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Difference-quotient turbulence model: Analytical solutions for the core region
of plane Poiseuille flow

Peter W. Egolf1 and Daniel A. Weiss2,*
1Swiss Federal Laboratories for Materials Testing and Research, CH-8600 Du¨bendorf, Switzerland

2Labooratoire PMMH, ESPCI, F-75231 Paris Cedex 05, France
~Received 25 March 1999; revised manuscript received 7 March 2000!

The difference-quotient turbulence model and an explanation in terms of fluid dynamics is presented. With
this model an analytical theory for the symmetric core region of turbulent plane Poiseuille flow is derived. The
equations and the solutions reveal an order/disorder transition with analogies in other scientific fields where
statistical physics applies. At moderate Reynolds numbers the time-averaged profile of the downstream mean
velocity and a second-order fluctuation correlation are described in terms of Bessel functions of the first type.
At the infinite Reynolds number limit these solutions converge toward functions which can be described by
simple geometric figures. Experimental data confirm the model results.

PACS number~s!: 47.27.Eq, 47.27.Gs, 47.27.Jv, 47.60.1i
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I. INTRODUCTION

Nowadays theoretical research work on turbulent P
seuille flow, or channel flow, is mostly the subject of dire
numerical simulations, performed for example in 1990
Gilbert and Kleiser@1# and in 1993 by Sandham@2#. Such
calculations yield valuable results, permitting the study
physical behavior of a large number of different phenome
occurring in turbulent flows, e.g., vortex stretching, vort
folding, the occurrence of ejections, sweeps, bursts, etc.
thermore, direct numerical simulation results more f
quently yield a welcome additional contribution to expe
mental data. Via direct numerical simulations, it is possi
to calculate turbulent flows up to a Taylor-Reynolds num
of approximately Rel5200 @3#. This flow-internal Reynolds
number is calculated with a fluctuation velocity and a cor
lation length and is a measure of the forcing of the flu
dynamic system. The Taylor-Reynolds number has the
vantage of being independent of the way the turbulenc
created. This is crucial for the investigation of universal b
havior. Experiments have been performed with Reyno
numbers up to Rel513 000~e.g., see Ref.@4#!.

For fully developed turbulent flows, the extremely lar
number of degrees of freedom requires computer power
yet available. Therefore, it is still necessary to base calc
tions on turbulence models which yield a closure of t
mathematical problem solving the Navier-Stokes equati
@5#. The validity of such models can be qualitatively unde
stood by scaling arguments and therefore the study of t
features is relevant from a theoretical point of view as w
With higher-order moment turbulence models it is usua
not possible to derive analytical results. Therefore, for
purposes only one-equation models are considered. By
plified considerations it is possible to classify turbulen
models into three groups. Crude models only correspon
identical eddies of equal size, which only approximately de-
scribe the turbulent momentum transport in fluid domai

*Present address: Daimler-Chrysler Research and Techno
P.O. Box 2360, D-89013 Ulm, Germany.
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The most successful approach of this kind was Prand
mixing-length theory@6#. When it was first applied to calcu
late quasistationary turbulent-free-shear-flow problems
soon became obvious that the mixing length had to be ta
as a function of space. Therefore, in a simple way, vorti
with continuously varying sizes as a function of space w
introduced. But still, only one size type was related to
single space location. Several recently published more
phisticated models are still based on this insufficient conc
tion. A new generation of turbulence models defines—
each space point of turbulent domains—eddies correspo
ing to an infinitely large amount of length scales~e.g., see
Ref. @7#!.

The difference-quotient turbulence model~DQTM! @8# is
an approach containing the essential feature of an infi
number of scales. This model analytically describes fu
turbulent-free-shear flows, e.g., turbulent flows behind wa
and jets without empirical constants~see Refs.@9# and@10#!.
The correlation between theory and experimental data i
each case very convincing. The Couette flow and the P
seuille flow away from the wall—in a domain located sym
metrically around the axis, which is called the core region
show behavior similar to free turbulent flows. Therefore t
DQTM is identically applied as in free turbulent shear flow
The results for plane Couette flow@11# reveal a complete
order/disorder description of turbulence, well known fro
other statistical systems showing critical phenomena~see,
e.g., Ref.@12#!.

II. THE BASIC EQUATIONS

The basic equations of incompressible turbulent fl
problems can be derived from the Navier-Stokes equatio
They are called Reynolds equations. For the plane cas
Poiseuille flow ~see Fig. 1!—together with the continuity
equation—the momentum equations are the following~see
Ref. @5# resuming work performed by Pai@13#!

]ū1

]x1
50, ~1a!

