaches zerords, 1/
and then the intensity asrff; (c) for large values oft”|,
the amplitude decays as|t], and then the intensity as

a=1,2,..1,>0, which has often been used for pulse and1/t"|>*. Therefore(d) the integration of the intensity in time
pulsed-beam modelin@,12], appears to be particularly suit- and space yields, for any value @f a finite value of the total

able.
The usefulness of the Poisson-like spectrum in @&§)

lies, first, in the fact that it yields the family of analytic

pulses
F(t)= Efwolwf(w)exp(imt)= "o a, (20)
T Jo t+itg
having a characteristic rise time
At~tyla, (21

a growing number of oscillations, from one-halk€1) to
an arbitrary high numbera(— =), of mean frequencyj3]

energy. In conclusion, Eq25) is a nonsingular, beamlike
and pulselike, finite-energy solution of the paraxial wave
equation, which moreover is endowed with pseudo-non-
diffracting properties, as we shall see in Sec. VI.

V. PARTICULAR AND LIMITING CASES

One of the most appealing features of the BG pulsed
beams with the Poisson-like spectriifg. (25)] is its capa-
bility of reproducing light waves as Gaussian, Bessel beams,
and their pulsed versions, ID andBessel waves, by means
of a single algebraic function.

A. Isodiffracting pulsed beams and Gaussian beams

wn=alty, (22) When the cone angle i§=0, we havet,=t'—r?/2cq
i and the argument of the Legendre polynonigl ; becomes
and a pulse duratiof8] 1, so that Eq(25) reduces to
T= \/2/at0. (23) izo ito a
E(r,z,t)=— o 7 v I (27
Pulses of the desired frequency and number of oscillations q relecqrito

can then be tailored by suitably selecting the parameters

and ty. Moreover, taking the limita—o, tg—o, with

which is the expression of the ID pulse with the Poisson-like

alty=w,=const, F(t) tends to the monochromatic signal SPECtrUm[3]. Furthermore, it has been prove8] that Eq.

explomt), a property which follows from the basic relation

lim (1+x/n)"=¢e*

n—oo

(29)

(27) with =1 is the paraxial form of Ziolkowski’'s EDEPT
(electromagnetic directed-energy pulse tydib2], and that

the limit for «, tp—o with a/ty=w,=const is the mono-
chromatic Gaussian beam of frequenay,.
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B. Nondiffracting X-Bessel pulses and Bessel beams from a single ID pulse, that is, from the limiting case éf
In the limit zy;—, we haveizg/q—1, 1[g—0, andt, =0. On the contr_ary, whed is larger thaf‘?Ov th? compo-
—.t". The BG pulsed beam in E65) takes then the form of nent ID beams will overlap only up to a finite axial distance.
the superluminal, nondiffracting, and nondispersing Bexsel- Within such a distance, the superposition is expected to re-

pulse, that is, semble the Bess&{-wave of cone angled, since such a
superposition can be assimilated, up to a certain extent, to a
ity @ conical superposition of plane pulses, as is the case of the
E(r,z,t)= [(U+itg)2— 02r2/C2]1/2} BesselX pulses. The axial distance where the ID pulses keep

on overlapping, or diffraction-free rand® can be estimated
t"+itg [19] as the propagation distance at which a typical tilted 1D
[(T+itg)’— 02r2/cz]1’2]’ (28) pulse in the superposition shifts transversally for a distance
equal to its transversal widthy, that is,D=agy/6, or on
described by Fribergt al. [13]. The particular case of Eq. account of Eq(7), D~ y2cAtzy/ 6, which gives an estimate
(28) with a=1 is the earlier broadband wave introduced ©f the diffraction-free range in terms of the BG pulsed-beam
by Lu and Greenleaf in Ref14], and the limita, tg— characteristics. In the case of the BG pulsed beam with the
with a/to= wy,=const is the monochromatic Bessel beam ofPoisson-like spectrum, we obtain
Durninet al.[17]. To prove formally the latter assertion, we
write the denominator in the first factor of E(28) as ¢” 2ctyz,
+itg)2—(Or/c)?=(t"+ity+ Or/c)(t"+ity— Or/c). On re- ”( Py
placingty with o/ w,, and by using Eq(24), we get

