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Difference-quotient turbulence model: Analytical solutions for the core region
of plane Poiseuille flow
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The difference-quotient turbulence model and an explanation in terms of fluid dynamics is presented. With
this model an analytical theory for the symmetric core region of turbulent plane Poiseuille flow is derived. The
equations and the solutions reveal an order/disorder transition with analogies in other scientific fields where
statistical physics applies. At moderate Reynolds numbers the time-averaged profile of the downstream mean
velocity and a second-order fluctuation correlation are described in terms of Bessel functions of the first type.
At the infinite Reynolds number limit these solutions converge toward functions which can be described by
simple geometric figures. Experimental data confirm the model results.

PACS numbds): 47.27.Eq, 47.27.Gs, 47.27.Jv, 47 60.

[. INTRODUCTION The most successful approach of this kind was Prandtl's

mixing-length theony6]. When it was first applied to calcu-
Nowadays theoretical research work on turbulent Poilate quasistationary turbulent-free-shear-flow problems, it
seuille flow, or channel flow, is mostly the subject of direct SOON became obvious that the mixing length had to be taken

numerical simulations, performed for example in 1990 by@S & function of space. Therefore, in a simple way, vortices
Gilbert and Kleise1] and in 1993 by Sandhafi2]. Such with continuously varying sizes as a function of space were

calculations yield valuable results, permitting the study Oflntroduced. But sill, only one size type was related to a

hvsical behavior of a | ¢ diff H single space location. Several recently published more so-
physical behavior of a large number of different phenomengyigiicated models are still based on this insufficient concep-

occurring in turbulent flows, e.g., vortex stretching, vorteXiion. A new generation of turbulence models defines—at
folding, the occurrence of ejections, sweeps, bursts, etc. Fueach space point of turbulent domains—eddies correspond-
thermore, direct numerical simulation results more fre-ing to an infinitely large amount of length scalés.g., see
quently yield a welcome additional contribution to experi- Ref.[7]).

mental data. Via direct numerical simulations, it is possible The difference-quotient turbulence modBIQTM) [8] is

to calculate turbulent flows up to a Taylor-Reynolds numberan approach containing the essential feature of an infinite
of approximately Rg=200[3]. This flow-internal Reynolds number of scales. This model analytically describes fully
number is calculated with a fluctuation velocity and a corredurbulent-free-shear flows, e.g., turbulent flows behind wakes
lation length and is a measure of the forcing of the fluid-and jets without empirical constartisee Refs[9] and[10]).
dynamic system. The Taylor-Reynolds number has the adlhe correlation betwe;en_ theory and experimental data is in
vantage of being independent of the way the turbulence i§ach case very convincing. The Couette flow and the Poi-
created. This is crucial for the investigation of universal be-Seuille flow away from the wall—in a domain located sym-

havior. Experiments have been performed with Reynolddnétrically around the axis, which is called the core region—
numbers up to Re=13000(e.g., see Ref4]) show behavior similar to free turbulent flows. Therefore the

DQTM is identically applied as in free turbulent shear flows.
For fully developed turbulent flows, the extremely Iarge.l_he results for plane Couette flofd1] reveal a complete

number of degrees of freedom requires computer power nocgrder/disorder description of turbulence, well known from

yet available. Therefore, it is still necessary to base CaICUIa()ther statistical systems showing critical phenomésee
tions on turbulence models which yield a closure of thee_g. Ref[12)). 4 9 P '

mathematical problem solving the Navier-Stokes equations
[5]. The validity of such models can be qualitatively under- Il. THE BASIC EQUATIONS
stood by scaling arguments and therefore the study of their

features is relevant from a theoretical point of view as well. The basic equations of incompressible turbulent flow
With higher-order moment turbulence models it is usua”yproblems can be derived from the Navier-Stokes equations.