1

r

] p̄

]x1
2n

]2ū1

]x2
2 1

]u28u18

]x2
50, ~1b!y,
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1

r

] p̄

]x2
1

]~u28!2

]x2
50. ~1c!

ūi denotes the mean velocity component in space direc
ei , presented by the corresponding coordinate axis with
uesxi . The coordinatex1 denotes the downstream directio
andx2 denotes the direction perpendicular to the walls. T
time-averaged physical quantities, characterized by an o
bar, are functions of space only.p̄ is the mean pressure an
n the kinematic viscosity of the fluid, whereasr denotes the
constant density of the incompressible fluid. Here seco
order correlations occur, containing the fluctuation velocit
ui8 .

We now briefly recall some considerations, which are i
portant for the understanding of this theory. From Eq.~1a! it
is evident that the time-averaged velocity in the downstre
direction

ū15ū1~x2! ~2!

only depends onx2 . Dimensionless space coordinates a
introduced

j5
x1

a
, ~3a!

h5
x2

a
. ~3b!

Furthermore, the following characteristic velocity is define

u* 5Aut0u
r

, ~4a!

t056m
]ū1

]x2
U

6a

, ~4b!

where the near-wall shear stresst0 has been introduced~e.g.,
see Ref.@14#!. The characteristic quantities introduced so
are linked to the two Reynolds numbers

Re5
ū1max

a

n
, ~5a!

FIG. 1. Laminar and turbulent Poiseuille flow between tw
plane parallel plates. In the laminar case, the velocity profile
known to be of parabolic type~a!. In turbulent regimes with in-
creasing Reynolds number, the mean velocity profiles flatten~b!. In
the figure on the right, dimensionless variables have been use
n
l-

e
r-

d-
s

-

m

e

:

r

Re* 5
u* a

n
⇒Re5

ū1max

u*
Re* . ~5b!

In this paper the following self-similar functions are ma
use of:

f 1~h,Re* !5
ū1

u*
, ~6!

P~j,h,Re* !5
p̄2 p̄0

ru* 2 , ~7!

f 21~h,Re* !5
u28u18

u* 2 , ~8!

f 22~h,Re* !5
~u28!2

u* 2 . ~9!

It can be seen that not onlyf 1 , but also f 21 and f 22, are
independent ofj. By applying Eq.~6! to Eq. ~9!, we obtain
the following two differential equations:

]P

]j
2

1

Re*
]2f 1

]h2 1
] f 21

]h
50 ~10!

and

]P

]h
1

] f 22

]h
50. ~11!

The boundary conditions are the following:

f g~21,Re* !5 f g~11,Re* !50,
~12!

gP$1,21,22%.

In consistency with Eq.~7!, it is possible to fix the pressur

P~0,21,Re* !50. ~13!

From Eqs.~10! and ~11! linear relationships are obtained

~P1 f 22!5A~Re* !j1C~Re* !, ~14!

1

Re*
] f 1~h,Re* !

]h
2 f 21~h,Re* !2A~Re* !h2B~Re* !50.

~15!

The total shear stresst tot is given by the viscoust0 and the
turbulent shear stress or Reynolds shear stresst t ,

t tot5t01t t5m
]ū1

]x2
2ru28u18. ~16!

Near the wall, the turbulent fluctuations disappear

t tot

r U
6a

57~u* !2 ~17a!

5n
]ū1

]x2
U

6a

~17b!

s
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which yields

d f1

dh U
61

57Re* . ~17c!

Substituting obtained results into Eq.~15!, it follows that

6A1B571. ~18!

By solving this system of two equations of two variables it
found thatA521 andB50. Therefore, Eqs.~14! and ~15!
change to

P~j,h,Re* !1 f 22~h,Re* !1j50, ~19!

1

Re*
] f 1~h,Re* !

]h
2 f 21~h,Re* !1h50. ~20!

The integration of Eq.~20! produces the main equation b
fore introducing any turbulence modeling

f 1~h,Re* !5Re* F 1
2 ~12h2!1E

21

h
f 21~u,Re* !duG .

~21!

To fulfill the boundary conditions in the laminar case (f 21
50), in Eq. ~21! we set the integration constant equal to1

2.
Now, the velocity profile in laminar flow describes the par
bolic Hagen-Poiseuille profile

f 1~h,Re* !5
Re*

2
~12h2!. ~22!

III. CONSERVED MOMENTUM AND THE
DIFFERENCE-QUOTIENT TURBULENCE MODEL

The application of any turbulence model is still an emp
cal procedure because of a lacking proof of the validity
the closure technique in general. Therefore, an explanatio
terms of fluid dynamics of the DQTM at present is rath
based on physical intuition than first physical principles.
give some convincing explanations, at the beginning we
low simple arguments of Prandtl, which can be found
most textbooks on turbulence, e.g.,@5,14–17#, etc. As a fluid
is in turbulent motion, it carries fluid elements from place
place. A control volume of fluid—small compared with th
Kolmogorov microscale, but large in comparison with t
molecular scale—is gradually transported away from its
tial location ~see Fig. 2!.