XP,-1

1/2

(31)

ito « On defining a fictitious “gquivalent” diffraction Ie_ngth of
[(U+itg)2— Hzrzlcz]l/z] =e“m . (29  the Bgsseb( wave accor;jlng to the transversal width zs
=Kkmax/2= wnay/2c= aaj/2cty, and using that from Egs.
(10) and (21) ay~2cty/af, we obtain the expressiob
~\/ZxZp, that is, the diffraction-free range is approached by
the geometric mean of the diffraction lengths of the limiting
ID and BesseX waves and, in particular, the diffraction-free
rangeD is always larger than the diffraction lengly ex-

lim

a,toﬁoc

Furthermore, on writing the argument®Bf,_, in Eq. (28) as
cogtan Y[ (i&r/c)/(t"+iclwy) ]}, which for largea can be re-
placed by cogfrw,/ac), and using the limiting expression
lim,_.. Py[cosi/n)]=Jy(x) in Ref.[23], we obtain

it pected from its transversal width.

. 0 W . . . .

lim Pal[ 537 1,2] =Jo<—0r) The above considerations are sustained by numerical use
atg— [(t"+ito)"— 6°r°/c7] ¢ of the expressioii25). Figure Za) shows the real part of the

(30 field E of the BG pulsed beam with the Poisson-like spec-

. . trum and with a typical set of paramete{z=18 mm, 6
In conclusion, from Eqg(29) and(30), the X-Bessel pulse in  _ 5 go5 rad,e=6, to= 18 f9 when it is centered &=0, i.e.,

Eq. (28) tends to the Bessel bealg(wndr/c)explwont’) S 4t the real timet=0. The pulse form consists of about one-

a andt, tend to infinity while their quotient remains con- 4,4.a-half oscillations of wave number, /c, with the fre-
stant. quencyw,,= alty=3 fs"1. The divergence angle of the com-
posing ID pulses is given b§y= \2cty/zoar=0.01rad, and
C. Pseudo-non-diffracting Bessel-Gauss beams therefore the rati®/ §,=2.5 is greater than 1. We then ex-
For 6#0, zo#, in the limit a, ty— with a/ty=w,, PECt the BG pulsed beam to be very similar to the limiting

— const, expressiof25) of the BG pulsed beam yields the BesselX wave(see Sec. VB which is shown in Fig. ®).
expression(11) of the monochromatic BG beam of fre- The only significant difference is that the arms of the letter
quencyw,,. The limiting procedure to be used is similar to ~ X~ 0f the BG pulsed beams are slightly damped.

the one above, therefore we will not go into details. Figure 3 illustrates the propagation of the BG pulsed
beam away fronz= 0. After the time interval$=13 123 and

26 246 fs, the BG pulsed beam arriveszatD/2 and D,
respectively{see Figs. @) and 3b)], where the diffraction-
free range isD=7.875mm. It can be seen that the BG

The spatiotemporal-temporal form of the BG pulsedpulsed beam approximately preserves its initial form, except
beams resembles in some aspects that of the B¥gselses for the tendency to loosen the front arms and to increase the
and in other aspects that of the ID pulses, in the same way astensity of the rear arms. This peculiarity is due to the lat-
the cw BG beams share their propagation features with bothral displacement of the interfering ID pulses on propaga-
Bessel and Gaussian beafi$)]. tion. In fact, at the timea =z, cosé/c [Fig. 3(c)], when the

The overall characteristics of a BG pulsed beam of paBG pulsed beam has propagated at the distageel8 mm
rameters,, # and temporal forn(t) can be easily inferred sizably larger than the diffraction-free range, the rear arms
from its representation in terms of a superposition of IDare almost splitted off from the partially obscured axial zone.
pulses of the same value pf, pulse formF(t), and propa- Therefore, the pulsed beam acquires the form of an annulus,
gation directions over a cone of angleWhen 6 is signifi-  formed by the no longer overlapping ID pulses. The slight
cantly smaller than the spreading angle of the ID pulsgs, bending of the splitted rear arms reflects, in fact, the curva-
one can expect the superposition not to differ substantiallyure of the pulse fronts of the ID pulsg3].

VI. PROPAGATION FEATURES OF THE BESSEL-GAUSS
PULSED BEAMS
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FIG. 2. Gray scale plots of the
real field |ReE(r,zt)| of (a) the
BG pulsed beam defined by
the parameters(zo=18 mm, @
=0.025rad,a=6, t;=18fs and
(b) the BesseX pulsed beam
of parameters €=0.025rad,
a=6,t,=18fs).