not possible to derive analytical results. Therefore, for our! €Y @re called Reynolds equations. For the plane case of
purposes only one-equation models are considered. By sinf.0iseuille flow (see Fig. l—together with the continuity
plified considerations it is possible to classify turbulence€duation—the momentum equations are the followisge
models into three groups. Crude models only correspond th&f- [5] resuming work performed by PaL3))

identical eddies of equal sizevhich only approximately de- gl

scribe the turbulent momentum transport in fluid domains. (?7—0, (13
1

— >— ’or
auju
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X n * U-
2 - u®a Lax
i W e \ 1 Re* = ” =Re= oF Re*. (5b)
a 1 ——
> In this paper the following self-similar functions are made
o0 > 0 > & use of:
= = T
fi(nRe)= 5, )
a) b)
FIG. 1. Laminar and turbuler_lt Poiseuille flow be_tween two P(&,7,Re) = P *pZO’ @)
plane parallel plates. In the laminar case, the velocity profile is pu
known to be of parabolic typéa). In turbulent regimes with in-
creasing Reynolds number, the mean velocity profiles flatierin Uéui
the figure on the right, dimensionless variables have been used. fou(n,RE) = Tk (8)
1 &H &(Ué)z (Ué)z
;(9_X2+ Xz =0 (19 fod mRE)= "7 9

u; denotes the mean velocity component in space directioft can be seen that not onlf;, but alsof,; and f,,, are
g, presented by the corresponding coordinate axis with valindependent of. By applying Eq.(6) to Eq.(9), we obtain
uesx; . The coordinate; denotes the downstream direction the following two differential equations:

andx, denotes the direction perpendicular to the walls. The

time-averaged physical quantities, characterized by an over- P 1 Pfy afy 0 (10

bar, are functions of space onlg.is the mean pressure and ¢ Re* W in

v the kinematic viscosity of the fluid, wherepslenotes the

constant density of the incompressible fluid. Here secondand

order correlations occur, containing the fluctuation velocities

Ui' . ﬁ + izz = (11
We now briefly recall some considerations, which are im- dn  dn

portant for the understanding of this theory. From Bg) it . .
is evident that the time-averaged velocity in the downstrearr-1rhe boundary conditions are the following:

direction f(—1,Re)="f, (+1,Re)=0,
_ (12
Up=Uz(Xy) 2 ye{1,21,22.

only depends orx,. Dimensionless space coordinates areln consistency with Eq(7), it is possible to fix the pressure
introduced

P(0,—1,Re)=0. (13
X
&= El, (33 From Egs.(10) and(11) linear relationships are obtained
(P+fy)=A(Re" )&+ C(Re), (14
X2
T o L (mRE) o RE)—ARE ) 7—B(RE)=0
RE oy 21(7,Re") —A(Re") n—B(Re") =0.
Furthermore, the following characteristic velocity is defined: (15
EN The total shear stress is given by the viscous, and the
* = \/7, (4a  turbulent shear stress or Reynolds shear strgss
up  ——
du, Tiot™ To+7't:MW_ pusUu;. (16)
o=tuo (4) ?
IX2| 14

Near the wall, the turbulent fluctuations disappear
where the near-wall shear stregshas been introduce@.g.,

see Ref[14]). The characteristic quantities introduced so far Tl _ F(u*)? (173
are linked to the two Reynolds numbers +a
u, a _duy
Re= —=_ (5a) = V&_XZ (17b
*a

14
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which yields x,

df;

—| =FRe". (170 5
d7l.,

Substituting obtained results into E@.5), it follows that
+A+B=F1. (18

By solving this system of two equations of two variables it is
found thatA=—1 andB=0. Therefore, Eqs(14) and (15) 0
change to 0 u, A

max

X1

P(&,7,Re") +foi(7,Re) +£=0, (19 FIG. 2. Geometry of intercollision of fluid lumps. This figure

has been copied from Rd6] and adapted to the new ideas leading
1 dfy(n,Re) fou( 7.RE )+ 7=0. (20)  tothe DQTM. An initially spherical elemerf (or B) is transported

Re* an and simultaneously elongated to becoAte (respectively B*).
The integration of Eq(20) produces the main equation be- mentum over much larger distances, e.g., in this specific case
fore introducing any turbulence modeling itis as long ad,. Nowadays it is known that a fluid lump is
, dispersed ever so rapidly. Particles, which are initially neigh-
f,(7,Re")= Re*{% (1- 7]2)+f f21(0,Re*)d0} bors, are exponentially separated. This clearly demonstrates
-1 the limited character of this model. Still, the rough assump-

(21)  tions lead to a prediction of the correct mean momentum
transfer(see below The averaged excess momentum at the

To fulfill the boundary conditions in the laminar cask( new position is

=0), in Eq.(21) we set the integration constant equaljto

Now, the velocity profile in laminar flow describes the para- — — - — —
bolic Hagen-Poiseuille profile AM =p{[uy(0)+uz(0)]=[uy(x3)+uy(x3)]}

fi(n,Re )= E(1— 7%) (22) = pluy(0)—us(x3)], (23)
: 5 :

because the time averages of the fluctuations vanish per defi-

lll. CONSERVED MOMENTUM AND THE nition. o .
DIFFERENCE-QUOTIENT TURBULENCE MODEL The volume flux density is amplified by a length rgti]