At time t50 each of the two selected mass elementA
andB are considered to be contained in spherical element
equal size.A is positioned on the center line (x250) andB is
located very close to the upper boundary plate (x25a). The
chosen elements are much smaller than shown in Fig
Therefore, for simplicity fluid parcelB is assumed to be ex
actly atx25a. The opposite motion ofA from the center line
to the boundary and that ofB in the reverse direction guar
antee mass conservation. Now the wandering of fluid e
mentA is investigated. By turbulent motion it is transporte
to the positionx2* . Prandtl assumed a small mixing length
be the characteristic distance over which the momentum
conserved. In contrast, in this model the eddies conserve
-

f
in
r

l-

-

of

2.

-

is
o-

mentum over much larger distances, e.g., in this specific c
it is as long asl A . Nowadays it is known that a fluid lump i
dispersed ever so rapidly. Particles, which are initially neig
bors, are exponentially separated. This clearly demonstr
the limited character of this model. Still, the rough assum
tions lead to a prediction of the correct mean moment
transfer~see below!. The averaged excess momentum at
new position is

DM5r$@u1~0!1u18~0!#2@u1~x 2* !1u18~x2* !#%

5r@u1~0!2u1~x2* !#, ~23!

because the time averages of the fluctuations vanish per
nition.

The volume flux density is amplified by a length ratio@18#

j 2~x2* !5
a

x2*
u2~x2* !. ~24!

The root mean square velocity ofu2 is

Au2
25A~ ū21u28!2 ~25a!

5Au28
2, ~25b!

becauseū2 is zero. The turbulent shear stress is defined

t t52 j 2DM . ~26!

By applying Eqs.~24! and ~25b! one obtains

t t52c
a

x2*
Au28

2 DM , ~27!

with a correlation coefficient 0<c<1. A further model as-
sumption is that this correlation is very strong and theref
we can setc51. If a high number of tracer particles is in
jected in the turbulent flow, e.g., at the origin of the coor
nate system, in the mean the contaminated region show

FIG. 2. Geometry of intercollision of fluid lumps. This figur
has been copied from Ref.@5# and adapted to the new ideas leadi
to the DQTM. An initially spherical elementA ~or B! is transported
and simultaneously elongated to becomeA* ~respectively,B* ).
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continuous spreading. The half-width of this region is d
scribed by a functionb(x1). In a linear approximation it
follows that

s5
db

dx1
~28a!

5tan
a

2
~28b!

5

Au2
2

Au1
2

~28c!

5

Au28
2

Au1
21u18

2
~28d!

>
Au28

2

ū1

~28e!

uū1u@Au18
2, ~28f!

wheres denotes the spreading parameter anda the spread-
ing angle. In Poiseuille flow the spreading by turbulent co
vection is only a flow internal feature, where in a jet flow
also defines the boundary of the turbulent domain. The
bulence intensities are assumed to be small compared
the mean downstream velocity@see Eq.~28f!#. From Eq.~27!
by substituting~28e! one obtains

t t52rsx2ū1~x2* !
ū1~0!2ū1~x2* !

x2*
. ~29!

We already have noted that the quantityx2 denotes a char
acteristic length in thex2 direction ~in Poiseuille flow it is
equal to the widtha!. To fulfill Galilean invariancex2 max
50 andū1 min50 are added. The quantityx2 max denotes the
location where the mean downstream velocity is maxim
The model ideas can be applied to different locations do
stream and to every position in the perpendicular directi
Therefore, we can introduce the variablex1 , and we can also
omit the asterisk inx2* ,

t t5rsx2@ ū1~x1 ,x2!2ū1 min~x1!#

3
ū1 max~x1!2ū1~x1 ,x2!

x2 max2x2
, ~30!

which finally defines the DQTM, as it was introduced
several previous papers without much explanation. It mus
remarked that in the limitx2 toward zero the excess mome
tum vanishes and a generalized eddy viscosity~see Sec. IX!
increases to infinity. The product correctly gives a finite lim
iting value, which corresponds to the correct turbulent sh
stress as it is experimentally observed.
-

-

r-
ith

l.
-
.

e

-
ar

IV. SPECIAL CASES: THE MODELS OF PRANDTL

Applying a Taylor expansion in Eq.~30! from locationx2
to derive ū1 max over the the distancel A5(x2 max2x2), the
zero-order terms drop out, and one obtains

t t5rsx2~ ū12ū1 min!
]ū1

]x2
. ~31!