03

which shows that in this case the on-axis temporal form re-

stretching and deceleration of the pulse is appreciated. It is ahains a Poisson-like spectrum function on propagation, but

interest to verify this point from the general expressihi)
of the BG pulsed beams. For on-axis points, E48®) and
(17) reduce to

0z = 2F ¢ 20 32
(0,2, )_F " 2¢q) (32
which can also be written in the form
E(0z,t) OF(t” 20, 20 (33)
Z, — ———sti=——].
2¢|ql® " 2c[q|?

the scaling parametert, is replaced with tg
+7%z46%/2c|q|?. This change results in an increasing pulse
duration and a diminishing frequency of the oscillations
upon propagation, which from Eq&2) and (23) are given

by
2 1/2 2002 z 2
WZ”(Z) (z—)(m)

(36)

and

This expression is to be compared with the invariable on-axis

pulse formF(t”) of the BesseK pulse. Apart from the over-
all amplitude changez,/q, we see that the pulse form of the
BG pulsed beam shifts on propagation byz-alependent
complex quantity. The real pazt 6?/2c|q|? of the shift is an
actual time delay with respect to theBessel wave, from
which the pulse velocity at any propagation distamczan
easily be evaluated to be

c
v(2)= 2
1- 5 (12|l

(39

Instead of the superluminal constant velocity=c/(1

— #%12)=c/cosé of the BesseX waves, the velocity of the
BG pulsed beamvy(z) ranges from the superluminal one
c/cosé within the diffraction-free range down tofor large
propagation distances. The imaginary payt262/2c|q|? of

o
to+ (zo0%/2c|q|?)Z?’

(37

on(2)=

respectively. A detailed analysis of these formulas shows
that the pulse duration and frequency remain almost constant
and equal to those of the Besstlwave within the
diffraction-free range, and start to vary slowly outside that
range up to the highest duratioh+ \1/a(zo6%/2c) and
down to the smallest frequenay/(ty+ z,6%/2c) in the far

field (z>zy).

An approximate far-field expression of the pseudo-non-
diffracting (6> 6,) BG pulsed beams of arbitrary pulse form
can be obtained from the asymptotic form of E&3) for z
—o0, r—o, Forzsz, we can writeq=z, and for large we
can let Jy(ix)=14(x)~expKk)/y2mX, where x=zwér/zc,

Io() is the zero-order, first kind, modified Bessel function

the shift amounts to a change in the pulse form on propagd23], and we have used its asymptotic form for a large argu-
tion, which may involve, depending on the specific choice ofment[30]. Equation(13) then becomes

F(t), pulse broadening, frequency shift, and deformaf&in

For example, the on-axis field of the BG pulsed beam

with the Poisson-like spectrum, as given by E(&5) and
(26), can be displayed in the form

to @
to+ 2%z 6°12c|q|?

E(0,z,t)= IZFO(

i(to+2zoZ26%12¢|q|?) «
(t"—Z%012c|q|?) +i(to+2°200/2c|q|?) |
(35

X

(,UZO 0 2
2c27(r 26)

1/2
exr{—
. t r2
X f—
eEXplw 207

where unessential amplitude constants have been omitted. If
0> 0,, the centerzf of the Gaussian function in the inte-
grand is sizably larger than its widtf2c 2%/ wz,. Therefore,

[ z
E(I’,Z,t)NEJO dw f(w)(m

, (39
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W(r,z)=Joc [ReE(r,z,t)]?=1 fx |E(r,z,t)|%dt

(c) t=z, cos B/c

(40)

can now be written, from Parseval's theorem, as

2
W(r, z)~—J dw'f( w)| ex;{ wzg(r—ze)

(41)

The form of this equation indicates that the transversal en-
ergy distribution W(r,z=const) takes a maximum at
=z0, and is a strictly decreasing function away from this
maximum. On the other hand, the dependendg(ofz,t) on

(b') t=D cos 6/c time through the quantity’ denotes that the on-axis pulse
%, propagates at the velocityin the far field, as we have seen
above. In addition, the time delay/2cz of the arrival of the
pulse at each planeaccounts for a spherical pulse front of
radiusz. In short, in the far field a pseudo-non-diffracting
BG pulsed beam has the form of an annulus of mean radius
r =z over the surface of an expanding sphere at the velocity
of light c.