The application of any turbulence model is still an empiri- a
cal procedure because of a lacking proof of the validity of jo(x3)= X7U2(X3)- (29)
the closure technique in general. Therefore, an explanation in 2
terms of fluid dynamics of the DQTM at present is rather
based on physical intuition than first physical principles. To
give some convincing explanations, at the beginning we fol- —
low simple arguments of Prandtl, which can be found in \/u—gz V(Up+up)? (253
most textbooks on turbulence, eh,14—-17, etc. As a fluid
is in turbulent motion, it carries fluid elements from place to —
place. A control volume of fluid—small compared with the = uéz, (25b)
Kolmogorov microscale, but large in comparison with the
molecular scale—is gradually transported away from its ini-becausel, is zero. The turbulent shear stress is defined by
tial location (see Fig. 2

At time t=0 each of the two selected mass elemehts = —j,AM. (26)
andB are considered to be contained in spherical elements of
equal sizeA is positioned on the center ling{=0) andB is By applying Eqs.(24) and (25b) one obtains
located very close to the upper boundary plate<a). The
chosen elements are much smaller than shown in Fig. 2. a —_
Therefore, for simplicity fluid parceB is assumed to be ex- r=—c— \Vuy? AM, (27)
actly atx,=a. The opposite motion ok from the center line X5
to the boundary and that & in the reverse direction guar-
antee mass conservation. Now the wandering of fluid elewith a correlation coefficient &c<1. A further model as-
mentA is investigated. By turbulent motion it is transported sumption is that this correlation is very strong and therefore
to the positionx3 . Prandtl assumed a small mixing length to we can sec=1. If a high number of tracer particles is in-
be the characteristic distance over which the momentum igcted in the turbulent flow, e.g., at the origin of the coordi-
conserved. In contrast, in this model the eddies conserve mawate system, in the mean the contaminated region shows a

The root mean square velocity of is
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continuous spreading. The half-width of this region is de- V. SPECIAL CASES: THE MODELS OF PRANDTL
scribed by a functiorb(x;). In a linear approximation it

follows that Applying a Taylor expansion in E430) from locationx,

to deriveu; max OVer the the distancey= (X5 max—X2), the
zero-order terms drop out, and one obtains

_db 284
77 dx, ( . au
T =poxz(U;—U; min)(97- (32)
2
o
=tanz (28D with y,=b and a substitution of the first mean velocity by
its maximal value Prandtl'§ree shear layer modek ob-
— tained[19]
2
UZ [—
=—= (280 — — U
ui 7= 0pb(Uy max— Uz min)a_xz- (32
— Stepping back to Eq31) and also expanding; mi, in the
us? remaining velocity difference leads to
== (280 "
v e TV i) i S
e Xz % Xy’
_ u5’ where a mean gradient over a distari¢ehas been intro-
= u (289 duced, and the relationg,=Ig=| have been applied.

Prandtl assumed that in the positive and negativedirec-
— tion the second mixing length is statistically equally dis-
HES \/u—i2 (28f)  tributed, so that in the procedure transforming B8) to Eq.
(34), the cross terms cancel out,

%5 Xy

where o denotes the spreading parameter antthe spread- _
ing angle. In Poiseuille flow the spreading by turbulent con- r=pl? (%
vection is only a flow internal feature, where in a jet flow it P Xz
also defines the boundary of the turbulent domain. The tur-

bulence intensities are assumed to be small compared with this mean-gradient theorye have writteni 2 instead of

(34)

the mean downstream velocityee Eq(28f)]. From Eq.(27) 1’2, Whenl’ is assumed to be zero only first-order deriva-
by substituting(286 one obtains tives remain,
. . duy| duy
_ u1(0)—uy(x3) =24 T
T=—poxi(X) —— 5 (29) =p! IXo| 9%y 39
2