With x25b and a substitution of the first mean velocity b
its maximal value Prandtl’sfree shear layer modelis ob-
tained@19#

t t5srb~ ū1 max2ū1 min!
]ū1

]x2
. ~32!

Stepping back to Eq.~31! and also expandingū1 min in the
remaining velocity difference leads to

t t5r l 2H F S ]ū1

]x2
D1 l 8S ]2ū1

]x2
2 D G2J 1/2

]ū1

]x2
, ~33!

where a mean gradient over a distancel 8 has been intro-
duced, and the relationsx25 l B5 l have been applied
Prandtl assumed that in the positive and negativex22 direc-
tion the second mixing lengthl 8 is statistically equally dis-
tributed, so that in the procedure transforming Eq.~33! to Eq.
~34!, the cross terms cancel out,

t t5r l 2H S ]ū1

]x2
D 2

1 l 82S ]2ū1

]x2
2 D 2J 1/2]ū1

]x2
. ~34!

In this mean-gradient theorywe have writtenl 82 instead of
l 82. When l 8 is assumed to be zero only first-order deriv
tives remain,

t t5r l 2U]ū1

]x2
U ]ū1

]x2
. ~35!

Finally we have obtained the simplest but the most wid
applied model of the numerous approaches that Prandtl
proposed@6#. It is named themixing-length model. The de-
velopment of his models went in the opposite direction@from
Eq. ~35! in the year 1925 to Eq.~32! in 1942#. Because of
insufficiencies of the mixing-length model, e.g., deviatio
of calculated results and experimental data at points of v
ishing derivatives of the mean downstream velocity, Pran
gradually improved his gradient theory. From the presen
tion here, it can be seen how closely his theories appro
the DQTM. To make this even clearer the model~32! can be
slightly rewritten

t t5srb2
]ū1

]x2

ū1 max2ū1 min

b
. ~36!

In the free shear flow model Prandtl obtained a differen
quotient, which spans the whole turbulent region. But on
other hand, the expression in front of the difference quotie
which also defines a modified eddy diffusivity@20#, is still a
local quantity. There exist many critics of gradient-type,
spectively, eddy diffusivity models~e.g., see Ref.@21#!. In a
textbook on turbulence@17# one finds the following state
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ments: ‘‘We have to conclude that the truncation of the T
lor series expansion involved in~here a formula of the eddy
viscosity concept occurs! is not justified. Therefore, a
gradient-transport model, which links the stress to the rat
strain at the same point in time and space, cannot be use
turbulent flows.’’ Note that this criticism does not apply
the DQTM.

V. THE BASIC EQUATION OF TURBULENT POISEUILLE
FLOW

Omitting the dependency on the variablex1 again@com-
pare with statement of Eqs.~1a! and ~2!# in dimensionless
form we have

f 21~h!5s
1

h
f 1~h!@ f 1~0!2 f 1~h!#. ~37!

Inserting this expression into Eq.~21! leads to an integra
equation. It is more convenient, however, to substitute
right-hand side of Eq.~37! into Eq. ~20!, which gives the
following differential equation:

1

Re*
f 18~h!2s

1

h
f 1~h!@ f 1~0!2 f 1~h!#

1h50, ~38a!

8ª
d

dh . ~38b!

After having dropped Eq.~19!, we now only consider this
basic equation. We may therefore introduce the total der
tive. By further introducing the following functions:

g1~h!5
f 1~h!

f 1~0!
, ~39a!

g21~h!5 f 21~h! ~39b!

and the abbreviations

a5
f 1~0!

Re*
, ~40a!

b5s f 1~0!2, ~40b!

the differential equation of the problem is obtained

ahg18~h!2bg1~h!1bg1~h!21h250. ~41!

A symmetry condition and the boundary conditions are
following:

g1~h!5g1~2h!, ~42a!

g1~0!51, ~42b!

g1~1!50. ~42c!

From Eqs.~17c! and ~39a! it can be concluded that

dg1

dh U
61

57
Re*

f 1~0!
~43a!
-

of
for

e

a-

e

57
1

a
, ~43b!

which means that the slope of the time-averaged velo
profile near the plane plate is directly proportional to t
Reynolds number Re* . This is in qualitative agreement with
experimental observations of a decreasing boundary la
thickness in terms of an increasing Reynolds number.

Running a numerical calculation scheme, starting ath5
21, for a certain quantityb, one has to choose the parame
a so that the profile hits (h,g)5(11,0) on the opposite side
and thereby fulfills the boundary condition~42!. The func-
tion

x5
b

4
, ~44!

which has been evaluated by this procedure, is shown in
3 and is compared with analytical results of Sec. VI.