VII. RELATION WITH THE BESSEL-GAUSS PULSE
OF OVERFELT

In the paraxial wave equatidi2), the variableg’ andt’
e play a symmetrical role. Then the intercharge—ct’, t’
(a) t=D cos 0/2¢ —2Z'/c in any solution results in a new solution. In particu-
lar,

it @
E(rzt)= — 2

B 21172
. 1Zg
(zc/c+|to)2—(c—q0r) }

zJc+ity

XPyo1

- iZO 27172\ »
(zc/c+|t0)2—(a¢9r) }

(42
0 0.1 0.2 0.3 0.4 whereq=ct’ +iz,
r {mm)
1
FIG. 3. Gray scale plots for the propagation of the BG pulsed 2.=72"— —(r?+ 6°c’t'?), (43)

beam of Fig. 2. The white horizontal lines indicate the positions of 2¢q

center of the superluminal Bessglpulse at the times indicated in

each plot. andz’=z+ct’ #%/2 is a solution of the wave equation under

the paraxial approximation, which to our knowledge has not

r in the square root can be replaced by its mean value withif€€n Previously reported. lts nature can be understood by
the Gaussian function, i.e.=z6. On doing so, we obtain  Writing Eq. (42) as

r2
E(r,z,t)~ j dw—ex;{lw(t’—z—cz>

U)ZO
X — ——(r—2z6)2
ex;{ 5eF (r—z0)

_izol s _iw 24 24122
E(r,z,t)= q Wfo dwf(w)exp{ 2Cq(r +ct'e6%)

(39 X Jo

izowa) iwZ'] 44
qc r lexpiwz’/c), (44)

as an asymptotic expression of the BG pulsed beams wittvheref(w) is again the Poisson-like spectrum, but the basis
0> 0, in the far field. The energy distribution functions in the superposition are now
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beams with the Poisson-like spectrum as a new solution of
(r2+02t'292)} the paraxial wave equation in free space, representing spa-
tially and temporally localized waves with finite energy and
iZg @ ) pseudo-non-diffracting behavior. Each pulsed beam is ex-
XJo| — = ar)exp(lwz”/c). (45 pressed in terms of a rational function and a Legendre poly-
q c ; ; ) .
nomial, and is defined by the values of four parameters. Suit-
These functions are also solutions of the paraxial wave equable choices of these parameters yield the ID and Bessel-
tion (2), and can be readily identified with the paraxial ap-pulses, and in the many-cycle limit the BG beams and there-
proximations to the BG focus wave modes, first described byore the Gaussian and Bessel beams. The four-parameter,
Overfelt [31], and recently reconsidered in several worksclosed-form expression of the BG pulsed beams may be of
[32—-34, namely, interest as an alternative analytical representation of the
above beams and pulsed beams for further analytical devel-
Br? opments, or to synthesize new solutions of the wave equation
S v on integrating over the free parameters.
BG pulsed beams satisfying the relatiémr 6, appear to
be of particular interest. They are finite-energy replicas of the
nondiffracting, nondispersing, superluminal Besselkaves
within a finite propagation distancel?, this distance being
where{=z—ct, p=z+ct, V=a;+i¢, anda,, B, andkare  |arger than the equivalent diffraction length expected from
free parameters. In fact, on identifyirey =2z,, B=w/2c,  their transversal size. Outside the diffraction-free range, the
k=wb/c, and neglecting backpropagating waves by ap4etter X starts deformating, breaking, and slowing down. At
proaching n=z+ct=2z, Eq. (46) becomes Eq(45) after  |arge propagation distances, the three-dimensional pulsed-
straightforward algebraic manipulations. Our E4p) is then  peam structure is transformed into an expanding annulus
a superposition of these BG focus wave modes, in an analgropagating at the velocity of light
gous way that Ziolkowski's EDPET'EL2] are superpositions  The reported pulsed beam can be easily generalized by
of the fundamental Gaussian focus wave mof#s]. The  superposing higher-order BG beams with vortices, or the
detailed study of Eq42) is deferred to future work. We only more recently reportedl36,37] generalized BG beams. In
point out here that Eq42) contains as particular cases of its another sense, the study of the propagation of BG pulsed
free parameters most of the classes of focus wave modefeams in dispersive media may also be of interest, since a
previously known, as =0) Ziolkowski's EDPET'’s with  suitable choice of frequency dependence of the cone angle of
the Poisson-like spectruid2], (6=0,a,to—=,alto=cons}  the Bessel beams composing ¥Bessel wave is known to
the original Brittingham focus wave mod&5], and (¢  result in the suppression or diminution of pulse spreading on
#0,a,tg— 2, alty=const) Overfelt's BG pulse. propagation due to dispersi¢88].

iw

£ e iZg
(r,z, )—Fex - 24

al Kalr

\% \%

- | K2a1§
X ex| W

E(r,z,t)=—Jo

exp(i B7), (46)
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