. Finally we have obtained the simplest but the most widely
We already have noted that the quaniity denotes a char- 5ppjied model of the numerous approaches that Prandtl has
acteristic length in the, direction (in Poiseuille flow it is proposed6]. It is named themixing-length modelThe de-
equal to the widtha). To fulfill Galilean invariancex; max  velopment of his models went in the opposite direcfisam
=0 andu; ;=0 are added. The quantii n..denotes the Eq. (35) in the year 1925 to Eq32) in 1942. Because of
location where the mean downstream velocity is maximalinsyfficiencies of the mixing-length model, e.g., deviations
The model ideas can be applied to different locations downpf calculated results and experimental data at points of van-
stream and to every position in the perpendicular directionjshing derivatives of the mean downstream velocity, Prandtl
Therefore, we can introduce the Variahh_e and we can also gradua”y improved h|s gradient theory_ From the presenta_

omit the asterisk i , tion here, it can be seen how closely his theories approach
- - the DQTM. To make this even clearer the mo(&s) can be
Te=pox2[U1(X1,X2) = U1 min(X1) ] slightly rewritten
Uy X1) —Up(Xq,X TP AT
v 1 ma X1) _1( 1,X2) ’ (30) Tt=apb2 % U1 max— U1 min (36
X2 max— X2 Xy b

which finally defines the DQTM, as it was introduced in In the free shear flow model Prandtl obtained a difference
several previous papers without much explanation. It must bguotient, which spans the whole turbulent region. But on the
remarked that in the limix, toward zero the excess momen- other hand, the expression in front of the difference quotient,
tum vanishes and a generalized eddy viscogge Sec. IX  which also defines a modified eddy diffusivitg0], is still a
increases to infinity. The product correctly gives a finite lim-local quantity. There exist many critics of gradient-type, re-
iting value, which corresponds to the correct turbulent sheaspectively, eddy diffusivity modelg.g., see Ref21]). In a
stress as it is experimentally observed. textbook on turbulencgl?] one finds the following state-
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ments: “We have to conclude that the truncation of the Tay- 1.5
lor series expansion involved iere a formula of the eddy

viscosity concept occuysis not justified. Therefore, a
gradient-transport model, which links the stress to the rate of ~@- Analytical results
strain at the same point in time and space, cannot be used for
turbulent flows.” Note that this criticism does not apply to
the DQTM.

(O Numerical results

—

V. THE BASIC EQUATION OF TURBULENT POISEUILLE
FLOW

Order parameter ¥
=
o

Omitting the dependency on the varialdg again[com-
pare with statement of Eq$la) and (2)] in dimensionless
form we have

1
0 \ . .
fa1(m)= T f1(m)[f1(0)—=F1(n)]. (37 0.001 0.01 01 1
. . L _ Stress parameter o
Inserting this expression into E§21) leads to an integral P
equation. It is more convenient, however, to substitute the Fig, 3. Analytically and numerically derived functional relation
right-hand side of Eq(37) into Eq. (20), which gives the  petween the stress parametemwhich is inversely connected to the
following differential equation: Reynolds number Reby Egs.(433 and(43b), and 3, respectively,
the order parametey. Corresponding mean velocity profiles and

1 1 i
@fi( 7)— U;fl( Mf1(0)—F1(7)] Reynolds stresses are shown in Fig. 4.

+7=0, (38a , (43
' 2(_% (38D

After having dropped Eq(19), we now only consider this Whin‘h means that the slope_of t_he time-avera_ged velocity
basic equation. We may therefore introduce the total derivaProfile near the plane plate is directly proportional to the

tive. By further introducing the following functions: Reynolds number Re This is in qualitative agreement with
experimental observations of a decreasing boundary layer
~ fi(n) 39 thickness in terms of an increasing Reynolds number.
91(m)= f,1(0)’ (39 Running a numerical calculation scheme, startingyat
—1, for a certain quantity, one has to choose the parameter
021( 1) ="F2(7m) (39b) a so that the profile hits«#,g)=(+ 1,0) on the opposite side
and thereby fulfills the boundary conditidd2). The func-
and the abbreviations tion
f1(0)
a= =, (409
Re* B
X=7 (44)
B=of1(0)?, (40b)
the differential equation of the problem is obtained which has been evaluated by this procedure, is shown in Fig.
. 3 and is compared with analytical results of Sec. VI.
ang1(7)—BY1(n) + Bgi(n) -+ 7°=0. (41) If a—0 then—just as in plane Couette fldi1]—p3 is