If a→0 then—just as in plane Couette flow@11#—b is
equal to four, andx identical to one. From numerical calcu
lations it follows thatb is positive and smaller than or equ
to four. This upper limit will be shown analytically to b
correct. Because of Eq.~42a! it is sufficient to study the
behavior ofg21 in the interval 0<h<1. From Eqs.~20!,
~38a!, ~38b!, ~39a!, ~39b!, and~42a!–~42c!, we may conclude
that

a
dg1~h!

dh
5g21~h!2h<0 ~45!

and

FIG. 3. Analytically and numerically derived functional relatio
between the stress parametera, which is inversely connected to th
Reynolds number Re* by Eqs.~43a! and~43b!, andb, respectively,
the order parameterx. Corresponding mean velocity profiles an
Reynolds stresses are shown in Fig. 4.
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g215b
1

h
g1~12g1!, ~46!

and by substituting Eq.~46! into Eq. ~45!, we obtain

bg1~12g1!<h2<1, ;hP@0,1#⇒b<4. ~47!

Substituting the DQTM into the Navier-Stokes equation a
solving it together with the continuity equation yields a
order/disorder description of turbulence, with several ana
gies in other fields where statistical physics applies. The
phases are laminar domains and turbulent patches. Cons
ing decreasing values fora at acrit50.5, the laminar flow—
characterized byx50—becomes unstable and the turbule
domains grow~see Fig. 3!. At a50 ~infinite Reynolds num-
ber! no laminar interspaces remain and the most irregu
turbulent flow, showing the highest orderx51, is obtained.
In Ref. @11# a suitable physical quantity is shown to be r
lated to the order parameterx.

VI. ANALYTICAL SOLUTIONS FOR LOW, MODERATE,
AND HIGH REYNOLDS NUMBERS

Equation~41! with the requirements~42a!–~42c! can be
analytically solved. Three cases are distinguished. The t
case will mainly be the subject of the next section. In t
section, the simplest of these problems is considered firs

b50⇒a5 1
2 ⇒g~h!512h2. ~48!

This is the case that describes laminar flows at Reyno
numbers up to the critical value.

More effort is needed to solve the second case, i.e.,
flow problems for finite Reynolds numbers above the criti
value, thusb.0 anda.0. The following functional rela-
tion is considered:

g15H
h8

h
, ~49!

with

H5
a

b
h. ~50!

Equation~41! can be transformed into a Bessel-type equat

a2hh91~a22ab!h81bhh50. ~51!

Applying the variable transformation

c5lh ~52!

together with

l5
Ab

a
~53!

leads to

c
]2h

]c2 1S 12
b

a D ]h

]c
1ch50. ~54!

According to Ref.@22#, the solution of Eq.~51! is
d

-
o
er-

t

r

rd
s

s

e
l

n

h~c!5ckCk~ l̃c! ~55a!

where

k5
b

2a
, l̃251, and CP$J,Y%. ~55b!

J denotes the Bessel functions andY the Weber functions.
Furthermore, from Eqs.~40! one derives@see~43b!#

s5
b

f 1~0!2 5
b

a2 Re* 2 5bS u*

ū1max
D 2

. ~56!

By substituting the right-hand terms of Eq.~40! into Eq.
~55!, an expression fork can be derived

k5
b

2a
5

1

2
s Re*

ū1max

u*
5

1

2
s Re. ~57!

Continuing with Eq.~55!, the following four equations exis
to construct solutions:

h1~c!5ckJk~c!, ~58a!

h2~c!5ckJk~2c!, ~58b!

h3~c!5ckYk~c!, ~58c!

h4~c!5ckYk~2c!. ~58d!

Bessel functions of the first type and Weber functions, wh
are Bessel functions of the second type—having nega
arguments—are more difficult to apply. By introducing a
analytic continuation, they can be reduced to the functio
with positive arguments@22#

h2~c!5eikph1~c!, ~59a!

h4~c!5e2 ikph3~c!12i sin~kp!cot~kp!h1~c!
~59b!

for rationalk and

h2~c!5~21!nh1~c!, ~60a!

h4~c!5~21!nh3~c!12i ~21!nh1~c! ~60b!

whenk is an integer numberk5n. The general solution for
h can be written as a linear combination ofh1 andh3 ,

h5pckJk~c!1qckYk~c!. ~61!

The derivative is

dh

dc
5pckJk21~c!1qckYk21~c!. ~62!

Together with Eqs.~49! and ~52! we obtain

g1~c!5
1

2k
c

pJk21~c!1qYk21~c!

pJk~c!1qYk~c!
. ~63!

This equation has to fulfill the requirement~42b!
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lim
c→0

g1~c!51. ~64!