- . equal to four, andgy identical to one. From numerical calcu-
A symmetry condition and the boundary conditions are thgations it follows thatg is positive and smaller than or equal

following: to four. This upper limit will be shown analytically to be
(M) =01(— ) (424 correct. Because of Eq423 it is sufficient to study the
91(7)=9:1(= 7). behavior ofg,; in the interval G< =<1. From Eqgs.(20),
9.(0)=1, (42 Ers]’gta) (38h), (393, (39b), and(42a—(420), we may conclude
91(1)=0. (420)
From Egs.(17¢ and (3939 it can be concluded that aw:gﬂ( 7) — <0 (45)
n
dg; Re*

e 43
dn| ., T0) @33
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1 h(¢)=*C (X 55
021= B 01(1-02) (46) (D=4CO) (53
where
and by substituting Eq46) into Eq. (45), we obtain p
Boi(1—g)=<7?<1, Vye[0l]=B<4. (47 k=5—, \?=1, and Ce{J,Y}. (55b)

Substituting the DQTM into the Navier-Stokes equation andy genotes the Bessel functions aMdhe Weber functions.

solving it together with the continuity equation yields an g rthermore. from Eqg40) one derivegsee(43b)]
order/disorder description of turbulence, with several analo- ’

gies in other fields where statistical physics applies. The two B B u* \?2
phases are laminar domains and turbulent patches. Consider- =3 (0)2 ~ 2Re2 =B T (56)
ing decreasing values far at a,;= 0.5, the laminar flow— ! Tmax
charapterlzed by(=Q—becomes ”’?St.a'.“'e and the turbulentBy substituting the right-hand terms of E0) into Eqg.
domains grQV\(se_e Fig. 3 At a=0 (!nf|n|te Reynolds num- §55), an expression fok can be derived
ben no laminar interspaces remain and the most irregula
turbulent flow, showing the highest ordge=1, is obtained. U

. . . . B 1 1ma>< 1
In Ref.[11] a suitable physical quantity is shown to be re- K=5-=50 Re* =350 Re. (57

o

lated to the order parametgr
Continuing with Eq.(55), the following four equations exist

VI. ANALYTICAL SOLUTIONS FOR LOW, MODERATE, to construct solutions:
AND HIGH REYNOLDS NUMBERS
Equation(41) with the requirement$423—(420) can be hi() =", (), (583
analytically solved. Three cases are distinguished. The third — KT
case will mainly be the subject of the next section. In this ha() == ), (580
section, the simplest of these problems is considered first, ha(1h) = Y () (580
,3:0:01:%:9(77):1_772 (48) h (l/l)_l,/IKY (_l//) (580)
4 - K .

This is the case that describes laminar flows at Reynolds . i ) ,
numbers up to the critical value. Bessel functions of the first type and Weber functions, which

More effort is needed to solve the second case, i.e., the'® Bessel functions of the second type—having negative

flow problems for finite Reynolds numbers above the critical@’9uments—are more difficult to apply. By introducing an
value, thusg>0 anda>0. The following functional rela- analytic continuation, they can be reduced to the functions

tion is considered: with positive argumentf22]
h’ ha(¢)=€*"hy(y), (593
g1=H -, (49) | o
ha(4)=e""“"hs(4) +2i sin(k m)cot( k m)hy ()
with (59b)
o for rational x and
H=—17. 50
B 50 ho(9)=(—1)"hy (), (602
Equation(41) can be transformed into a Bessel-type equation ha(4)=(—1)"hs( )+ 2i (—1)"hy () (60)
a?ph"+ (a?—apB)h’ + Byh=0. (51

whenk is an integer numbet=n. The general solution for

Applying the variable transformation h can be written as a linear combinationtof andhg,

together with The derivative is
dh
A= E (53 @=D¢KJK-1(¢)+Q¢“YK-1( ). (62)
o
leads to Together with Egqs(49) and(52) we obtain
#h B\ oh 1 pJod(pHaY, ()
i+ |-G ron-o o B 2 3l av) 9

According to Ref[22], the solution of Eq(51) is This equation has to fulfill the requireme(@#2b)
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lim g,(y)=1. (64)
y—0
We conclude from Eq(64) that
g=0. (65)
Thus
¥ Jie—1(¥)
gl(’;b):ﬂ 3 (11/;)# (663
_ JK*l(l//)
e 1(P)+ e 1()
(66b)
is obtained. The requirement E@20) yields
JK—].(g =O, (67)

and the argument of E¢67) has to bej,._; 4, i.e., the first
zero of the Bessel functiod, ;. From

VB .
j_lx—l,l (684
and
20=?. (68
o
it follows that
_ 2k (694
T (e10?
and
4 (69h)
P ?

In this way, for a given valuece R*, pairs (a,8) can be

calculated by means of tables and formulas presented in Ref.

[22]. From this reference, we also find that

-

k

(s L4
JK(‘”)_(E) & KTk D)

For negative arguments, instead of Eq(66a), the follow-
ing calculation must be performed:

=
- |77
1 kzz:ok!F(K+k)
; ( l//2k

i 4

k=0 KIT'(k+k+1)

(70

k

91(¥)= (71)

DIFFERENCE-QUOTIENT TURBULENCE MODEL:

559

With Eq. (71) the symmetry ofy;() according to Eq(423
is guaranteed. From Eqg&6) and (66b) it follows that the
scaled Reynolds shear stresgsee Fig. 4

_IB. 1 ‘]Kfl‘]/ﬁ‘l
e E N B L
The third case, wher@—4 and thereforex—0, is easy to
solve. The differential equatiod1) reduces to a normal
quadratic equation. By taking the boundary condit{d)
into account, it is solved by

1
91=5 (1 V1= 7).

In the next section it is shown that E(r3) is in fact the
pointwise limit of solutiong66a and (66b) for k— .

(72

(73

VII. THE INFINITE REYNOLDS NUMBER SOLUTION

Studying the time-averaged velocity profiles—from Egs.
(668 and(70—we conclude that

k=1 =17
A/ \/E | ( 24 ) .
| =7
VB
The behavior of Eq(74) is considered in the limitk— .
This corresponds to the lim@—4. It will be shown that Eq.
(74) tends pointwise toward solutiof73) if |7|<1. Due to

Eqg. (429 it can be assumed thgt=0. To calculate the limit it
can be set

(74)

2
2 secliy,)= (75
VB

cosfiyy)

for somey;, since the first term in E475) is assumed to be
smaller or equal to one. The behavior of

J (76)

K

2k )
-7
VB

in the limit k— can be found if22]. Some care is needed,
however, when determining the same limit for

] ( 2Kk ) 7
k=1 =7/
VB
Since the inequality
2k7 2n B
=— 1 (78
(k=B BB~ 2a
can be assumed, we can set
2
= (79)

m =sechiy,)

for somey,. We make use 0ff22] to obtain
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1e T T 1 ee T T
08+
06} -~
= 821 La” N
DZ v}
04} o2 1
Dz |
o = \
02} o p=2.0
Z:HZ FIG. 4. Four time-averaged
0 o . . . . velocity profilesg; and Reynolds
0 02 04 0.6 0.8 1 shear stressag, for different tur-
n bulence intensities(0<B<4).

1 With increasing parametes, the
time-averaged velocity profiles
flatten, and the Reynolds shear

08+t stresses converge toward a
triangle-type profile.
0.6}
041
02}
0 . . . .
0 0.2 04 0.6 0.8 1
n
exp{«[tan - 1 1
J, [ ksecliy)]— pldtant(y1) ~ yao} if k—oo, exg k(y1— y2) 1= | 1+ — ——x
V27K tank( y1,) k \J1—secK(y,)
(80) .
. K exp ————|,
with oo V1—secH(y,)
I ! + ! 1} (813 (89
Y12= 109 \ —i
sechiy12) seck(y1) we obtain, by using
tanh y1,) = V1—sech( y;,). (81b lim y;=lim 5, (85
We have relations that are finite, the final result obtained in the infinite
1 Reynolds number limifcompare with Eq(73)]
seciy,) —secliy,) = —secliyy), (823 1+ V1— 2
91272 . (86)
secliy;) 1 1 82b . . .
sechiy,) 1 x (82  Rearranging the equation and substituting
{=29;-1, (87)
and
we obtain
sec sec 1
tanh( y,) —tanh( y,) = — yysechyz) 1, O(x"2). P+ nP=1, (89)
J1—sech(y,)
which is the equation describing the unit circle. Figufe
(83 hich is th ion d ibi h it circle. Figufa)5

Inserting Eq.(80) into Eq.(74) and taking into account Egs.
(80)—(82) and

shows the time-averaged velocity profile of a horizontal flow
arriving from the left and leaving toward the right. In Fig.
5(b) the corresponding Reynolds shear stress is plotted.