We conclude from Eq.~64! that

q50. ~65!

Thus

g1~c!5
c

2k

Jk21~c!

Jk~c!
~66a!

5
Jk21~c!

Jk21~c!1Jk11~c!
~66b!

is obtained. The requirement Eq.~42c! yields

Jk21SAb

a D 50, ~67!

and the argument of Eq.~67! has to bej k21,1, i.e., the first
zero of the Bessel functionJk21 . From

Ab

a
5 j k21,1 ~68a!

and

2k5
b

a
, ~68b!

it follows that

a5
2k

~ j k21,1!
2 ~69a!

and

b5
4k2

~ j k21,1!
2 . ~69b!

In this way, for a given valuekPR1, pairs ~a,b! can be
calculated by means of tables and formulas presented in
@22#. From this reference, we also find that

Jk~c!5S c

2 D k

(
k50

` S 2
c2

4 D k

k!G~k1k11!
. ~70!

For negative arguments,c, instead of Eq.~66a!, the follow-
ing calculation must be performed:

g1~c!5
1

k

(
k50

` S 2
c2

4
D k

k!G~k1k!

(
k50

` S 2
c2

4
D k

k!G~k1k11!

. ~71!
ef.

With Eq. ~71! the symmetry ofg1(c) according to Eq.~42a!
is guaranteed. From Eqs.~46! and ~66b! it follows that the
scaled Reynolds shear stress is~see Fig. 4!

g215b j k21,1

1

c

Jk21Jk11

~Jk211Jk11!2 . ~72!

The third case, whereb→4 and thereforea→0, is easy to
solve. The differential equation~41! reduces to a norma
quadratic equation. By taking the boundary condition~42!
into account, it is solved by

g15
1

2
~11A12h2!. ~73!

In the next section it is shown that Eq.~73! is in fact the
pointwise limit of solutions~66a! and ~66b! for k→`.

VII. THE INFINITE REYNOLDS NUMBER SOLUTION

Studying the time-averaged velocity profiles—from Eq
~66a! and ~70!—we conclude that

g1~h!5
h

Ab

Jk21S 2k

Ab
h D

JkS 2k

Ab
h D . ~74!

The behavior of Eq.~74! is considered in the limitk→`.
This corresponds to the limitb→4. It will be shown that Eq.
~74! tends pointwise toward solution~73! if uhu,1. Due to
Eq. ~42a! it can be assumed thath>0. To calculate the limit it
can be set

2h

Ab
5sech~g1!5

1

cosh~g1!
~75!

for someg1 , since the first term in Eq.~75! is assumed to be
smaller or equal to one. The behavior of

JkS 2k

Ab
h D ~76!

in the limit k→` can be found in@22#. Some care is needed
however, when determining the same limit for

Jk21S 2k

Ab
h D . ~77!

Since the inequality

2kh

~k21!Ab
5

2h

Ab

b

b22a
,1 ~78!

can be assumed, we can set

2kh

~k21!Ab
5sech~g2! ~79!

for someg2 . We make use of@22# to obtain



r
a

560 PRE 62PETER W. EGOLF AND DANIEL A. WEISS
FIG. 4. Four time-averaged
velocity profilesg1 and Reynolds
shear stressesg21 for different tur-
bulence intensitiesb(0<b<4).
With increasing parameterb, the
time-averaged velocity profiles
flatten, and the Reynolds shea
stresses converge toward
triangle-type profile.
.

,

ite

w
.

Jk@k sech~g12!#→
exp$k@ tanh~g12!2g12#%

A2pk tanh~g12!
if k→`,

~80!

with

g125 logF 1

sech~g12!
1A 1

sech2~g12!
21G , ~81a!

tanh~g12!5A12sech2~g12!. ~81b!

We have

sech~g2!2sech~g1!5
1

k
sech~g2!, ~82a!

sech~g1!

sech~g2!
512

1

k
~82b!

and

tanh~g2!2tanh~g1!52
sech~g1!sech~g2!

A12sech2~g1!

1

k
1O~k22!.

~83!

Inserting Eq.~80! into Eq. ~74! and taking into account Eqs
~80!–~82! and
exp@k~g12g2!#5F11
1

k

1

A12sech2~g2!

1O~k22!G k

——→
k→`

expS 1

A12sech2~g2!
D

~84!

we obtain, by using

lim g1
k→`

5 lim g2
k→`

, ~85!

relations that are finite, the final result obtained in the infin
Reynolds number limit@compare with Eq.~73!#

g15
11A12h2

2
. ~86!