PRE 62 DIFFERENCE-QUOTIENT TURBULENCE MODEL: ... 561

n n 1 T

1 * Measurement

= 0 Present theory | 1
- — -Previous theory /4
(@) (b)
FIG. 5. The time-averaged velocity profile of infinite Reynolds 05+t
number flow contains a semicircle on top of a rectari@e The
second figureb) is the corresponding Reynolds shear stress, which
is of triangular type. The two mean profiles are of elementary geo- _
metric nature. -1 ‘
05 06 07 08 09 1
By inserting Eq.(86) into Eq. (46) with =4 the Rey- e
nolds shear stress is calculated T max
114+J1= 72 1+1— 2 FIG. 6. The measured time-averaged velocity profile for fully
gn=4— U 1— U ) developed turbulent flow with* = 15.2 cm/s(from Ref.[24]) com-
7 2 2 pared with the circle solution, denoted by “present theory.” The

measurements were performed in a channel with height 24.6 cm,

1 which is shown after applying a scaling gs=[ —1,1]. The width
_- T2\ 1 12— ,
7 (I+V1=7)(A-N1=7n)=17, (89 of the channel is 98 cm. A former model, referred to in R&f],

leads to a result of parabolic tyfisee “previous theory).
thus a linear dependence arif | 7|<1 [since the derivation
of Eq. (86) was based on this assumptjoifthis antisymmet-
ric function partly represents a double triangle. A more so-in the boundary layer, closer to the wall, the results of pipe
phisticated treatment is based on the mathematical theory @hd channel flow are practically identical. A comparison of
distributions. Then the solution for the Reynolds stress addiexperimenta| results of boundary-layer flow and pipe flow is

tionally fulfills the equationgy,1(—1)=g,,(1)=0. presented in Ref[26]. Therefore, in this domain equal be-
havior must be expected for flows in plane channels and
VIIl. COMPARISON WITH EXPERIMENTAL RESULTS axisymmetric flows in pipes. So also in the plane case, at

] _ higher Reynolds numbers, it is expected that the experimen-

A first statement of the presented theory—which needs @y values could exceed the theoretical ones shown in Fig. 6.
be examined carefully—is that the time-averaged velocitygyt the solutions in the core region, which is roughly defined
profiles for high Reynolds numbers converge toward a semiby the interval—0.5< 7<0.5, hardly alter anymore when
circle. Experimental data are given, for example, by Laufekne excitation is further increased. Therefore, in Fig. 6 only
[23] and Reichhard24]. Although the data of Laufer con- i, the core region the agreement between theory and experi-
firm the presented theoretical results very well, for the meapnent is reliable.
velocity profile the measurements of Reichhardt are chosen A fyrther crucial test of the theory is a comparison of the
for compansqr(see Fig. 03 o calculated Reynolds stress with experimental da&e Fig.

The experiments confirm the model results convincingly.7) The theoretical results are again in good agreement with
But the good results are a little misleading. In the domainhe experimental data set. The deviations from the infinite

surroundingn=*+0.6 some measured quantities are someReynolds number solution are exactly as expected from the
what smaller than the functional values. On the other handga|culations leading to Fig. 4.

exactly there—when the excitation of the flow system is fur-
ther increased—the mean velocity profiles begin to exceed
the theoretical functions. The reason leading to this statement
is complex and discussed in the remaining part of this sec-
tion. It is assumed that the theory presented is valid in a region
The “Princeton super pipe datd25] represent the new- of about one-half the distance between the plates located
est results of the axisymmetric Poiseuille flow measured asymmetrically to the center line. This region is named the
hitherto highest Reynolds numbers, for example, Recore region(see Fig. 8 That the theory does not apply to the
=17 629500. The mean velocity profile betwegr —0.5  neighboring boundary layer can be seen by the following
and »=0.5 also follows the circle profile with a maximum arguments. Turbulent fluctuations are suppressed close to the
relative error of 1.2%. Only in the turbulent boundary layer,wall. Taking the continuity equation into consideration, it is
at larger absolute values of, the relative deviation takes possible to prove that the Reynolds stress must fulfill the
higher values. From theory and experiments it is known thafollowing condition[24]:

IX. CRITICAL CONCLUSIONS
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FIG. 7. The Reynolds shear stress at a Reynolds number of _; 0 1

12 300 has already converged very closely to the theoretically pro-
posed profile for the infinite Reynolds number limit. The experi-  FIG. 8. From the plate toward the center, the plane Poiseduille
mental datdsee Refs[13] or [23]) have been inflected at the origin flow regions are as follows: the viscous sublayer, the boundary
of the coordinate system to complete the time-averaged turbulenayer, and the core regigishaded domainsBetween each of these
shear stress profile. a small transition region occurs. The related functions describing
the mean velocity profile are shown above. The three functions add
together to give a bulbous velocity profile as occurring in highly
lim ujui=(a¥x,)", n=3. (90)  turbulent flows. The Bessel functions and the circle profile,
Xo—ta which—because of the scaling applied to this graphics—is drawn as
an ellipse, guarantee the necessary symmetry requirement
For a generalized solution, based on Prandtl’'s mixing-lengtli— 7)=g1(7).
theory, describing the profiles in the viscous sublayer and the
boundary layer, it is found that= 2. The solution presented
in [11], which is derived by applying the DQTM to the plane is in agreement with our assumption that in a description of
Couette flow problem, even leads e=1. Because of this the flow in the boundary layer the model for plane Couette
failure, one concludes that the related solutions do not yieldlow in [11] and the theory in this paper have to be modified,
the correct description for the boundary layer region. Butby changing the mixing length to be proportional ta (
they present very convincing analytical results for the core—Xx»).
region. The same reasoning is also valid for the solutions of Solving the fluid dynamic equations and simultaneously
the plane Poiseuille flow problem presented in this paper. applying the DQTM yields analytical results for the most
The drawback of failing to have an overall description ofimportant basic turbulent-free shear flow problems. It also
high quality can be easily understood by studying the applie@nalytically describes flow profiles in the core region of
“mixing lengths” for the different flow regiongsee Fig. 8  plane turbulent Couette and Poiseuille flows very precisely.
In Sec. IV and in Ref[9] it is explained that—in the context The infinite Reynolds number solutions of Poiseuille flow
of the DQTM—a mixing length does not have exactly theare an elevated semicircle, describing the mean velocity pro-
same meaning and definition as in Prandtl’'s theories. Théile and a linear function representing the Reynolds shear
solution for the sublayer can be interpreted as being relatestress. In accordance, without even applying a closure
to a “mixing length” that is small compared with the dissi- scheme, a linear function also follows from a dimensional
pation length. This is compatible with the result that in thisanalysegsee Ref[27]).
first domain the Reynolds stress is negligible. It is well Furthermore, in plane Couette and Poiseuille flow—uwith
known that in turbulence near walls, in the boundary layerdifferent symmetries—in both cases an identical order/
the mixing length must be proportional to the wall distance.disorder model of turbulence has been revealed. This is in
Therefore it is clear that our approach—with a constant mix-accordance to many fields, where statistical physics applies
ing length—cannot yield the correct solutions for this do-to describe the degree of disorder occuring in a system.
main. Only the third domain, the core region, shows a large
constant mixing length, equal to half the distance between X. OUTLOOK
the plates. A distribution of the mixing length as proposed
above is also reported for Couette flow in the book on tur- Modifying the DQTM to allow for a space-dependent
bulence published by Libbysee Ref[27]), who writes the  mixing-length and applying it to the Navier-Stokes equation
following: “There is a temptation to assume that the mixing and solving for the law of the wall will show if this turbu-
length is constant throughout the central portion of the flowlence model is appropriate to also describe turbulent behav-
and varies only within the wall layer.” Furthermore, he ior closer to walls. Note that following some papers of
states that “Briefly, it is not possible to match a solution for Barenblatt and Chorin, e.g., R¢28], discussions are indeed
the wall layer to that for an outer flow involving a constant performed, if in the boundary layer the mean velocity pro-
mixing length. We thus conclude that at the edges of thdiles show a Reynolds-number dependent scaling power law,
outer flow the mixing length must vary as in channel flow, or are more accurately described by the well established
i.e., it must become proportional to the wall distance.” Thislogarithmic law of the wall.
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It seems appropriate to refer to the solutions for theto the Reynolds number Re. Furthermore, fragy,=0.5 the

boundary layer—derived with the use of the DQTM—in a

critical Reynolds number Rg will be obtained.

separate paper. The reason is that the results will be valid for

several types of turbulent boundary-layer flows: plane “wall-

turbulent” flow, plane and axisymmetric Couette and Poi-

seuille flows, etc. When this problem has been solved, it wil
be straightforward to also determine the locations of the in
tersections(§' and &', see Ref[27]) of the three domains
and the functionx(Re), relating the shear stress parameter
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