Rearranging the equation and substituting

z52g121, ~87!

we obtain

z21h251, ~88!

which is the equation describing the unit circle. Figure 5~a!
shows the time-averaged velocity profile of a horizontal flo
arriving from the left and leaving toward the right. In Fig
5~b! the corresponding Reynolds shear stress is plotted.
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By inserting Eq.~86! into Eq. ~46! with b54 the Rey-
nolds shear stress is calculated

g2154
1

h

11A12h2

2 S 12
11A12h2

2 D
5

1

h
~11A12h2!~12A12h2!5h, ~89!

thus a linear dependence onh if uhu,1 @since the derivation
of Eq. ~86! was based on this assumption#. This antisymmet-
ric function partly represents a double triangle. A more
phisticated treatment is based on the mathematical theor
distributions. Then the solution for the Reynolds stress ad
tionally fulfills the equationsg21(21)5g21(1)50.

VIII. COMPARISON WITH EXPERIMENTAL RESULTS

A first statement of the presented theory—which need
be examined carefully—is that the time-averaged veloc
profiles for high Reynolds numbers converge toward a se
circle. Experimental data are given, for example, by Lau
@23# and Reichhardt@24#. Although the data of Laufer con
firm the presented theoretical results very well, for the me
velocity profile the measurements of Reichhardt are cho
for comparison~see Fig. 6!.

The experiments confirm the model results convincing
But the good results are a little misleading. In the dom
surroundingh560.6 some measured quantities are som
what smaller than the functional values. On the other ha
exactly there—when the excitation of the flow system is f
ther increased—the mean velocity profiles begin to exc
the theoretical functions. The reason leading to this statem
is complex and discussed in the remaining part of this s
tion.

The ‘‘Princeton super pipe data’’@25# represent the new
est results of the axisymmetric Poiseuille flow measured
hitherto highest Reynolds numbers, for example,
517 629 500. The mean velocity profile betweenh520.5
and h50.5 also follows the circle profile with a maximum
relative error of 1.2%. Only in the turbulent boundary lay
at larger absolute values ofh, the relative deviation take
higher values. From theory and experiments it is known t

FIG. 5. The time-averaged velocity profile of infinite Reynol
number flow contains a semicircle on top of a rectangle~a!. The
second figure~b! is the corresponding Reynolds shear stress, wh
is of triangular type. The two mean profiles are of elementary g
metric nature.
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in the boundary layer, closer to the wall, the results of p
and channel flow are practically identical. A comparison
experimental results of boundary-layer flow and pipe flow
presented in Ref.@26#. Therefore, in this domain equal be
havior must be expected for flows in plane channels a
axisymmetric flows in pipes. So also in the plane case
higher Reynolds numbers, it is expected that the experim
tal values could exceed the theoretical ones shown in Fig
But the solutions in the core region, which is roughly defin
by the interval20.5,h,0.5, hardly alter anymore whe
the excitation is further increased. Therefore, in Fig. 6 o
in the core region the agreement between theory and exp
ment is reliable.

A further crucial test of the theory is a comparison of t
calculated Reynolds stress with experimental data~see Fig.
7!. The theoretical results are again in good agreement w
the experimental data set. The deviations from the infin
Reynolds number solution are exactly as expected from
calculations leading to Fig. 4.

IX. CRITICAL CONCLUSIONS

It is assumed that the theory presented is valid in a reg
of about one-half the distance between the plates loca
symmetrically to the center line. This region is named t
core region~see Fig. 8!. That the theory does not apply to th
neighboring boundary layer can be seen by the follow
arguments. Turbulent fluctuations are suppressed close to
wall. Taking the continuity equation into consideration, it
possible to prove that the Reynolds stress must fulfill
following condition @24#:

h
-

FIG. 6. The measured time-averaged velocity profile for fu
developed turbulent flow withu* 515.2 cm/s~from Ref.@24#! com-
pared with the circle solution, denoted by ‘‘present theory.’’ T
measurements were performed in a channel with height 24.6
which is shown after applying a scaling ash5@21,1#. The width
of the channel is 98 cm. A former model, referred to in Ref.@24#,
leads to a result of parabolic type~see ‘‘previous theory’’!.



g
th

d
e

ie
u

or
s
r.
o
lie

t
he
Th
te

i-
is

el
e
ce
ix
o
rg
ee
e
ur

ng
ow
e
or
nt
th
w
is

of
tte
d,

sly
st
lso
of
ly.
w
ro-

ear
ure
al

ith
er/
s in
lies

nt
on
-
av-
of
d
o-
law,
hed

ille
ary

ing
add
ly
le,
n as
t

r
pr
ri-
n
le

562 PRE 62PETER W. EGOLF AND DANIEL A. WEISS
lim
x2→6a

u28u18}~a7x2!n, n>3. ~90!

For a generalized solution, based on Prandtl’s mixing-len
theory, describing the profiles in the viscous sublayer and
boundary layer, it is found thatn52. The solution presente
in @11#, which is derived by applying the DQTM to the plan
Couette flow problem, even leads ton51. Because of this
failure, one concludes that the related solutions do not y
the correct description for the boundary layer region. B
they present very convincing analytical results for the c
region. The same reasoning is also valid for the solution
the plane Poiseuille flow problem presented in this pape

The drawback of failing to have an overall description
high quality can be easily understood by studying the app
‘‘mixing lengths’’ for the different flow regions~see Fig. 8!.
In Sec. IV and in Ref.@9# it is explained that—in the contex
of the DQTM—a mixing length does not have exactly t
same meaning and definition as in Prandtl’s theories.
solution for the sublayer can be interpreted as being rela
to a ‘‘mixing length’’ that is small compared with the diss
pation length. This is compatible with the result that in th
first domain the Reynolds stress is negligible. It is w
known that in turbulence near walls, in the boundary lay
the mixing length must be proportional to the wall distan
Therefore it is clear that our approach—with a constant m
ing length—cannot yield the correct solutions for this d
main. Only the third domain, the core region, shows a la
constant mixing length, equal to half the distance betw
the plates. A distribution of the mixing length as propos
above is also reported for Couette flow in the book on t
bulence published by Libby~see Ref.@27#!, who writes the
following: ‘‘There is a temptation to assume that the mixi
length is constant throughout the central portion of the fl
and varies only within the wall layer.’’ Furthermore, h
states that ‘‘Briefly, it is not possible to match a solution f
the wall layer to that for an outer flow involving a consta
mixing length. We thus conclude that at the edges of
outer flow the mixing length must vary as in channel flo
i.e., it must become proportional to the wall distance.’’ Th

FIG. 7. The Reynolds shear stress at a Reynolds numbe
12 300 has already converged very closely to the theoretically
posed profile for the infinite Reynolds number limit. The expe
mental data~see Refs.@13# or @23#! have been inflected at the origi
of the coordinate system to complete the time-averaged turbu
shear stress profile.
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is in agreement with our assumption that in a description
the flow in the boundary layer the model for plane Coue
flow in @11# and the theory in this paper have to be modifie
by changing the mixing length to be proportional to (a
2x2).

Solving the fluid dynamic equations and simultaneou
applying the DQTM yields analytical results for the mo
important basic turbulent-free shear flow problems. It a
analytically describes flow profiles in the core region
plane turbulent Couette and Poiseuille flows very precise
The infinite Reynolds number solutions of Poiseuille flo
are an elevated semicircle, describing the mean velocity p
file and a linear function representing the Reynolds sh
stress. In accordance, without even applying a clos
scheme, a linear function also follows from a dimension
analyses~see Ref.@27#!.

Furthermore, in plane Couette and Poiseuille flow—w
different symmetries—in both cases an identical ord
disorder model of turbulence has been revealed. This i
accordance to many fields, where statistical physics app
to describe the degree of disorder occuring in a system.

X. OUTLOOK

Modifying the DQTM to allow for a space-depende
mixing-length and applying it to the Navier-Stokes equati
and solving for the law of the wall will show if this turbu
lence model is appropriate to also describe turbulent beh
ior closer to walls. Note that following some papers
Barenblatt and Chorin, e.g., Ref.@28#, discussions are indee
performed, if in the boundary layer the mean velocity pr
files show a Reynolds-number dependent scaling power
or are more accurately described by the well establis
logarithmic law of the wall.

FIG. 8. From the plate toward the center, the plane Poiseu
flow regions are as follows: the viscous sublayer, the bound
layer, and the core region~shaded domains!. Between each of these
a small transition region occurs. The related functions describ
the mean velocity profile are shown above. The three functions
together to give a bulbous velocity profile as occurring in high
turbulent flows. The Bessel functions and the circle profi
which—because of the scaling applied to this graphics—is draw
an ellipse, guarantee the necessary symmetry requiremeng1

(2h)5g1(h).
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It seems appropriate to refer to the solutions for
boundary layer—derived with the use of the DQTM—in
separate paper. The reason is that the results will be valid
several types of turbulent boundary-layer flows: plane ‘‘wa
turbulent’’ flow, plane and axisymmetric Couette and P
seuille flows, etc. When this problem has been solved, it w
be straightforward to also determine the locations of the
tersections~d8 and d9, see Ref.@27#! of the three domains
and the functiona(Re), relating the shear stress parametea
-
,
th
93

e

e

or
-
-
ll
-

to the Reynolds number Re. Furthermore, fromacrit50.5 the
critical Reynolds number Recrit will be obtained.
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